
CRUX MATHEMATICORUM CHALLENGES-(II)

DANIEL SITARU - ROMANIA

4165. Prove that for all real numbers x1, x2, x3 and x4, we have,

|x1 + x2 + x3 + x4|+ 2(|x1|+ |x2|+ |x3|+ |x4|) ≥ 6 6

√ ∏
1≤i<j≤4

|xi + xj |

Proposed by Daniel Sitaru - Romania

Solution with generalization by Michel Bataille.
We prove the stronger result that for any complex numbers x1, x2, x3 and x4, we
have

(1) |x1 + x2 + x3 + x4|+ 2(|x1|+ |x2|+ |x3|+ |x4|) ≥
∑

1≤i<j≤4

|xi + xj |

The proposed inequality then follows from (1) by the AM-GM Inequality. To prove
(1), we will make use of Hlawka’s inequality which states that

(2) |a+ b+ c|+ |a|+ |b|+ |c| ≥ |a+ b|+ |b+ c|+ |c+ a|
for all complex numbers a, b, c.
Setting a = x1, b = x2 and c = x3 + x4, then from (2) we have

(3) |x1+x2+x3+x4|+|x1|+|x2|+|x3+x4| ≥ |x1+x2|+|x2+x3+x4|+|x1+x3+x4|
Applying (2) again, we obtain:

(4) |x2 + x3 + x4| ≥ |x2 + x3|+ |x3 + x4|+ |x2 + x4| − |x2| − |x3| − |x4|
and

(5) |x1 + x3 + x4| ≥ |x1 + x3|+ |x3 + x4|+ |x1 + x4| − |x1| − |x3| − |x4|
Adding (4) and (5) and denoting the right side of (3) by R, then we have:

(6) R ≥ |x3 + x4| − |x1| − |x2| − 2|x3| − 2|x4|+
∑

1≤i<j≤4

|xi + xj |

From (3) and (6), we deduce that

|x1 + x2 + x3 + x4|+ |x1|+ |x2|+ |x3 + x4| ≥

≥ |x3 + x4| − |x1| − |x2| − 2|x3| − 2|x4|+
∑

1≤i<j≤4

|xi + xj |

from which (1) follows immediately. �

4205. Prove that for 0 < a < c < b, a, b, c ∈ R, we have:

1

c
√
ab

∫ b

a

x arctanxdx >
(c− a) arctan

√
ac√

bc
+

(b− c) arctan
√
bc√

ac

Proposed by Daniel Sitaru - Romania
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Solution by Paul Braken.
Let f(x) = x arctanx for x > 0. Since f(0) = f ′(0) = 0,
f ′(x) = arctanx+x(1 +x2)−1 and f ′′(x) = 2(1 +x2)−2, then f is positive, strictly
increasing and strictly convex. By the Mean Value Theorem, we have that:

f(p) + f ′(p)(x− p) < f(x)

for distinct positive x and p. Hence

(c− a)f(
√
ac) < (c− a)f(

√
ac) +

1

2
f ′(
√
ac)(c− a)(

√
c−
√
a)2

= (c− a)f(
√
ac) + f ′(

√
ac)

∫ c

a

(x−
√
ac)dx

<

∫ c

a

f(x)dx,

and

(b− c)f(
√
bc) <

∫ b

c

f(x)dx

Therefore

(c− a)
√
ac arctan

√
ac+ (b− c)

√
bc arctan

√
bc <

∫ b

a

x arctanxdx

Dividing by (
√
ac)(
√
bc) yields the desired inequality. �

4226. Prove that if 0 < a < b then:(∫ b

a

√
1 + x2

x
dx

)2

> (b− a)2 + ln2
( b
a

)
Proposed by Daniel Sitaru - Romania

Solutions by – a composite of virtually the same solutions by Arkady Alt;
Michel Bataille; M. Bello, M. Benito, O. Ciaurri, E. Fernandez, and L. Roncal
(jointly); and Digby Smith

Note first that (∫ b

a

√
1 + x2

x
dx

)2

> (b− a)2 + ln2 b

a

⇔
(∫ b

a

√
1 + x2

x
dx

)2

−

(∫ b

a

1

x
dx

)2

> (b− a)2

(1) ⇔
∫ b

a

√
1 + x2 + 1

x
dx ·

∫ b

a

√
1 + x2 − 1

x
dx > (b− a)2

Let f(x) =
√
1+x2+1
x , d ∈ [a, b]. Then f(x) > 0 and 1

f(x) =
√
1+x2−1
x . By the

integral form of the Cauchy - Schwarz Inequality, we have:(∫ b

a

f(x)dx

)(∫ b

a

1

f(x)
dx

)
=

(∫ b

a

(
√
f(x))2dx

)(∫ b

a

(√ 1

f(x)

)2
dx

)
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≥

(∫ b

a

1dx

)2

(2) = (b− a)2

But equality cannot hold in (2) as f is not a constant on [a, b]. Hence, from (1)
and (2) the result follows.

