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where Hn is nth harmonic number and ζ(z) is Riemann zeta function.
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Solution by proposer
Proof of first series
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We interchange integrals (justified by Fubini theorem) and integrating we
have
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may follow the same technique used for calculating I2 but here we use the
trigonometry substitution x = tan y giving us
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Above we used reflection property of integral

∫ b

a

f(x)dx =

∫ b

a

f(a+b−x)dx

and tan
(π

4
− y
)

=
1− tan y

1 + tan y
. Collecting the values of I1 and I2 we get

∞∑
n=1

(−1)n+1Hn

(
1

n+ 1
− 1

n+ 3
+

1

n+ 5
− · · ·

)
=

π

16
log(2)+

3

16
log2(2)− π2

192

which prove the announced result.

Note: The integral 2I2 =
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integral 2I1 is Integral due to Cornel loan Vălean which appears in Ameri-
can Mathematical Monthly, Problem 11966, Vol.124, March 2017 which we
deduce by the means of double integral technique moreover, it can be done
by the mean differentiation under integral sign and harmonic number.

Proof of second series

To evaluate the second proposed series, we again make the use of generating
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The last expression above is obtained by integrating by parts (twice) for the
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and it is easy to see that the series attains the polylogarithm form of order
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We simplify by using the well known results, namely Li3
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And for the latter integral we note that x2 + 1 = (x + i)(x − i) where i is
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imaginary unit and by partial fraction decomposition we have
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Dividing both sides by 2 gives us the desired result of I4. Here notation LF
stands for Landen’s dilogarithm (see [1]) and trilogarithm identities (see [2])
and <(z) denotes the real part of z.

Alternative Solution: We can also prove the result of I4 alternatively
by developing the connection with I1.
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Subtracting I3 and I4 proves our announced result, namely
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