

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro
 ABOUT AN INEQUALTY BY BOGDAN FUȘTEI-V

By Marin Chirciu-Romania

1) $\ln \triangle A B C$:

$$
\sum \frac{m_{a}}{h_{a}} \geq \frac{1}{2} \sum \sqrt{\left(\frac{b}{c}+\frac{c}{b}\right)\left(\frac{m_{b}}{m_{c}}+\frac{m_{c}}{m_{b}}\right)}
$$

Proposed by Bogdan Fustei - Romania

Solution: We prove: Lemma:
2) In $\triangle A B C$:

$$
\frac{m_{a}}{h_{a}} \geq \frac{1}{2}\left(\frac{b}{c}+\frac{c}{b}\right)
$$

Proof: Using $h_{a}=\frac{2 S}{a}=\frac{b c}{2 R}$ and Tereshin's inequality $m_{a} \geq \frac{b^{2}+c^{2}}{4 R}$ we obtain:
$m_{a} \geq \frac{b^{2}+c^{2}}{4 R}=\frac{b^{2}+c^{2}}{\frac{b c}{h_{a}}}=h_{a} \cdot \frac{b^{2}+c^{2}}{2 b c}$, wherefrom $m_{a} \geq h_{a} \cdot \frac{b^{2}+c^{2}}{2 b c} \Leftrightarrow \frac{m_{a}}{h_{a}} \geq \frac{b^{2}+c^{2}}{2 b c}=\frac{1}{2}\left(\frac{b}{c}+\frac{c}{b}\right)$.
Let's get back to the main problem. Using the Lemma and the inequality $\frac{m_{a}}{h_{a}} \geq \frac{1}{2}\left(\frac{m_{b}}{m_{c}}+\frac{m_{c}}{m_{b}}\right)$, (Adil Abdullayev Inequality) we obtain:

$$
\left(\frac{m_{a}}{h_{a}}\right)^{2}=\frac{m_{a}}{h_{a}} \cdot \frac{m_{a}}{h_{a}} \geq \frac{1}{2}\left(\frac{b}{c}+\frac{c}{b}\right) \cdot \frac{1}{2}\left(\frac{m_{b}}{m_{c}}+\frac{m_{c}}{m_{b}}\right)=\frac{1}{4}\left(\frac{b}{c}+\frac{c}{b}\right)\left(\frac{m_{b}}{m_{c}}+\frac{m_{c}}{m_{b}}\right)
$$

wherefrom it follows that: $\left(\frac{m_{a}}{h_{a}}\right)^{2} \geq \frac{1}{4}\left(\frac{b}{c}+\frac{c}{b}\right)\left(\frac{m_{b}}{m_{c}}+\frac{m_{c}}{m_{b}}\right) \Leftrightarrow \frac{m_{a}}{h_{a}} \geq \frac{1}{2} \sqrt{\left(\frac{b}{c}+\frac{c}{b}\right)\left(\frac{m_{b}}{m_{c}}+\frac{m_{c}}{m_{b}}\right)}$ Adding we deduce the conclusion. Equality holds if and only if the triangle is equilateral.
Remark: In the same way:
3) In $\triangle A B C$:

$$
\sum \frac{m_{a}}{h_{a}} \geq \frac{27 R}{2(4 R+r)}
$$

Marin Chirciu
Solution: We prove Lemma:
4) In $\triangle A B C$:

$$
\frac{m_{a}}{h_{a}} \geq \frac{1}{2}\left(\frac{b}{c}+\frac{c}{b}\right)
$$

Proof: Using $h_{a}=\frac{2 S}{a}=\frac{b c}{2 R}$ and Tereshin's inequality $m_{a} \geq \frac{b^{2}+c^{2}}{4 R}$ we obtain:

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
$m_{a} \geq \frac{b^{2}+c^{2}}{4 R}=\frac{b^{2}+c^{2}}{\frac{2 b c}{h_{a}}}=h_{a} \cdot \frac{b^{2}+c^{2}}{2 b c}$, wherefrom $m_{a} \geq h_{a} \cdot \frac{b^{2}+c^{2}}{2 b c} \Leftrightarrow \frac{m_{a}}{h_{a}} \geq \frac{b^{2}+c^{2}}{2 b c}=\frac{1}{2}\left(\frac{b}{c}+\frac{c}{b}\right)$
Let's get back to the main problem.Using the Lemma we obtain:

$$
L H S=\sum \frac{m_{a}}{h_{a}} \geq \sum \frac{1}{2}\left(\frac{b}{c}+\frac{c}{b}\right)=\frac{1}{2}\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)+\frac{1}{2}\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right) \stackrel{(1)}{\geq}
$$

