CRUX MATHEMATICORUM CHALLENGES-(II)

DANIEL SITARU - ROMANIA

4165. Prove that for all real numbers x_{1}, x_{2}, x_{3} and x_{4}, we have,

$$
\begin{array}{r}
\left|x_{1}+x_{2}+x_{3}+x_{4}\right|+2\left(\left|x_{1}\right|+\left|x_{2}\right|+\left|x_{3}\right|+\left|x_{4}\right|\right) \geq 6 \sqrt[6]{\prod_{1 \leq i<j \leq 4}\left|x_{i}+x_{j}\right|} \\
\text { Proposed by Daniel Sitaru - Romania }
\end{array}
$$

Solution with generalization by Michel Bataille.
We prove the stronger result that for any complex numbers x_{1}, x_{2}, x_{3} and x_{4}, we have

$$
\begin{equation*}
\left|x_{1}+x_{2}+x_{3}+x_{4}\right|+2\left(\left|x_{1}\right|+\left|x_{2}\right|+\left|x_{3}\right|+\left|x_{4}\right|\right) \geq \sum_{1 \leq i<j \leq 4}\left|x_{i}+x_{j}\right| \tag{1}
\end{equation*}
$$

The proposed inequality then follows from (1) by the AM-GM Inequality. To prove (1), we will make use of Hlawka's inequality which states that

$$
\begin{equation*}
|a+b+c|+|a|+|b|+|c| \geq|a+b|+|b+c|+|c+a| \tag{2}
\end{equation*}
$$

for all complex numbers a, b, c.
Setting $a=x_{1}, b=x_{2}$ and $c=x_{3}+x_{4}$, then from (2) we have
(3) $\left|x_{1}+x_{2}+x_{3}+x_{4}\right|+\left|x_{1}\right|+\left|x_{2}\right|+\left|x_{3}+x_{4}\right| \geq\left|x_{1}+x_{2}\right|+\left|x_{2}+x_{3}+x_{4}\right|+\left|x_{1}+x_{3}+x_{4}\right|$

Applying (2) again, we obtain:

$$
\begin{equation*}
\left|x_{2}+x_{3}+x_{4}\right| \geq\left|x_{2}+x_{3}\right|+\left|x_{3}+x_{4}\right|+\left|x_{2}+x_{4}\right|-\left|x_{2}\right|-\left|x_{3}\right|-\left|x_{4}\right| \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|x_{1}+x_{3}+x_{4}\right| \geq\left|x_{1}+x_{3}\right|+\left|x_{3}+x_{4}\right|+\left|x_{1}+x_{4}\right|-\left|x_{1}\right|-\left|x_{3}\right|-\left|x_{4}\right| \tag{5}
\end{equation*}
$$

Adding (4) and (5) and denoting the right side of (3) by R, then we have:

$$
\begin{equation*}
R \geq\left|x_{3}+x_{4}\right|-\left|x_{1}\right|-\left|x_{2}\right|-2\left|x_{3}\right|-2\left|x_{4}\right|+\sum_{1 \leq i<j \leq 4}\left|x_{i}+x_{j}\right| \tag{6}
\end{equation*}
$$

From (3) and (6), we deduce that

$$
\begin{gathered}
\left|x_{1}+x_{2}+x_{3}+x_{4}\right|+\left|x_{1}\right|+\left|x_{2}\right|+\left|x_{3}+x_{4}\right| \geq \\
\geq\left|x_{3}+x_{4}\right|-\left|x_{1}\right|-\left|x_{2}\right|-2\left|x_{3}\right|-2\left|x_{4}\right|+\sum_{1 \leq i<j \leq 4}\left|x_{i}+x_{j}\right|
\end{gathered}
$$

from which (1) follows immediately.
4205. Prove that for $0<a<c<b, a, b, c \in \mathbb{R}$, we have:

$$
\frac{1}{c \sqrt{a b}} \int_{a}^{b} x \arctan x d x>\frac{(c-a) \arctan \sqrt{a c}}{\sqrt{b c}}+\frac{(b-c) \arctan \sqrt{b c}}{\sqrt{a c}}
$$

