

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro
 ABOUT AN INEQUALITY BY GEORGE APOSTOLOPOULOS-X

By Marin Chirciu-Romania

1) In $\triangle A B C$, the following inequality holds:

$$
\frac{2 r}{R^{2}} \leq \sum \frac{\sqrt{r_{b} r_{c}}}{m_{b}^{2}+m_{c}^{2}} \leq \frac{R^{2}}{8 r^{3}}
$$

Proposed by George Apostolopoulos - Greece
Solution: LHS inequality. We prove. Lemma:
2) In $\triangle A B C$ the following relationship holds:

$$
m_{b}^{2}+m_{c}^{2} \geq 2 p \sqrt{(p-b)(p-c)}
$$

Proof: Using $m_{a} \geq \frac{b+c}{2} \cos \frac{A}{2}$, (Lascu Inequality) we obtain:

$$
\begin{aligned}
m_{b}^{2}+m_{c}^{2} \geq 2 m_{b} m_{c} \stackrel{\text { Lascu }}{\geq} 2 \cdot \frac{a+c}{2} \cos \frac{B}{2} \cdot \frac{a+b}{2} \cos \frac{C}{2} \stackrel{A M-G M}{\geq} 2 \sqrt{a c} \sqrt{a b} \cos \frac{B}{2} \cos \frac{C}{2}= \\
=2 a \sqrt{b c} \sqrt{\frac{p(p-b)}{a c}} \sqrt{\frac{p(p-c)}{a b}}=2 p \sqrt{(p-b)(p-c)}
\end{aligned}
$$

We obtain:

$$
\begin{aligned}
& E=\sum \frac{\sqrt{r_{b} r_{c}}}{m_{b}^{2}+m_{c}^{2}} \stackrel{\text { Lemma }}{\leq} \sum \frac{\sqrt{\frac{S}{p-b} \cdot \frac{S}{p-c}}}{2 p \sqrt{(p-b)(p-c)}}=\sum \frac{S}{2 p(p-b)(p-c)}= \\
= & \sum \frac{p r}{2 p(p-b)(p-c)}=\frac{r}{2} \sum \frac{1}{(p-b)(p-c)}=\frac{r}{2} \cdot \frac{1}{r^{2}}=\frac{1}{2 r} \stackrel{\text { Euler }}{\leq} \frac{R^{2}}{8 r^{3}}=R H S
\end{aligned}
$$

Equality holds if and only if the triangle is equilateral.LHS inequality.We prove Lemma:
3) In $\triangle A B C$ the following inequality holds:

$$
\sqrt[3]{\prod\left(m_{b}^{2}+m_{c}^{2}\right)} \leq 2\left(2 R^{2}+r^{2}\right)
$$

Proof: Using means inequality we obtain:

$$
\begin{aligned}
& \qquad \sqrt[3]{\prod\left(m_{b}^{2}+m_{c}^{2}\right)} \leq \frac{\sum\left(m_{b}^{2}+m_{c}^{2}\right)}{3}=\frac{2}{3} \sum m_{a}^{2}=\frac{2}{3} \cdot \frac{3}{4} \sum a^{2}=\frac{1}{2} \cdot 2\left(p^{2}-r^{2}-4 R r\right)= \\
& =p^{2}-r^{2}-4 R r \stackrel{\text { Gerretsen }}{\leq} 4 R^{2}+4 R r+3 r^{2}-r^{2}-4 R r=4 R^{2}+2 r^{2}=2\left(2 R^{2}+r^{2}\right) \\
& \text { Using Lemma and the means inequality we obtain: }
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\begin{gathered}
E=\sum \frac{\sqrt{r_{b} r_{c}}}{m_{b}^{2}+m_{c}^{2}} \geq 3 \sqrt[3]{\prod} \frac{\sqrt{r_{b} r_{c}}}{m_{b}^{2}+m_{c}^{2}}=3^{\sqrt[3]{\prod} \frac{r_{a}}{m_{b}^{2}+m_{c}^{2}}}=\frac{3 \sqrt[3]{r_{a} r_{b} r_{c}}}{\sqrt[3]{\prod\left(m_{b}^{2}+m_{c}^{2}\right)}} \geq \\
\geq \frac{3 \sqrt[3]{r p^{2}}}{2\left(2 R^{2}+r^{2}\right)} \geq \frac{3 \sqrt[3]{r \cdot 27 r^{2}}}{2\left(2 R^{2}+r^{2}\right)}=\frac{9 r}{2\left(2 R^{2}+r^{2}\right)} \geq \frac{(1)}{R^{2}}=L H S
\end{gathered}
$$