4256. Let a, b, c ∈ R such that a+ b+ c = 1. Prove that:

eb − ea

b− a
+
ec − eb

c− b
+
ea − ec

a− c
> 4

Proposed by Daniel Sitaru - Romania

Solution 1 by Dionne Bailey, Elsie Campbell, and Charles Diminnie.
We will prove the slight improvement that

eb − ea

b− a
+
ec − eb

c− b
+
ea − ec

a− c
> 3e

1
3 > 4

for distinct a, b, c ∈ R, which satisfy the condition a+ b+ c = 1.
Note first that the last inequality follows from the fact that

(1)
(4

3

)3
=

64

27
= 2.370 < e

For the remainder of our solution, we will utilize Hadamard’s Inequality which
states that if f(x) is continuous and convex on [p, q], then

(2)
1

q − p

∫ q

p

f(x)dx ≥ f
(p+ q

2

)
A proof of this result can be found in R. P. Boas, Jr., A Primer of Real Functions
(3rd ed.), Carus Mathematical Monograph No. 13, The Mathematical Association
of America, 1981, pg. 174.
Since a and b must be distinct and

eb − ea

b− a
=
ea − eb

a− b
,

we may assume without loss of generality that a < b. Then, since f(x) = ex is
continuous and convex on R, (2) implies that

(3)
eb − ea

b− a
=

1

b− a

∫ b

a

exdx ≥ e
a+b
2

Similar arguments show that

(4)
ec − eb

c− b
≥ e

b+c
2 and

ea − ec

a− c
≥ e

a+c
2

Further, because f(x) = ex is strictly convex on R, Jensen’s Theorem and the
distinct values of a, b and c imply that

(5) e
a+b
2 + e

b+c
2 + e

a+c
2 > 3e

1
3 (

a+b
2 + b+c

2 + a+c
2 ) = 3e

a+b+c
3 = 3e

1
3

Finally, it follows from (1), (3), (4), and (5) that

eb − ea

b− a
+
ec − eb

c− b
+
ea − ec

a− c
≥ e

a+b
2 + e

b+c
2 + e

a+c
2 > 3e

1
3 > 3

(4

3

)
= 4.
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�

Solution 2 by M. Bello, M. Benito, O. Ciaurri, E. Fernandez, and L. Roncal.
We prove a more general result.
Let a1, a2, . . . , an ∈ R such that a1 + a2 + . . .+ an = 1, then

(1)

n∑
k=1

eak+1 − eak
ak+1 − ak

≥ ne 1
n

with an+1 = a1. Moreover, the equality holds if and only if ai = 1
n , for i = 1, . . . , n

(in this case the left hand side has to be understood as a limit).
The proposed inequality follows taking n = 3, a1 = a, a2 = b, and a3 = c and using
that 3e

1
3 = 4.186837 > 4.

Let us prove (1). From the inequality sinh x
x ≥ 1, for x ∈ R, with equality for x = 0

only, taking x = xk+1−ak
2 , we deduce that

eak+1 − eak
ak+1 − ak

≥ e
ak+1+ak

2 ,

with equality when ak+1 = ak. In this way, applying the AM-GM inequality, we
have

n∑
k=1

eak+1 − eak
ak+1 − ak

≥
n∑
k=1

e
ak+1+ak

2 ≥ ne
a1+...+an

n = ne
1
n

and the equality holds when ai = 1
n , for i = 1, . . . , n, only. �

Solution 3 by Paul Braken.
By Taylor’s theorem, we have the expansion with remainder

eb = ea + ea(b− a) +
1

2
ea(b− a)2 +

eτ1

6
(b− a)3,

where τ1 in the remainder is between a and b. This implies that

eb − ea

b− a
= ea +

1

2
ea(b− a) +

eτ1

6
(b− a)2 ≥ ea +

1

2
ea(b− a),

since eτ1 > 0 and (b − a)2 ≥ 0 always holds. In exactly the same way, we obtain
the inequalities

ec − eb

c− b
= eb +

1

2
eb(c− b) +

eτ2

6
(c− b)2 ≥ eb +

1

2
eb(c− b),

ea − ec

a− c
= ec +

1

2
ec(a− c) +

eτ3

6
(a− c)2 ≥ ec +

1

2
ec(a− c).

