CRUX MATHEMATICORUM CHALLENGES-(II)

DANIEL SITARU - ROMANIA

4165. Prove that for all real numbers x1, x2, x5 and x4, we have,

|21 + w2 + 23 + 2a| + 2(|21 | + 2] + |23 + |24]) > 6 6 H |z; + ;]
1<i<j<4

Proposed by Daniel Sitaru - Romania

Solution with generalization by Michel Bataille.
We prove the stronger result that for any complex numbers x1, x2, x3 and x4, we
have

(1) |or 422+ 25+ 2|+ 2(|2a] + |zal + 25| + zal) = D fa + 2y
1<i<j<4

The proposed inequality then follows from (1) by the AM-GM Inequality. To prove
(1), we will make use of Hlawka’s inequality which states that

(2) la+b+c|+|a|+ bl + |e| > |la+ b+ |0+ c|+ |c+q]

for all complex numbers a, b, c.
Setting a = x1,b = x9 and ¢ = x3 + 4, then from (2) we have

(3) |z1+zotas+aa|+ |21 |+|22|+ |23+ 24| > |21+ 22|+ |22+ 234+ 24 |+ |21 + 23+ 24]
Applying (2) again, we obtain:

(4) |.T2 + x3 —|—:Z?4| > ‘132 —|—l‘3‘ + |ZZ?3 —|—1‘4| + |1‘2 +JC4| — |CE2| — |$3| — ‘LE4|
and
(5) |z + a3+ aa] > |21+ 23] + |23 + 24| + |21+ 24| = |21 = [23] = |34

Adding (4) and (5) and denoting the right side of (3) by R, then we have:
(6) R > |ws + z4| — 1| — |za| — 20ws] = 20aal + > |wi + 7
1<i<j<4
From (3) and (6), we deduce that
21 + 22 + @3 + @a| + |21] + |22| + |25 + 24| 2
> |23 + 4| — 1| — |za| — 2lws| = 2lzal + Y wi+ay
1<i<j<4
from which (1) follows immediately. O

4205. Prove that for 0 < a < ¢ < b,a,b,c € R, we have:
1 (c — a) arctan y/ac n (b — ¢) arctan v/be
Vbe Vac

Proposed by Daniel Sitaru - Romania

b
/ x arctan xdx >
cvab Jq
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Solution by Paul Braken.

Let f(z) = zarctanx for z > 0. Since f(0) = f/(0) =0,

f'(z) = arctanz + (1 +22)~1 and f”(x) = 2(1+22)72, then f is positive, strictly
increasing and strictly convex. By the Mean Value Theorem, we have that:

f@)+ f'(p)(x—p) < flz)

for distinct positive x and p. Hence

(¢~ ) f(Vae) < (c — a)f(Vae) + 5 f'(Vao) e ~ a) (Ve — Va)’

~ (- @)f(Vad) + F(Vao) [ (o~ Vaeyis

a

</ ' Ja)de,

and \
(b—c¢)f(Vbe) < / f(z)dx
C
Therefore
b
(¢ — a)vacarctan v/ac + (b — ¢)Vbearctan Vbe < / x arctan xdx
a
Dividing by (v/ac)(v/be) yields the desired inequality. O

4226. Prove that if 0 < a < b then:

(/b 1;—de$>2> (b—a)*+ 1112(9)

a

Proposed by Daniel Sitaru - Romania

Solutions by — a composite of virtually the same solutions by Arkady Alt;
Michel Bataille; M. Bello, M. Benito, O. Ciaurri, E. Fernandez, and L. Roncal
(jointly); and Digby Smith

Note first that ,
b
1 2 b
</ ”d:ﬂ) > (b—a)®+1n® =
a T a

@(/ab de>2—</ab idm>2> (b—a)?

b1+ 22 +1 bVT+a22 -1

> (b—a)?

(1)

Let f(z) = 7vl+jz+1,d € [a,b]. Then f(zr) > 0 and f(l_»,;) = V“’;”z_l. By the

integral form of the Cauchy - Schwarz Inequality, we have:

(/abf(x)dx> </abf(1x)dm>= (/ab( f(a:))%) (/ab( f(tj))%)
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(7]

2 = (b—ay’

But equality cannot hold in (2) as f is not a constant on [a,b]. Hence, from (1)
and (2) the result follows.