where (1) $\Leftrightarrow \frac{9 r}{2\left(2 R^{2}+r^{2}\right)} \geq \frac{2 r}{R^{2}} \Leftrightarrow R \geq 2 r$, (Euler's inequality). Equality holds if and only if the triangle is equilateral.Remark: The inequality can be strengthened.
4) In $\triangle A B C$ the following inequality holds:

$$
\frac{9 r}{2\left(2 R^{2}+r^{2}\right)} \leq \sum \frac{\sqrt{r_{b} r_{c}}}{m_{b}^{2}+m_{c}^{2}} \leq \frac{1}{2 r}
$$

M arin Chirciu
Solution RHS inequality.We prove.Lemma:
5) In $\triangle A B C$ the following inequality holds:

$$
m_{b}^{2}+m_{c}^{2} \geq 2 p \sqrt{(p-b)(p-c)}
$$

Proof: Using $m_{a} \geq \frac{b+c}{2} \cos \frac{A}{2}$, (Lascu Inequality) we obtain:

$$
\begin{gathered}
m_{b}^{2}+m_{c}^{2} \geq 2 m_{b} m_{c} \stackrel{\operatorname{Lascu}}{\geq} 2 \cdot \frac{a+c}{2} \cos \frac{B}{2} \cdot \frac{a+b}{2} \cos \frac{C}{2} \stackrel{A M-G M}{\geq} \\
\geq 2 \sqrt{a c} \sqrt{a b} \cos \frac{B}{2} \cos \frac{C}{2}=2 a \sqrt{b c} \sqrt{\frac{p(p-b)}{a c}} \sqrt{\frac{p(p-c)}{a b}}=2 p \sqrt{(p-b)(p-c)}
\end{gathered}
$$

We obtain:

$$
\begin{aligned}
E & =\sum \frac{\sqrt{r_{b} r_{c}}}{m_{b}^{2}+m_{c}^{2}} \stackrel{\text { Lemma }}{\leq} \sum \frac{\sqrt{\frac{S}{p-b} \cdot \frac{S}{p-c}}}{2 p \sqrt{(p-b)(p-c)}}=\sum \frac{S}{2 p(p-b)(p-c)}= \\
& =\sum \frac{p r}{2 p(p-b)(p-c)}=\frac{r}{2} \sum \frac{1}{(p-b)(p-c)}=\frac{r}{2} \cdot \frac{1}{r^{2}}=\frac{1}{2 r}=R H S
\end{aligned}
$$

Equality holds if and only if the triangle is equilateral.LHS inequality.We prove Lemma:
6) In $\triangle A B C$ the following inequality holds:

$$
\sqrt[3]{\prod\left(m_{b}^{2}+m_{c}^{2}\right)} \leq 2\left(2 R^{2}+r^{2}\right)
$$

Proof: Using the means inequality we obtain:

$$
\begin{aligned}
& \sqrt[3]{\prod\left(m_{b}^{2}+m_{c}^{2}\right)} \leq \frac{\sum\left(m_{b}^{2}+m_{c}^{2}\right)}{3}=\frac{2}{3} \sum m_{a}^{2}=\frac{2}{3} \cdot \frac{3}{4} \sum a^{2}=\frac{1}{2} \cdot 2\left(p^{2}-r^{2}-4 R r\right)= \\
& =p^{2}-r^{2}-4 R r \text { Gerretsen } \leq 4 R^{2}+4 R r+3 r^{2}-r^{2}-4 R r=4 R^{2}+2 r^{2}=2\left(2 R^{2}+r^{2}\right)
\end{aligned}
$$

