

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro ABOUT AN INEQUALTY BY BOGDAN FUȘTEI-IX
 By Marin Chirciu-Romania

Edited by Florică Anastase-Romania

1) In $\triangle A B C$ the following relationship holds:

$$
\sum_{c y c} \frac{m_{a}}{h_{a}} \geq \frac{1}{4}\left(\sum_{c y c} \frac{b+c}{a}+\sum_{c y c} \frac{m_{b}+m_{c}}{m_{a}}\right)
$$

Proposed by Bogdan Fuștei-Romania

Solution. Lemma 1. 2) In $\triangle A B C$ the following relationship holds:

$$
\frac{m_{a}}{h_{a}} \geq \frac{1}{2}\left(\frac{b}{c}+\frac{c}{b}\right)
$$

Proof. We have:
$\frac{m_{a}}{h_{a}} \stackrel{\text { Tereshin }}{\geq} \frac{1}{h_{a}} \cdot \frac{b^{2}+c^{2}}{4 R}=\frac{1}{h_{a}} \cdot \frac{1}{2} \cdot \frac{b c}{2 R} \cdot \frac{b^{2}+c^{2}}{b c}\left(\frac{b}{c}+\frac{c}{b}\right)=\frac{1}{h_{a}} \cdot \frac{1}{2} \cdot h_{a}\left(\frac{b}{c}+\frac{c}{b}\right)=\frac{1}{2}\left(\frac{b}{c}+\frac{c}{b}\right)$
Equality holds if and only if triangle is equilateral.
Lemma 2. 3) In $\triangle A B C$ the following relationship holds:

$$
\frac{m_{a}}{h_{a}} \geq \frac{1}{2}\left(\frac{m_{b}}{m_{c}}+\frac{m_{c}}{m_{b}}\right)
$$

Proof. m_{a}, m_{b}, m_{c} can be length sides of a triangle with $F_{m}=\frac{3}{4} F, \overline{m_{a}}=\frac{3}{4} a$,
$\overline{h_{a}}=2 \frac{\overline{F_{m}}}{\bar{a}}=\frac{2 \cdot \frac{3 . \dot{a}^{2}}{m_{a}}}{m_{a}}=\frac{3}{2} \cdot \frac{F}{m_{a}}$. Using Lemma $\mathbf{1}$ in triangle with sides m_{a}, m_{b}, m_{c} we get,

$$
\begin{aligned}
& \overline{m_{a}} \\
& \overline{h_{a}} \\
& \text { Lemma } \\
& \geq
\end{aligned} \frac{1}{2}\left(\frac{\bar{b}}{\bar{c}}+\frac{\bar{c}}{\bar{b}}\right)=\frac{1}{2}\left(\frac{m_{b}}{m_{c}}+\frac{m_{c}}{m_{b}}\right) \Leftrightarrow \frac{\frac{3}{4} a}{\frac{3}{2} \cdot \frac{F}{m_{a}}} \stackrel{\text { Lemma } 1}{\geq} \frac{1}{2}\left(\frac{m_{b}}{m_{c}}+\frac{m_{c}}{m_{b}}\right) .
$$

Let's get back to the main problem. Using up these Lemmas, it follows that,

$$
\begin{gathered}
2 \frac{m_{a}}{h_{a}} \geq \frac{1}{2}\left(\frac{b}{c}+\frac{c}{b}\right)+\frac{1}{2}\left(\frac{m_{b}}{m_{c}}+\frac{m_{c}}{m_{b}}\right) \Leftrightarrow \frac{m_{a}}{h_{a}} \geq \frac{1}{4}\left(\frac{b}{c}+\frac{c}{b}\right)+\frac{1}{4}\left(\frac{m_{b}}{m_{c}}+\frac{m_{c}}{m_{b}}\right) \\
\sum_{c y c} \frac{m_{a}}{h_{a}} \geq \frac{1}{4}\left(\sum_{c y c} \frac{b+c}{a}+\sum_{c y c} \frac{m_{b}+m_{c}}{m_{a}}\right)
\end{gathered}
$$

Remark. In same class of the problem.

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro
 4) In $\triangle A B C$ the following relationship holds:

$$
\sum_{c y c} \frac{m_{a}}{h_{a}} \geq \frac{1}{2} \sum_{c y c} \frac{b+c}{a}
$$

