

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro ABOUT AN INEQUALITY BY HAXVERDIYEV TAVERDI-III

By Marin Chirciu-Romania

Edited by Florică Anastase-Romania

1) In $\triangle ABC$ the following relationship holds:

 $\sqrt{\frac{a^2\sqrt{bc}+b^2\sqrt{ca}+c^2\sqrt{ab}}{acosA+bcosB+ccosC}} \ge \sqrt{6}R$

Proposed by Haxverdiyev Taverdi-Azerbaijan

Solution. Using well-known identity in triangle: $\sum a \cos A = \frac{2rs}{R}$, inequality can be written: $\frac{a^2\sqrt{bc} + b^2\sqrt{ca} + c^2\sqrt{ab}}{a\cos A + b\cos B + c\cos C} \ge 6R^2 \Leftrightarrow a^2\sqrt{bc} + b^2\sqrt{ca} + c^2\sqrt{ab} \ge 6R^2 \cdot \frac{2rs}{R} \Leftrightarrow$ $a^2\sqrt{bc} + b^2\sqrt{ca} + c^2\sqrt{ab} \ge 12Rrs$, which follows from AM-GM inequality and abc = 4Rrs. Equality holds if and only if triangle is equilateral.

Remark. Let's find an reverse inequality.

2) In $\triangle ABC$ the following relationship holds:

$$\sqrt{\frac{a^2\sqrt{bc}+b^2\sqrt{ca}+c^2\sqrt{ab}}{acosA+bcosB+ccosC}} \leq \sqrt{\frac{3}{2}} \cdot \frac{R^2}{r}$$

Proposed by Marin Chirciu-Romania

Solution. Using well-known identity in triangle: $\sum a \cos A = \frac{2rs}{R}$, inequality can be written:

 $\frac{a^2\sqrt{bc} + b^2\sqrt{ca} + c^2\sqrt{ab}}{acosA + bcosB + ccosC} \leq \frac{3R^4}{2r^2} \Leftrightarrow a^2\sqrt{bc} + b^2\sqrt{ca} + c^2\sqrt{ab} \leq \frac{3R^4}{2r^2} \cdot \frac{2rs}{R} \Leftrightarrow a^2\sqrt{bc} + b^2\sqrt{ca} + c^2\sqrt{ab} \leq \frac{3R^{3s}}{r}, \text{ which follows from AM-GM inequality.}$ $We \ get: \sum a^2\sqrt{bc} \leq \sum a^2\frac{b+c}{2} = \frac{1}{2}\sum a^2(b+c) = \frac{1}{2}2s(s^2 + r^2 - 2Rr) = s(s^2 + r^2 - 2Rr), \text{ which follows from } \sum a^2(b+c) = 2s(s^2 + r^2 - 2Rr).$ $Next, we \ must \ show \ that:$ $2s(s^2 + r^2 - 2Rr) \leq \frac{3R^{2s}}{r} \Leftrightarrow r(s^2 + r^2 - 2Rr) \leq 3R^{3}, \text{ which follows from } \sum a^2(b+c) \leq 3R^{3}, \text{ which follows f$

 $s^2 \leq 4R^2 + 4Rr + 3r^2$ (Gerretsen). Remains to prove:

1

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

 $r(4R^2 + 4Rr + 3r^2 + r^2 - 2Rr) \le 3R^3 \Leftrightarrow 3R^3 - 4R^2r - 2Rr^2 - 4r^3 \ge 0 \Leftrightarrow$

 $(R-2r)(3R^2+2Rr+2r^2) \ge 0$, which is true from $R \ge 2r(Euler)$.

Equality holds if and only if triangle is equilateral.

3) In $\triangle ABC$ the following relationship holds:

$$\sqrt{6}R \leq \sqrt{\frac{a^2\sqrt{bc} + b^2\sqrt{ca} + c^2\sqrt{ab}}{acosA + bcosB + ccosC}} \leq \sqrt{\frac{3}{2}} \cdot \frac{R^2}{r}$$

Proposed by Marin Chirciu-Romania

Solution. See inequalities 1) and 2).

Equality holds if and only if triangle is equilateral.

Reference: ROMANIAN MATHEMATICAL MAGAZINE-www.ssmrmh.ro