4256. Let a,b,c € R such that a + b+ ¢ = 1. Prove that:

b a

el — e c b a

B
b—a c—b a—-c

€

Proposed by Daniel Sitaru - Romania

Solution 1 by Dionne Bailey, Elsie Campbell, and Charles Diminnie.
We will prove the slight improvement that

b a

et —e c b a _ ¢

— e € 1
3e3 >4
b—a c—b + a—c = oer >
for distinct a, b, c € R, which satisfy the condition a + b+ ¢ = 1.
Note first that the last inequality follows from the fact that

4N\3 64 _
1 (5) =55 =237 <
) 3) "ot ¢
For the remainder of our solution, we will utilize Hadamard’s Inequality which
states that if f(x) is continuous and convex on [p, ¢, then

Lo pP+q
: [ ez 5(PE)
2) ) @ :
A proof of this result can be found in R. P. Boas, Jr., A Primer of Real Functions
(8rd ed.), Carus Mathematical Monograph No. 13, The Mathematical Association
of America, 1981, pg. 174.
Since a and b must be distinct and

eb — e e —e
b—a  a—b"
we may assume without loss of generality that a < b. Then, since f(z) = e

continuous and convex on R, (2) implies that

€

b

b a b

e’ —e 1 ath
3 = e“de > e 2z
) b—a b—a /a -
Similar arguments show that

et — eb c e® —e° ate

(4) > e’ and > e

c—b a—-c

Further, because f(z) = e* is strictly convex on R, Jensen’s Theorem and the
distinct values of a,b and ¢ imply that

(5) ea;b + ebgc + et > 3eé(a;b+bgc+ay) = 36”3+c = 3e3
Finally, it follows from (1), (3), (4), and (5) that
eb_ea ec_eb et — et

b—a c—b a—-c
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O
Solution 2 by M. Bello, M. Benito, O. Ciaurri, E. Fernandez, and L. Roncal.
We prove a more general result.
Let ay,as9,...,a, € R such that a1 +as + ...+ a, =1, then
M LAkl _ o0k
e e
(1) > ———— >nen
iy Gk+1 T Ok
with a,4+1 = a1. Moreover, the equality holds if and only if a; = %, fori=1,...,n

(in this case the left hand side has to be understood as a limit).

The proposed inequality follows taking n = 3,a; = a,as = b, and ag = ¢ and using
that 3e3 = 4.186837 > 4.

Let us prove (1). From the inequality % > 1, for z € R, with equality for z =0

only, taking x = “+—*£ we deduce that
eak+1 — eCLk app1tag
— 2> z
ag+1 — Ak

with equality when ajy1 = ar. In this way, applying the AM-GM inequality, we

have
n

eak+1 — e agy1tag aj+...+an 1
E > E e 2 > ne n =nen
=1 Q41 — Ak
and the equality holds when a; = 5, for 1 =1,...,n, only. O

Solution 3 by Paul Braken.

By Taylor’s theorem, we have the expansion with remainder
1 m

e’ =e*+e*(b—a)+ iea(bf a)?® + %

where 7 in the remainder is between a and b. This implies that

(b - a)S’

b a T
e’ —e 1 e 9 1
) - a _ v _ > o0 Soa(n
= — ¢ +26 (b—a)+ 6(b a)* >e —|—2€ (b—a),
since €™ > 0 and (b — a)? > 0 always holds. In exactly the same way, we obtain
the inequalities

c__ b 1 T2 1

EC_Z = 5ee—b)+ %(c—b)Z >t (e —b),
a _ ,c 1 T3 1
ea_i :ec+§ec(a—c)+%(a—c)2Zec+§ec(a*0).

Adding these three results, the following lower bound for the function in (1) is
obtained,
b a c b a

(2)
e’ —e? e“—e’ e —ef abcl(a b c )
= > - - - -
h(a,b,c) r— + p— + =€ +e’+e +2 e*(b—a)+e’(c—b)+e‘(a—c)
This result holds for all a,b,c and is independent of the constraint which has not
been used.