Marin Chirciu

Solution. Lemma 1. 5) In $\triangle A B C$ the following relationship holds:

$$
\frac{m_{a}}{h_{a}} \geq \frac{1}{2}\left(\frac{b}{c}+\frac{c}{b}\right)
$$

Proof. We have:
$\frac{m_{a}}{h_{a}} \stackrel{\text { Tereshin }}{\geq} \frac{1}{h_{a}} \cdot \frac{b^{2}+c^{2}}{4 R}=\frac{1}{h_{a}} \cdot \frac{1}{2} \cdot \frac{b c}{2 R} \cdot \frac{b^{2}+c^{2}}{b c}\left(\frac{b}{c}+\frac{c}{b}\right)=\frac{1}{h_{a}} \cdot \frac{1}{2} \cdot h_{a}\left(\frac{b}{c}+\frac{c}{b}\right)=\frac{1}{2}\left(\frac{b}{c}+\frac{c}{b}\right)$ Equality holds if and only if triangle is equilateral. Using Lemma 1 and summing these inequality, it follows that:

$$
\sum_{c y c} \frac{m_{a}}{h_{a}} \geq \sum_{c y c} \frac{1}{2}\left(\frac{b}{c}+\frac{c}{b}\right) \geq \frac{1}{2} \sum_{c y c} \frac{b+c}{a}
$$

Equality holds if and only if triangle is equilateral.
6) In $\triangle A B C$ the following relationship holds:

$$
\sum_{c y c} \frac{m_{a}}{h_{a}} \geq \frac{1}{2} \sum_{c y c} \frac{m_{b}+m_{c}}{m_{a}}
$$

Marin Chirciu
Solution. Lemma 1. 7) In $\triangle A B C$ the following relationship holds:

$$
\frac{m_{a}}{h_{a}} \geq \frac{1}{2}\left(\frac{b}{c}+\frac{c}{b}\right)
$$

Proof. We have:

$$
\frac{m_{a}}{h_{a}} \stackrel{\text { Teresshin }}{\geq} \frac{1}{h_{a}} \cdot \frac{b^{2}+c^{2}}{4 R}=\frac{1}{h_{a}} \cdot \frac{1}{2} \cdot \frac{b c}{2 R} \cdot \frac{b^{2}+c^{2}}{b c}\left(\frac{b}{c}+\frac{c}{b}\right)=\frac{1}{h_{a}} \cdot \frac{1}{2} \cdot h_{a}\left(\frac{b}{c}+\frac{c}{b}\right)=\frac{1}{2}\left(\frac{b}{c}+\frac{c}{b}\right)
$$

Equality holds if and only if triangle is equilateral.
Lemma 2. 8) In $\triangle A B C$ the following relationship holds:

$$
\frac{m_{a}}{h_{a}} \geq \frac{1}{2}\left(\frac{m_{b}}{m_{c}}+\frac{m_{c}}{m_{b}}\right)
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Proof. m_{a}, m_{b}, m_{c} can be length sides of a triangle with $F_{m}=\frac{3}{4} F, \overline{m_{a}}=\frac{3}{4} a$,
$\overline{h_{a}}=2 \frac{\overline{F_{m}}}{\bar{a}}=\frac{2 \cdot \frac{3}{4} F}{m_{a}}=\frac{3}{2} \cdot \frac{F}{m_{a}}$. Using Lemma $\mathbf{1}$ in triangle with sides m_{a}, m_{b}, m_{c} we get,

$$
\frac{\overline{m_{a}}}{\overline{h_{a}}} \stackrel{\text { Lemma }}{\geq} \frac{1}{2}\left(\frac{\bar{b}}{\bar{c}}+\frac{\bar{c}}{\bar{b}}\right)=\frac{1}{2}\left(\frac{m_{b}}{m_{c}}+\frac{m_{c}}{m_{b}}\right) \Leftrightarrow \frac{\frac{3}{4} a}{\frac{3}{2} \cdot \frac{F}{m_{a}}} \stackrel{\text { Lemma }}{\geq} \frac{1}{2}\left(\frac{m_{b}}{m_{c}}+\frac{m_{c}}{m_{b}}\right)
$$

$\Leftrightarrow \frac{m_{a}}{h_{a}} \geq \frac{1}{2}\left(\frac{m_{b}}{m_{c}}+\frac{m_{c}}{m_{b}}\right)$. Equality holds if and only if triangle is equilateral.
Let's get back to the main problem. Using Lemma 2 and summing, it follows that,

$$
\sum_{c y c} \frac{m_{a}}{h_{a}} \geq \frac{1}{2} \sum_{c y c}\left(\frac{m_{b}}{m_{c}}+\frac{m_{c}}{m_{b}}\right)=\frac{1}{2} \sum_{c y c} \frac{m_{b}+m_{c}}{m_{a}}
$$

Equality holds if and only if triangle is equilateral. Remark. The problem can be developed.
9) In $\triangle A B C$ the following relationship holds:

$$
\sum_{c y c} \frac{m_{a}}{h_{a}} \geq \frac{1}{2(1+\lambda)} \sum_{c y c} \frac{b+c}{a}+\frac{\lambda}{2(1+\lambda)} \sum_{c y c} \frac{m_{b}+m_{c}}{m_{a}} ; \lambda \geq 0
$$

