
CRUX MATHEMATICORUM CHALLENGES-(III)

DANIEL SITARU - ROMANIA

4316. Let f : [0, 11]→ R be an integrable and convex function. Prove that:∫ 5

3

f(x)dx+

∫ 8

6

f(x)dx ≤
∫ 2

0

f(x)dx+

∫ 11

8

f(x)dx.

Proposed by Daniel Sitaru - Romania

Solution 1 by Roy Barbara.
Let g(x) = ax+ b be the linear function that satisfies g(3) = f(3) and g(8) = f(8).
Because f(x) is convex, f(x) ≥ g(x) when 0 ≤ x ≤ 3 or 8 ≤ x ≤ 10, and f(x) ≤ g(x)
when 3 ≤ x ≤ 8. The left side does not exceed∫ 5

3

g(x)dx+

∫ 8

6

g(x)dx = 22a+ 4b,

and the right side is not less than∫ 2

0

g(x)dx+

∫ 11

9

g(x)dx = 22a+ 4b.

The result follows. �

Solution 2 by Editorial Board.
Since f(x) is convex,

f(3 + x) ≤ 2

3
f(x) +

1

3
f(9 + x) and f(6 + x) ≤ 1

3
f(x) +

2

3
f(9 + x).

Therefore, ∫ 5

3

f(x)dx+

∫ 8

6

f(x)dx =

∫ 2

0

[f(3 + x) + f(6 + x)]dx

≤
∫ 2

0

[f(x) + f(9 + x)]dx =

∫ 2

0

f(x)dx+

∫ 11

9

f(x)dx.

�

Solution 3 by Oliver Geupel.
Recall the Hermite-Hadamard Inequality for convex functions:

(b− a)f
(a+ b

2

)
≤
∫ b

a

f(x)dx ≤ 1

2
(b− a)(f(a) + f(b)).

Therefore∫ 5

3

f(x)dx ≤ f(3) + f(5) ≤
(7

9
f(1) +

2

9
f(10)

)
+
(5

9
f(1) +

4

9
f(10)

)
=

4

3
f(1) +

2

3
f(10),

1
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and, similarly, ∫ 8

6

f(x)dx ≤ f(6) + f(8) ≤ 2

3
f(1) +

4

3
f(10).

Therefore∫ 5

3

f(x)dx+

∫ 8

6

f(x)dx ≤ 2f(1) + 2f(10) ≤
∫ 2

0

f(x)dx+

∫ 11

9

f(x)dx.

�

4346. Find all x, y, z ∈ (0,∞) such that{
64(x+ y + z)2 = 27(x2 + 1)(y2 + 1)(z2 + 1)

x+ y + z = xyz

Proposed by Daniel Sitaru - Romania

Solution 1 by Paul Bracken.
Let

(x, y, z) = (tanA, tanB, tanC),

where 0 < A,B,C < π
2 . Then the two equations become

tanA+ tanB + tanC = tanA tanB tanC

and

64(tanA tanB tanC)2 = 27(sec2A)(sec2B)(sec2 C).

These are equivalent to A+B + C = π (expand tan(A+B + C)) and

sin2A sin2B sin2 C =
27

64
.

Since 2 ln sin t is a strictly concave function of t on (0, π2 ), by Jensen’s inequality we
get

ln sin2A+ ln sin2B + ln sin2 C ≤ 3 ln sin2
(A+B + C

3

)
= 3 ln sin2

(π
3

)
.

Hence

sin2A sin2B sin2 C ≤
(3

4

)3
=

27

64
,

with equality if and only if A = B = C = π
3 .

Therefore the equations are satisfied if and only if (x, y, z) = (
√

3,
√

3,
√

3). �

Solution 2 by Nghia Doan.
Let

p = x+ y + z = xyz and q = xy + yz + zx.

Since

x2 + y2 + z2 = p2 − 2q

and

x2y2 + y2z2 + z2x2 = q2 − 2p2,

the first equation becomes

64p2 = 27[p2 + (q2 − 2p2) + (p2 − 2q) + 1] = 27(q − 1)2.
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Since

q =
( 1

xy
+

1

yz
+

1

zx

)
(xy + yz + zx) ≥ 9,

then 8p = 3
√

3(q − 1). By the AM-GM inequality,

p3 = (x+ y + z)3 ≥ 27xzy = p,

so that p ≥ 3
√

3, with equality if and only if x = y = z =
√

3.
On the other hand: (xy + yz + zx)2 ≥ 3((xy)(yz) + (yz)(zx) + (zx)(xy))

= 3xyz(x+ y + z) = 3p2,

so that q ≥
√

3p with equality if and only if xy = yz = zx. Hence

8p ≥ 3
√

3(
√

3p− 1) = 9p− 3
√

3,

so that p ≤ 3
√

3.
It follows that the only solution of the given system of equations is
x = y = z =

√
3. �

Solution 3 by Madhav Modak.
From the previous solution, we have that

p2 =
(27

65

)
(q − 1)2, p2 ≥ 3q and q2 ≥ 3p2.

Substituting for p2 in these two inequalities yield respectively

0 ≤ 9q2 − 82q + 9 = (9q − 1)(q − 9)

and
0 ≤ −(17q2 − 162q + 81) = (9− q)(17q − 9).

The only value of the pair (p, q) that allows both inequalities to holds is (
√

3, 9)

and this in turn forces x = y = z = 3
√

3 as the unique solution of the system. �

4359. Let a, b and c be positive real numbers. Prove that:

3 ln(ab + bc + ca) +
a

c
+
b

a
+
c

b
≥ a+ b+ c+ ln 27.

Proposed by Daniel Sitaru - Romania

Solution by Richard B. Eden and Ramanujan Srihari.
Let f(x) = lnx, x > 0. Then f ′′(x) = − 1

x2 < 0 so f is concave. By Jensen’s
Inequality we then have

(1) 3 ln
(ab + bc + ca

3

)
≥ b ln a+ c ln b+ a ln c

with equality if and only if a = b = c.
Next, consider g(x) = lnx + 1

x − 1, x > 0. Then g′(x) = x−1
x2 which implies

g(x) ≥ g(1) = 0 so lnx ≥ 1− 1
x for all x > 0. Hence,

(2) b ln a ≥ b
(

1− 1

a

)
, c ln b ≥ c

(
1− 1

b

)
, a ln c ≥ a

(
1− 1

c

)
From (1) and (2), we obtain:

3 ln(ab + bc + ca) ≥ b
(

1− 1

a

)
+ c
(

1− 1

b

)
+ a
(

1− 1

c

)
+ ln 27
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so

3 ln(ab + bc + ca) +
a

c
+
b

a
+
c

b
≥ a+ b+ c+ ln 27

follows, completing the proof. �

4366. Let xn be the base angle of a right triangle with base n and altitude 1. Find:
∞∑
k=1

xk2+k+1.

Proposed by Daniel Sitaru - Romania

Solution 1.
The arms of the right triangle have lengths 1 and n, and xn is the angle adjacent
to the latter arm. Thus, xn = arctan 1

n . Observe that

tan(xk − xk+1) =
1
k −

1
k+1

1 + 1
k(k+1)

=
1

k2 + k + 1
= tan(xk2+k+1).

Therefore
∞∑
k=1

xk2+k+1 =

n∑
k=1

(xk − xk+1) = x1 − xn+1 =
π

4
− arctan

1

n+ 1
,

so that
∞∑
k=1

xk2+k+1 =
π

4
.

�

Solution 2.
Let

un = tan

( ∞∑
k=1

xk2+k+1

)
.

Checking the values of un for small values of n, we are led to the conjecture that
un = n(n+ 2). Suppose that this holds for n = m− 1. Then

un = tan

(
xm2+m+1 +

m−1∑
k=1

xk2+k+1

)

=
1

m2+m+1 + m−1
m+1

1− m−1
(m+1)(m2+m+1)

=
m(m2 + 1)

(m+ 2)(m2 + 1)
=

m

m+ 2
.

Thus, an induction argument, along with u1 = 1
3 , establishes that un = n

n+2 for
each positive integer n. Since the limit as n tends to infinity of un is 1, the sum of
the given series is π

4 . �

4418. Consider a convex cyclic quadrilateral with sides a, b, c, d and area S. Prove
that:

(a+ b)5

c+ d
+

(b+ c)5

d+ a
+

(c+ d)5

a+ b
+

(d+ a)5

b+ c
≥ 64S2.