Adding these three results, the following lower bound for the function in (1) is
obtained,
(2)

h(a, b, c) =
eb − ea

b− a
+
ec − eb

c− b
+
ea − ec

a− c
≥ ea+eb+ec+

1

2

(
ea(b−a)+eb(c−b)+ec(a−c)

)
This result holds for all a, b, c and is independent of the constraint which has not
been used.
Let us minimize the function on the right of (2),

f(a, b, c) = ea + eb + ec +
1

2

(
eb(c− b) + eb(c− b) + ec(a− c)

)
,
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by introducing a Lagrange multiplier λ

L = f(a, b, c)− λ(a+ b+ c− 1).

Differentiating L with respect to a, b, c and λ, the following nonlinear system results,

ea + ec + ea(b− a)− 2λ = 0,

eb + ea + eb(c− b)− 2λ = 0,

ec + eb + ec(a− c)− 2λ = 0,

a+ b+ c− 1 = 0.

This set of equations maps into itself under a cyclic permutation of the variables.
The first three equations of (3) can be put in the form,

1 + b− a+ ec−a = 2λe−a, 1 + c− b+ ea−b = 2λe−b, 1 + a− c+ ec−b = 2λe−c

For example, adding these three equations, and expression for λ results,

λ =
ea−b + ec−a + ec−b + 3

2(e−a + e−b + e−c)
.

In fact, the solution to the system (3) is given by

a = b = c =
1

3
, λ = e

1
3 .

The minimum value of f is found to be

(4) f
(1

3
,

1

3
,

1

3

)
= 3e

1
3 > 4

This will correspond to a minimum since a maximum is not expected. Take for
example a = N, b = −N + 1 and c = 0, then eN → ∞ as N → ∞, so h can be
made as large as we please. Combining (2) and (4), these imply (1).
Letting c → b and then b → a in h and the constraint, or using Taylor’s formula,
it can be seen that h reduces to 3e

1
3 which matches the minimum (4). Thus the

absolute minimum of h under the constraint is 3e
1
3 . �

4265. Consider real numbers a, b, c ∈ (0, 1) such that a+ b+ c = 1. Show that:

4

π
(arctan a+ arctan b+ arctan c) >

1

2− (ab+ bc+ ca)

Proposed by Daniel Sitaru - Romania

Solution by the team D. Bailey, E. Campbell, and C. Diminnie.
Since 4

π arctanx is concave for x ≥ 0 and is equal to x for x = 0 and x = 1,

4

π
arctanx ≥ x

for 0 ≤ x ≤ 1. Therefore the left side of the inequality is not less than a+ b+ c = 1.
Since

2(ab+ bc+ ca) = (a+ b+ c)2 − (a2 + b2 + c2)

= 1− (a2 + b2 + c2)

≤ 1− (ab+ bc+ ca),
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then ab+ bc+ ca ≤ 1
3 and

1

2− (ab+ bc+ ca)
≤ 3

5
< 1

The result follows. �

4276. Let P be a point on the interior of a triangle ABC and let PA = x, PB = y
and PC = z. Prove that:

27(ax+ by − cz)(by + cz − ax)(cz + ax− by) ≤ (ax+ by + cz)3

Proposed by Daniel Sitaru - Romania

Solution by Digby Smith.
Let p = ax, q = by and r = cz. Substituting, expanding, then applying Schur’s
inequality before applying the AM-GM inequality gives

(ax+ by − cz)(by + cz − ax)(cz + ax− by)

= (p+ q − r)(q + r − p)(r + p− q)
= pq(p+ q) + qr(q + r) + rp(r + p)− p3 − q3 − r3 − 2pqr

≤ pqr

≤
(p+ q + r

3

)3
making

27(ax+ by − cz)(by + cz − ax)(cz + ax− by) ≤ (ax+ by + cz)3

with equality if and only if ax = by = cz. �

4298. Compute:

L = lim
n→∞

n∑
k=1

n+ k

2 + sin(n+ k) + (n+ k)2

Proposed by Daniel Sitaru - Romania

Solution by Missouri State University Problem Solving Group.
Define

f(n, k) =
n+ k

2 + sin(n+ k) + (n+ k)2
and g(n, k) =

1

n+ k

Since 1 ≤ 2 + sin(n+ k) ≤ 3, then for 1 ≤ k ≤ n, we have

|g(n, k)− f(n, k)| = 2 + sin(n+ k)

(n+ k)(2 + sin(n+ k) + (n+ k)2)

≤ 3

(n+ k)(1 + (n+ k)2)
≤ 3

n3
.

Therefore

lim
n→∞

∣∣∣∣∣
n∑
k=1

g(n, k)− f(n, k)

∣∣∣∣∣≤ lim
n→∞

n∑
k=1

3

n3
= lim
n→∞

3

n2
= 0
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In particular, we now have

L = lim
n→∞

n∑
k=1

f(n, k) = lim
n→∞

n∑
k=1

g(n, k) = lim
n→∞

n∑
k=1

1

n+ k
.