Proposed by Daniel Sitaru - Romania

Solution by Paul Braken.
Let $f(x)=x \arctan x$ for $x>0$. Since $f(0)=f^{\prime}(0)=0$,
$f^{\prime}(x)=\arctan x+x\left(1+x^{2}\right)^{-1}$ and $f^{\prime \prime}(x)=2\left(1+x^{2}\right)^{-2}$, then f is positive, strictly increasing and strictly convex. By the Mean Value Theorem, we have that:

$$
f(p)+f^{\prime}(p)(x-p)<f(x)
$$

for distinct positive x and p. Hence

$$
\begin{gathered}
(c-a) f(\sqrt{a c})<(c-a) f(\sqrt{a c})+\frac{1}{2} f^{\prime}(\sqrt{a c})(c-a)(\sqrt{c}-\sqrt{a})^{2} \\
=(c-a) f(\sqrt{a c})+f^{\prime}(\sqrt{a c}) \int_{a}^{c}(x-\sqrt{a c}) d x \\
<\int_{a}^{c} f(x) d x
\end{gathered}
$$

and

$$
(b-c) f(\sqrt{b c})<\int_{c}^{b} f(x) d x
$$

Therefore

$$
(c-a) \sqrt{a c} \arctan \sqrt{a c}+(b-c) \sqrt{b c} \arctan \sqrt{b c}<\int_{a}^{b} x \arctan x d x
$$

Dividing by $(\sqrt{a c})(\sqrt{b c})$ yields the desired inequality.
4226. Prove that if $0<a<b$ then:

$$
\left(\int_{a}^{b} \frac{\sqrt{1+x^{2}}}{x} d x\right)^{2}>(b-a)^{2}+\ln ^{2}\left(\frac{b}{a}\right)
$$

Proposed by Daniel Sitaru - Romania
Solutions by - a composite of virtually the same solutions by Arkady Alt;
Michel Bataille; M. Bello, M. Benito, O. Ciaurri, E. Fernandez, and L. Roncal (jointly); and Digby Smith
Note first that

$$
\begin{align*}
& \left(\int_{a}^{b} \frac{\sqrt{1+x^{2}}}{x} d x\right)^{2}>(b-a)^{2}+\ln ^{2} \frac{b}{a} \\
\Leftrightarrow & \left(\int_{a}^{b} \frac{\sqrt{1+x^{2}}}{x} d x\right)^{2}-\left(\int_{a}^{b} \frac{1}{x} d x\right)^{2}>(b-a)^{2} \\
\Leftrightarrow & \int_{a}^{b} \frac{\sqrt{1+x^{2}}+1}{x} d x \cdot \int_{a}^{b} \frac{\sqrt{1+x^{2}}-1}{x} d x>(b-a)^{2} \tag{1}
\end{align*}
$$

Let $f(x)=\frac{\sqrt{1+x^{2}}+1}{x}, d \in[a, b]$. Then $f(x)>0$ and $\frac{1}{f(x)}=\frac{\sqrt{1+x^{2}}-1}{x}$. By the integral form of the Cauchy - Schwarz Inequality, we have:

$$
\left(\int_{a}^{b} f(x) d x\right)\left(\int_{a}^{b} \frac{1}{f(x)} d x\right)=\left(\int_{a}^{b}(\sqrt{f(x)})^{2} d x\right)\left(\int_{a}^{b}\left(\sqrt{\frac{1}{f(x)}}\right)^{2} d x\right)
$$

$$
\begin{align*}
\geq & \left(\int_{a}^{b} 1 d x\right)^{2} \\
& =(b-a)^{2} \tag{2}
\end{align*}
$$

But equality cannot hold in (2) as f is not a constant on $[a, b]$. Hence, from (1) and (2) the result follows.
4256. Let $a, b, c \in \mathbb{R}$ such that $a+b+c=1$. Prove that:

$$
\begin{aligned}
\frac{e^{b}-e^{a}}{b-a}+\frac{e^{c}-e^{b}}{c-b}+ & \frac{e^{a}-e^{c}}{a-c}>4 \\
& \text { Proposed by Daniel Sitaru - Romania }
\end{aligned}
$$

Solution 1 by Dionne Bailey, Elsie Campbell, and Charles Diminnie.
We will prove the slight improvement that

$$
\frac{e^{b}-e^{a}}{b-a}+\frac{e^{c}-e^{b}}{c-b}+\frac{e^{a}-e^{c}}{a-c}>3 e^{\frac{1}{3}}>4
$$

for distinct $a, b, c \in \mathbb{R}$, which satisfy the condition $a+b+c=1$.
Note first that the last inequality follows from the fact that

$$
\begin{equation*}
\left(\frac{4}{3}\right)^{3}=\frac{64}{27}=2 . \overline{370}<e \tag{1}
\end{equation*}
$$

For the remainder of our solution, we will utilize Hadamard's Inequality which states that if $f(x)$ is continuous and convex on $[p, q]$, then

$$
\begin{equation*}
\frac{1}{q-p} \int_{p}^{q} f(x) d x \geq f\left(\frac{p+q}{2}\right) \tag{2}
\end{equation*}
$$

A proof of this result can be found in R. P. Boas, Jr., A Primer of Real Functions (3rd ed.), Carus Mathematical Monograph No. 13, The Mathematical Association of America, 1981, pg. 174.
Since a and b must be distinct and

$$
\frac{e^{b}-e^{a}}{b-a}=\frac{e^{a}-e^{b}}{a-b}
$$

we may assume without loss of generality that $a<b$. Then, since $f(x)=e^{x}$ is continuous and convex on \mathbb{R}, (2) implies that

$$
\begin{equation*}
\frac{e^{b}-e^{a}}{b-a}=\frac{1}{b-a} \int_{a}^{b} e^{x} d x \geq e^{\frac{a+b}{2}} \tag{3}
\end{equation*}
$$

Similar arguments show that

$$
\begin{equation*}
\frac{e^{c}-e^{b}}{c-b} \geq e^{\frac{b+c}{2}} \text { and } \frac{e^{a}-e^{c}}{a-c} \geq e^{\frac{a+c}{2}} \tag{4}
\end{equation*}
$$

Further, because $f(x)=e^{x}$ is strictly convex on \mathbb{R}, Jensen's Theorem and the distinct values of a, b and c imply that

$$
\begin{equation*}
e^{\frac{a+b}{2}}+e^{\frac{b+c}{2}}+e^{\frac{a+c}{2}}>3 e^{\frac{1}{3}\left(\frac{a+b}{2}+\frac{b+c}{2}+\frac{a+c}{2}\right)}=3 e^{\frac{a+b+c}{3}}=3 e^{\frac{1}{3}} \tag{5}
\end{equation*}
$$

Finally, it follows from (1), (3), (4), and (5) that

$$
\frac{e^{b}-e^{a}}{b-a}+\frac{e^{c}-e^{b}}{c-b}+\frac{e^{a}-e^{c}}{a-c} \geq e^{\frac{a+b}{2}}+e^{\frac{b+c}{2}}+e^{\frac{a+c}{2}}>3 e^{\frac{1}{3}}>3\left(\frac{4}{3}\right)=4
$$

Solution 2 by M. Bello, M. Benito, O. Ciaurri, E. Fernandez, and L. Roncal.
We prove a more general result.
Let $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{R}$ such that $a_{1}+a_{2}+\ldots+a_{n}=1$, then

