IMO TYPE INEQUALITIES WITH FIBONACCI AND LUCAS NUMBERS

D.M. BĂTINEŢU-GIURGIU, MIHÁLY BENCZE, DANIEL SITARU, NECULAI STANCIU

Abstract. In this paper we present some IMO type inequalities with Fi bonacci and Lucas numbers.

Problem 1.

If $\left(L_{n}\right)_{n \geq 0}, L_{0}=2, L_{1}=1, L_{n+2}=L_{n+1}+L_{n}, \forall n \in \mathbb{N}$, is Lucas's sequence, and $a, b, c \in \mathbb{R}_{+}^{*}$ such that $a+b+c \leq 24$, then:

$$
\frac{L_{n}}{\sqrt{L_{n}^{2}+a L_{n+1} L_{n+2}}}+\frac{L_{n+1}}{\sqrt{L_{n+1}^{2}+b L_{n+2} L_{n}}}+\frac{L_{n+2}}{\sqrt{L_{n+2}^{2}+c L_{n} L_{n+1}}} \geq 1, \forall n \in \mathbb{N}
$$

Proof. We have:

$$
\begin{equation*}
U_{n}=\frac{L_{n}}{\sqrt{L_{n}^{2}+a L_{n+1} L_{n+2}}}+\frac{L_{n+1}}{\sqrt{L_{n+1}^{2}+b L_{n+2} L_{n}}}+\frac{L_{n+2}}{\sqrt{L_{n+2}^{2}+c L_{n} L_{n+1}}} \tag{1}
\end{equation*}
$$

$U_{n}=\sum \frac{L_{n}}{\sqrt{L_{n}^{2}+a L_{n+1} L_{n+2}}}=\sum \frac{L_{n}^{2}}{\sqrt{L_{n}} \cdot \sqrt{L_{n}^{3}+a L_{n} L_{n+1} L_{n+2}}}=\sum \frac{L_{n}^{2}}{\sqrt{L_{n}} \cdot \sqrt{L_{n}^{3} \cdot a p_{n}}}, \forall n \in \mathbb{N}$
where $p_{n}=L_{n} L_{n+1} L_{n+2}, \forall n \in \mathbb{N}$. We denote $v_{n}=\sqrt{L_{n}} \cdot \sqrt{L_{n}^{3}+a p_{n}}$ and
$V_{n}=v_{n}+v_{n+1}+v_{n+2}=\sqrt{L_{n}} \cdot \sqrt{L_{n}^{3}+a p_{n}}+\sqrt{L_{n}} \cdot \sqrt{L_{n}^{3}+b p_{n}}+\sqrt{L_{n}} \cdot \sqrt{L_{n}^{3} \cdot c p_{n}}, \forall n \in \mathbb{N}$
We have that:

$$
V_{n}^{2}=\left(\sum L_{n} \sqrt{L_{n}^{3}+a p_{n}}\right)^{2} \stackrel{\text { C-B-S }}{\leq} s_{n}\left(L_{n}^{3}+L_{n+1}^{3}+L_{n+2}^{3}+(a+b+c) p_{n}\right), \forall n \in \mathbb{N}
$$

where $s_{n}=L_{n}+L_{n+1}+L_{n+2}, \forall n \in \mathbb{N}$. Since

$$
(x+y+z)^{3} \geq x^{3}+y^{3}+z^{3}+24 x y z, \forall x, y, z \in \mathbb{R}_{+}^{*} \text { and }
$$

$V_{n}^{2} \leq s_{n}\left(L_{n}^{3}+L_{n+1}^{3}+L_{n+2}^{3}+(a+b+c) p_{n}\right) \leq s_{n}\left(L_{n}^{3}+L_{n+1}^{3}+L_{n+2}^{3}+24 L_{n} L_{n+1} L_{n+2}\right)$
then

$$
\begin{equation*}
V_{n}^{2} \leq s_{n} \cdot s_{n}^{3}=s_{n}^{4}, \forall n \in \mathbb{N} \Leftrightarrow v_{n} \leq s_{n}^{2}, \forall n \in \mathbb{N} \tag{2}
\end{equation*}
$$

By Bergström's inequality, and from (1) and (2) we obtain that:

$$
U_{n} \geq \frac{\left(s_{n}\right)^{2}}{V_{n}} \geq \frac{s_{n}^{2}}{s_{n}^{2}}=1, \forall n \in \mathbb{N}
$$

so we are done.

