

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro
 ABOUT AN INEQUALITY BY MUSTAFA TAREK-I

By Marin Chirciu - Romania

1) Prove that in any $\triangle A B C$ the following relationship holds:

$$
\begin{aligned}
& \frac{A I \cdot h_{a}}{w_{a}\left(r_{a}+h_{a}\right)}+\frac{B I \cdot h_{b}}{w_{b}\left(r_{b}+h_{b}\right)}+\frac{C I \cdot h_{c}}{w_{c}\left(r_{c}+h_{c}\right)}=1 \\
& \text { Proposed by Mustafa Tarek - Egypt }
\end{aligned}
$$

Solution Using the relationships in triangle $A I=\frac{r}{\sin \frac{A}{2}}, h_{a}=\frac{2 S}{a}, w_{a}=\frac{2 b c}{b+c} \cos \frac{A}{2}$ and $r_{a}+h_{a}=\frac{S(b+c)}{a(s-a)^{\prime}}$, we obtain $\sum \frac{A I \cdot h_{a}}{w_{a}\left(r_{a}+h_{a}\right)}=\sum \frac{\frac{r}{\sin \frac{A}{2}} \cdot \frac{2 S}{a}}{\frac{2 b c}{b+c} \cos \frac{A}{2} \cdot \frac{S(b+c)}{a(s-a)}}=\frac{1}{S} \cdot \frac{r}{2 R} \sum \frac{a(s-a)}{\sin A}=\frac{1}{r s} \cdot \frac{r}{2 R}$. $2 R \sum(s-a)=\frac{1}{s} \cdot s=1$
2) Prove that in any $\triangle \mathrm{ABC}$ the following relationship holds:

$$
\frac{w_{a}\left(r_{a}+h_{a}\right)}{A I \cdot h_{a}}+\frac{w_{b}\left(r_{b}+h_{b}\right)}{B I \cdot h_{b}}+\frac{w_{c}\left(r_{c}+h_{c}\right)}{C I \cdot h_{c}} \geq 9
$$

Proposed by Mustafa Tarek - Egypt

Solution Using the inequality $x+y+z \geq \frac{9}{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}$, with $x=\frac{w_{a}\left(r_{a}+h_{a}\right)}{A I \cdot h_{a}}, y=\frac{w_{b}\left(r_{b}+h_{b}\right)}{B I \cdot h_{b}}$,
$z=\frac{w_{c}\left(r_{c}+h_{c}\right)}{C I \cdot h_{c}}$ and the above identity $\frac{A I \cdot h_{a}}{w_{a}\left(r_{a}+h_{a}\right)}+\frac{B I \cdot h_{b}}{w_{b}\left(r_{b}+h_{b}\right)}+\frac{C I \cdot h_{c}}{w_{c}\left(r_{c}+h_{c}\right)}=1$ we obtain the conclusion. Equality holds if and only if the triangle is equilateral.
Remark. Let's find an inequality having an opposite sense:
3) Prove that in any $\triangle \mathrm{ABC}$ the following relationship holds:

$$
\frac{w_{a}\left(r_{a}+h_{a}\right)}{A I \cdot h_{a}}+\frac{w_{b}\left(r_{b}+h_{b}\right)}{B I \cdot h_{b}}+\frac{w_{c}\left(r_{c}+h_{c}\right)}{C I \cdot h_{c}} \leq \frac{9 R}{2 r}
$$

Solution We prove the identity:

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Lemma.

4) Prove that in any $\triangle \mathrm{ABC}$ the following relationship holds:

$$
\frac{w_{a}\left(r_{a}+h_{a}\right)}{A I \cdot h_{a}}+\frac{w_{b}\left(r_{b}+h_{b}\right)}{B I \cdot h_{b}}+\frac{w_{c}\left(r_{c}+h_{c}\right)}{C I \cdot h_{c}}=1+\frac{4 R}{r}
$$

Proof.

Using the known inequalities in triangle $A I=\frac{r}{\sin \frac{A}{2}}, h_{a}=\frac{2 s}{a}, w_{a}=\frac{2 b c}{b+c} \cos \frac{A}{2}$ and

$$
\begin{aligned}
r_{a}+h_{a} & =\frac{s(b+c)}{a(s-a)^{\prime}} \text {, we obtain: } \sum \frac{w_{a}\left(r_{a}+h_{a}\right)}{A I \cdot h_{a}}=\sum \frac{\frac{2 b c}{b+c} \cos \frac{A}{2} \cdot \frac{s(b+c)}{a(s-a)}}{\frac{r}{\sin \frac{A}{2}}}=S \cdot \frac{2 R}{r} \sum \frac{\sin A}{a(s-a)}= \\
& =r s \cdot \frac{2 R}{r} \cdot \frac{1}{2 R} \sum \frac{1}{s-a}=s \cdot \sum \frac{1}{s-a}=s \cdot \frac{4 R+r}{r s}=\frac{4 R+r}{r}
\end{aligned}
$$

Let's get back to the main problem.
Using the Lemma the inequality can be written: $1+\frac{4 R}{r} \leq \frac{9 R}{2 r} \Leftrightarrow R \geq 2 r$ (Euler's inequality) Equality holds if and only if the triangle is equilateral.

Remark.

We can write the double inequality:
5) Prove that in any $\triangle \mathrm{ABC}$ the following relationship holds:

$$
9 \leq \frac{w_{a}\left(r_{a}+h_{a}\right)}{A I \cdot h_{a}}+\frac{w_{b}\left(w_{b}+h_{b}\right)}{B I \cdot h_{b}}+\frac{w_{c}\left(r_{c}+h_{c}\right)}{C I \cdot h_{c}} \leq \frac{9 R}{2 r}
$$

Solution.

See inequalities 2) and 4)
Equality holds if and only if the triangle is equilateral.

Reference:

