

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
SOLVED PROBLEMS-II

By D.M. Bătinețu-Giurgiu, Neculai Stanciu - Romania

1. If $a, b, c, d \in \mathbb{R}_{+}^{*}$ such that $\boldsymbol{a}^{\mathbf{3}}+\boldsymbol{b}^{\mathbf{3}}=\boldsymbol{u}$, then prove that

$$
\frac{a^{3 m+3}}{c^{m}}+\frac{b^{3 m+3}}{d^{m}} \geq \frac{u^{m+1}}{(c+d)^{m}}, \forall m \in \mathbb{R}_{+}
$$

Solution

$$
\begin{aligned}
U=\frac{a^{3 m+3}}{c^{m}}+\frac{b^{3 m+3}}{d^{m}} & =\frac{\left(a^{3}\right)^{m+1}}{c^{m}}+\frac{\left(b^{3}\right)^{m+1}}{d^{m}} \text { and by J. Radon inequality } \\
U & \geq \frac{\left(a^{3}+b^{3}\right)^{m+1}}{(c+d)^{m}}=\frac{u^{m+1}}{(c+d)^{m}}
\end{aligned}
$$

2. If $m, n, x, y, z>0$ then show that

$$
\begin{aligned}
& \left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(\frac{x y}{m y+n z}+\frac{y z}{m z+n x}+\frac{z x}{m x+n y}\right) \geq \\
& \geq \frac{3}{m+n}+3 \sqrt[3]{\frac{(x+y)(y+z)(z+x)}{(m x+n y)(m y+n z)(m z+n x)}}
\end{aligned}
$$

Solution

We have:

$$
\begin{gathered}
U=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right) \sum_{c y c} \frac{x y}{m y+n z}=\sum_{c y c} \frac{y}{m y+n z}+\sum_{c y c} \frac{x}{m y+n z}+\sum_{c y c} \frac{x y}{z(m y+n z)}= \\
=\sum_{c y c} \frac{x}{m y+n z}+\sum_{c y c} \frac{x y+y z}{z(m y+n z)}
\end{gathered}
$$

Also, we have:

$$
\begin{gathered}
\sum_{c y c} \frac{x}{m y+n z}=\sum_{c y c} \frac{x^{2}}{m x y+n x z} \stackrel{\text { Bergstrom }}{\geq} \frac{(x+y+z)^{2}}{\sum_{c y c}(m x y+n x z)}=\frac{(x+y+z)^{2}}{(m+n)(x y+y z+z x)} \geq \\
\geq \frac{3(x y+y z+z x)}{(m+n)(x y+y z+z x)}=\frac{3}{m+n}
\end{gathered}
$$

So, by above and $\mathrm{AM}-\mathrm{GM}$ inequality yields that:

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro
 $$
U \geq \frac{3}{m+n}+3 \sqrt[3]{\frac{(x+y)(y+z)(z+x)}{(m x+n y)(m y+n z)(m z+n x)}}
$$

3. Show that in any triangle $A B C$ with the usual notations, holds the following inequality:

$$
r_{a} \cdot a^{4}+r_{b} \cdot b^{4}+r_{c} \cdot c^{4} \geq 1296 r^{5}
$$

Solution

By Bergstrom's inequality and well-known $\sum \frac{1}{r_{a}}=\frac{1}{r}$ we have:

$$
V=\sum a^{4} r_{a}=\sum \frac{\left(a^{2}\right)^{2}}{\frac{1}{r_{a}}} \stackrel{\text { Bergstrom }}{\geq} \frac{\left(a^{2}+b^{2}+c^{2}\right)^{2}}{\sum \frac{1}{r_{a}}}=\frac{\left(\sum a^{2}\right)^{2}}{\frac{1}{r}}=\left(\sum a^{2}\right)^{2} r
$$

By Ionescu-Weitzenböck inequality, i.e.
$a^{2}+b^{2}+c^{2} \geq 4 \sqrt{3} S=4 \sqrt{3} s r$, where we used $S=s r$.
So, $V \geq 48 s^{2} r^{3}$, and by Mitrinovic's inequality, i.e. $s \geq 3 \sqrt{3} r \Leftrightarrow s^{2} \geq 27 r^{2}$ we obtain:
$V \geq 48 \cdot 27 r^{5}=1296 r^{5}$, Q.E.D.
4. Prove that in any triangle $A B C$ holds the inequality

$$
\frac{a^{2}}{r_{b} r_{c}}+\frac{b^{2}}{r_{c} r_{a}}+\frac{c^{2}}{r_{a} r_{b}} \geq 4
$$

Solution

Bergström $\sum \frac{a^{2}}{r_{b} r_{c}} \geq \frac{\left(\sum a\right)^{2}}{\sum r_{a} r_{b}}$ and taking account by $\sum a=2 s$ and $\sum r_{a} r_{b}=s^{2}$, Q.E.D.
5. Prove that in all triangle $A B C$, with usual notations, holds:

$$
\frac{\boldsymbol{m}_{a}^{3}}{\boldsymbol{R} \cdot \boldsymbol{m}_{\boldsymbol{b}}+\boldsymbol{r} \cdot \boldsymbol{m}_{c}}+\frac{\boldsymbol{m}_{b}^{3}}{\boldsymbol{R} \cdot \boldsymbol{m}_{c}+\boldsymbol{r} \cdot \boldsymbol{m}_{a}}+\frac{\boldsymbol{m}_{c}^{3}}{\boldsymbol{R} \cdot \boldsymbol{m}_{a}+\boldsymbol{r} \cdot \boldsymbol{m}_{\boldsymbol{b}}} \geq \frac{3 \sqrt{3}}{\boldsymbol{R}+\boldsymbol{r}} \boldsymbol{S}
$$

Solution

We have that:

$$
\begin{gathered}
U=\sum_{c y c} \frac{m_{a}^{3}}{R \cdot m_{b}+r \cdot m_{c}}=\sum_{c y c} \frac{\left(m_{a}^{2}\right)^{2}}{R \cdot m_{a} \cdot m_{b}+r \cdot m_{a} \cdot m_{c}} \geq \\
\geq 2 \cdot \sum_{c y c} \frac{\left(m_{a}^{2}\right)^{2}}{R\left(m_{a}^{2}+m_{b}^{2}\right)+r\left(m_{a}^{2}+m_{c}^{2}\right)}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

where we apply Bergström's inequality and well-known formula:

$$
m_{a}^{2}+m_{b}^{2}+m_{c}^{2}=\frac{3}{4}\left(a^{2}+b^{2}+c^{2}\right)
$$

We obtain that:

$$
\begin{gathered}
U \geq 2 \cdot \frac{\left(\sum_{c y c} m_{a}^{2}\right)^{2}}{R \cdot \sum\left(m_{a}^{2}+m_{b}^{2}\right)+r \cdot \sum\left(m_{a}^{2}+m_{c}^{2}\right)}=\frac{2 \cdot\left(\sum_{c y c} m_{a}^{2}\right)^{2}}{2 R \cdot \sum m_{a}^{2}+2 r \cdot \sum m_{a}^{2}} \\
=\frac{\sum_{c y c} m_{a}^{2}}{R+r}=\frac{3}{4} \cdot \frac{a^{2}+b^{2}+c^{2}}{R+r}
\end{gathered}
$$

where we use the lonescu-Weitzenböck inequality, i.e. $a^{2}+b^{2}+c^{2} \geq 4 S \sqrt{3}$, and we deduce that:

$$
U \geq \frac{3}{4} \cdot \frac{1}{R+r} \cdot 4 S \sqrt{3}=\frac{3 \sqrt{3}}{R+r} S
$$

and we are done.
6. If $x, y \in \mathbb{R}_{+}^{*}$ such that $x y=1$, then prove that in any triangle $A B C$ holds the inequality:

$$
\left(x r_{a} r_{b}+r_{b} r_{c}+y r_{c} r_{a}\right)\left(y r_{a} r_{b}+r_{b} r_{c}+x r_{c} r_{a}\right) \geq s^{4}
$$

Solution

$$
\begin{gathered}
\left(x r_{a} r_{b}+r_{b} r_{c}+y r_{c} r_{a}\right)\left(y r_{a} r_{b}+r_{b} r_{c}+x r_{c} r_{a}\right)=r_{a}^{2} r_{b}^{2}+r_{b}^{2} r_{c}^{2}+r_{c}^{2} r_{a}^{2}+ \\
+r_{a} r_{b}^{2} r_{c}(x+y)+r_{a} r_{b} r_{c}^{2}(x+y)+r_{a}^{2} r_{b} r_{c}\left(x^{2}+y^{2}\right) \geq r_{a}^{2} r_{b}^{2}+r_{b}^{2} r_{c}^{2}+r_{c}^{2} r_{a}^{2}+ \\
+2 r_{a} r_{b}^{2} r_{c} \sqrt{x y}+2 r_{a} r_{b} r_{c}^{2} \sqrt{x y}+2 r_{a}^{2} r_{b} r_{c} x y=\left(r_{a} r_{b}+r_{b} r_{c}+r_{c} r_{a}\right)^{2}
\end{gathered}
$$

where we used $r_{a} r_{b}+r_{b} r_{c}+r_{c} r_{a}=p^{2}$ and we obtain:

$$
\left(x r_{a} r_{b}+r_{b} r_{c}+y r_{c} r_{a}\right)\left(y r_{a} r_{b}+r_{b} r_{c}+x r_{c} r_{a}\right) \geq s^{4}, \text { Q.E.D. }
$$

7. If $x, y \in \mathbb{R}_{+}^{*}$ and $x y=1$, then in any triangle $A B C$ is true the following inequality:

$$
\left(x^{2} r_{a} r_{b}+r_{b} r_{c}+y^{2} r_{c} r_{a}\right)\left(y^{2} r_{a} r_{b}+r_{b} r_{c}+x^{2} r_{c} r_{a}\right) \geq s^{4}
$$

Solution

From $x y=1$ and $A M-G M$ inequality we get:

$$
\begin{gathered}
\left(x^{2} r_{a} r_{b}+r_{b} r_{c}+y^{2} r_{c} r_{a}\right)\left(y^{2} r_{a} r_{b}+r_{b} r_{c}+x^{2} r_{c} r_{a}\right)=r_{a}^{2} r_{b}^{2}+r_{b}^{2} r_{c}^{2}+r_{c}^{2} r_{a}^{2}+ \\
+r_{a} r_{b}^{2} r_{c}\left(x^{2}+y^{2}\right)+r_{a} r_{b} r_{c}^{2}\left(x^{2}+y^{2}\right)+r_{a}^{2} r_{b} r_{c}\left(x^{4}+y^{4}\right) \geq r_{a}^{2} r_{b}^{2}+r_{b}^{2} r_{c}^{2}+r_{c}^{2} r_{a}^{2}+ \\
+2 r_{a} r_{b}^{2} r_{c} x y+2 r_{a} r_{b} r_{c}^{2} x y+2 r_{a}^{2} r_{b} r_{c} x^{2} y^{2}=\left(r_{a} r_{b}+r_{b} r_{c}+r_{c} r_{a}\right)^{2}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

and applying $r_{a} r_{b}+r_{b} r_{c}+r_{c} r_{a}=s^{2}$ we obtain:
$\left(x^{2} r_{a} r_{b}+r_{b} r_{c}+y^{2} r_{c} r_{a}\right)\left(y^{2} r_{a} r_{b}+r_{b} r_{c}+x^{2} r_{c} r_{a}\right) \geq s^{4}$, Q.E.D.
8. Prove that in any triangle $A B C$ is true the following inequality:

$$
\frac{1}{2 r_{a}^{2}+5 r_{b} r_{c}}+\frac{1}{2 r_{b}^{2}+5 r_{c} r_{a}}+\frac{1}{2 r_{c}^{2}+5 r_{a} r_{b}} \geq \frac{9}{2(4 R+r)^{2}+s^{2}}
$$

Solution

By Bergström inequality we have $\sum \frac{1}{2 r_{a}^{2}+5 r_{b} r_{c}} \geq \frac{9}{2 \sum r_{a}^{2}+5 \sum r_{a} r_{b}}$, and by $\sum r_{a}^{2}=(4 R+r)^{2}-2 s^{2}$ respectively $\sum r_{a} r_{b}=s^{2}$, Q.E.D.
9. Prove that in any triangle $A B C$ the following inequality is true:

$$
a^{2} \cot \frac{B}{2} \cot \frac{C}{2}+b^{2} \cot \frac{C}{2} \cot \frac{A}{2}+c^{2} \cot \frac{A}{2} \cot \frac{B}{2} \geq 4 s^{2}
$$

Solution

Using Bergström inequality and $\sum \tan \frac{A}{2} \tan \frac{B}{2}=1$,
$\sum a^{2} \cot \frac{B}{2} \cot \frac{C}{2}=\sum \frac{a^{2}}{\tan \frac{B}{2} \tan \frac{C}{2}} \geq \frac{(a+b+c)^{2}}{\sum \tan \frac{A}{2} \tan \frac{B}{2}}$, Q.E.D.
10. Prove that in any triangle $A B C$ the following inequality is true:

$$
a^{2} \tan \frac{B}{2} \tan \frac{C}{2}+b^{2} \tan \frac{C}{2} \tan \frac{A}{2}+c^{2} \tan \frac{A}{2} \tan \frac{B}{2} \geq \frac{4 p^{2} r}{4 R+r}
$$

Solution

Using Bergström inequality and $\sum \cot \frac{A}{2} \cot \frac{B}{2}=\frac{4 R+r}{r}$
$U=\sum a^{2} \tan \frac{B}{2} \tan \frac{C}{2}=\sum \frac{a^{2}}{\cot \frac{B}{2} \cot \frac{C}{2}} \geq \frac{(a+b+c)^{2}}{\sum \cot \frac{A}{2} \cot \frac{B}{2}}$, Q.E.D.
11. Prove that in any triangle the following inequalities holds:
i) $\frac{\sin ^{6} A}{\sin ^{2} B}+\frac{\sin ^{6} B}{\sin ^{2} C}+\frac{\sin ^{6} C}{\sin ^{2} A} \geq \frac{\left(s^{2}-4 R r-r^{2}\right)^{3}}{8 s^{2} R^{4}}$;
ii) $\sin ^{2} \frac{A}{2} \sin ^{2} A+\sin ^{2} \frac{B}{2} \sin ^{2} B+\sin ^{2} \frac{C}{2} \sin ^{2} C \geq\left(\frac{s(2 R-r)}{R}\right)^{2} \cdot \frac{1}{s^{2}+(4 R+r)^{2}}$

Solution

i) We have:

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro
 $$
V=\frac{\sin ^{6} A}{\sin ^{2} B}+\frac{\sin ^{6} B}{\sin ^{2} C}+\frac{\sin ^{6} C}{\sin ^{2} A}=\frac{\left(\sin ^{2} A\right)^{3}}{\sin ^{2} B}+\frac{\left(\sin ^{2} B\right)^{3}}{\sin ^{2} C}+\frac{\left(\sin ^{2} C\right)^{3}}{\sin ^{2} A}
$$

And by J. Radon's inequality we obtain that:

$$
V \geq \frac{\left(\sin ^{2} A+\sin ^{2} B+\sin ^{2} C\right)^{3}}{(\sin A+\sin B+\sin C)^{2}}
$$

Since,
$\sin ^{2} A+\sin ^{2} B+\sin ^{2} C=\frac{s^{2}-4 R r-r^{2}}{2 R^{2}}$ and $\sin A+\sin B+\sin C=\frac{s}{R}$
we deduce the conclusion.
ii) $W=\sum \sin ^{2} A \sin ^{2} \frac{A}{2}=4 \sum \sin ^{2} \frac{A}{2} \cos ^{2} \frac{A}{2}=4 \cdot \sum \frac{\frac{\sin ^{4} \frac{A}{2}}{\frac{1}{\cos 2} \frac{A}{2}}}{\cos ^{2}}=4 \cdot \sum \frac{\left(\sin ^{2} \frac{A}{2}\right)^{2}}{\frac{1}{\cos ^{2} \frac{A}{2}}}$

By H. Bergström's inequality, we have:

$$
W \geq 4 \cdot \frac{\left(\sum \sin ^{2} \frac{A}{2}\right)^{2}}{\sum \frac{1}{\cos ^{2} \frac{A}{2}}}
$$

We use,
$\sum \sin ^{2} \frac{A}{2}=\frac{2 R-r}{2 R}$ and $\sum \frac{1}{\cos ^{2} \frac{A}{2}}=\frac{(4 R+r)^{2}+s^{2}}{s^{2}}$,
and we obtain the conclusion.
12. Prove that in all triangles $A B C$ the following relationship holds:

$$
\sum \frac{\cot ^{3} \frac{A}{2}}{x+y \tan \frac{B}{2}+z \tan \frac{B}{2} \tan \frac{C}{2}} \geq \frac{s^{3}}{((4 R+r) x+s y+3 z r) r^{2}}
$$

for any positive real numbers x, y and z (the notations are usual and the sum is cyclic).

Solution

We apply Bergström's inequality (or the inequality of Cauchy-Schwarz) and we deduce that:

$$
\sum \frac{\cot ^{3} \frac{A}{2}}{x+y \tan \frac{B}{2}+z \tan \frac{B}{2} \tan \frac{C}{2}}=\sum \frac{\cot ^{2} \frac{A}{2}}{x \tan \frac{A}{2}+y \tan \frac{A}{2} \tan \frac{B}{2}+z \tan \frac{A}{2} \tan \frac{B}{2} \tan \frac{C}{2}} \geq
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\geq \frac{\left(\sum \cot \frac{A}{2}\right)^{2}}{x \sum \tan \frac{A}{2}+y \sum \tan \frac{A}{2} \tan \frac{B}{2}+3 z \tan \frac{A}{2} \tan \frac{B}{2} \tan \frac{C}{2}}
$$

Using the well-known formulas
$\sum \cot \frac{A}{2}=\frac{s}{r}, \sum \tan \frac{A}{2}=\frac{4 R+r}{s}, \sum \tan \frac{A}{2} \tan \frac{B}{2}=1$ and $\prod \tan \frac{A}{2}=\frac{r}{s}$
by the above we obtain the result.
13. Prove that in all $A B C$ triangles the following relationship holds:

$$
\cot ^{2} \frac{A}{2}+\cot ^{2} \frac{B}{2}+\cot ^{2} \frac{C}{2} \geq 9
$$

Solution

By Bergström's inequality we deduce that:
$U=\cot ^{2} \frac{A}{2}+\cot ^{2} \frac{B}{2}+\cot ^{2} \frac{C}{2} \geq \frac{\left(\cot \frac{A}{2}+\cot \frac{B}{2}+\cot \frac{C}{2}\right)^{2}}{3}$
It is well-known that:
$\cot \frac{A}{2}+\cot \frac{B}{2}+\cot \frac{C}{2}=\frac{p}{r}$
By Mitrinovic's inequality we have that:
$p \geq 3 \sqrt{3} \cdot r$
From (1), (2) and (3) we obtain:
$U \geq \frac{p^{2}}{3 r^{2}} \geq \frac{(3 \sqrt{3})^{2} r^{2}}{3 r^{2}}=9$, Q.E.D.
The equality holds if the triangle is equilateral.
14. Show that if $m \in[0, \infty), x, y, z, t \in(0, \infty)$, then in any triangle $A B C$, with usual notations $\left(a=B C, b=C A, c=A B, m_{b}=\right.$ the median from the vertex $B, w_{c}=$ the internal bisector from the vertex $C, S=$ area $A B C$) holds

$$
\sum_{c y c} \frac{\left(x a^{2}+y m_{b}^{2}\right)^{m+1}}{\left(z b^{2}+t w_{c}^{2}\right)^{m}} \geq \frac{(4 x+3 y)^{m+1}}{(4 z+3 t)^{m}} \sqrt{3} S
$$

Solution

We have:

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$w_{a}=\frac{2 \sqrt{b c}}{b+c} \sqrt{s(s-a)} \Rightarrow w_{a} \leq \sqrt{s(s-a)} \Rightarrow w_{a}^{2} \leq s(s-a)$ and other two similar. So,

$$
\begin{gather*}
w_{a}^{2}+w_{b}^{2}+w_{c}^{2} \leq s(s-a+s-b+s-c)=s(3 s-2 s)=s^{2}= \\
=\frac{(a+b+c)^{2}}{4} \leq \frac{3}{4}\left(a^{2}+b^{2}+c^{2}\right)=m_{a}^{2}+m_{b}^{2}+m_{c}^{2} \tag{1}
\end{gather*}
$$

By J. Radon's inequality, the inequality (1), and $\sum_{c y c} m_{a}^{2}=\frac{3}{4} \sum_{c y c} a^{2}$, we deduce

$$
\begin{gather*}
\sum_{c y c} \frac{\left(x a^{2}+y m_{b}^{2}\right)^{m+1}}{\left(z b^{2}+t w_{c}^{2}\right)^{m}} \geq \frac{\left(\sum_{c y c}\left(x a^{2}+y m_{b}^{2}\right)\right)^{m+1}}{\left(\sum_{c y c}\left(z b^{2}+t w_{c}^{2}\right)\right)^{m}}=\frac{\left(x \sum_{c y c} a^{2}+y \sum_{c y c} m_{a}^{2}\right)^{m+1}}{\left(z \sum_{c y c} a^{2}+t \sum_{c y c} w_{a}^{2}\right)^{m}} \geq \\
\geq \frac{\left(x \sum_{c y c} a^{2}+y \sum_{c y c} m_{a}^{2}\right)^{m+1}}{\left(z \sum_{c y c} a^{2}+t \sum_{c y c} m_{a}^{2}\right)^{m}}=\frac{\left(x \sum_{c y c} a^{2}+\frac{3}{4} y \sum_{c y c} a^{2}\right)^{m+1}}{\left(z \sum_{c y c} a^{2}+t \cdot \frac{3}{4} \cdot \sum_{c y c} a^{2}\right)^{m}}= \\
=\frac{(4 x+3 y)^{m+1}}{(4 z+3 t)^{m}} \cdot \frac{1}{4} \cdot \sum_{c y c} a^{2} \tag{2}
\end{gather*}
$$

By Ion Ionescu - Weitzenböck inequality we have

$$
\begin{equation*}
a^{2}+b^{2}+c^{2} \geq 4 \sqrt{3} S \tag{3}
\end{equation*}
$$

From (2) and (3) we obtain:

$$
\sum_{c y c} \frac{\left(x a^{2}+y m_{b}^{2}\right)^{m+1}}{\left(z b^{2}+t w_{c}^{2}\right)^{m}} \geq \frac{(4 x+3 y)^{m+1}}{(4 z+3 t)^{m}} \sqrt{3} S
$$

15. If $n \in \mathbb{N}^{*}$, then in any triangle $A B C$ occurs

$$
a^{n} h_{a}^{n-1}+b^{n} h_{b}^{n-1}+c^{n} h_{c}^{n-1}=2^{n} s^{n} r^{n-1}
$$

Solution

$$
\begin{gathered}
\sum a^{n} h_{a}^{n-1}=\sum \frac{\left(a h_{a}\right)^{n}}{h_{a}}=2^{n} S^{n}\left(\frac{1}{h_{a}}+\frac{1}{h_{b}}+\frac{1}{h_{c}}\right)=2^{n} S^{n-1}\left(\frac{S}{h_{a}}+\frac{S}{h_{b}}+\frac{S}{h_{c}}\right)= \\
=2^{n} S^{n-1}\left(\frac{a h_{a}}{2 h_{a}}+\frac{b h_{b}}{2 h_{b}}+\frac{c h_{c}}{2 h_{c}}\right)=2^{n-1} S^{n-1}(a+b+c)=2^{n-1} \cdot S^{n-1} \cdot 2 \cdot s= \\
=2^{n} r^{n-1} s=2^{n} s^{n} r^{n-1}
\end{gathered}
$$

16. If $m, n \in \mathbb{R}_{+}^{*}, m \geq n$, then prove that in any triangle $A B C$ holds:

$$
\frac{a}{m(b+c)-n a}+\frac{b}{m(c+a)-n b}+\frac{c}{m(a+b)-n c} \geq \frac{3}{2 m-n}
$$

Solution

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
$U=\sum \frac{a}{m(b+c)-n a}=\sum \frac{a^{2}}{m(a b+a c)-n a^{2}}$ and by Bergström inequality:

$$
U \geq \frac{\left(\sum a\right)^{2}}{m \sum(a b+a c)-n \sum a^{2}}=\frac{\left(\sum a\right)^{2}}{2 m \sum a b-n \sum a^{2}}
$$

Since,
$\left(\sum a\right)^{2} \geq 3 \sum a b$ and $\sum a^{2} \geq \sum a b$, Q.E.D.
Observation. For $m=1$ and $n=0$ results the inequality of Nesbitt.
17. If $m, n \in \mathbb{R}_{+}^{*}$, then prove that in any triangle $A B C$ is true the following inequality:

$$
\frac{m a^{2}+n b^{2}}{a+b-c}+\frac{m b^{2}+n c^{2}}{b+c-a}+\frac{m c^{2}+n a^{2}}{c+a-b} \geq 2(m+n) s
$$

Solution

$U=\sum \frac{m a^{2}+n b^{2}}{a+b-c}=m \sum \frac{a^{2}}{a+b-c}+n \sum \frac{b^{2}}{a+b-c}$ and from Bergström's inequality

$$
U \geq m \cdot \frac{\left(\sum a\right)^{2}}{\sum(a+b-c)}+n \cdot \frac{\left(\sum b\right)^{2}}{\sum(a+b-c)}=(m+n) \cdot \frac{\left(\sum a\right)^{2}}{\sum(a+b-c)}=
$$

$=(m+n) \cdot \frac{(a+b+c)^{2}}{a+b+c}=2(m+n) s$, Q.E.D.

18. Prove that in any triangle $A B C$ the following inequality holds:

$$
\frac{a^{2}}{h_{b} \cdot h_{c}}+\frac{b^{2}}{h_{c} \cdot h_{a}}+\frac{c^{2}}{h_{a} \cdot h_{b}} \geq 4
$$

Solution

$$
U=\sum \frac{a^{2}}{h_{b} h_{c}}=\sum \frac{a^{2} b c}{\left(b h_{b}\right)\left(c h_{c}\right)}=\frac{a b c}{4 S^{2}} \sum a=\frac{2 p a b c}{4 S^{2}}=\frac{p a b c}{2 p r S}=\frac{a b c}{2 r S}
$$

Since $S=\frac{a b c}{4 R}$ we get $U=\frac{2 R}{r}$. From $R \geq 2 r$ yields the conclusion.
19. If $\boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}_{+}^{*}, \boldsymbol{x} \in \mathbb{R}$, then prove that

$$
\frac{\sin ^{2 m+2} x}{a^{m}}+\frac{\cos ^{2 m+2} x}{b^{m}} \geq \frac{1}{(a+b)^{m}}, \forall m \in \mathbb{R}_{+}
$$

Solution

$E=\frac{\sin ^{2 m+2} x}{a^{m}}+\frac{\cos ^{2 m+2} x}{b^{m}}=\frac{\left(\sin ^{2} x\right)^{m+1}}{a^{m}}+\frac{\left(\cos ^{2} x\right)^{m+1}}{b^{m}}$, and by J. Radon inequality $E \geq \frac{\left(\sin ^{2} x+\cos ^{2} x\right)^{m+1}}{(a+b)^{m}}=\frac{1}{(a+b)^{m}}$, Q.E.D.

