The Infimum and Supremum of a set defined by a rational function of two integer or real variables

ABDULSALAM ABDULHAFEEZ AYINDE

aabdulsalam030@stu.ui.edu.ng

రా +2348096364821

25 Dhul-Qada 1442AH (05 July 2021)

1 Applying the Calculus of Minima and Maxima of a function of two real variables

Let $\mathcal{A}:=\left\{\frac{m n}{(a m)^{2}+n^{2}}, n, m \in \mathbb{Z}, a \in \mathbb{R} \backslash\{0\}\right\}$

$$
f(m, n):=\frac{m n}{(a m)^{2}+n^{2}}
$$

To obtain the stationary points of $f(m, n)$, we take the partial derivatives of f wrt. to m and the partial derivatives of f wrt. to n, equate both results to 0 and solve simultaneously.[2]

$$
\begin{aligned}
\frac{\partial f}{\partial m} & =\frac{m n}{(a m)^{2}+n^{2}}\left(\frac{\partial}{\partial m}(\ln m)-\frac{\partial}{\partial m}\left(\ln \left((a m)^{2}+n^{2}\right)\right)\right) \\
& =\frac{m n}{(a m)^{2}+n^{2}}\left(\frac{1}{m}-\frac{2 a^{2} m}{(a m)^{2}+n^{2}}\right) \\
& =\frac{m n}{(a m)^{2}+n^{2}}\left(\frac{(a m)^{2}+n^{2}-2 a^{2} m(m)}{m\left((a m)^{2}+n^{2}\right)}\right) \\
& =\frac{m n}{(a m)^{2}+n^{2}}\left(\frac{n^{2}-(a m)^{2}}{m\left((a m)^{2}+n^{2}\right)}\right) \\
& =\frac{n\left(n^{2}-(a m)^{2}\right)}{\left((a m)^{2}+n^{2}\right)^{2}} \\
\frac{\partial f}{\partial n} & =\frac{m n}{(a m)^{2}+n^{2}}\left(\frac{\partial}{\partial n}(\ln n)-\frac{\partial}{\partial n}\left(\ln \left((a m)^{2}+n^{2}\right)\right)\right) \\
& =\frac{m n}{(a m)^{2}+n^{2}}\left(\frac{1}{n}-\frac{2 n}{(a m)^{2}+n^{2}}\right) \\
& =\frac{m n}{(a m)^{2}+n^{2}}\left(\frac{(a m)^{2}+n^{2}-2 n(n)}{n\left((a m)^{2}+n^{2}\right)}\right) \\
& =\frac{m n}{(a m)^{2}+n^{2}}\left(\frac{(a m)^{2}-n^{2}}{n\left((a m)^{2}+n^{2}\right)}\right) \\
& =\frac{m\left((a m)^{2}-n^{2}\right)}{\left((a m)^{2}+n^{2}\right)^{2}}
\end{aligned}
$$

If there is a stationary point in $f(m, n)$,

$$
\begin{gathered}
\frac{\partial f}{\partial m}=0, \frac{\partial f}{\partial n}=0 \\
\Longrightarrow \frac{m n\left(n^{2}-(a m)^{2}\right)}{\left((a m)^{2}+n^{2}\right)^{2}}=0, \frac{m n\left((a m)^{2}-n^{2}\right)}{\left((a m)^{2}+n^{2}\right)^{2}}=0 . \\
\Longrightarrow n^{2}-(a m)^{2}=0,(a m)^{2}-n^{2}=0
\end{gathered}
$$

Both implies, $n^{2}-(a m)^{2}=0$

$$
\Longrightarrow n= \pm a m
$$

To conclude if the function has a true maximum or minimum, we apply the second derivative test.