Proposed by Daniel Sitaru - Romania
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We make some preliminary remarks. The formula for the area S of a quadrilateral
with sides a, b, c, d and perimeter 2s = a+ b+ c+ d is

S =
√

(s− a)(s− b)(s− c)(s− d)− abcd cos2 θ,

where θ is half the sum of two opposite angles. This is dominated by the area of a
cyclic quadrilateral with the same sides, namely√

(s− a)(s− b)(s− c)(s− d)

=
1

4

√
(b+ c+ d− a)(c+ d+ a− b)(d+ a+ b− c)(a+ b+ c− d)

=
1

4

√
[(a+ b)2 − (c− d)2][(c+ d)2 − (a− b)2]

=
1

4

√
[(a+ c)2 − (b− d)2][(b+ d)2 − (a− c)2]

Solution 1 by Oliver Geupel.
Let

(w, x, y, z) = (s− a, s− b, s− c, s− d).

Then

(a+ b, b+ c, c+ d, d+ a) = (y + z, z + w,w + x, x+ y).

Applying the arithmetic – geometric means inequality twice, we find that

(a+ b)5

c+ d
+

(b+ c)5

d+ a
+

(c+ d)5

a+ b
+

(d+ a)5

b+ c

=
(y + z)5

w + x
+

(z + w)5

x+ y
+

(w + x)5

y + z
+

(x+ y)5

z + w

≥ 4(y + z)(z + w)(w + x)(x+ y)

≥ 4(2
√
yz)(2

√
zw)(2

√
wx)(2

√
xy)

= 64xyzw ≥ 64S2

Equality holds if and only if the quadrilateral is a square. �

Solution 2 by Sefket Arslanagic.
By the arithmetic-geometric means inequality,

S ≤
√

(s− a)(s− b)
√

(s− c)(s− d)

≤ 1

4
(2s− a− b)(2s− c− d) =

1

4
(c+ d)(a+ b).

Similarly, S ≤ 1
4 (b+ c)(a+ d). Therefore

64S2 = 4(16S2)

≤ 4(a+ b)(b+ c)(c+ a)(d+ a)

= 4
[ (a+ b)5

c+ d
· (b+ c)5

d+ a
· (c+ d)5

a+ b
· (d+ a)5

b+ c

] 1
4

≤ (a+ b)5

c+ d
+

(b+ c)5

d+ a
+

(c+ d)5

a+ b
+

(d+ a)5

b+ c
.

�
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Solution 3 by C.R. Pranesachar.
By the arithmetic-geometric means inequality,

(a+ b)5

c+ d
+

(c+ d)2

a+ b
≥ 2[(a+ b)2(c+ d)2]

≥ 2[(a+ b)2 − (c− d)2][(c+ d)2 − (a− b)2]

≥ 32S2.

A similar inequality holds for the other two terms of the left side and the result
follows. �

Solution 4 by Digby Smith.

64S2 = 64(s− a)(s− b)(s− c)(s− d)

≤ 64
[ (s− a) + (s− b) + (s− c) + (s− d)

4

]4
= 64

(2s

4

)4
= 4s4.

From an instance of the Holder inequality, for positive x, y, z, t,m, n, p, q,(x5
m

+
y5

n
+
z5

p
+
t5

q

)
(m+ n+ p+ q)(1 + 1 + 1 + 1)3 ≥ (x+ y + z + t)5

applied to

(x, y, z, t;m,n, p, q) = (a+ b, b+ c, c+ d, d+ a, c+ d, d+ a, a+ b, b+ c),

we find that the left side is not less than

25(a+ b+ c+ d)5

44 · 2(a+ b+ c+ d)
=

210s5

28s
= 4s4 ≥ 64S2.

�

Solution 5 by Walther Janous.
We prove a more general result: Let p > q > 0 and p+ q ≥ 1. Then

(a+ b)p

(c+ d)q
+

(b+ c)p

(d+ a)q
+

(c+ d)p

(a+ b)q
+

(d+ a)p

(b+ c)q
≥ 2p−q+2S

p−q
2 .

