

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro ABOUT AN INEQUALITY BY GEORGE APOSTOLOPOULOS-XII
 By Marin Chirciu-Romania

1) In $\triangle A B C$ the following relationship holds:

$$
\frac{8 r}{R^{2}} \leq \sum \frac{r_{b}+r_{c}}{m_{b} m_{c}} \leq \frac{1}{r}\left(3\left(\frac{2 R}{r}\right)^{4}-1\right)
$$

Proposed by George Apostolopoulos-M essolonghi-Greece

Solution: RHS inequality. Using $h_{a} \leq m_{a}$ we obtain:

$$
E=\sum \frac{r_{b}+r_{c}}{m_{b} m_{c}} \stackrel{{ }^{h} a \leq m a}{\leq} \sum \frac{r_{b}+r_{c}}{h_{b} h_{c}}=\frac{R}{r^{2}} \stackrel{(1)}{\leq} \frac{1}{r}\left(3\left(\frac{2 R}{r}\right)^{4}-1\right)=\text { RHS }
$$

where (1) $\Leftrightarrow \frac{R}{r^{2}} \leq \frac{1}{r}\left(3\left(\frac{2 R}{r}\right)^{4}-1\right) \Leftrightarrow(R-2 r)\left(3 R^{3}+3 R^{2} r+3 R r^{2}+r^{3}\right) \geq 0$, which follows from Euler's inequality $R \geq 2 r$.
Above, we've used the identity $\sum \frac{r_{b}+r_{c}}{h_{b} h_{c}}=\frac{R}{r^{2}}$, which follows from:

$$
\begin{aligned}
\sum \frac{r_{b}+r_{c}}{h_{b} h_{c}}=\sum \frac{\frac{S}{s-b}+\frac{S}{S-c}}{\frac{2 S}{b} \cdot \frac{2 S}{c}} & =\frac{1}{4 S} \sum \frac{a b c}{(s-b)(s-c)}=\frac{a b c}{4 S} \sum \frac{1}{(s-b)(s-c)}= \\
& =\frac{4 R r s}{4 s r} \cdot \frac{1}{r^{2}}=\frac{R}{r^{2}}
\end{aligned}
$$

Equality holds if and only if the triangle is equilateral.LHS inequality.
Using Panaitopol Inequality: $m_{a} \leq \frac{R}{2 r} h_{a}$ we obtain:

$$
\begin{gathered}
E=\sum \frac{r_{b}+r_{c}}{m_{b} m_{c}} \stackrel{\text { Panaitopol }}{\geq} \sum \frac{r_{b}+r_{c}}{\frac{R}{r} h_{b} \cdot \frac{R}{2 r} h_{c}} \geq\left(\frac{2 r}{R}\right)^{2} \sum \frac{r_{b}+r_{c}}{h_{b} h_{c}}= \\
=\left(\frac{2 r}{R}\right)^{2} \cdot \frac{R}{r^{2}}=\frac{4}{R} \geq \frac{8 r}{R^{2}}=\text { LHS } \\
\sum \frac{r_{b}+r_{c}}{h_{b} h_{c}}=\frac{R}{r^{2}}
\end{gathered}
$$

Equality holds if and only if the triangle is equilateral. Remark: The inequality can be strengthened.
2) In $\triangle A B C$ the following relationship holds:

$$
\frac{4}{R} \leq \sum \frac{r_{b}+r_{c}}{m_{b} m_{c}} \leq \frac{R}{r^{2}}
$$

Marin Chirciu
Solution: Let's get back to the main problem. RHS inequality.
Using $h_{a} \leq m_{a}$ we obtain:

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

$$
E=\sum \frac{r_{b}+r_{c}}{m_{b} m_{c}} \stackrel{h_{a} \leq m_{a}}{\leq} \sum \frac{r_{b}+r_{c}}{h_{b} h_{c}}=\frac{R}{r^{2}}=R H S
$$

Above, we've used the identity $\sum \frac{r_{b}+r_{c}}{h_{b} h_{c}}=\frac{R}{r^{2}}$, which follows from:

$$
\begin{aligned}
\sum \frac{r_{b}+r_{c}}{h_{b} h_{c}}=\sum \frac{S}{\frac{s-b}{2 S}+\frac{S}{s-c}} \frac{2 S}{c} & =\frac{1}{4 S} \sum \frac{a b c}{(s-b)(s-c)}=\frac{a b c}{4 S} \sum \frac{1}{(s-b)(s-c)}= \\
& =\frac{4 R r s}{4 s r} \cdot \frac{1}{r^{2}}=\frac{R}{r^{2}}
\end{aligned}
$$

Equality holds if and only if the triangle is equilateral.LHS inequality. Using Panaitopol Inequality: $m_{a} \leq \frac{R}{2 r} h_{a}$ we obtain:

$$
\begin{aligned}
& E=\sum \frac{r_{b}+r_{c}}{m_{b} m_{c}} \stackrel{\text { Panaitopol }}{\geq} \sum \frac{r_{b}+r_{c}}{\frac{R}{2 r} h_{b} \cdot \frac{R}{2 r} h_{c}} \geq\left(\frac{2 r}{R}\right)^{2} \sum \frac{r_{b}+r_{c}}{h_{b} h_{c}}= \\
&=\left(\frac{2 R}{r}\right)^{2} \cdot \frac{R}{r^{2}}=\frac{4}{R}=L H S
\end{aligned}
$$

We've used the identity in triangle: $\sum \frac{r_{b}+r_{c}}{h_{b} h_{c}}=\frac{R}{r^{2}}$.
Equality holds if and only if the triangle is equilateral.
Note: The inequality strengthen Problem SP. 367 from RMM no. 25, Summer Edition 2022, proposed by George Apostolopoulos, Greece.

In $\triangle A B C$ the following relationship holds:

$$
\frac{8 r}{R^{2}} \leq \sum \frac{r_{b}+r_{c}}{m_{b} m_{c}} \leq \frac{1}{r}\left(3\left(\frac{2 R}{r}\right)^{4}-1\right)
$$

George Apostolopoulos, Greece

Remark: Inequality 2) is stronger than inequality 1)
3) In $\triangle A B C$ the following relationship holds:

$$
\frac{8 r}{R^{2}} \leq \frac{4}{R} \leq \sum \frac{r_{b}+r_{c}}{m_{b} m_{c}} \leq \frac{R}{r^{2}} \leq \frac{1}{r}\left(3\left(\frac{2 R}{r}\right)^{4}-1\right)
$$

Solution: See inequality 2) and
i) $\frac{R}{r^{2}} \leq \frac{1}{r}\left(3\left(\frac{2 R}{r}\right)^{4}-1\right) \Leftrightarrow(R-2 r)\left(3 R^{3}+3 R^{2} r+3 R r^{2}+r^{3}\right) \geq 0$, which follows from Euler's inequality $R \geq 2 r$.
ii) $\frac{8 r}{R^{2}} \leq \frac{4}{R} \Leftrightarrow R \geq 2 r$, (Euler's inequality). Equality holds if and only if the triangle is equilateral.

Reference:

ROM ANIAN M ATHEM ATICAL M AGAZINE-www.ssmrmh.ro