$$
\begin{aligned}
\frac{\partial^{2} f}{\partial m^{2}} & =\frac{n^{2}-(a m)^{2}}{(a m)^{2}+n^{2}} \frac{\partial}{\partial m}\left(\frac{n}{(a m)^{2}+n^{2}}\right)+\frac{n}{(a m)^{2}+n^{2}} \cdot \frac{n^{2}-(a m)^{2}}{(a m)^{2}+n^{2}}\left(\frac{\partial}{\partial m}\left(\ln \left(n^{2}-(a m)^{2}\right)\right)\right. \\
& \left.-\frac{\partial}{\partial m}\left(\ln \left((a m)^{2}+n^{2}\right)\right)\right) \\
& =\frac{n^{2}-(a m)^{2}}{(a m)^{2}+n^{2}} \cdot \frac{n\left(-2 a^{2} m\right)}{\left((a m)^{2}+n^{2}\right)^{2}}+\frac{n}{(a m)^{2}+n^{2}} \cdot \frac{n^{2}-(a m)^{2}}{(a m)^{2}+n^{2}}\left(-\frac{2 a^{2} m}{n^{2}-(a m)^{2}}-\frac{2 a^{2} m}{(a m)^{2}+n^{2}}\right) \\
& =\frac{-2 a^{2} m n\left(n^{2}-(a m)^{2}\right)}{\left((a m)^{2}+n^{2}\right)^{3}}+\frac{n\left(n^{2}-(a m)^{2}\right)}{\left((a m)^{2}+n^{2}\right)^{2}}\left(\frac{-2 a^{2} m\left((a m)^{2}+n^{2}\right)-2 a^{2} m\left(n^{2}-(a m)^{2}\right)}{\left(n^{2}-(a m)^{2}\right)\left((a m)^{2}+n^{2}\right)}\right) \\
& =\frac{-2 a^{2} m n\left(n^{2}-(a m)^{2}\right)}{\left((a m)^{2}+n^{2}\right)^{3}}+\frac{n\left(n^{2}-(a m)^{2}\right)}{\left((a m)^{2}+n^{2}\right)^{2}}\left(\frac{-4 a^{2} m n^{2}}{\left(n^{2}-(a m)^{2}\right)\left((a m)^{2}+n^{2}\right)}\right) \\
& =\frac{-2 a^{2} m n\left(n^{2}-(a m)^{2}\right)}{\left((a m)^{2}+n^{2}\right)^{3}}-\frac{4 a^{2} m n^{3}}{\left((a m)^{2}+n^{2}\right)^{3}} \\
& =\frac{-2 a^{2} m n\left(n^{2}-(a m)^{2}\right)-4 a^{2} m n^{3}}{\left((a m)^{2}+n^{2}\right)^{3}}=\frac{2 a^{2} m n(a m)^{2}-6 a^{2} m n^{3}}{\left((a m)^{2}+n^{2}\right)^{3}} \\
& =\frac{m n\left(2 a^{2}(a m)^{2}-6 a^{2} n^{2}\right)}{\left((a m)^{2}+n^{2}\right)^{3}}
\end{aligned}
$$

$$
\frac{\partial^{2} f}{\partial n^{2}}=\frac{(a m)^{2}-n^{2}}{(a m)^{2}+n^{2}} \frac{\partial}{\partial n}\left(\frac{m}{(a m)^{2}+n^{2}}\right)+\frac{m}{(a m)^{2}+n^{2}} \cdot \frac{(a m)^{2}-n^{2}}{(a m)^{2}+n^{2}}\left(\frac{\partial}{\partial n}\left(\ln \left((a m)^{2}-n^{2}\right)\right)-\right.
$$

$$
\left.\frac{\partial}{\partial n}\left(\ln \left((a m)^{2}+n^{2}\right)\right)\right)
$$

$$
=\frac{(a m)^{2}-n^{2}}{(a m)^{2}+n^{2}} \cdot \frac{m(-2 n)}{\left((a m)^{2}+n^{2}\right)^{2}}+\frac{m}{(a m)^{2}+n^{2}} \cdot \frac{(a m)^{2}-n^{2}}{(a m)^{2}+n^{2}}\left(-\frac{2 n}{(a m)^{2}-n^{2}}-\frac{2 n}{(a m)^{2}+n^{2}}\right)
$$

$$
=\frac{-2 m n\left((a m)^{2}-n^{2}\right)}{\left((a m)^{2}+n^{2}\right)^{3}}+\frac{m\left((a m)^{2}-n^{2}\right)}{\left((a m)^{2}+n^{2}\right)^{2}}\left(\frac{-2 n\left((a m)^{2}+n^{2}\right)-2 n\left((a m)^{2}-n^{2}\right)}{\left((a m)^{2}-n^{2}\right)\left((a m)^{2}+n^{2}\right)}\right)
$$

$$
=\frac{-2 m n\left((a m)^{2}-n^{2}\right)}{\left((a m)^{2}+n^{2}\right)^{3}}+\frac{m\left((a m)^{2}-n^{2}\right)}{\left((a m)^{2}+n^{2}\right)^{2}}\left(\frac{-4 n(a m)^{2}}{\left((a m)^{2}-n^{2}\right)\left((a m)^{2}+n^{2}\right)}\right)
$$

$$
=\frac{-2 m n\left((a m)^{2}-n^{2}\right)}{\left((a m)^{2}+n^{2}\right)^{3}}-\frac{4 m n(a m)^{2}}{\left((a m)^{2}+n^{2}\right)^{3}}
$$

$$
=\frac{-2 m n\left((a m)^{2}-n^{2}\right)-4 m n(a m)^{2}}{\left((a m)^{2}+n^{2}\right)^{3}}=\frac{-6 m n(a m)^{2}+2 m n^{3}}{\left((a m)^{2}+n^{2}\right)^{3}}
$$

$$
=\frac{m n\left(-6(a m)^{2}+2 n^{2}\right)}{\left((a m)^{2}+n^{2}\right)^{3}}
$$