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{e^{a_{k+1}}-e^{a_{k}}}{a_{k+1}-a_{k}} \geq n e^{\frac{1}{n}} \tag{1}
\end{equation*}
$$

with $a_{n+1}=a_{1}$. Moreover, the equality holds if and only if $a_{i}=\frac{1}{n}$, for $i=1, \ldots, n$ (in this case the left hand side has to be understood as a limit).
The proposed inequality follows taking $n=3, a_{1}=a, a_{2}=b$, and $a_{3}=c$ and using that $3 e^{\frac{1}{3}}=4.186837>4$.
Let us prove (1). From the inequality $\frac{\sinh x}{x} \geq 1$, for $x \in \mathbb{R}$, with equality for $x=0$ only, taking $x=\frac{x_{k+1}-a_{k}}{2}$, we deduce that

$$
\frac{e^{a_{k+1}}-e^{a_{k}}}{a_{k+1}-a_{k}} \geq e^{\frac{a_{k+1}+a_{k}}{2}}
$$

with equality when $a_{k+1}=a_{k}$. In this way, applying the AM-GM inequality, we have

$$
\sum_{k=1}^{n} \frac{e^{a_{k+1}}-e^{a_{k}}}{a_{k+1}-a_{k}} \geq \sum_{k=1}^{n} e^{\frac{a_{k+1}+a_{k}}{2}} \geq n e^{\frac{a_{1}+\ldots+a_{n}}{n}}=n e^{\frac{1}{n}}
$$

and the equality holds when $a_{i}=\frac{1}{n}$, for $i=1, \ldots, n$, only.

Solution 3 by Paul Braken.

By Taylor's theorem, we have the expansion with remainder

$$
e^{b}=e^{a}+e^{a}(b-a)+\frac{1}{2} e^{a}(b-a)^{2}+\frac{e^{\tau_{1}}}{6}(b-a)^{3},
$$

where τ_{1} in the remainder is between a and b. This implies that

$$
\frac{e^{b}-e^{a}}{b-a}=e^{a}+\frac{1}{2} e^{a}(b-a)+\frac{e^{\tau_{1}}}{6}(b-a)^{2} \geq e^{a}+\frac{1}{2} e^{a}(b-a)
$$

since $e^{\tau_{1}}>0$ and $(b-a)^{2} \geq 0$ always holds. In exactly the same way, we obtain the inequalities

$$
\begin{aligned}
\frac{e^{c}-e^{b}}{c-b} & =e^{b}+\frac{1}{2} e^{b}(c-b)+\frac{e^{\tau_{2}}}{6}(c-b)^{2} \geq e^{b}+\frac{1}{2} e^{b}(c-b) \\
\frac{e^{a}-e^{c}}{a-c} & =e^{c}+\frac{1}{2} e^{c}(a-c)+\frac{e^{\tau_{3}}}{6}(a-c)^{2} \geq e^{c}+\frac{1}{2} e^{c}(a-c)
\end{aligned}
$$

Adding these three results, the following lower bound for the function in (1) is obtained,

$$
\begin{equation*}
h(a, b, c)=\frac{e^{b}-e^{a}}{b-a}+\frac{e^{c}-e^{b}}{c-b}+\frac{e^{a}-e^{c}}{a-c} \geq e^{a}+e^{b}+e^{c}+\frac{1}{2}\left(e^{a}(b-a)+e^{b}(c-b)+e^{c}(a-c)\right) \tag{2}
\end{equation*}
$$

This result holds for all a, b, c and is independent of the constraint which has not been used.
Let us minimize the function on the right of (2),

$$
f(a, b, c)=e^{a}+e^{b}+e^{c}+\frac{1}{2}\left(e^{b}(c-b)+e^{b}(c-b)+e^{c}(a-c)\right)
$$

by introducing a Lagrange multiplier λ

$$
\mathcal{L}=f(a, b, c)-\lambda(a+b+c-1)
$$

Differentiating \mathcal{L} with respect to a, b, c and λ, the following nonlinear system results,

$$
\begin{gathered}
e^{a}+e^{c}+e^{a}(b-a)-2 \lambda=0 \\
e^{b}+e^{a}+e^{b}(c-b)-2 \lambda=0 \\
e^{c}+e^{b}+e^{c}(a-c)-2 \lambda=0 \\
a+b+c-1=0
\end{gathered}
$$

This set of equations maps into itself under a cyclic permutation of the variables. The first three equations of (3) can be put in the form,

$$
1+b-a+e^{c-a}=2 \lambda e^{-a}, 1+c-b+e^{a-b}=2 \lambda e^{-b}, 1+a-c+e^{c-b}=2 \lambda e^{-c}
$$

For example, adding these three equations, and expression for λ results,

$$
\lambda=\frac{e^{a-b}+e^{c-a}+e^{c-b}+3}{2\left(e^{-a}+e^{-b}+e^{-c}\right)}
$$

In fact, the solution to the system (3) is given by

$$
a=b=c=\frac{1}{3}, \quad \lambda=e^{\frac{1}{3}} .
$$

The minimum value of f is found to be

$$
\begin{equation*}
f\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)=3 e^{\frac{1}{3}}>4 \tag{4}
\end{equation*}
$$

This will correspond to a minimum since a maximum is not expected. Take for example $a=N, b=-N+1$ and $c=0$, then $e^{N} \rightarrow \infty$ as $N \rightarrow \infty$, so h can be made as large as we please. Combining (2) and (4), these imply (1).
Letting $c \rightarrow b$ and then $b \rightarrow a$ in h and the constraint, or using Taylor's formula, it can be seen that h reduces to $3 e^{\frac{1}{3}}$ which matches the minimum (4). Thus the absolute minimum of h under the constraint is $3 e^{\frac{1}{3}}$.
4265. Consider real numbers $a, b, c \in(0,1)$ such that $a+b+c=1$. Show that:

$$
\frac{4}{\pi}(\arctan a+\arctan b+\arctan c)>\frac{1}{2-(a b+b c+c a)}
$$

Proposed by Daniel Sitaru - Romania
Solution by the team D. Bailey, E. Campbell, and C. Diminnie.
Since $\frac{4}{\pi} \arctan x$ is concave for $x \geq 0$ and is equal to x for $x=0$ and $x=1$,

$$
\frac{4}{\pi} \arctan x \geq x
$$

for $0 \leq x \leq 1$. Therefore the left side of the inequality is not less than $a+b+c=1$. Since

$$
\begin{gathered}
2(a b+b c+c a)=(a+b+c)^{2}-\left(a^{2}+b^{2}+c^{2}\right) \\
=1-\left(a^{2}+b^{2}+c^{2}\right) \\
\leq 1-(a b+b c+c a)
\end{gathered}
$$

then $a b+b c+c a \leq \frac{1}{3}$ and

$$
\frac{1}{2-(a b+b c+c a)} \leq \frac{3}{5}<1
$$

The result follows.
4276. Let P be a point on the interior of a triangle $A B C$ and let $P A=x, P B=y$ and $P C=z$. Prove that:

$$
27(a x+b y-c z)(b y+c z-a x)(c z+a x-b y) \leq(a x+b y+c z)^{3}
$$

Proposed by Daniel Sitaru - Romania
Solution by Digby Smith.
Let $p=a x, q=b y$ and $r=c z$. Substituting, expanding, then applying Schur's inequality before applying the AM-GM inequality gives

$$
\begin{gathered}
(a x+b y-c z)(b y+c z-a x)(c z+a x-b y) \\
=(p+q-r)(q+r-p)(r+p-q) \\
=p q(p+q)+q r(q+r)+r p(r+p)-p^{3}-q^{3}-r^{3}-2 p q r \\
\leq p q r \\
\leq\left(\frac{p+q+r}{3}\right)^{3}
\end{gathered}
$$

making

$$
27(a x+b y-c z)(b y+c z-a x)(c z+a x-b y) \leq(a x+b y+c z)^{3}
$$

with equality if and only if $a x=b y=c z$.
4298. Compute:

$$
L=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{n+k}{2+\sin (n+k)+(n+k)^{2}}
$$

Proposed by Daniel Sitaru - Romania
Solution by Missouri State University Problem Solving Group.
Define

$$
f(n, k)=\frac{n+k}{2+\sin (n+k)+(n+k)^{2}} \text { and } g(n, k)=\frac{1}{n+k}
$$

