

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro
 ABOUT AN INEQUALTY BY HAXVERDIYEV TAVERDI-III
 By Marin Chirciu-Romania

Edited by Florică Anastase-Romania

1) In $\triangle A B C$ the following relationship holds:

$$
\sqrt{\frac{a^{2} \sqrt{b c}+b^{2} \sqrt{c a}+c^{2} \sqrt{a b}}{a \cos A+b \cos B+c \cos C}} \geq \sqrt{6} R
$$

Proposed by Haxverdiyev Taverdi-Azerbaijan

Solution. Using well-known identity in triangle: $\sum a \cos A=\frac{2 r s}{R}$, inequality can be written:

$$
\frac{a^{2} \sqrt{b c}+b^{2} \sqrt{c a}+c^{2} \sqrt{a b}}{a \cos A+b \cos B+c \cos C} \geq 6 R^{2} \Leftrightarrow a^{2} \sqrt{b c}+b^{2} \sqrt{c a}+c^{2} \sqrt{a b} \geq 6 R^{2} \cdot \frac{2 r s}{R} \Leftrightarrow
$$

$a^{2} \sqrt{b c}+b^{2} \sqrt{c a}+c^{2} \sqrt{a b} \geq 12$ Rrs, which follows from AM-GM inequality and $a b c=4$ Rrs. Equality holds if and only if triangle is equilateral.
Remark. Let's find an reverse inequality.
2) In $\triangle A B C$ the following relationship holds:

$$
\sqrt{\frac{a^{2} \sqrt{b c}+b^{2} \sqrt{c a}+c^{2} \sqrt{a b}}{a \cos A+b \cos B+c \cos C}} \leq \sqrt{\frac{3}{2}} \cdot \frac{R^{2}}{r}
$$

Proposed by Marin Chirciu-Romania

Solution. Using well-known identity in triangle: $\sum a \cos A=\frac{2 r s}{R}$, inequality can be written:

$$
\begin{gathered}
\frac{a^{2} \sqrt{b c}+b^{2} \sqrt{c a}+c^{2} \sqrt{a b}}{a \cos A+b \cos B+c \cos C} \leq \frac{3 R^{4}}{2 r^{2}} \Leftrightarrow a^{2} \sqrt{b c}+b^{2} \sqrt{c a}+c^{2} \sqrt{a b} \leq \frac{3 R^{4}}{2 r^{2}} \cdot \frac{2 r s}{R} \Leftrightarrow \\
a^{2} \sqrt{b c}+b^{2} \sqrt{c a}+c^{2} \sqrt{a b} \leq \frac{3 R^{3} s}{r}, \text { which follows from AM-GM inequality. } \\
\text { We get: } \sum a^{2} \sqrt{b c} \leq \sum a^{2} \frac{b+c}{2}=\frac{1}{2} \sum a^{2}(b+c)=\frac{1}{2} 2 s\left(s^{2}+r^{2}-2 R r\right)= \\
=s\left(s^{2}+r^{2}-2 R r\right), \text { which follows from } \sum a^{2}(b+c)=2 s\left(s^{2}+r^{2}-2 R r\right) .
\end{gathered}
$$

Next, we must show that:

$$
\begin{gathered}
2 s\left(s^{2}+r^{2}-2 R r\right) \leq \frac{3 R^{2} s}{r} \Leftrightarrow r\left(s^{2}+r^{2}-2 R r\right) \leq 3 R^{3}, \text { which follows from } \\
s^{2} \leq 4 R^{2}+4 R r+3 r^{2}(\text { Gerretsen }) \text {. Remains to prove: }
\end{gathered}
$$

> ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
> $r\left(4 R^{2}+4 R r+3 r^{2}+r^{2}-2 R r\right) \leq 3 R^{3} \Leftrightarrow 3 R^{3}-4 R^{2} r-2 R r^{2}-4 r^{3} \geq 0 \Leftrightarrow$
> $(R-2 r)\left(3 R^{2}+2 R r+2 r^{2}\right) \geq 0$, which is true from $R \geq 2 r($ Euler $)$.

Equality holds if and only if triangle is equilateral.
3) In $\triangle A B C$ the following relationship holds:

$$
\sqrt{6} R \leq \sqrt{\frac{a^{2} \sqrt{b c}+b^{2} \sqrt{c a}+c^{2} \sqrt{a b}}{a \cos A+b \cos B+c \cos C}} \leq \sqrt{\frac{3}{2}} \cdot \frac{R^{2}}{r}
$$

Proposed by Marin Chirciu-Romania

Solution. See inequalities 1) and 2).
Equality holds if and only if triangle is equilateral.

Reference:

ROM ANIAN M ATHEM ATICAL M AGAZINE-www.ssmrmh.ro