Romanian Mathematical Magazine

Web: http://www.ssmrmh.ro This article is published with open access

$$
\begin{aligned}
& \frac{\partial}{\partial n}\left(\frac{\partial f}{\partial m}\right)=\frac{\partial^{2} f}{\partial m \partial n}=\frac{\partial}{\partial n}\left(\frac{n\left(n^{2}-(a m)^{2}\right)}{\left((a m)^{2}+n^{2}\right)^{2}}\right) \\
&=\frac{n^{2}-(a m)^{2}}{(a m)^{2}+n^{2}} \frac{\partial}{\partial n}\left(\frac{n}{(a m)^{2}+n^{2}}\right)+\frac{n}{(a m)^{2}+n^{2}} \cdot \frac{n^{2}-(a m)^{2}}{(a m)^{2}+n^{2}}\left(\frac{\partial}{\partial n}\left(\ln \left(n^{2}-(a m)^{2}\right)\right)\right. \\
&\left.-\frac{\partial}{\partial n}\left(\ln \left((a m)^{2}+n^{2}\right)\right)\right) \\
&=\frac{n^{2}-(a m)^{2}}{(a m)^{2}+n^{2}} \cdot \frac{\left.(a m)^{2}\right)-n^{2}}{\left((a m)^{2}+n^{2}\right)^{2}}+\frac{n}{(a m)^{2}+n^{2}} \cdot \frac{n^{2}-(a m)^{2}}{(a m)^{2}+n^{2}}\left(\frac{2 n}{n^{2}-(a m)^{2}}\right. \\
&\left.-\frac{2 n}{(a m)^{2}+n^{2}}\right) \\
&=\frac{-\left(n^{2}-(a m)^{2}\right)^{2}}{\left((a m)^{2}+n^{2}\right)^{3}}+\frac{n\left(n^{2}-(a m)^{2}\right)}{\left((a m)^{2}+n^{2}\right)^{2}}\left(\frac{2 n\left((a m)^{2}+n^{2}\right)-2 n\left(n^{2}-(a m)^{2}\right)}{\left(n^{2}-(a m)^{2}\right)\left((a m)^{2}+n^{2}\right)}\right) \\
&=\frac{-\left(n^{2}-(a m)^{2}\right)^{2}}{\left((a m)^{2}+n^{2}\right)^{3}}+\frac{n\left(n^{2}-(a m)^{2}\right)}{\left((a m)^{2}+n^{2}\right)^{2}}\left(\frac{4 n(a m)^{2}}{\left(n^{2}-(a m)^{2}\right)\left((a m)^{2}+n^{2}\right)}\right) \\
&=\frac{-\left(n^{2}-(a m)^{2}\right)^{2}}{\left((a m)^{2}+n^{2}\right)^{3}}+\frac{4 n^{2}(a m)^{2}}{\left((a m)^{2}+n^{2}\right)^{3}} \\
&=\frac{-\left(n^{2}-(a m)^{2}\right)^{2}+4 n^{2}(a m)^{2}}{\left((a m)^{2}+n^{2}\right)^{3}} \\
&\left.\frac{\partial^{2} f}{\partial m^{2}}\right|_{n= \pm a m}=\frac{-4 a(a m)^{4}}{8(a m)^{6}}=\frac{-(\pm a)}{2(a m)^{2}}=\frac{\mp a}{2(a m)^{2}} \\
&\left.\frac{\partial^{2} f}{\partial n^{2}}\right|_{n= \pm a m}=\frac{-4(a m)^{4}}{8 a(a m)^{6}}=\frac{-(\pm 1)}{2 a(a m)^{2}}=\frac{\mp 1}{2 a(a m)^{2}} \\
&\left.\left(\frac{\partial^{2} f}{\partial m \partial n}\right)^{2}\right|_{n= \pm a m}=\left(\frac{4(a m)^{4}}{8(a m)^{6}}\right)^{2}=\frac{1}{4(a m)^{4}} \\
&\left(\frac{\partial^{2} f}{\partial m^{2}}\right)\left(\frac{\partial^{2} f}{\partial n^{2}}\right)-\left(\frac{\partial^{2} f}{\partial m \partial n}\right)^{2}=\left(\frac{\mp a}{2(a m)^{2}}\right)\left(\frac{\mp 1}{2 a(a m)^{2}}\right)-\frac{1}{4(a m)^{4}} \\
&=\frac{1}{4(a m)^{4}}-\frac{1}{4(a m)^{4}}=0
\end{aligned}
$$

Since $\left(\frac{\partial^{2} f}{\partial m^{2}}\right)\left(\frac{\partial^{2} f}{\partial n^{2}}\right)-\left(\frac{\partial^{2} f}{\partial m \partial n}\right)^{2}=0$, the second derivative test fails.