Let us minimize the function on the right of (2),

fla,b,c) =e* +e® +e° + %(eb(cf b) +eb(c—b) +e(a— c)),
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by introducing a Lagrange multiplier A
L= f(a,b,c) —Aa+b+c—1).
Differentiating £ with respect to a, b, c and A, the following nonlinear system results,
e +e+eb—a)—2\=0,
e+ e +ellc—b)—21=0,
e“+e’+ef(a—c)—21=0,
a+b+c—1=0.

This set of equations maps into itself under a cyclic permutation of the variables.
The first three equations of (3) can be put in the form,

l+b—a+e =2 % 1+c—b+e* =2 e 14a—c+e P =2x"°
For example, adding these three equations, and expression for A results,
e1=b 4 ge—a 4 ge=b 4 3
20 +e b tec)
In fact, the solution to the system (3) is given by
1

A=

a=b=c= -, A= e,
3
The minimum value of f is found to be
(=i
This will correspond to a minimum since a maximum is not expected. Take for
example a = N,;b = —N + 1 and ¢ = 0, then ¢ — 0o as N — oo, so h can be

made as large as we please. Combining (2) and (4), these imply (1).

Letting ¢ — b and then b — a in h and the constraint, or using Taylor’s formula,
it can be seen that h reduces to 3e3 which matches the minimum (4). Thus the
absolute minimum of h under the constraint is 3e3. O

4265. Consider real numbers a,b, ¢ € (0, 1) such that a + b+ ¢ = 1. Show that:
1
(ab+ be+ ca)

Proposed by Daniel Sitaru - Romania

—(arctan a + arctan b 4 arctan c) > 5
= —

Solution by the team D. Bailey, E. Campbell, and C. Diminnie.
Since %arctanx is concave for z > 0 and is equal to x for x =0 and z =1,
4
—arctanx > x
T
for 0 < x < 1. Therefore the left side of the inequality is not less than a+b+c = 1.
Since
2(ab+bc+ca) = (a +b+c)* — (a* +b* +2)
=1—(a®>+b+¢?)
<1—(ab+ bc+ ca),
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then ab + bc+ ca < % and

1
2 — (ab+ be+ ca)
The result follows. ]

3
<Z<1
5 <

4276. Let P be a point on the interior of a triangle ABC and let PA =z, PB =y
and PC = z. Prove that:

27(ax + by — ¢2)(by + cz — ax)(cz + ax — by) < (ax + by + cz)*
Proposed by Daniel Sitaru - Romania

Solution by Digby Smith.
Let p = ax,q = by and r = cz. Substituting, expanding, then applying Schur’s
inequality before applying the AM-GM inequality gives

(ax + by — cz)(by + ¢z — ax)(cz + ax — by)
=(+q—r)la+tr—p(r+p—q
=pa(p+q) +qr(g+r) +rpr+p) —p° —¢* —r° = 2pgr

< pgr
< (p +q+ r)3
- 3
making
27(az + by — ¢2)(by + cz — ax)(cz + ax — by) < (az + by + cz)*
with equality if and only if az = by = cz. ]

4298. Compute:

n

n+k

L=1
nLH;o]; 2+sin(n+k)+ (n+ k)2

Proposed by Daniel Sitaru - Romania

Solution by Missouri State University Problem Solving Group.

Define
n+k 1

fln.k) = 2+sin(n+k)+ (n+k)? and g(n, k) = n+k
Since 1 < 2 +sin(n + k) < 3, then for 1 < k < n, we have
2 +sin(n + k)
(n+k)(2+sin(n+ k) + (n+ k)?)
< 3 < i
“(n+k)(A+(n+k)2) — nd

|g(n7/€) - f(nvk)l =

Therefore

n

3 3
< lim — = lim — =0
T n—oo ; n3 n—oo N2

lim
n—o0

Zg(na k) - f(nak)
k=1
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In particular, we now have

o o s
B2l 2 SR = i o) = fim )

Let h(z) = 1. Since h is continuous on [1,2], it is integrable on [1,2]. Therefore

n

: 1 . k(1 ?
LZJE&;M :nlirgth(1+ﬁ) (ﬁ) :/1 h(z)dx = In2.