Since $1 \leq 2+\sin (n+k) \leq 3$, then for $1 \leq k \leq n$, we have

$$
\begin{gathered}
|g(n, k)-f(n, k)|=\frac{2+\sin (n+k)}{(n+k)\left(2+\sin (n+k)+(n+k)^{2}\right)} \\
\leq \frac{3}{(n+k)\left(1+(n+k)^{2}\right)} \leq \frac{3}{n^{3}}
\end{gathered}
$$

Therefore

$$
\lim _{n \rightarrow \infty}\left|\sum_{k=1}^{n} g(n, k)-f(n, k)\right| \leq \lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{3}{n^{3}}=\lim _{n \rightarrow \infty} \frac{3}{n^{2}}=0
$$

In particular, we now have

$$
L=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f(n, k)=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} g(n, k)=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{n+k} .
$$

Let $h(x)=\frac{1}{x}$. Since h is continuous on [1, 2], it is integrable on [1, 2]. Therefore

$$
L=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{n\left(1+\frac{k}{n}\right)}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} h\left(1+\frac{k}{n}\right)\left(\frac{1}{n}\right)=\int_{1}^{2} h(x) d x=\ln 2 .
$$

4309. Let a, b and c be real numbers such that $a+b+c=3$. Prove that:

$$
2\left(a^{4}+b^{4}+c^{4}\right) \geq a b(a b+1)+b c(b c+1)+c a(c a+1)
$$

Proposed by Daniel Sitaru - Romania
Solution 1 by Sefket Arslanagic.
Using the inequality

$$
3\left(x^{2}+y^{2}+z^{2}\right) \geq(x+y+z)^{2}
$$

we have that

$$
\begin{gathered}
a^{4}+b^{4}+c^{4} \geq \frac{1}{3}\left(a^{2}+b^{2}+c^{2}\right)\left(a^{2}+b^{2}+c^{2}\right) \\
\geq \frac{1}{9}(a+b+c)^{2}\left(a^{2}+b^{2}+c^{2}\right)=a^{2}+b^{2}+c^{2} \\
\geq a b+b c+c a
\end{gathered}
$$

Also $a^{4}+b^{4}+c^{4} \geq a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}$, so that the desired inequality holds.
Solution 2 by $A N$-anduud Problem Solving Group.
Using the inequality

$$
x^{2}+y^{2}+z^{2} \geq x y+y z+z x
$$

we have that

$$
a^{4}+b^{4}+c^{4} \geq(a b)^{2}+(b c)^{2}+(c a)^{2}
$$

Since

$$
x^{4}-4 x+3=(x-1)^{2}\left[(x+1)^{2}+2\right] \geq 0
$$

we find that

$$
\begin{gathered}
a^{4}+b^{4}+c^{4} \geq 4(a+b+c)-9=3=\frac{1}{3}(a+b+c)^{2} \\
=\frac{1}{6}\left[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}+6(a b+b c+c a)\right] \\
\geq a b+b c+c a
\end{gathered}
$$

Adding these two inequalities for $a^{4}+b^{4}+c^{4}$ yields the desired result. Equality holds iff $a=b=c=1$.

Solution 3 by Paolo Perfetti and Angel Plaza, independently.
Recall the Muirhead Inequalities for three variables. For $a, b, c>0$ and $p \geq q \geq r$, let

$$
[p, q, r]=\frac{1}{6}\left(a^{p} b^{q} c^{r}+a^{p} b^{r} c^{q}+a^{q} b^{p} c^{r}+a^{q} b^{r} c^{p}+a^{r} b^{p} c^{q}+a^{r} b^{q} c^{p}\right)
$$

Then,

$$
p \geq u, p+q \geq u+v \text { and } p+q+r=u+v+w
$$

together imply that $[p, q, r] \geq[u, v, w]$.
Make the given inequality homogeneous by replacing each 1 by $\frac{1}{9}(a+b+c)^{2}$. Thus we have to prove that

$$
\begin{gathered}
18\left(a^{4}+b^{4}+c^{4}\right) \geq 11\left(a^{2} b^{2}+b^{2} c^{2}+a^{2} c^{2}\right)+\left(a^{3} b+a b^{3}+b^{3} c+b c^{3}+a^{3} c+a c^{3}\right)+ \\
+5\left(a^{2} b c+a b^{2} c+a b c^{2}\right)
\end{gathered}
$$

or, equivalently,

$$
9[4,0,0] \geq \frac{11}{2}[2,2,0]+[3,1,1]+\frac{5}{2}[2,1,1]
$$

This is true since

$$
\begin{aligned}
& {[4,0,0] \geq[2,2,0],} \\
& {[4,0,0] \geq[3,1,1],} \\
& {[4,0,0] \geq[2,1,1] .}
\end{aligned}
$$