Conducting further test [2],

$$
\begin{gathered}
\forall a \in \mathbb{R} \\
\left.\frac{\partial^{2} f}{\partial m^{2}}\right|_{n=a m}=\frac{-4 a(a m)^{4}}{8(a m)^{6}}=\frac{-a}{2(a m)^{2}}<0 \\
\left.\frac{\partial^{2} f}{\partial n^{2}}\right|_{n=a m}=\frac{-4(a m)^{4}}{8 a(a m)^{6}}=\frac{-1}{2 a(a m)^{2}}<0 \\
\left.\frac{\partial^{2} f}{\partial m^{2}}\right|_{n=-a m}=\frac{-4 a(a m)^{4}}{8(a m)^{6}}=\frac{a}{2(a m)^{2}}>0 \\
\left.\frac{\partial^{2} f}{\partial n^{2}}\right|_{n=-a m}=\frac{-4(a m)^{4}}{8 a(a m)^{6}}=\frac{1}{2 a(a m)^{2}}>0
\end{gathered}
$$

By this further test if $\frac{\partial^{2} f}{\partial m^{2}}>0$, then, there is a minimum and if $\frac{\partial^{2} f}{\partial m^{2}}<$ 0 , there is a maximum.

Therefore, by this further test, we can conclude that the maximum value of $f(m, n)$ is $f(m, a m)$ and the minimum value of $f(m, n)$ is $f(m,-a m)$.

$$
\begin{aligned}
f_{\max }(m, n) & =f(m, a m)=\frac{m(a m)}{(a m)^{2}+(a m)^{2}} \\
& =\frac{a m^{2}}{2(a m)^{2}}=\frac{1}{2 a} \\
f_{\min }(m, n) & =f(m,-a m)=\frac{-m(a m)}{(a m)^{2}+(a m)^{2}} \\
& =-\frac{a m^{2}}{2(a m)^{2}}=-\frac{1}{2 a} .
\end{aligned}
$$

Since $-\frac{1}{2 a} \in \mathbb{R}$, and $-\frac{1}{2 a} \leq\left\{\frac{m n}{(a m)^{2}+n^{2}}, n, m \in \mathbb{Z}, a \in \mathbb{R}\right\}$,

$$
\Longrightarrow \inf \mathcal{A}=-\frac{1}{2 a}
$$

Similarly, $\frac{1}{2 a} \in \mathbb{R}$, and $\frac{1}{2 a} \geq\left\{\frac{m n}{(a m)^{2}+n^{2}}, n, m \in \mathbb{Z}, a \in \mathbb{R}\right\}$,

$$
\Longrightarrow \sup \mathcal{A}=\frac{1}{2 a}
$$

2 Applying the law of Tricotomy

Let $\mathcal{A}:=\left\{\frac{m n}{(a m)^{2}+n^{2}}, n, m \in \mathbb{Z}, a \in \mathbb{R} \backslash\{0\}\right\}$
m and n can be selected in \mathbb{Z} in such a way that either one of the following three applies; $m>n, m<n, m=n$.

2.1 For Supremum [1]

If $m=n$,

$$
\Longrightarrow f(n, n)=\frac{n^{2}}{(a n)^{2}+n^{2}}=\frac{1}{a^{2}+1}
$$

If $m>n, m$ can be written as $m=a n \forall a \in \mathbb{R}^{+}, m, n \in \mathbb{Z}^{+}$

$$
\Longrightarrow f(a n, n)=\frac{a n^{2}}{\left(a^{2} n\right)^{2}+n^{2}}=\frac{a}{a^{4}+1}
$$

If $m<n, m$ can be written as $n=a m \forall a \in \mathbb{R}^{+}, m, n \in \mathbb{Z}^{+}$

$$
\Longrightarrow f(m, a m)=\frac{m(a m)}{(a m)^{2}+(a m)^{2}}=\frac{1}{2 a}
$$

It is obvious that

$$
\begin{gathered}
a^{4}+1>a\left(a^{2}+1\right) \geq 2 a^{2} \forall a \in \mathbb{R} \\
\Longrightarrow \frac{1}{a^{4}+1}<\frac{1}{a\left(a^{2}+1\right)} \leq \frac{1}{2 a^{2}} \\
\Longrightarrow \frac{a}{a^{4}+1}<\frac{1}{a^{2}+1} \leq \frac{1}{2 a} \\
\frac{1}{2 a} \in \mathbb{R}, \text { and } \frac{1}{2 a} \geq\left\{\frac{m n}{(a m)^{2}+n^{2}}, n, m \in \mathbb{Z}, a \in \mathbb{R}\right\}, \\
\Longrightarrow \sup \mathcal{A}=\frac{1}{2 a}
\end{gathered}
$$

2.2 For Infimum [1]

If $m<n, m$ can be written as $m=-a n \forall a \in \mathbb{R}^{-}, m, n \in \mathbb{Z}^{-}$

$$
\Longrightarrow f(-a n, n)=\frac{-a n^{2}}{\left(a^{2} n\right)^{2}+n^{2}}=\frac{-a}{a^{4}+1}
$$

If $m>n, m$ can be written as $n=-a m \forall a \in \mathbb{R}^{-}, m, n \in \mathbb{Z}^{-}$

$$
\Longrightarrow f(m,-a m)=\frac{m(-a m)}{(a m)^{2}+(a m)^{2}}=-\frac{1}{2 a}
$$

It can be proven that

$$
-\frac{1}{2 a}<-\frac{a}{a^{4}+1}<\frac{a}{a^{4}+1}<\frac{1}{a^{2}+1} \leq \frac{1}{2 a} \quad \forall a \in \mathbb{R}
$$

Proof.