4309. Let a,b and ¢ be real numbers such that a + b + ¢ = 3. Prove that:
2(a* + b + ) > ab(ab + 1) + be(be 4 1) + calca + 1)
Proposed by Daniel Sitaru - Romania

Solution 1 by Sefket Arslanagic.
Using the inequality

3@+ + 2 > (r+y+2)%
we have that

a4—|—b4+c42 (a2+b2+02)(a2+b2+02)

W =

> é(a+b+c)2(a2+b2+02) =a® + b+
> ab+ bc+ ca
Also a* + b* + ¢* > a?b? + b2c? + c2a?, so that the desired inequality holds. ([
Solution 2 by AN-anduud Problem Solving Group.
Using the inequality
2 +y? + 22 > ay +yz + o,
we have that
a* + b 4 ¢ > (ab)? + (be)? + (ca)?.
Since
2t —dx+3=(x—-1)*(z+1)24+2] >0,
we find that

1
a4+b4+c424(a+b+c)79:3:g(a+b+c)2

= é[(a— b)2+ (b—¢)? + (c — a)? + 6(ab + be + ca)]

>ab+ bc+ ca

Adding these two inequalities for a* + b* + ¢* yields the desired result. Equality
holds iff a=b=c=1. O
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Solution 3 by Paolo Perfetti and Angel Plaza, independently.
Recall the Muirhead Inequalities for three variables. For a,b,c > 0 and p > g > r,
let )

[p,q,7] = g(apchT + aPb"c? 4+ a?bPc” 4+ afb" P + a"bPct + a”bicP)
Then,

p>u,pt+qg>u+vandp+qg+r=u+ov+w

together imply that [p, q,7] > [u, v, w].
Make the given inequality homogeneous by replacing each 1 by %(a +b+¢)% Thus
we have to prove that

18(a* +b* + ¢*) > 11(a?b? + b*c® + a*c?) + (a®b + ab® + b*c + be® + a’c + ac®)+

+5(abe + ab®c + abc?)
or, equivalently,
11 5
94,0,0] > ?[2,2,0] +[3,1,1] + 5[2,1,1].

This is true since

[4,0,0] > [2,2,0],

[4,0,0] > [3,1,1],

[4,0,0] > [2,1,1].

B.72. Prove that in triangle ABC, the following relationship holds:

sin A sin B sinC S 2s
. B - _C - C - A . A . B =
sin 5 sin s singsing  sin §sin g r

Proposed by Daniel Sitaru - Romania

Solution by Nguyen Van Canh-Ben Tre-Vietnam.

A A
Hsm§ zéd_[cosizé

sin A sin B sin C' _ sin A _
singsin% sin%sin% singsing _Zsingsin% B
2 ' Z (sin %)2 Cauchy—gchwartz % ' (Z sin %)2

sin 4 sin & sin Coi% - 7 Y cosLeos§

We need to prove that:
s AN2
(>_sing

B s C =
> Cos 5 Cos 5

2

A B C
1 n=1 > 1 eos —
(1) <—><E s1n2>_gc052c052

(3AA’B'C" such that: A=n—24"B=n—-2B',C=r—-2C")

Now,

2
T —2A' T —2B' T —2C"

. S .

(1) + ( E sin 5 > > E cos 5 cos 5
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2

ya ZCOSA/ > ZsinB’ sin C’

/{2 12 4R/ / 12
<_>(1 n o ) > P+ r+r :
R’ 4R/2
o 4:(R/ +T/)2 Z p/2 +4R/T/ _'_,r/2;
<_>p/2 S 4R/2 +4Rl7”l _’_3,},,12
(Which is clearly true by Gerretsen’s Inequality). So, (1) is true. Proved. O
MATHEMATICS DEPARTMENT, NATIONAL ECONOMIC COLLEGE ” THEODOR COSTESCU”, DROBETA

TURNU - SEVERIN, ROMANIA
Email address: dansitaru63@yahoo.com