Marin Chirciu

Solution. Lemma 1. 10) In $\triangle A B C$ the following relationship holds:

$$
\frac{m_{a}}{h_{a}} \geq \frac{1}{2}\left(\frac{b}{c}+\frac{c}{b}\right)
$$

Proof. We have:
$\frac{m_{a}}{h_{a}} \stackrel{\text { Tereshin }}{\geq} \frac{1}{h_{a}} \cdot \frac{b^{2}+c^{2}}{4 R}=\frac{1}{h_{a}} \cdot \frac{1}{2} \cdot \frac{b c}{2 R} \cdot \frac{b^{2}+c^{2}}{b c}\left(\frac{b}{c}+\frac{c}{b}\right)=\frac{1}{h_{a}} \cdot \frac{1}{2} \cdot h_{a}\left(\frac{b}{c}+\frac{c}{b}\right)=\frac{1}{2}\left(\frac{b}{c}+\frac{c}{b}\right)$
Equality holds if and only if triangle is equilateral.
Lemma 2. 11) In $\triangle A B C$ the following relationship holds:

$$
\frac{m_{a}}{h_{a}} \geq \frac{1}{2}\left(\frac{m_{b}}{m_{c}}+\frac{m_{c}}{m_{b}}\right)
$$

Proof. m_{a}, m_{b}, m_{c} can be length sides of a triangle with $F_{m}=\frac{3}{4} F, \overline{m_{a}}=\frac{3}{4} a$,
$\overline{h_{a}}=2 \frac{\overline{F_{m}}}{\bar{a}}=\frac{2 \cdot \frac{3}{4} F}{m_{a}}=\frac{3}{2} \cdot \frac{F}{m_{a}}$. Using Lemma $\mathbf{1}$ in triangle with sides m_{a}, m_{b}, m_{c} we get,

$$
\begin{aligned}
& \overline{m_{a}} \\
& \overline{h_{a}}
\end{aligned} \stackrel{\text { Lemma }}{\geq} \frac{1}{2}\left(\frac{\bar{b}}{\bar{c}}+\frac{\bar{c}}{\bar{b}}\right)=\frac{1}{2}\left(\frac{m_{b}}{m_{c}}+\frac{m_{c}}{m_{b}}\right) \Leftrightarrow \frac{\frac{3}{4} a}{\frac{3}{2} \cdot \frac{F}{m_{a}}} \stackrel{\text { Lemma }}{\geq} \frac{1}{2}\left(\frac{m_{b}}{m_{c}}+\frac{m_{c}}{m_{b}}\right) .
$$

ROMANIAN MATHEMATICAL MAGAZINE

 www.ssmrmh.roLet's get back to the main problem. Multiplying in Lemma $\mathbf{1}$ with $x>0$, in Lemma $\mathbf{2}$ with $y>0$ and adding result:

$$
\begin{gathered}
x \frac{m_{a}}{h_{a}}+y \frac{m_{a}}{h_{a}} \geq \frac{x}{2}\left(\frac{b}{c}+\frac{c}{b}\right)+\frac{y}{2}\left(\frac{m_{b}}{m_{c}}+\frac{m_{c}}{m_{b}}\right) \Leftrightarrow \\
(x+y) \frac{m_{a}}{h_{a}} \geq \frac{x}{2}\left(\frac{b}{c}+\frac{c}{b}\right)+\frac{y}{2}\left(\frac{m_{b}}{m_{c}}+\frac{m_{c}}{m_{b}}\right) \Leftrightarrow \\
\sum_{c y c} \frac{m_{a}}{h_{a}} \geq \frac{x}{2(x+y)} \sum_{c y c} \frac{b+c}{a}+\frac{y}{2(x+y)} \sum_{c y c} \frac{m_{b}+m_{c}}{m_{a}} \Leftrightarrow \\
\sum_{c y c} \frac{m_{a}}{h_{a}} \geq \frac{1}{2\left(\frac{y}{x}+1\right)} \sum_{c y c} \frac{b+c}{a}+\frac{\frac{y}{x}}{2\left(1+\frac{y}{x}\right)} \sum_{c y c} \frac{m_{b}+m_{c}}{m_{a}} \stackrel{\frac{y}{x}=\lambda}{=} \frac{1}{2(1+\lambda)} \sum_{c y c} \frac{b+c}{a} \\
+\frac{\lambda}{2(1+\lambda)} \sum_{c y c} \frac{m_{b}+m_{c}}{m_{a}} ; \lambda \geq 0
\end{gathered}
$$

Equality holds if and only if triangle is equilateral.
Note. For $\lambda=1$ it follows Inequality in Triangle 2356 proposed by Bogdan Fuștei-Romanian M athematical M agazine-12/2020.

Reference:

ROM ANIAN M ATHEM ATICAL M AGAZINE-Interactive Journal-www.ssmrmh.ro