It is obvious that

$$
\begin{gathered}
a^{4}+1>2 a^{2}, \forall a \in \mathbb{R} \\
\Longrightarrow-\left(a^{4}+1\right)<-2 a^{2} \\
\Longrightarrow-\frac{1}{a^{4}+1}>-\frac{1}{2 a^{2}} \\
\Longrightarrow-\frac{1}{2 a^{2}}<-\frac{1}{a^{4}+1}<\frac{1}{a^{4}+1}<\frac{1}{a\left(a^{2}+1\right)} \leq \frac{1}{2 a^{2}} \\
\Longrightarrow-\frac{1}{2 a}<-\frac{a}{a^{4}+1}<\frac{a}{a^{4}+1}<\frac{1}{a^{2}+1} \leq \frac{1}{2 a} \\
\text { Since }-\frac{1}{2 a} \in \mathbb{R}, \text { and }-\frac{1}{2 a} \leq\left\{\frac{m n}{(a m)^{2}+n^{2}}, n, m \in \mathbb{Z}, a \in \mathbb{R}\right\}, \\
\Longrightarrow \inf \mathcal{A}=-\frac{1}{2 a} .
\end{gathered}
$$

3 Examples

Example 3.1. If $\mathcal{A}:=\left\{\frac{m n}{4 m^{2}+n^{2}}, n, m \in \mathbb{Z}\right\}$
Solution 3.1.1. $\Longrightarrow a=2$, so the substitution is $n=2 m$.

$$
\begin{gathered}
\Longrightarrow f_{\text {max }}(m, n)=\frac{m(2 m)}{(2 m)^{2}+(2 m)^{2}}=\frac{1}{2 \times 2}=\frac{1}{4} \\
\Longrightarrow f_{\text {min }}(m, n)=\frac{m(-2 m)}{(2 m)^{2}+(2 m)^{2}}=-\frac{1}{2 \times 2}=-\frac{1}{4} .
\end{gathered}
$$

Since $-\frac{1}{4} \in \mathbb{R}$ and $-\frac{1}{4} \leq\left\{\frac{m n}{4 m^{2}+n^{2}}, n, m \in \mathbb{Z}\right\}$,

$$
\Longrightarrow \inf \mathcal{A}=-\frac{1}{4}
$$

Similarly, $\frac{1}{4} \in \mathbb{R}$ and $\frac{1}{4} \geq\left\{\frac{m n}{4 m^{2}+n^{2}}, n, m \in \mathbb{Z}\right\}$,

$$
\Longrightarrow \sup \mathcal{A}=\frac{1}{4} .
$$

Example 3.2. If $\mathcal{A}:=\left\{\frac{m n}{3 m^{2}+n^{2}}, n, m \in \mathbb{Z}\right\}$
Solution 3.2.1. $\Longrightarrow a=\sqrt{3}$, so the substitution is $n=\sqrt{3} m$.
But because $n \in \mathbb{Z} \Longrightarrow n \notin \mathbb{I} \mathbb{Q}$, we use the integral values between which $\sqrt{3}$ lies.

$$
\sqrt{3} \in(1,2)
$$

So, let $n= \pm 2 m$ and $n= \pm m$

$$
\begin{gathered}
\Longrightarrow f(m, 2 m)=\frac{m(2 m)}{3 m^{2}+(2 m)^{2}}=\frac{2}{7} \\
\Longrightarrow f(m,-2 m)=\frac{-m(2 m)}{3 m^{2}+(2 m)^{2}}=-\frac{2}{7} . \\
\Longrightarrow f(m, m)=\frac{m(m)}{3 m^{2}+(m)^{2}}=\frac{1}{4} \\
\Longrightarrow f(m,-m)=\frac{-m(m)}{3 m^{2}+(m)^{2}}=-\frac{1}{4} . \\
\frac{1}{4}<\frac{2}{7},-\frac{2}{7}<-\frac{1}{4} \\
\Longrightarrow \inf \mathcal{A}=-\frac{2}{7} \wedge \sup \mathcal{A}=\frac{2}{7}
\end{gathered}
$$

NB: If $a \in \mathbb{I} \mathbb{Q} \ni m, n \in \mathbb{Z}$, choose the upper bound of a as what you will use to establish a relationship between n and m.
Example 3.3. If $\mathcal{A}:=\left\{\frac{m n}{3 m^{2}+n^{2}}, n, m \in \mathbb{R}\right\}$
Solution 3.3.1. $\Longrightarrow a=\sqrt{3}$, so the substitution is $n= \pm \sqrt{3} m$.