Applying the arithmetic-geometric means inequality to the denominator yields

(a+ b)p

(c+ d)q
+

(c+ d)p

(a+ b)q
=

(a+ b)p+q + (c+ d)p+q

[(a+ b)(c+ d)]q

≥ 22q · [(a+ b)p+q + (c+ d)p+q

(a+ b+ c+ d)2q
,

with an analogous inequality for the other two terms on the left side. Using the
convexity of xp+q, we see that the left side is not less than

22q
[ (a+ b)p+q + (b+ c)p+q + (c+ d)p+q + (d+ a)p+q

(a+ b+ c+ d)2q

]
≥ 22q · 4

(a+ b+ c+ d)2q

[ (a+ b) + (b+ c) + (c+ d) + (d+ a)

4

]p+q
=

22q+2

(a+ b+ c+ d)2q

[a+ b+ c+ d

2

]p+q
= 2q−p+2(a+ b+ c+ d)p−q

On the other hand, from the AM-GM inequality [as in Solution 4],

S ≤ (a+ b+ c+ d)2

4
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whereupon

2p−q+2S
p−q
2 ≤ 2p−q+2

[ (a+ b+ c+ d)p−q

22(p−q)

]
= 2q−p+2(a+ b+ c+ d)p−q.

The result follows. �

4389. Consider the real numbers a, b, c and d. Prove that:

a(c+ d)− b(c− d) ≤
√

2(a2 + b2)(c2 + d2)

Proposed by Daniel Sitaru - Romania

Solution by Michel Bataille.
The inequality certainly holds if a(c+ d)− b(c− d) < 0 and otherwise is equivalent
to

(ac+ ad− bc+ bd)2 ≤ 2(a2 + b2)(c2 + d2).

Now, a simple calculation shows that

2(a2 + b2)(c2 + d2)− (ac+ ad− bc+ bd)2 = (ac+ bd− ad+ bc)2 ≥ 0

so we are done. �

4398. Prove that for n ∈ N∗, we have

1

2n− 1

∫ 1

0

sin2(xn)dx ≥ 2

n
(1− cos 1).

Proposed by Daniel Sitaru - Romania

Since a2 + b2 ≥ 2ab for all a, b ∈ R, we have

1

2n− 1
+

∫ 1

0

sin2(xn)dx =

∫ 1

0

(x2n−2 + sin2(xn))dx

≥ 2

∫ 1

0

xn−1 sin(xn)dx = − 1

n
cos(xn)

∣∣∣1
0

= − 2

n
(cos 1− cos 0) = − 2

n
(1− cos 1).

4410. Prove that: ∫ π
4

0

√
sin 2xdx <

√
2− π

4
.

Proposed by Daniel Sitaru - Romania

Solution 1 by Michel Bataille and Angel Plaza (independently).
The substitution u = π

4 − x leads to∫ π
4

0

√
sin 2xdx =

∫ π
4

0

√
cos 2udu.

From the Cauchy-Schwarz Inequality,

1 +
√

cos 2x <
√

2(1 + cos 2x)
1
2 = 2 cosx.

Therefore

π

4
+

∫ π
4

0

√
sin 2xdx =

∫ π
4

0

(1 +
√

cos 2x)dx < 2

∫ π
4

0

cosxdx =
√

2.
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The result follows. �

Solution 2 by Brian Bradie and Daniel Văcaru (independently).
By the Root-Mean-Square (or the Jensen) Inequality,

1 +
√

sin 2x

2
<

√
1 + sin 2x

2
=

cosx+ sinx√
2

= sin
(
x+

π

4

)
.

Hence

π

4
+

∫ π
4

0

√
sin 2xdx =

∫ π
4

0

(1 +
√

sin 2x)dx = 2
[
− cos

(
x+

π

4

)]π
4

0
=
√

2,

from which the result follows. �

4553. Find:

lim
n→∞

(∫ 1

0
x2(x+ n)ndx

(n+ 1)n

)
Proposed by Daniel Sitaru - Romania

Solution by Devis Alvarado, lightly edited.
The limit is equivalent to

lim
n→∞

∫ 1

0
x2(x+ n)ndx

(n+ 1)n
= lim
n→∞

∫ 1

0

x2(x+ n)n

(n+ 1)n
dx = lim

n→∞

∫ 1

0

x2
(1 + x

n )n

(1 + 1
n )

dx

For n ≥ 1 define fn : [0, 1]→ R by fn(x) = x2
(1+ x

n )n

(1+ 1
n )n

. We have

|fn(x)| = fn(x) = x2
(1 + x

n )n

(1 + 1
n)n

≤ x2
(

1 +
x

n

)n
.

