

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro ABOUT AN INEQUALITY BY MARIAN URSĂRESCU-XVI

By Marin Chirciu-Romania

1) In acute $\triangle ABC$:

$\sum \frac{\cos^5 A}{\cos^3 B} \ge 1 - \left(\frac{r}{R}\right)^2$

Proposed by Marian Ursărescu - Romania

Solution: We prove.Lemma:

2) If
$$x, y, z > 0$$
 then:

$$\sum \frac{x^5}{y^3} \ge \sum x^2$$

Proof: Using Holder's inequality we obtain:

$$LHS = \sum \frac{x^5}{y^3} = \sum \frac{x^6}{xy^3} = \sum \frac{x^6}{xy \cdot y^2} \stackrel{Holder}{\geq} \frac{(\sum x^2)^3}{\sum xy \sum y^2} \stackrel{(1)}{\geq} \frac{(\sum x^2)^3}{\sum x^2 \sum x^2} = \sum x^2 = RHS$$

where (1) $\Leftrightarrow \sum x^2 \ge \sum xy \Leftrightarrow \sum (x - y)^2 \ge 0$. We've used Holder's inequality:
 $\sum \frac{x^3}{a_1 \cdot a_2} \ge \frac{(\sum x)^3}{\sum a_1 \sum a_2}$, where $x, a_1, a_2 > 0$. Let's get back to the main problem.
Using Lemma for $x = \cos A$, $y = \cos B$, $z = \cos C$ we obtain:
 $LHS = \sum \frac{\cos^5 A}{\cos^3 B} = \sum \frac{x^5}{y^3} \stackrel{Lemma}{\ge} \sum x^2 = \sum \cos^2 A = \frac{6R^2 + 4Rr + r^2 - p^2}{2R^2} \stackrel{Gerretsen}{\ge}$

$$\geq \frac{6R^2 + 4Rr + r^2 - (4R^2 + 4Rr + 3r^2)}{2R^2} = \frac{2R^2 - 2r^2}{2R^2} = \frac{R^2 - r^2}{R^2} = 1 - \left(\frac{r}{R}\right)^2$$

We've used Gerretsen inequality in triangle: $p^2 \leq 4R^2 + 4Rr + 3r^2$.

Equality holds if and only if the triangle is equilateral. **Remark:** The problem can be developed.

3) In acute ΔABC:

$$\sum \frac{\cos^{2n+1}A}{\cos^{2n-1}B} \ge 1 - \left(\frac{r}{R}\right)^2, n \in \mathbb{N}^*$$

Marin Chirciu

Solution: We prove. Lemma:

4) If
$$x, y, z > 0$$
 and $n \in \mathbb{N}^*$ then:

$$\sum \frac{x^{2n+1}}{y^{2n-1}} \ge \sum x^2$$

Proof: Using Holder's inequality we obtain:

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$LHS = \sum \frac{x^{2n+1}}{y^{2n-1}} = \sum \frac{x^{2n+2}}{xy^{2n-1}} = \sum \frac{x^{2n+2}}{xy \cdot y^{2n-2}} \stackrel{Holder}{\geq} \frac{(\sum x^2)^{n+1}}{\sum xy(\sum y^2)^{n-1}} \stackrel{(1)}{\geq}$$

 $\geq \frac{(\sum x^2)^{n+1}}{\sum x^2(\sum y^2)^{n-1}} = \sum x^2 = RHS, \text{ where } (1) \Leftrightarrow \sum x^2 \geq \sum xy \Leftrightarrow \sum (x-y)^2 \geq 0.$ We've used Holder's inequality: $\sum \frac{x^{n+1}}{a_1 \cdot a_2 \cdot \ldots \cdot a_n} \ge \frac{(\sum x)^{n+1}}{\sum a_1 \sum a_2 \cdot \ldots \sum a_n}, \text{ where } x, a_1, a_2, \ldots a_n > 0$ Let's get back to the main problem. Using the Lemma for $x = \cos A$, $y = \cos B$, $z = \cos C$ we obtain: $LHS = \sum \frac{\cos^{2n+1}A}{\cos^{2n-1}B} = \sum \frac{x^{2n+1}}{2n-1} \stackrel{Lemma}{\geq} \sum x^2 = \sum \cos^2 A = \frac{6R^2 + 4Rr + r^2 - p^2}{2r^2} > 0$

$$LHS = \sum \frac{1}{\cos^{2n-1}B} = \sum \frac{1}{y^{2n-1}} \geq \sum x = \sum \cos A = \frac{1}{2R^2}$$

$$\frac{Gerretsen}{2R} = \frac{6R^2 + 4Rr + r^2 - (4R^2 + 4Rr + 3r^2)}{2R^2} = \frac{2R^2 - 2r^2}{2R^2} = \frac{R^2 - r^2}{R^2} = 1 - \left(\frac{r}{R}\right)^2$$
We've used Gerretsen's inequality in triangle: $p^2 \le 4R^2 + 4Rr + 3r^2$.