$$
\Longrightarrow f_{\max }(m, n)=\frac{m(\sqrt{3} m)}{(\sqrt{3} m)^{2}+(\sqrt{3} m)^{2}}=\frac{1}{2 \times \sqrt{3}}=\frac{1}{2 \sqrt{3}}
$$

$$
\Longrightarrow f_{\min }(m, n)=\frac{-m(\sqrt{3} m)}{(\sqrt{3} m)^{2}+(\sqrt{3} m)^{2}}=-\frac{1}{2 \times \sqrt{3}}=-\frac{1}{2 \sqrt{3}} .
$$

Since $-\frac{1}{2 \sqrt{3}} \in \mathbb{R}$ and $-\frac{1}{2 \sqrt{3}} \leq\left\{\frac{m n}{4 m^{2}+n^{2}}, n, m \in \mathbb{R}\right\}$,

$$
\Longrightarrow \inf \mathcal{A}=-\frac{1}{2 \sqrt{3}}
$$

Similarly, $\frac{1}{2 \sqrt{3}} \in \mathbb{R}$ and $\frac{1}{2 \sqrt{3}} \geq\left\{\frac{m n}{4 m^{2}+n^{2}}, n, m \in \mathbb{R}\right\}$,

$$
\Longrightarrow \sup \mathcal{A}=\frac{1}{2 \sqrt{3}} .
$$

Example 3.4. If $\mathcal{A}:=\left\{\frac{m n}{m^{2}+4 n^{2}}, n, m \in \mathbb{Z}\right\}$
Solution 3.4.1. $a=1$ but n in the denominator was replaced with $2 n$, so the substitution is $2 n=m, \Longrightarrow m=2 n$.

$$
\begin{gathered}
\Longrightarrow f_{\max }(m, n)=\frac{n(2 n)}{(2 n)^{2}+(2 n)^{2}}=\frac{1}{2 \times 2}=\frac{1}{4} \\
\Longrightarrow f_{\min }(m, n)=\frac{n(-2 n)}{(2 n)^{2}+(2 n)^{2}}=-\frac{1}{2 \times 2}=-\frac{1}{4} .
\end{gathered}
$$

Since $-\frac{1}{4} \in \mathbb{R}$ and $-\frac{1}{4} \leq\left\{\frac{m n}{m^{2}+4 n^{2}}, n, m \in \mathbb{Z}\right\}$, $\Longrightarrow \inf \mathcal{A}=-\frac{1}{4}$
Similarly, $\frac{1}{4} \in \mathbb{R}$ and $\frac{1}{4} \geq\left\{\frac{m n}{m^{2}+4 n^{2}}, n, m \in \mathbb{Z}\right\}$,

$$
\Longrightarrow \sup \mathcal{A}=\frac{1}{4} .
$$

4 Extensions to other rational functions and generalizations

The following functions are going to be examined for supremum and infimum in this section
$f(m, n):=\frac{n m}{a m+n}, f(m, n):=\frac{n m^{2}}{(a m)^{2}+n^{2}}, f(m, n):=\frac{n^{2} m^{2}}{(a m)^{2}+n^{2}}, f(m, n):=$ $\frac{n^{2} m^{2}}{a m+n}, \ldots, f(m, n):=\frac{(n m)^{p}}{(a m)^{q}+n^{q}}$
4.1 Let $\mathcal{A}_{1}:=\left\{\frac{n m}{a m+n}, n, m \in \mathbb{Z}, a \in \mathbb{R} \backslash\{0\}\right\}$
m and n can be selected in \mathbb{Z} in such a way that either one of the following three applies; $m>n, m<n, m=n$.

4.1.1 Supremum

If $m=n$,

$$
\Longrightarrow f(n, n)=\frac{n^{2}}{a n+n}=\frac{n}{a+1}
$$

$\left\{\frac{n}{a+1}, n \in \mathbb{Z}\right\}$ is neither bounded above nor below.
If $m>n, m$ can be written as $m=a n \forall a \in \mathbb{R}^{+}, m, n \in \mathbb{Z}^{+}$

$$
\Longrightarrow f(a n, n)=\frac{a n^{2}}{a^{2} n+n}=\frac{a n}{a^{2}+1}
$$

$\left\{\frac{a n}{a^{2}+1}, n \in \mathbb{Z}\right\}$ is neither bounded above nor below.
If $m<n, m$ can be written as $n=a m \forall a \in \mathbb{R}^{+}, m, n \in \mathbb{Z}^{+}$

$$
\Longrightarrow f(m, a m)=\frac{m(a m)}{a m+a m}=\frac{m}{2}
$$

$\left\{\frac{m}{2}, m \in \mathbb{Z}\right\}$ is neither bounded above nor below.