It is well known that {(1 + x
n )n}n≥1 converges to ex. Since x ∈ [0, 1] it is also an

increasing sequence. We conclude that |fn(x)| ≤ x2ex ≤ e.
Apply the Bounded Convergence Theorem to get

lim
n→∞

∫ 1

0

x2
(1 + x

n )n

(1 + 1
n )n

dx =

∫ 1

0

lim
n→∞

(
x2

(1 + x
n )n

(1 + 1
n )n

)
dx =

∫ 1

0

x2
limn→∞(1 + x

n )n

limn→∞(1 + 1
n )n

dx

=

∫ 1

0

x2 · e
x

e
dx =

1

e
[x2ex − 2xex + 2ex]10 = 1− 2

e
.

Therefore

lim
n→∞

(∫ 1

0
x2(x+ n)ndx

(n+ 1)n

)
= 1− 2

e
.

�

4565. Let ma,mb and mc be the lengths of the medians of a triangle ABC. Prove
that

4(ambmc + bmcma + cmamb) ≥ 9abc.

Proposed by Daniel Sitaru - Romania
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Solution by Sergey Sadov.
Consider the triangle in the complex plane. Let the origin (complex zero) be at
the center of mass of the triangle and u, v, w be the complex coordinates of the
midpoints of the sides a, b and c, respectively. Then

ma = 3|u|, mb = 3|v|, mc = 3|w|,
and

a = 2|u− w|, b = 2|w − u|, c = 2|u− v|
Put

ξ =
4

9
· ma

a
· mb

b
=

u

v − w
· v

w − u
,

η =
4

9
· mb

b
· mc

c
=

v

w − u
· w

u− v
,

ζ =
4

9
· mc

c
· ma

a
=

w

u− v
· u

v − w
.

The required identity takes the form |ξ|+ |η|+ |ζ| ≥ 1, and it follows, by the triangle
inequality, from the identity ξ + η + ζ = −1, which we are about to prove.
Equivalently, we want to prove that

(u− v)(v − w)(w − u) + uv(u− v) + vw(v − w) + wu(w − u) = 0.

Consider the coefficients at powers of u:

u2 : (w − v) + v − w = 0,

u1 : (v − w)(v + w)− v2 + w2 = 0,

u0 : vw(w − v) + vw(v − w) = 0.

The proof is finished.
A generalization. In the above proof we did not use the relation u+ v + w = 0.
Therefore we have in fact proved a more general fact:
Let D be any point in the plane of triangle ABC. Then

AD ·BD · c+BD · CD · a+ CD ·AD · b ≥ abc.
The given problem is equivalent to the particular case of this proposition with D
being the center of mass.
Case of equality. A natural question to ask is: when, in the described generalization,
does the inequality turn to equality. I will show that this happens if and only if D
is the orthocenter. As a corollary, in the original problem the equality takes place
only for the equilateral triangle.For the equality

| − 1| = |ξ + η + ζ| = |ξ|+ η|+ ζ|
to hold, it is necessary and sufficient that ξ, η, ζ be real and nonpositive. At least
on of them is nonzero. Suppose ξ 6= 0 and consider the condition ξ < 0. It means
that

w − v
v
· w − u

u
> 0.

Hence the arguments of the complex numbers w−v
v and w−u

u have equal magnitudes
and opposite signs. Geometrically it means that the signed magnitudes of the angles
DBA and ACD (considering the counterclockwise direction as positive) are equal.
Denote the unsigned magnitude of the angles as ∠DBA = ∠DCA = α′,
∠DAB = ∠DCB = β′ and ∠DAC = ∠DBC = γ′. Then

β′ + γ′ = α(= ∠A), α′ + β′ = γ, γ′ + α′ = β, 2(α′ + β′ + γ′) = π.
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It follows that α = π
2 − α etc. This condition defines the orthocenter. �

4583. Let

A =


a2

(a+b)2
2ab

(a+b)2
b2

(a+b)2

c2

(b+c)2
b2

(b+c)2
2bc

(b+c)2

2ca
(c+a)2

a2

(c+a)2
c2

(c+a)2

 ,

where a, b and c are positive real numbers. Find the value of the sum of all the
entries of An, where n is a natural number n ≥ 2.