Problem 2.

If $\left(F_{n}\right)_{n \geq 0}, F_{0}=F_{1}=1, F_{n+2}=F_{n+1}+F_{n}, \forall n \in \mathbb{N}$, is Fibonacci's sequences, and $a, b, c \in \overline{\mathbb{R}}_{+}^{*}$ such that $a+b+c \leq 24$, then:

$$
\frac{F_{n}}{\sqrt{F_{n}^{2}+a F_{n+1} F_{n+2}}}+\frac{F_{n+1}}{\sqrt{F_{n+1}^{2}+b F_{n+2} F_{n}}}+\frac{F_{n+2}}{\sqrt{F_{n+2}^{2}+c F_{n} F_{n+1}}} \geq 1, \forall n \in \mathbb{N} .
$$

Proof.

$$
U_{n}=\frac{F_{n}}{\sqrt{F_{n}^{2}+a F_{n+1} F_{n+2}}}+\frac{F_{n+1}}{\sqrt{F_{n+1}^{2}+b F_{n+2} F_{n}}}+\frac{F_{n+2}}{\sqrt{F_{n+2}^{2}+c F_{n} F_{n+1}}}
$$

$$
\begin{equation*}
U_{n}=\sum \frac{F_{n}}{\sqrt{F_{n}^{2}+a F_{n+1} F_{n+2}}}=\sum \frac{F_{n}^{2}}{\sqrt{F_{n}} \cdot \sqrt{F_{n}^{3}+a F_{n} F_{n+1} F_{n+2}}}=\sum \frac{F_{n}^{2}}{\sqrt{F_{n}} \cdot \sqrt{F_{n}^{3}+a p_{n}}}, \forall \in \mathbb{N} \tag{1}
\end{equation*}
$$

where we denote $p_{n}=F_{n} F_{n+1} F_{n+2}, \forall n \in \mathbb{N}$. We denote $v_{n}=\sqrt{F_{n}} \cdot \sqrt{F_{n}^{3}+a p_{n}}$, and
$V_{n}=v_{n}+v_{n+1}+v_{n+2}=\sqrt{F_{n}} \cdot \sqrt{F_{n}^{3}+a p_{n}}+\sqrt{F_{n+1}} \cdot \sqrt{F_{n+1}^{3}+b p_{n}}+\sqrt{F_{n+1}} \cdot \sqrt{F_{n+1}^{3}+c p_{n}}, \forall n \in \mathbb{N}$.
We have:
$V_{n}^{2}=\left(\sum \sqrt{F_{n}} \cdot \sqrt{F_{n}^{3}+a p_{n}}\right)^{2} \stackrel{\text { C-B-S }}{\leq} s_{n}\left(F_{n}^{3}+F_{n+1}^{3}+F_{n+2}^{3}+(a+b+c) p_{n}\right), \forall n \in \mathbb{N}$,
where we denote $s_{n}=F_{n}+F_{n+1}+F_{n+2}, \forall n \in \mathbb{N}$. Since

$$
(x+y+z)^{3} \geq x^{3}+y^{3}+z^{3}+24 x y z, \forall x, y, z \in \mathbb{R}, \text { and }
$$

$V_{n}^{2} \leq s_{n}\left(F_{n}^{3}+F_{n+1}^{3}+F_{n+2}^{3}+(a+b+c) p_{n}\right) \leq s_{n}\left(F_{n}^{3}+F_{n+1}^{3}+F_{n+2}^{3}+24 F_{n} F_{n+1} F_{n+2}\right)$
then

$$
\begin{equation*}
V_{n}^{2} \leq s_{n} \cdot s_{n}^{3}=s_{n}^{4}, \forall n \in \mathbb{N} \Leftrightarrow V_{n} \leq s_{n}^{2}, \forall n \in \mathbb{N} \tag{2}
\end{equation*}
$$

We apply Bergström's inequality, and from (1) and (2) we deduce that:

$$
U_{n} \geq \frac{\left(s_{n}\right)^{2}}{V_{n}} \geq \frac{s_{n}^{2}}{s_{n}^{2}}=1, \forall n \in \mathbb{N}
$$

i.e. we obtain the given inequality.

Problem 3.

If $\left(F_{n}\right)_{n \geq 0}, F_{0}=F_{1}=1, F_{n+2}=F_{n+1}+F_{n}, \forall n \in \mathbb{N}$, is Fibonacci's sequence and $a, b, c \in \mathbb{R}_{+}^{*}$ with $a b c=1$, then for any $m \in \mathbb{R}_{+}$is true the inequality.

$$
\frac{1}{a^{3 m+3}\left(F_{n}+F_{n+1} c\right)^{m+1}}+\frac{1}{b^{3 m+3}\left(F_{n} c+F_{n+1} a\right)^{m+1}}+\frac{1}{c^{3 m+3}\left(F_{n} a+F_{n+1} b\right)^{m+1}} \geq \frac{3}{F_{n+2}^{m+1}}, \forall n \in \mathbb{N}
$$

Proof. By J. Radon's inequality we have:
$A_{n}=\frac{1}{a^{3 m+3}\left(F_{n} b+F_{n+1} c\right)^{m+1}}+\frac{1}{b^{3 m+3}\left(F_{n} c+F_{n+1} a\right)^{m+1}}+\frac{1}{c^{3 m+3}\left(F_{n} a+F_{n+1} b\right)^{m+1}} \geq$
$(1) \geq \frac{1}{3^{m}}\left(\frac{1}{a^{3}\left(F_{n} b+F_{n+1} c\right)}+\frac{1}{b^{3}\left(F_{n} c+F_{n+1} a\right)}+\frac{1}{c^{3}\left(F_{n} a+F_{n+1} b\right)}\right)^{m+1}, \forall n \in \mathbb{N}$
We also have

$$
B_{n}=\frac{1}{a^{3}\left(F_{n} b+F_{n+1} c\right)}+\frac{1}{b^{3}\left(F_{n} c+F_{n+1} a\right)}+\frac{1}{c^{3}\left(F_{n} a+F_{n+1} b\right)}=
$$

$$
=\frac{\frac{1}{a^{2}}}{F_{n} a b+F_{n+1} a c}+\frac{\frac{1}{b^{2}}}{F_{n} b c+F_{n+1} a b}+\frac{\frac{1}{c^{2}}}{F_{n} a c+F_{n+1} b c}, \forall n \in \mathbb{N},
$$

where we apply Bergström's inequality, and we deduce that:

$$
\begin{align*}
& B_{n} \geq \frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^{2}}{\left(F_{n}+F_{n+1}\right)(a b+b c+c a)}=\frac{(a b+b c+c a)^{2}}{F_{n+2}(a b c)^{2}(a b+b c+c a)}=\frac{a b+b c+c a}{F_{n+2}} \stackrel{\text { MA-MG }}{\geq} \\
& \text { (2) } \quad \stackrel{\text { MA-MG }}{\geq} \frac{3 \cdot \sqrt[3]{(a b c)^{2}}}{F_{n+2}}=\frac{3}{F_{n+2}}, \forall n \in \mathbb{N} \tag{2}
\end{align*}
$$

From (1) and (2) yields that:

$$
A_{n} \geq \frac{1}{3^{m}}\left(\frac{3}{F_{n+2}}\right)^{m+1}=\frac{3}{F_{n+2}^{m+1}}, \forall n \in \mathbb{N}
$$

Observation. For $n=m=0$, i.e. $F_{0}=F_{1}=1, F_{2}=2$, the given inequality becomes
If $a, b, c \in \mathbb{R}_{+}^{*}$ such that $a b c=1$, then $\frac{1}{a^{3}(b+c)}+\frac{1}{b^{3}(c+a)}+\frac{1}{c^{3}(a+b)} \geq \frac{3}{2}$, i.e. the problem at IMO, Canada, 1995, proposed by Russia.