4.1.2 Infimum

If $m<n, m$ can be written as $m=-a n \forall a \in \mathbb{R}^{-}, m, n \in \mathbb{Z}^{-}$

$$
\Longrightarrow f(-a n, n)=\frac{-a n^{2}}{a^{2} n+n}=\frac{-a n}{a^{2}+1}
$$

$\left\{\frac{-a n}{a^{2}+1}, n \in \mathbb{Z}\right\}$ is neither bounded above nor below.
If $m>n, m$ can be written as $n=-a m \forall a \in \mathbb{R}^{-}, m, n \in \mathbb{Z}^{-}$

$$
\Longrightarrow f(m,-a m)=\frac{m(-a m)}{a m+a m}=-\frac{m}{2}
$$

$\left\{-\frac{m}{2}, m \in \mathbb{Z}\right\}$ is neither bounded above nor below.

Hence $\inf \mathcal{A}_{1}$ and $\sup \mathcal{A}_{1}$ do not exist.
4.2 Let $\mathcal{A}_{2}:=\left\{\frac{n m^{2}}{(a m)^{2}+n^{2}}, n, m \in \mathbb{Z}, a \in \mathbb{R}\right\}$
m and n can be selected in \mathbb{Z} in such a way that either one of the following three applies; $m>n, m<n, m=n$.

4.2.1 Supremum

If $m=n$,

$$
\Longrightarrow f(n, n)=\frac{n^{3}}{(a n)^{2}+n^{2}}=\frac{n}{a^{2}+1}
$$

$\left\{\frac{n}{a+1}, n \in \mathbb{Z}\right\}$ is neither bounded above nor below.
If $m>n, m$ can be written as $m=a n \forall a \in \mathbb{R}^{+}, m, n \in \mathbb{Z}^{+}$

$$
\Longrightarrow f(a n, n)=\frac{n(a n)^{2}}{\left(a^{2} n\right)^{2}+n^{2}}=\frac{a^{2} n}{a^{4}+1}
$$

$\left\{\frac{a^{2} n}{a^{4}+1}, n \in \mathbb{Z}\right\}$ is neither bounded above nor below.
If $m<n, m$ can be written as $n=a m \forall a \in \mathbb{R}^{+}, m, n \in \mathbb{Z}^{+}$

$$
\Longrightarrow f(m, a m)=\frac{m^{2}(a m)}{(a m)^{2}+(a m)^{2}}=\frac{m}{2 a}
$$

$\left\{\frac{m}{2 a}, m \in \mathbb{Z}\right\}$ is neither bounded above nor below.

4.2.2 Infimum

If $m<n, m$ can be written as $m=-a n \forall a \in \mathbb{R}^{-}, m, n \in \mathbb{Z}^{-}$

$$
\Longrightarrow f(-a n, n)=\frac{n(-a n)^{2}}{\left(a^{2} n\right)^{2}+n^{2}}=\frac{a^{2} n}{a^{4}+1}
$$

$\left\{\frac{a^{2} n}{a^{4}+1}, n \in \mathbb{Z}\right\}$ is neither bounded above nor below.
If $m>n, m$ can be written as $n=-a m \forall a \in \mathbb{R}^{-}, m, n \in \mathbb{Z}^{-}$

$$
\Longrightarrow f(m,-a m)=\frac{m^{2}(-a m)}{(a m)^{2}+(a m)^{2}}=-\frac{m}{2 a}
$$

$\left\{-\frac{m}{2 a}, m \in \mathbb{Z}\right\}$ is neither bounded above nor below.

Hence $\inf \mathcal{A}_{2}$ and $\sup \mathcal{A}_{2}$ do not exist.
4.3 Let $\mathcal{A}_{3}:=\left\{\frac{n^{2} m^{2}}{(a m)^{2}+n^{2}}, n, m \in \mathbb{Z}, a \in \mathbb{R} \backslash\{0\}\right\}$
m and n can be selected in \mathbb{Z} in such a way that either one of the following three applies; $m>n, m<n, m=n$.

4.3.1 Supremum

If $m=n$,

$$
\Longrightarrow f(n, n)=\frac{n^{4}}{(a n)^{2}+n^{2}}=\frac{n^{2}}{a^{2}+1}
$$

$\left\{\frac{n^{2}}{a+1}, n \in \mathbb{Z}\right\}$ is neither bounded above nor below.
If $m>n, m$ can be written as $m=a n \forall a \in \mathbb{R}^{+}, m, n \in \mathbb{Z}^{+}$

$$
\Longrightarrow f(a n, n)=\frac{n^{2}(a n)^{2}}{\left(a^{2} n\right)^{2}+n^{2}}=\frac{a^{2} n^{2}}{a^{4}+1}
$$

$\left\{\frac{a^{2} n^{2}}{a^{4}+1}, n \in \mathbb{Z}\right\}$ is neither bounded above nor below.
If $m<n, m$ can be written as $n=a m \forall a \in \mathbb{R}^{+}, m, n \in \mathbb{Z}^{+}$

$$
\Longrightarrow f(m, a m)=\frac{m^{2}(a m)^{2}}{(a m)^{2}+(a m)^{2}}=\frac{m^{2}}{2}
$$

$\left\{\frac{m^{2}}{2}, m \in \mathbb{Z}\right\}$ is neither bounded above nor below.