$\stackrel{(1)}{\geq} \frac{1}{2} \cdot \frac{27 R}{2(4 R+r)}+\frac{1}{2} \cdot \frac{27 R}{2(4 R+r)}=\frac{27 R}{2(4 R+r)}=R H S$, where (1) follows from inequality:

$$
\frac{a}{b}+\frac{b}{c}+\frac{c}{a} \geq \frac{27 R}{2(4 R+r)}
$$

Let's prove the inequality: $\frac{a}{b}+\frac{b}{c}+\frac{c}{a} \geq \frac{27 R}{2(4 R+r)}$
5) In $\triangle A B C$:

$$
\frac{a}{b}+\frac{b}{c}+\frac{c}{a} \geq \frac{27 R}{2(4 R+r)}
$$

Proof: We use the algebraic inequality:
6) If $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}>0$

$$
\frac{a}{b}+\frac{b}{c}+\frac{c}{a} \geq \frac{9\left(a^{2}+b^{2}+c^{2}\right)}{(a+b+c)^{2}}
$$

Indeed: The inequality can be written equivalently: $\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)(a+b+c)^{2} \geq 9 \sum a^{2} \Leftrightarrow$

$$
\begin{gathered}
\Leftrightarrow\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)(a+b+c)^{2}=\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\left(\sum a^{2}+2 \sum a b\right)= \\
=\sum \frac{a^{3}}{b}+\sum \frac{a c^{2}}{b}+2 \sum \frac{a^{2} c}{b}+2 \sum a^{2}+3 \sum a b
\end{gathered}
$$

The inequality can be written:

$$
\begin{gathered}
\sum \frac{a^{3}}{b}+\sum \frac{a c^{2}}{b}+2 \sum \frac{a^{2} c}{b}+2 \sum a^{2}+3 \sum a b \geq 9 \sum a^{2} \Leftrightarrow \\
\Leftrightarrow \sum\left(\frac{a^{3}}{b}-\frac{2 a^{2} c}{b}+\frac{a c^{2}}{b}\right)+\sum\left(\frac{4 a^{2} c}{b}-8 a c+4 b c\right) \geq 7 \sum a^{2}-7 \sum a b \Leftrightarrow \\
\Leftrightarrow \sum \frac{a(a-c)^{2}}{b}+\sum \frac{4 c(a-b)^{2}}{b} \geq \frac{7}{2} \sum(a-b)^{2} \Leftrightarrow \\
\Leftrightarrow \sum \frac{b(b-a)^{2}}{c}+\sum \frac{4 c(a-b)^{2}}{b} \geq \frac{7}{2} \sum(a-b)^{2} \Leftrightarrow \sum(a-b)^{2}\left(\frac{b}{c}+\frac{4 c}{b}-\frac{7}{2}\right) \geq 0 \Leftrightarrow \\
\Leftrightarrow \sum(a-b)^{2}\left[\frac{(b-2 c)^{2}}{b c}+\frac{1}{2}\right] \geq 0, \text { obviously with equality for } a=b=c .
\end{gathered}
$$

Application in triangle.

$$
\frac{a}{b}+\frac{b}{c}+\frac{c}{a} \geq \frac{9\left(a^{2}+b^{2}+c^{2}\right)}{(a+b+c)^{2}}=\frac{9 \cdot 2\left(s^{2}-r^{2}-4 R r\right)}{4 s^{2}}=\frac{9\left(s^{2}-r^{2}-4 R r\right)}{2 s^{2}} \stackrel{\text { Gerretsen }}{\geq} \frac{27 R}{2(4 R+r)}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

We obtain $\frac{a}{b}+\frac{b}{c}+\frac{c}{a} \geq \frac{27 R}{2(4 R+r)}$
Equality holds if and only if the triangle is equilateral.
Remark: The inequality can be strengthened.
7) In $\triangle A B C$:

$$
\sum \frac{m_{a}}{h_{a}} \geq \sqrt{\frac{3 s^{2}}{r(4 R+r)}}
$$

Marin Chirciu
Solution: We prove Lemma:

8) In $\triangle A B C$:

$$
\frac{m_{a}}{h_{a}} \geq \frac{1}{2}\left(\frac{b}{c}+\frac{c}{b}\right)
$$

Proof: Using $h_{a}=\frac{2 S}{a}=\frac{b c}{2 R}$ and Tereshin's inequality $m_{a} \geq \frac{b^{2}+c^{2}}{4 R}$ we obtain: $m_{a} \geq \frac{b^{2}+c^{2}}{4 R}=\frac{b^{2}+c^{2}}{\frac{2 b c}{h_{a}}}=h_{a} \cdot \frac{b^{2}+c^{2}}{2 b c}$, wherefrom $m_{a} \geq h_{a} \cdot \frac{b^{2}+c^{2}}{2 b c} \Leftrightarrow \frac{m_{a}}{h_{a}} \geq \frac{b^{2}+c^{2}}{2 b c}=\frac{1}{2}\left(\frac{b}{c}+\frac{c}{b}\right)$
Let's get back to the main problem. Using the Lemma we obtain:

$$
\text { LHS }=\sum \frac{m_{a}}{h_{a}} \geq \sum \frac{1}{2}\left(\frac{b}{c}+\frac{c}{b}\right)=\frac{1}{2}\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)+\frac{1}{2}\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right) \stackrel{(1)}{\geq}
$$

$\stackrel{(1)}{\geq} \frac{1}{2} \sqrt{\frac{3 s^{2}}{r(4 R+r)}}+\frac{1}{2} \sqrt{\frac{3 s^{2}}{r(4 R+r)}}=\sqrt{\frac{3 s^{2}}{r(4 R+r)}}=$ RHS, where (1) follows from:
$\sqrt{\frac{3 s^{2}}{r(4 R+r)}} \leq \frac{a}{b}+\frac{b}{c}+\frac{c}{a} \leq \frac{s^{2}}{r(4 r+r)}$, (M ateescu-2016)
Equality holds if and only if the triangle is equilateral. Remark: In the same way:
9) In $\triangle A B C$:

$$
\sum \frac{h_{a}}{w_{a}} \geq 3\left(\frac{2 r}{R}\right)^{\frac{2}{3}}
$$

Marin Chirciu

Solution: We prove Lemma:

$$
\text { 10) In } \triangle A B C:
$$

$$
\frac{h_{a}}{w_{a}}=\frac{b+c}{a} \sin \frac{A}{2}
$$

Proof: We have:

$$
\frac{h_{a}}{w_{a}}=\cos \frac{B-C}{2}=\cos \frac{B}{2} \cos \frac{C}{2}+\sin \frac{B}{2} \sin \frac{C}{2}=
$$

$$
\begin{aligned}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
& =\sqrt{\frac{s(s-b)}{a c}} \sqrt{\frac{s(s-c)}{a b}}+\sqrt{\frac{(s-a)(s-c)}{a c}} \sqrt{\frac{(s-a)(s-b)}{a b}}= \\
& =\left(\frac{s}{a}+\frac{s-a}{a}\right) \sqrt{\frac{(s-b)(s-c)}{b c}}=\frac{b+c}{a} \sqrt{\frac{(s-b)(s-c)}{b c}}=\frac{b+c}{a} \sin \frac{A}{2}
\end{aligned}
$$

Let's get back to the main problem. Using the Lemma and the means inequality we obtain:

$$
\begin{gathered}
\begin{array}{c}
\sum \frac{h_{a}}{w_{a}}=\sum \frac{b+c}{a} \sin \frac{A}{2} \geq 3 \sqrt[3]{\prod \frac{b+c}{a}} \sin \frac{A}{2} \\
=3 \sqrt[3]{\frac{\Pi(b+c) \Pi \sin \frac{A}{2}}{a b c}}= \\
=3 \sqrt[3]{\frac{2 s\left(s^{2}+r^{2}+2 R r\right) \cdot \frac{r}{4 R}}{4 R r s}}=\frac{3}{2} \sqrt[3]{\frac{s^{2}+r^{2}+2 R r}{R^{2}}} \stackrel{G e r r e t s e n}{\geq} \\
\geq \frac{3}{2} \sqrt[3]{\frac{16 R r-5 r^{2}+r^{2}+2 R r}{R^{2}}}=\frac{3}{2} \sqrt[3]{\frac{18 R r-4 r^{2}}{R^{2}}} \stackrel{\text { Euler }}{\geq} \frac{3}{2} \sqrt[3]{\frac{32 r^{2}}{R^{2}}}= \\
=3 \sqrt[3]{\frac{4 r^{2}}{R^{2}}}=3\left(\frac{2 r}{R}\right)^{\frac{2}{3}}
\end{array}=.
\end{gathered}
$$

Equality holds if and only if the triangle is equilateral.

Reference:

ROM ANIAN MATHEM ATICAL MAGAZINE-www.ssmrmh.ro