Using Lemma and means inequality we obtain:

$$
\begin{gathered}
\text { ROMANIAN MATHEMATICAL MAGAZINE } \\
E=\sum \frac{\sqrt{r_{b} r_{c}}}{m_{b}^{2}+m_{c}^{2}} \geq 3 \sqrt[3]{\prod \frac{\sqrt{r_{b} r_{c}}}{m_{b}^{2}+m_{c}^{2}}}=3 \sqrt[3]{\prod \frac{r_{a}}{m_{b}^{2}+m_{c}^{2}}}=\frac{3 \sqrt[3]{r_{a} r_{b} r_{c}}}{\sqrt[3]{\prod\left(m_{b}^{2}+m_{c}^{2}\right)}} \geq \\
\geq \frac{3 \sqrt[3]{r p^{2}}}{2\left(2 R^{2}+r^{2}\right)} \geq \frac{3 \sqrt[3]{r \cdot 27 r^{2}}}{2\left(2 R^{2}+r^{2}\right)}=\frac{9 r}{2\left(2 R^{2}+r^{2}\right)}=L H S
\end{gathered}
$$

Equality holds if and only if the triangle is equilateral.
Note: The inequality strengthen Inequality in triangle 2300, proposed by George Apostolopoulos, Greece, in RM M 11/2020.
Remark: Inequality 4) is stronger than inequality 1).
7) In $\triangle A B C$ the following inequality holds:

$$
\frac{2 r}{R^{2}} \leq \frac{9 r}{2\left(2 R^{2}+r^{2}\right)} \leq \sum \frac{\sqrt{r_{b} r_{c}}}{m_{b}^{2}+m_{c}^{2}} \leq \frac{1}{2 r} \leq \frac{R^{2}}{8 r^{3}}
$$

Solution: See inequality 4) and Euler's inequality $R \geq 2 r$. Equality holds if and only if the triangle is equilateral.Remark:In the same way:
8) In $\triangle A B C$ the following inequality holds:

$$
\frac{9 r}{2\left(2 R^{2}+r^{2}\right)} \leq \sum \frac{\sqrt{h_{b} h_{c}}}{m_{b}^{2}+m_{c}^{2}} \leq \frac{1}{2 r}
$$

Marin Chirciu

Solution: RHS inequality. We prove.Lemma:
9) In $\triangle A B C$ the following inequality holds:

$$
m_{b}^{2}+m_{c}^{2} \geq 2 p \sqrt{(p-b)(p-c)}
$$

Proof: Using $m_{a} \geq \frac{b+c}{2} \cos \frac{A}{2}$, (Lascu Inequality) we obtain:

$$
\begin{gathered}
m_{b}^{2}+m_{c}^{2} \geq 2 m_{b} m_{c} \stackrel{\text { Lascu }}{\geq} 2 \cdot \frac{a+c}{2} \cos \frac{B}{2} \cdot \frac{a+b}{2} \cos \frac{C}{2} \stackrel{A M-G M}{\geq} 2 \sqrt{a c} \sqrt{a b} \cos \frac{B}{2} \cos \frac{C}{2}= \\
=2 a \sqrt{b c} \sqrt{\frac{p(p-b)}{a c}} \sqrt{\frac{p(p-c)}{a b}}=2 p \sqrt{(p-b)(p-c)}
\end{gathered}
$$

We obtain:

$$
\begin{aligned}
E= & \sum \frac{\sqrt{h_{b} h_{c}}}{m_{b}^{2}+m_{c}^{2}} \stackrel{\sqrt{\frac{2 S}{b} \cdot \frac{2 S}{c}}}{\leq} \sum \frac{2 S}{2 p \sqrt{(p-b)(p-c)}}=\sum \frac{r}{2 p \sqrt{b c(p-b)(p-c)}}= \\
& =\sum \frac{2 p r}{2 p \sqrt{b c(p-b)(p-c)}}=\sum \frac{(2)}{\sqrt{b c(p-b)(p-c)}} \frac{1}{2 r}=R H S
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

where (2) $\Leftrightarrow \sum \frac{r}{\sqrt{b c(p-b)(p-c)}} \leq \frac{1}{2 r} \Leftrightarrow \sum \frac{1}{\sqrt{b c(p-b)(p-c)}} \leq \frac{1}{2 r^{2}}$, which follows from CBS inequality.
Indeed:

$$
\sum \frac{1}{\sqrt{b c(p-b)(p-c)}} \stackrel{C B S}{\leq} \sqrt{3 \sum \frac{1}{b c(p-b)(p-c)}}=\sqrt{3 \cdot \frac{4 R+r}{2 R r^{2} p^{2}}} \stackrel{(3)}{\leq} \frac{1}{2 r^{2}}
$$

where (3) $\Leftrightarrow \sqrt{3 \cdot \frac{4 R+r}{2 R r^{2} p^{2}}} \leq \frac{1}{2 r^{2}} \Leftrightarrow 3 \cdot \frac{4 R+r}{2 R r^{2} p^{2}} \leq \frac{1}{4 r^{2}} \Leftrightarrow R p^{2} \geq 6 r^{2}(4 R+r)$, which follows from Gerretsen's inequality $p^{2} \geq 16 R r-5 r^{2}$.
It remains to prove that:

$$
R\left(16 R r-5 r^{2}\right) \geq 6 r^{2}(4 R+r) \Leftrightarrow 16 R^{2}-29 R r-6 r^{2} \geq 0 \Leftrightarrow
$$

$\Leftrightarrow(R-2 r)(16 R+3 r) \geq 0$, obviously from Euler's inequality $R \geq 2 r$.
We've used $\sum \frac{1}{b c(p-b)(p-c)}=\frac{4 R+r}{2 R r^{2} p^{2}}$.
Equality holds if and only if the triangle is equilateral.LHS inequality.We prove.Lemma:
10) In $\triangle A B C$ the following relationship holds:

$$
\sqrt[3]{\prod\left(m_{b}^{2}+m_{c}^{2}\right)} \leq 2\left(2 R^{2}+r^{2}\right)
$$

Proof: Using means inequality we obtain:

$$
\begin{aligned}
& \sqrt[3]{\prod\left(m_{b}^{2}+m_{c}^{2}\right)} \leq \frac{\sum\left(m_{b}^{2}+m_{c}^{2}\right)}{3}=\frac{2}{3} \sum m_{a}^{2}=\frac{2}{3} \cdot \frac{3}{4} \sum a^{2}=\frac{1}{2} \cdot 2\left(p^{2}-r^{2}-4 R r\right)= \\
& =p^{2}-r^{2}-4 R r \stackrel{\text { Gerretsen }}{\leq} 4 R^{2}+4 R r+3 r^{2}-r^{2}-4 R r=4 R^{2}+2 r^{2}=2\left(2 R^{2}+r^{2}\right)
\end{aligned}
$$

Using Lemma and the means inequality we obtain:

$$
\begin{gathered}
E=\sum \frac{\sqrt{h_{b} h_{c}}}{m_{b}^{2}+m_{c}^{2}} \geq 3 \sqrt[3]{\prod \frac{\sqrt{h_{b} r h}}{m_{b}^{2}+m_{c}^{2}}}=3 \sqrt[3]{\prod \frac{h_{a}}{m_{b}^{2}+m_{c}^{2}}}=\frac{3 \sqrt[3]{h_{a} h_{b} h_{c}}}{\sqrt[3]{\prod\left(m_{b}^{2}+m_{c}^{2}\right)}} \stackrel{\text { Lemma }}{\geq} \\
\stackrel{\text { Lemma } a}{\geq} \frac{3 \sqrt[3]{\frac{2 r^{2} p^{2}}{R}}}{2\left(2 R^{2}+r^{2}\right)} \stackrel{(4)}{\geq} \frac{3 \sqrt[3]{27 r^{3}}}{2\left(2 R^{2}+r^{2}\right)}=\frac{9 r}{2\left(2 R^{2}+r^{2}\right)}=\text { LHS }
\end{gathered}
$$

where (4) $\Leftrightarrow \frac{2 r^{2} p^{2}}{R} \stackrel{\text { Gerretsen }}{\geq} \frac{2 r^{2}\left(16 R r-5 r^{2}\right)}{R}=\frac{2 r^{3}(16 R-5 r)}{R} \stackrel{\text { Euler }}{\geq} 2 r^{3} \cdot \frac{27}{2}=27 r^{3}$ Equality holds if and only if the triangle is equilateral.

Reference:

ROM ANIAN M ATHEM ATICAL M AGAZINE-www.ssmrmh.ro