Problem 4.

If $\left(F_{n}\right)_{n \geq 0}, F_{0}=F_{1}=1, F_{n+2}+F_{n}, \forall n \in \mathbb{N}$, and $a, b, c \in \mathbb{R}_{+}^{*}$ such that $a b c=1$ then the following inequality is true.

$$
\frac{1}{a^{3}\left(F_{n} b+F_{n+1} c\right)}+\frac{1}{b^{3}\left(F_{n} c+F_{n+1} a\right)}+\frac{1}{c^{3}\left(F_{n} a+F_{n+1} b\right)} \geq \frac{3}{F_{n+2}}, \forall n \in \mathbb{N}
$$

Proof. We denote:

$$
\begin{aligned}
& B_{n}=\frac{1}{a^{3}\left(F_{n} b+F_{n+1} c\right)}+\frac{1}{b^{3}\left(F_{n} c+F_{n+1} a\right)}+\frac{1}{c^{2}\left(F_{n} a+F_{n+1} b\right)}= \\
& \quad=\frac{\frac{1}{a^{2}}}{F_{n} a b+F_{n+1} a c}+\frac{\frac{1}{b^{2}}}{F_{n} b c+F_{n+1} a b}+\frac{\frac{1}{c^{2}}}{F_{n} a c+F_{n+1} b c}, \forall n \in \mathbb{N}
\end{aligned}
$$

and by Bergström's inequality we have:

$$
\begin{gathered}
B_{n}=\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^{2}}{\left(F_{n}+F_{n+1}\right)(a b+b c+c a)}=\frac{(a b+b c+c a)^{2}}{F_{n+2}(a b c)^{2}(a b+b c+c a)}=\frac{a b+b c+c a}{F_{n+2}} \stackrel{\text { MA-MG }}{\geq} \\
\geq{ }^{\text {MA-MG }} \frac{3 \cdot \sqrt[3]{(a b c)^{2}}}{F_{n+2}}=\frac{3}{F_{n+2}}, \forall n \in \mathbb{N}
\end{gathered}
$$

Observation. For $n=0, F_{0}=F_{1}=1, F_{2}=2$, and the inequality becomes: If $a, b, c \in \mathbb{R}_{+}^{*}$ such that $a b c=1$, then:

$$
\frac{1}{a^{3}(b+c)}+\frac{1}{b^{3}(c+a)}+\frac{1}{c^{3}(a+b)} \geq \frac{3}{2}
$$

i.e. the IMO Problem, Canada, 1995.

Problem 5.

If $\left(L_{n}\right)_{n \geq 0}, L_{0}=2, L_{1}=1, L_{n+2}=L_{n+1}+L_{n}, \forall n \in \mathbb{N}$, is the Lucas's sequences, and $a, b, c \in \mathbb{R}_{+}^{*}$ such that $a b c=1$, then:

$$
\frac{1}{a^{6}\left(L_{n} b+L_{n+1} c\right)^{2}}+\frac{1}{b^{6}\left(L_{n} c+L_{n+1} a\right)^{2}}+\frac{1}{c^{6}\left(L_{n} a+L_{n+1} b\right)^{2}} \geq \frac{3}{L_{n+2}^{2}}, \forall n \in \mathbb{N}
$$