Equality holds if and only if the triangle is equilateral.

Note: For n = 2 we obtain Inequality in triangle 2252, proposed by Marian Ursărescu, Romania, in RMM 11/2020. Remark: The problem can be developed.

5) In Δ*ABC*:

$$\sum \frac{\cos^5 \frac{A}{2}}{\cos^3 \frac{B}{2}} \ge 2 + \frac{r}{2R}$$

Marin Chirciu

Solution. We prove. Lemma:

6) If
$$x, y, z > 0$$
 then:
$$\sum \frac{x^5}{y^3} \ge \sum x^2$$

Proof: Using Holder's inequality we obtain:

 $LHS = \sum_{y=1}^{\infty} \frac{x^5}{y^3} = \sum_{x=1}^{\infty} \frac{x^6}{xy^3} = \sum_{y=1}^{\infty} \frac{x^6}{xy \cdot y^2} \stackrel{Holder}{\geq} \frac{(\sum x^2)^3}{\sum xy \sum y^2} \stackrel{(1)}{\geq} \frac{(\sum x^2)^3}{\sum x^2 \sum x^2} = \sum_{x=1}^{\infty} x^2 = RHS$ where (1) $\Leftrightarrow \sum x^2 \ge \sum xy \Leftrightarrow \sum (x-y)^2 \ge 0.$ We've used Holder's inequality: $\sum \frac{x^3}{a_1 \cdot a_2} \ge \frac{(\sum x)^3}{\sum a_1 \sum a_2}$, where $x, a_1, a_2 > 0$ Let's get back to the main problem. Using the Lemma for $x = \cos \frac{A}{2}$, $y = \cos \frac{B}{2}$, $z = \cos \frac{C}{2}$ we obtain: $LHS = \sum \frac{\cos^{5} \frac{A}{2}}{\cos^{3} \frac{B}{2}} = \sum \frac{x^{5}}{y^{3}} \stackrel{Lemma}{\geq} \sum x^{2} = \sum \cos^{2} \frac{A}{2} = 2 + \frac{r}{2R}$

Equality holds if and only if the triangle is equilateral. Remark: The problem can be developed.

2

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro 7) $\ln \Delta ABC$:

$$\sum \frac{\cos^{2n+1}\frac{A}{2}}{\cos^{2n-1}\frac{B}{2}} \geq 2 + \frac{r}{2R}, n \in \mathbb{N}^*$$

Marin Chirciu

Solution: We prove Lemma:

8) If
$$x, y, z > 0$$
 and $n \in \mathbb{N}^*$ then:

$$\sum \frac{x^{2n+1}}{y^{2n-1}} \ge \sum x^2$$

Proof: Using Holder's inequality we obtain:

$$LHS = \sum \frac{x^{2n+1}}{y^{2n-1}} = \sum \frac{x^{2n+2}}{xy^{2n-1}} = \sum \frac{x^{2n+2}}{xy \cdot y^{2n-2}} \stackrel{Holder}{\geq} \frac{(\sum x^2)^{n+1}}{\sum xy(y^2)^{n-1}} \stackrel{(1)}{\geq} \frac{(\sum x^2)^{n+1}}{\sum x^2(\sum y^2)^{n-1}} = \sum x^2 = RHS, \text{ where } (1) \Leftrightarrow \sum x^2 \ge \sum xy \Leftrightarrow \sum (x-y)^2 \ge 0$$

We've used Holder's inequality:
$$\sum \frac{x^{n+1}}{a_1 \cdot a_2 \cdots a_n} \ge \frac{(\sum x)^{n+1}}{\sum a_1 \sum a_2 \cdots \sum a_n}, \text{ where } x, a_1, a_2, \dots, a_n > 0.$$

Let's get back to the main problem.
Using the Lemma for $x = \cos \frac{A}{2}, y = \cos \frac{B}{2}, z = \cos \frac{C}{2}$ we obtain:
$$LHS = \sum \frac{\cos^{2n+1}A}{\cos^{2n-1}B} = \sum \frac{x^{2n+1}}{y^{2n-1}} \stackrel{Lemma}{\ge} \sum x^2 = \sum \cos^2 \frac{A}{2} = 2 + \frac{r}{2R}$$

Equality holds if and only if the triangle is equilateral.

Equality holds if and only if the triangle is equilatera **Reference:**

ROMANIAN MATHEMATICAL MAGAZINE-www.ssmrmh.ro