B.72. Prove that in triangle $A B C$, the following relationship holds:

$$
\frac{\sin A}{\sin \frac{B}{2} \sin \frac{C}{2}}+\frac{\sin B}{\sin \frac{C}{2} \sin \frac{A}{2}}+\frac{\sin C}{\sin \frac{A}{2} \sin \frac{B}{2}} \geq \frac{2 s}{r}
$$

Proposed by Daniel Sitaru - Romania
Solution by Nguyen Van Canh-Ben Tre-Vietnam.

$$
\begin{gathered}
\prod \sin \frac{A}{2}=\frac{r}{4 R}, \prod \cos \frac{A}{2}=\frac{s}{4 R} \\
\frac{\sin A}{\sin \frac{B}{2} \sin \frac{C}{2}}+\frac{\sin B}{\sin \frac{C}{2} \sin \frac{A}{2}}+\frac{\sin C}{\sin \frac{A}{2} \sin \frac{B}{2}}=\sum \frac{\sin A}{\sin \frac{B}{2} \sin \frac{C}{2}}= \\
\frac{2}{\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}} \cdot \sum \frac{\left(\sin \frac{A}{2}\right)^{2}}{\frac{1}{\cos \frac{A}{2}}} \stackrel{\text { Cauchy-Schwartz }}{\geq} \frac{2 s}{r} \cdot \frac{\left(\sum \sin \frac{A}{2}\right)^{2}}{\sum \cos \frac{B}{2} \cos \frac{C}{2}}
\end{gathered}
$$

We need to prove that:

$$
\begin{gather*}
\frac{\left(\sum \sin \frac{A}{2}\right)^{2}}{\sum \cos \frac{B}{2} \cos \frac{C}{2}} \geq 1 \\
\leftrightarrow\left(\sum \sin \frac{A}{2}\right)^{2} \geq \sum \cos \frac{B}{2} \cos \frac{C}{2} \tag{1}
\end{gather*}
$$

$\left(\exists \Delta A^{\prime} B^{\prime} C^{\prime}\right.$ such that: $\left.A=\pi-2 A^{\prime}, B=\pi-2 B^{\prime}, C=\pi-2 C^{\prime}\right)$
Now,

$$
(1) \leftrightarrow\left(\sum \sin \frac{\pi-2 A^{\prime}}{2}\right)^{2} \geq \sum \cos \frac{\pi-2 B^{\prime}}{2} \cos \frac{\pi-2 C^{\prime}}{2}
$$

$$
\begin{aligned}
& \leftrightarrow\left(\sum \cos A^{\prime}\right)^{2} \geq \sum \sin B^{\prime} \sin C^{\prime} \\
& \leftrightarrow\left(1+\frac{r^{\prime}}{R^{\prime}}\right)^{2} \geq \frac{p^{\prime 2}+4 R^{\prime} r^{\prime}+r^{\prime 2}}{4 R^{\prime 2}} \\
& \leftrightarrow 4\left(R^{\prime}+r^{\prime}\right)^{2} \geq p^{\prime 2}+4 R^{\prime} r^{\prime}+r^{\prime 2} \\
& \leftrightarrow p^{\prime 2} \leq 4 R^{\prime 2}+4 R^{\prime} r^{\prime}+3 r^{\prime 2}
\end{aligned}
$$

(Which is clearly true by Gerretsen's Inequality). So, (1) is true. Proved.

Mathematics Department, National Economic College "Theodor Costescu", Drobeta Turnu - Severin, Romania

Email address: dansitaru63@yahoo.com

