

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro
 ABOUT AN INEQUALITY BY MUSTAFA TAREK-II

By Marin Chirciu - Romania

1) In $\triangle A B C$ the following relationship holds:

$$
\sqrt{\tan \frac{A}{2}}+\sqrt{\tan \frac{B}{2}}+\sqrt{\tan \frac{C}{2}} \leq \sqrt{\frac{S}{r}}
$$

Proposed by Mustafa Tarek - Egypt
Solution Using the identity $\tan \frac{A}{2}=\frac{r}{s-a}$ and the CBS inequality, we obtain:

$$
\begin{gathered}
M_{s}=\sum \sqrt{\tan \frac{A}{2}}=\sum \sqrt{\frac{r}{s-a}} \leq \sum \sqrt{r} \cdot \frac{1}{\sqrt{s-a}} \leq \sqrt{\sum r \cdot \sum \frac{1}{s-a}}=\sqrt{3 r \cdot \frac{4 R+r}{r s}}= \\
=\sqrt{\frac{3(4 R+r)}{s}} \leq \sqrt{\frac{s}{r}}=M_{d}, \text { where the last inequality is equivalent with: } \\
\frac{3(4 R+r)}{s} \leq \frac{s}{r} \Leftrightarrow s^{2} \geq 3 r(4 R+r) \text {, which follows from Gerretsen's inequality } \\
s^{2} \geq 16 R r-5 r^{2} . \text { It remains to prove that: } \\
16 R r-5 r^{2} \geq 3 r(4 R+r) \Leftrightarrow R \geq 2 r \text { (Euler's inequality) } \\
\text { Equality holds if and only if the triangle is equilateral. }
\end{gathered}
$$

Remark.

Let's find an inequality having an opposite sense:
2) In $\triangle \mathrm{ABC}$ the following inequality holds:

$$
\sqrt{\tan \frac{A}{2}}+\sqrt{\tan \frac{B}{2}}+\sqrt{\tan \frac{C}{2}} \geq 3 \sqrt{\frac{3 r}{S}}
$$

Solution Using the identity $\Pi \frac{A}{2}=\frac{r}{s}$ and the means inequality, we obtain:

$$
M_{s}=\sum \sqrt{\tan \frac{A}{2}} \geq 3 \sqrt[3]{\prod \sqrt{\frac{A}{2}}}=3 \sqrt[6]{\frac{r}{s}} \geq 3 \sqrt{\frac{3 r}{s}}=M_{d}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro
 Wherefrom the last inequality is equivalent with:

$\sqrt[6]{\frac{r}{s}} \geq \sqrt{\frac{3 r}{s}} \Leftrightarrow s^{2} \geq 27 r^{2}$, which follows from Mitrinovic's inequality $s \geq 3 r \sqrt{3}$.
Equality holds if and only if the triangle is equilateral.

Remark.

We can write the double inequality:
3) In $\triangle \mathrm{ABC}$ the following inequality holds:

$$
3 \sqrt{\frac{3 r}{s}} \leq \sqrt{\tan \frac{A}{2}}+\sqrt{\tan \frac{B}{2}}+\sqrt{\tan \frac{C}{2}} \leq \sqrt{\frac{s}{r}}
$$

SolutionSee inequalities 1) and 2).Equality holds if and only if the triangle is equilateral.
Remark.If we replace $\tan \frac{A}{2}$ with $\cot \frac{A}{2}$ we propose:
4) In $\triangle \mathrm{ABC}$ the following relationship holds:
$9 \sqrt{\frac{r}{s}} \leq \sqrt{\cot \frac{A}{2}}+\sqrt{\cot \frac{B}{2}}+\sqrt{\cot \frac{C}{2}} \leq \sqrt{\frac{3 s}{r}}$
Proposed by Marin Chirciu - Romania
Solution LHS inequality:
Using the identity $\cot \frac{A}{2}=\frac{s-a}{r}$ and CBS inequality, we obtain:

$$
M_{s}=\sum \sqrt{\cot \frac{A}{2}}=\sum \sqrt{\frac{s-a}{r}} \leq \sum \frac{1}{\sqrt{r}} \cdot \sqrt{s-a} \leq \sqrt{\sum \frac{1}{r} \cdot \sum(s-a)}=\sqrt{\frac{3}{r} \cdot s}=\sqrt{\frac{3 s}{r}}
$$

Equality holds if and only if the triangle is equilateral.RHS inequality:
Using the identity $\Pi \cot \frac{A}{2}=\frac{s}{r}$ and the means inequality we obtain:

$$
M_{s}=\sum \sqrt{\cot \frac{A}{2}} \geq 3 \sqrt[3]{\prod \sqrt{\cot \frac{A}{2}}}=3 \sqrt[6]{\frac{s}{r}} \geq 9 \sqrt{\frac{r}{s}}=M_{d}
$$

where the last inequality is equivalent with:

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$\sqrt[6]{\frac{s}{r}} \geq 3 \sqrt{\frac{r}{s}} \Leftrightarrow s^{2} \geq 27 r^{2}$, which follows from Mitrinoic's inequality $s \geq 3 r \sqrt{3}$.
Equality holds if and only if the triangle is equilateral.
Remark. Between the sums $\sum \tan \frac{A}{2}$ and $\sum \cot \frac{A}{2}$ the following relationship holds:
5) In $\triangle \mathrm{ABC}$ the following relationship holds:

$$
\sum \tan \frac{A}{2} \leq \frac{1}{\sqrt{3}} \cdot \frac{R}{2 r} \sum \cot \frac{A}{2}
$$

Proposed by Marin Chirciu - Romania

Solution See inequalities 1), 4) and Mitrinovic's inequality $s \leq \frac{3 R \sqrt{3}}{2}$.
Indeed, $\sum \tan \frac{A}{2} \stackrel{1)}{\leq} \sqrt{\frac{s}{r}} \stackrel{(*)}{\leq} \frac{1}{\sqrt{3}} \cdot \frac{R}{2 r} \cdot 9 \sqrt{\frac{r}{s}} \stackrel{4)}{\leq} \frac{1}{\sqrt{3}} \cdot \frac{R}{2 r} \cdot \sum \cot \frac{A}{2}$, where the inequality (${ }^{*}$) is equivalent with: $\sqrt{\frac{s}{r}} \stackrel{(*)}{\leq} \frac{1}{\sqrt{3}} \cdot \frac{R}{2 r} \cdot 9 \sqrt{\frac{r}{s}} \Leftrightarrow \frac{s}{r} \leq \frac{1}{3} \cdot \frac{R^{2}}{4 r^{2}} \cdot 81 \cdot \frac{r}{s} \Leftrightarrow s^{2} \leq \frac{27 R^{2}}{4}$, which follows from

$$
\text { Mitrinovic's inequality } s \leq \frac{3 R \sqrt{3}}{2}
$$

Equality holds if and only if the triangle is equilateral.
Remark. We can write the sequences of inequalities:
6) In $\triangle \mathrm{ABC}$ the following relationship holds:

$$
3 \sqrt{\frac{3 r}{s}} \leq \sum \tan \frac{A}{2} \leq \frac{1}{\sqrt{3}} \cdot \frac{R}{2 r} \sum \cot \frac{A}{2} \leq \frac{R}{2 r} \sqrt{\frac{s}{r}}
$$

Proposed by Marin Chirciu - Romania

Solution:See inequalities 1) and 4).Equality holds if and only if the triangle is equilateral.

Reference:

ROMANIAN MATHEMATICAL MAGAZINE-www.ssmrmh.ro