Let h(x) = 1
x . Since h is continuous on [1, 2], it is integrable on [1, 2]. Therefore

L = lim
n→∞

n∑
k=1

1

n(1 + k
n )

= lim
n→∞

n∑
k=1

h
(

1 +
k

n

)( 1

n

)
=

∫ 2

1

h(x)dx = ln 2.

�

4309. Let a, b and c be real numbers such that a+ b+ c = 3. Prove that:

2(a4 + b4 + c4) ≥ ab(ab+ 1) + bc(bc+ 1) + ca(ca+ 1)

Proposed by Daniel Sitaru - Romania

Solution 1 by Sefket Arslanagic.
Using the inequality

3(x2 + y2 + z2) ≥ (x+ y + z)2,

we have that

a4 + b4 + c4 ≥ 1

3
(a2 + b2 + c2)(a2 + b2 + c2)

≥ 1

9
(a+ b+ c)2(a2 + b2 + c2) = a2 + b2 + c2

≥ ab+ bc+ ca

Also a4 + b4 + c4 ≥ a2b2 + b2c2 + c2a2, so that the desired inequality holds. �

Solution 2 by AN-anduud Problem Solving Group.
Using the inequality

x2 + y2 + z2 ≥ xy + yz + zx,

we have that

a4 + b4 + c4 ≥ (ab)2 + (bc)2 + (ca)2.

Since

x4 − 4x+ 3 = (x− 1)2[(x+ 1)2 + 2] ≥ 0,

we find that

a4 + b4 + c4 ≥ 4(a+ b+ c)− 9 = 3 =
1

3
(a+ b+ c)2

=
1

6
[(a− b)2 + (b− c)2 + (c− a)2 + 6(ab+ bc+ ca)]

≥ ab+ bc+ ca

Adding these two inequalities for a4 + b4 + c4 yields the desired result. Equality
holds iff a = b = c = 1. �
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Solution 3 by Paolo Perfetti and Angel Plaza, independently.
Recall the Muirhead Inequalities for three variables. For a, b, c > 0 and p ≥ q ≥ r,
let

[p, q, r] =
1

6
(apbqcr + apbrcq + aqbpcr + aqbrcp + arbpcq + arbqcp)

Then,
p ≥ u, p+ q ≥ u+ v and p+ q + r = u+ v + w

together imply that [p, q, r] ≥ [u, v, w].
Make the given inequality homogeneous by replacing each 1 by 1

9 (a+ b+ c)2. Thus
we have to prove that

18(a4 + b4 + c4) ≥ 11(a2b2 + b2c2 + a2c2) + (a3b+ ab3 + b3c+ bc3 + a3c+ ac3)+

+5(a2bc+ ab2c+ abc2)

or, equivalently,

9[4, 0, 0] ≥ 11

2
[2, 2, 0] + [3, 1, 1] +

5

2
[2, 1, 1].

This is true since
[4, 0, 0] ≥ [2, 2, 0],

[4, 0, 0] ≥ [3, 1, 1],

[4, 0, 0] ≥ [2, 1, 1].

�

B.72. Prove that in triangle ABC, the following relationship holds:

sinA

sin B
2 sin C

2

+
sinB

sin C
2 sin A

2

+
sinC

sin A
2 sin B

2

≥ 2s

r

Proposed by Daniel Sitaru - Romania

Solution by Nguyen Van Canh-Ben Tre-Vietnam.∏
sin

A

2
=

r

4R
,
∏

cos
A

2
=

s

4R
sinA

sin B
2 sin C

2

+
sinB

sin C
2 sin A

2

+
sinC

sin A
2 sin B

2

=
∑ sinA

sin B
2 sin C

2

=

2

sin A
2 sin B

2 sin C
2

·
∑ (sin A

2 )2

1
cos A

2

Cauchy-Schwartz

≥ 2s

r
·

(
∑

sin A
2 )2∑

cos B2 cos C2

We need to prove that:
(
∑

sin A
2 )2∑

cos B2 cos C2
≥ 1;

(1) ↔

(∑
sin

A

2

)2

≥
∑

cos
B

2
cos

C

2

(∃∆A′B′C ′ such that: A = π − 2A′, B = π − 2B′, C = π − 2C ′)

Now,

(1)↔

(∑
sin

π − 2A′

2

)2

≥
∑

cos
π − 2B′

2
cos

π − 2C ′

2
;
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↔

(∑
cosA′

)2

≥
∑

sinB′ sinC ′

↔
(

1 +
r′

R′

)2
≥ p′2 + 4R′r′ + r′2

4R′2
;

↔ 4(R′ + r′)2 ≥ p′2 + 4R′r′ + r′2;

↔ p′2 ≤ 4R′2 + 4R′r′ + 3r′2

(Which is clearly true by Gerretsen’s Inequality). So, (1) is true. Proved. �
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