Romanian Mathematical Magazine, June,2021
Prove that

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{((n-1)!)^{2} H_{n-1}^{(2)} F_{2 n}}{(2 n)!} & =\frac{12 \sqrt{5}}{125} \zeta(4) \\
\sum_{n=1}^{\infty} \frac{((n-1)!)^{2} F_{2 n}}{(2 n)!} & =\frac{24 \sqrt{5}}{125} \zeta(2)
\end{aligned}
$$

where $H_{m}^{(n)}$ is generalized harmonic number and F_{n} is nth fibonacci number.
Proposed by Amrit Awasthi, India
Solution proposed by Narendra Bhandari,Bajura,Nepal
We start with latter summation and since
$\sum_{n=1}^{\infty} \frac{((n-1)!)^{2} F_{2 n}}{(2 n)!}=\sum_{n=1}^{\infty} \frac{F_{2 n}}{n^{2}}\binom{2 n}{n}^{-1}=\frac{2}{\sqrt{5}}\left(\arcsin ^{2}\left(\frac{\phi}{2}\right)-\arcsin ^{2}\left(-\frac{1}{2 \phi}\right)\right)$
where we used Lehmer identity and Binet nth Fibonacci formula

$$
\sum_{m=1}^{\infty} \frac{(2 x)^{2 m}}{m^{2}}\binom{2 m}{m}^{-1}=2 \arcsin ^{2}(x), F_{2 n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{2 n}-\left(\frac{1-\sqrt{5}}{2}\right)^{2 n}\right)
$$

respectively. Further we recall $\sin \left(\frac{\pi}{10}\right)=\frac{-1+\sqrt{5}}{4}$ and $\sin \left(\frac{3 \pi}{10}\right)=\frac{1+\sqrt{5}}{4}$
and the last relation it simplifies to

$$
\frac{2}{\sqrt{5}}\left(\frac{9 \pi^{2}}{100}-\frac{\pi^{2}}{100}\right)=\frac{4 \pi^{2}}{25 \sqrt{5}}=\frac{24 \sqrt{5}}{125} \zeta(2)
$$

Now for the first identity we can use the following less-known identity

$$
\frac{2}{3} \arcsin ^{4}\left(\frac{x}{2}\right)=\sum_{n=1}^{\infty} \frac{x^{2 n}}{n^{2}}\binom{2 n}{n}^{-1} \sum_{k=1}^{n-1} \frac{1}{k}=\sum_{n=1}^{\infty} \frac{x^{2 n} H_{n-1}^{(2)}}{n^{2}}\binom{2 n}{n}^{-1}
$$

which directly follows

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{H_{n-1}^{(2)} F_{2 n}}{n^{2}}\binom{2 n}{n}^{-1} & =\frac{2}{3 \sqrt{5}}\left(\arcsin ^{4}\left(\frac{\phi}{2}\right)-\arcsin ^{4}\left(-\frac{1}{2 \phi}\right)\right) \\
& =\frac{2 \pi^{4}}{375 \sqrt{5}}=\frac{12 \sqrt{5}}{125} \zeta(4)
\end{aligned}
$$

