Inspired by Prof. Dan Sitaru

Prove that

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \frac{8^{n}}{n\binom{2 n-2}{n-1}^{2}}\left(\sum_{k=0}^{n}\left(1+\frac{2 k}{n}\binom{n}{k}\right)^{2}-4\binom{2 n-2}{n-1}\right)=32 \pi \\
\lim _{n \rightarrow \infty} \frac{32^{n}}{\sqrt{n^{3}}\binom{2 n-2}{n-1}^{3}}\left(\sum_{k=0}^{n}\left(1+\frac{2 k}{n}\binom{n}{k}\right)^{2}-4\binom{2 n-2}{n-1}\right)=128 \sqrt{\pi^{3}}
\end{gathered}
$$

Proposed by Narendra Bhandari,Bajura,Nepal
Solved by: Surjeet Singhania ,Himachal Pradesh ,India

$$
\begin{gathered}
\text { Solutions: Denote } X_{n}=\sum_{k=0}^{n}\left(1+\frac{2 k}{n}\binom{n}{k}\right)^{2}=1+\sum_{k=1}^{n}\left(1+2\binom{n-1}{k-1}\right)^{2} \\
X_{n}=n+1+4 \sum_{X}^{\sum_{k=1}^{n}\binom{n-1}{k-1}^{2}}+4 \sum_{k=1}^{n}\binom{n-1}{k-1}=n+1+4 X+4 \times 2^{n-1} \\
X=\sum_{k=1}^{n}\binom{n-1}{k-1}^{2}=\sum_{k=0}^{n-1}\binom{n-1}{k}^{2} \text { cauchy integral formula can help us here } \\
\quad \frac{1}{2 \pi \iota} \oint_{|z|=1} \frac{(1+z)^{n}}{z^{k+1}} d z=\frac{n(n-1)(n-2) \ldots(n-k+1)}{k!}=\binom{n}{k} \\
X=\frac{1}{2 \pi \iota} \sum_{k=0}^{n-1}\binom{n-1}{k} \oint_{|z|=1} \frac{(1+z)^{n-1}}{z^{k+1}} d z=\frac{1}{2 \pi \iota} \oint_{|z|=1} \frac{(1+z)^{n-1}}{z} \sum_{k=0}^{n-1}\binom{n-1}{k} \frac{1}{z^{k}} d z \\
X=\frac{1}{2 \pi \iota} \oint_{|z|=1} \frac{(1+z)^{2 n-1}}{z^{n}} d z=\binom{2 n-2}{n-1}
\end{gathered}
$$

$$
\text { Hence } X_{n}=\sum_{k=0}^{n}\left(1+\frac{2 k}{n}\binom{n}{k}\right)^{2}=n+1+4\binom{2 m-2}{n-1}+2^{n+1}
$$

First limit becomes $\lim _{n \rightarrow \infty} \frac{8^{n}}{n\binom{2 n-2}{n-1}^{2}}\left(\sum_{k=0}^{n}\left(1+\frac{2 k}{n}\binom{n}{k}\right)^{2}-4\binom{2 n-2}{n-1}\right)$

$$
=\lim _{n \rightarrow \infty} \frac{8^{n}\left(n+1+2^{n+1}\right)}{n\binom{2 n-2}{n-1}^{2}}=\lim _{n \rightarrow \infty} \frac{8^{n}\left(n+1+2^{n+1}\right)}{n\left(\frac{4^{2 n-2}}{\pi(n-1)}\right)}=\pi \lim _{n \rightarrow \infty} \frac{n+1+2^{n+1}}{2^{n-4}}=32 \pi
$$

I used stirling's approximation i.e $\binom{2 n}{n} \sim \frac{4^{n}}{\sqrt{\pi n}}$ in previous steps and will use in next steps

$$
\begin{aligned}
& \text { Second limit } \lim _{n \rightarrow \infty} \frac{32^{n}}{\sqrt{n^{3}}\binom{2 n-2}{n-1}}\left(\sum_{k=0}^{n}\left(1+\frac{2 k}{n}\binom{n}{k}\right)^{2}-4\binom{2 n-2}{n-1}\right) \\
& \quad=\lim _{n \rightarrow \infty} \frac{32^{n}\left(n+1+2^{n+1}\right)}{\frac{4^{3 n-3}}{\sqrt{\pi^{3}}}}=\sqrt{\pi^{3}} \lim _{n \rightarrow \infty} \frac{n+1+2^{n+1}}{2^{n-6}}=128 \sqrt{\pi^{3}}
\end{aligned}
$$