Proposed by Daniel Sitaru - Romania

Solution by Michel Bataille.
First, we remark that the entries of each row of A sum to 1, that is,

(1) A

1
1
1

 =

1
1
1


Second, the sum s(M) of all the entries of any 3× 3 matrix M is

s(M) =
(
1 1 1

)
M

1
1
1

 .

It follows that

s(A) =
(
1 1 1

)
A

1
1
1

 =
(
1 1 1

)1
1
1

 = 3.

Now, assume that for some integer n ≥ 1, we have s(An) = 3. Then, using (1), we
obtain

s(An+1) =
(
1 1 1

)
An ·A

1
1
1

 =
(
1 1 1

)
An

1
1
1

 = s(An) = 3.

By induction, we have s(An) = 3 for all positive integers n. �

B68. Prove that for
√
3
3 ≤ a, b, c ≤ 1, we have:

3
√
abc · tan−1

(√ab+ bc+ ca

3

)
≤
√
ab+ bc+ ca

3
· tan−1(

3
√
abc)

When does equality occur?

Proposed by Daniel Sitaru - Romania

Solution 1 by Ravi Prakash – New Delhi – India.
Let g(x) = x

1+x2 − tan−1 x, 0 ≤ x ≤ 1,

g′(x) =
1

1 + x2
− 2x2

(1 + x2)2
− 1

1 + x2
= − 2x2

(1 + x2)2
< 0 for 0 < x < 1

⇒ g is strictly decreansig on [0, 1]⇒ g(x) < g(0) for 0 < x ≤ 1

⇒ x

1 + x2
− tan−1 x < 0 for 0 < x ≤ 1
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Let f(x) =

{
tan−1 x

x , 0 < x ≤ 1

1 if x = 0

f ′(x) =
x

1+x2 − tan−1 x

x2
< 0 for 0 < x < 1⇒ f is decreasing on [0, 1]

For a, b, c > 0,
ab+ bc+ ca

3
≥ (abbcca)

1
3 ⇒ A =

√
ab+ bc+ ca

3
≥ (abc)

1
3 = G

Equality when a = b = c. Thus, tan−1 A
A ≤ tan−1G

G ⇒ G tan−1A ≤ A tan−1G
Equality when a = b = c. �

Solution 2 by Vince Kong – Hong Kong.
Consider: AM ≥ GM over ab, bc and ca:

ab+ bc+ ca

3
≥ 3
√
ab · bc · ca = 3

√
(abc)2

(1)

√
ab+ bc+ ca

3
=

3
√
abc

Consider:

f(x) =
tan−1 x

x
for x ∈

[√3

3
, 1
]

f ′(x) =
d

dx
· tan−1 x

x
=

1

x

d

dx
tan−1 x+ tan−1 x

( d
dx

1

x

)
Let

y = tan−1 x

tan y = x
dy

dx
sec2 y = 1

dy

dx
=

1

sec2 y
=

1

1 + tan2 y
=

1

1 + x2

=
1

x
· 1

1 + x2
+ tan−1 x

(
− 1

x2

)
Put f ′(x) = 0 : 1

x(1+x2) −
tan−1 x
x2 = 0

1

1 + x2
= tan−1 x, x = 0. Only 1 extremum point and outside

[√3

3
, 1
]

f
(√

3
3

)
=

π
6√
3

3

= π
2
√
3

f(1) =
π
4

1 = π
4 <

π
2
√
3

∴ f(x) is decreasing in x ∈ [
√
3
3 , 1]

By (1): f(
3
√
abc) ≥ f

(√ab+ bc+ ca

3

)
tan−1( 3

√
abc)

3
√
abc

≥
tan−1(

√
ab+bc+ca

3 )√
ab+bc+ca

3

∴

√
ab+ bc+ ca

3
· tan−1(

3
√
abc) ≥ 3

√
abc · tan−1

(√ab+ bc+ ca

3

)
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