Proof. By Bergström's inequality we have:

$$
\begin{align*}
& A_{n}=\frac{1}{a^{6}\left(L_{n} b+L_{n+1} c\right)^{2}}+\frac{1}{b^{6}\left(L_{n} c+L_{n+1} a\right)^{2}}+\frac{1}{c^{6}\left(L_{n} a+L_{n+1} b\right)^{2}} \geq \\
& \geq \frac{1}{3}\left(\frac{1}{a^{3}\left(L_{n} b+L_{n+1} c\right)}+\frac{1}{b^{3}\left(L_{n} c+L_{n+1} a\right)}+\frac{1}{c^{3}\left(L_{n} a+L_{n+1} b\right)}\right)^{2}, \forall n \in \mathbb{N} \tag{1}
\end{align*}
$$

Also, we have:

$$
\begin{aligned}
& B_{n}=\frac{1}{a^{3}\left(L_{n} b+L_{n+1} c\right)}+\frac{1}{b^{3}\left(L_{n} c+L_{n+1} a\right)}+\frac{1}{c^{3}\left(L_{n} a+L_{n+1} b\right)}= \\
& \quad=\frac{\frac{1}{a^{2}}}{L_{n} a b+L_{n+1} a c}+\frac{\frac{1}{b^{2}}}{L_{n} b c+L_{n+1} a b}+\frac{\frac{1}{c^{2}}}{L_{n} a c+L_{n+1} b c}, \forall n \in \mathbb{N}
\end{aligned}
$$

where we apply again, Bergström's inequality and AM-GM inequality and we deduce that
$B_{n} \geq \frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^{2}}{\left(L_{n}+L_{n+1}\right)(a b+b c+c a)}=\frac{(a b+b c+c a)^{2}}{L_{n+2}(a b c)^{2}(a b+b c+c a)}=\frac{a b+b c+c a}{L_{n+2}} \stackrel{\text { AM-GM }}{\geq}$

$$
\begin{equation*}
\stackrel{\mathrm{AM}-\mathrm{GM}}{\geq} \frac{3 \cdot \sqrt[3]{(a b c)^{2}}}{L_{n+2}}=\frac{3}{L_{n+2}}, \forall n \in \mathbb{N} \tag{2}
\end{equation*}
$$

From (1) and (2) follows that:

$$
A_{n} \geq \frac{1}{3}\left(\frac{3}{L_{n+2}}\right)^{2}=\frac{3}{L_{n+2}^{2}}, \forall n \in \mathbb{N}
$$

and we are done.

References

[1] Octogon Mathematical Magazine, 2015-2019
[2] Romanian Mathematical Magazine - Interactive Journal, www.ssmrmh.ro
[3] Mihály Bencze, Daniel Sitaru, Marian Ursărescu, Olympic Mathematical Energy. Studis Publishing House, Iaşi, 2018.
[4] Daniel Sitaru, George Apostolopoulos, The Olympic Mathematical Marathon. Cartea Romanească Publishing House, Piteşti, 2018.
[5] Mihály Bencze, Daniel Sitaru, Quantum Mathematical Power. Studis Publishing House, Iaşi, 2018.
[6] Daniel Sitaru, Marian Ursărescu, Calculus Marathon. Studis Publishing House, Iaşi, 2018.
[7] Daniel Sitaru, Mihály Bencze, 699 Olympic Mathematical Challenges. Studis Publishing House, Iaşi, 2017.
[8] Daniel Sitaru, Marian Ursărescu, Ice Math-Contests Problems. Studis Publishing House, Iaşi, 2019.
[9] Mihály Bencze, Daniel Sitaru, Marian Ursărescu, Olympic Mathematical Beauties, Studis Publishing House, Iaşi, 2020.
[10] Daniel Sitaru, Math Phenomenon Reloaded, Studis Publishing House, Iaşi, 2020.
[11] Daniel Sitaru, Marian Ursărescu, Olympiad Problems - Algebra - Volume I, II Studis Publishing House, Iaşi, 2020.

Mathematics Department, National Economic College "Theodor Costescu", Drobeta Turnu - Severin, Romania

Email address: dansitaru63@yahoo.com