4.3.2 Infimum

If $m<n, m$ can be written as $m=-a n \forall a \in \mathbb{R}^{-}, m, n \in \mathbb{Z}^{-}$

$$
\Longrightarrow f(-a n, n)=\frac{n^{2}(-a n)^{2}}{\left(a^{2} n\right)^{2}+n^{2}}=\frac{a^{2} n^{2}}{a^{4}+1}
$$

$\left\{\frac{a^{2} n^{2}}{a^{4}+1}, n \in \mathbb{Z}\right\}$ is neither bounded above nor below.
If $m>n, m$ can be written as $n=-a m \forall a \in \mathbb{R}^{-}, m, n \in \mathbb{Z}^{-}$

$$
\Longrightarrow f(m,-a m)=\frac{m^{2}(-a m)^{2}}{(a m)^{2}+(a m)^{2}}=\frac{m^{2}}{2}
$$

$\left\{\frac{m^{2}}{2}, m \in \mathbb{Z}\right\}$ is neither bounded above nor below.

Hence $\inf \mathcal{A}_{3}$ and $\sup \mathcal{A}_{3}$ do not exist.
4.4 Let $\mathcal{A}_{4}:=\left\{\frac{n^{2} m^{2}}{a m+n}, n, m \in \mathbb{Z}, a \in \mathbb{R} \backslash\{0\}\right\}$
m and n can be selected in \mathbb{Z} in such a way that either one of the following three applies; $m>n, m<n, m=n$.

4.4.1 Supremum

If $m=n$,

$$
\Longrightarrow f(n, n)=\frac{n^{4}}{a n+n}=\frac{n^{3}}{a+1}
$$

$\left\{\frac{n^{3}}{a+1}, n \in \mathbb{Z}\right\}$ is neither bounded above nor below.
If $m>n, m$ can be written as $m=a n \forall a \in \mathbb{R}^{+}, m, n \in \mathbb{Z}^{+}$

$$
\Longrightarrow f(a n, n)=\frac{a^{2} n^{4}}{a^{2} n+n}=\frac{a^{2} n^{3}}{a^{2}+1}
$$

$\left\{\frac{a^{2} n^{3}}{a^{2}+1}, n \in \mathbb{Z}\right\}$ is neither bounded above nor below.
If $m<n, m$ can be written as $n=a m \forall a \in \mathbb{R}^{+}, m, n \in \mathbb{Z}^{+}$

$$
\Longrightarrow f(m, a m)=\frac{a^{2} m^{4}}{a m+a m}=\frac{a m^{3}}{2}
$$

$\left\{\frac{a m^{3}}{2}, m \in \mathbb{Z}\right\}$ is neither bounded above nor below.

4.4.2 Infimum

If $m<n, m$ can be written as $m=-a n \forall a \in \mathbb{R}^{-}, m, n \in \mathbb{Z}^{-}$

$$
\Longrightarrow f(-a n, n)=\frac{a^{2} n^{4}}{a^{2} n+n}=\frac{a^{2} n^{3}}{a^{2}+1}
$$

$\left\{\frac{a^{2} n^{3}}{a^{2}+1}, n \in \mathbb{Z}\right\}$ is neither bounded above nor below.

If $m>n, m$ can be written as $n=-a m \forall a \in \mathbb{R}^{-}, m, n \in \mathbb{Z}^{-}$

$$
\Longrightarrow f(m,-a m)=\frac{a^{2} m^{4}}{a m+a m}=\frac{a m^{3}}{2}
$$

$\left\{\frac{a m^{3}}{2}, m \in \mathbb{Z}\right\}$ is neither bounded above nor below.

Hence $\inf \mathcal{A}_{4}$ and $\sup \mathcal{A}_{4}$ do not exist.
4.5 For $\mathcal{A}:=\left\{\frac{(n m)^{p}}{(a m)^{q}+n^{q}}, n, m, a \in \mathbb{Z}, p, q \in \mathbb{Z}^{+}, a \neq 0\right\}$

4.5.1 Supremum

If $m=n$,

$$
\Longrightarrow f(n, n)=\frac{n^{2 p}}{\left(a^{q}+1\right) n^{q}}=\frac{n^{2 p-q}}{a^{q}+1}
$$

\mathcal{A} will have an infimum and supremum iff $2 p-q=0$.

If $m>n, m$ can be written as $m=a n \forall a \in \mathbb{Z}^{+}, m, n \in \mathbb{Z}$

$$
\Longrightarrow f(a n, n)=\frac{a^{p} n^{2 p}}{\left(a^{2 q}+1\right) n^{q}}=\frac{a^{p} n^{2 p-q}}{a^{2 q}+1}
$$

If $m<n, m$ can be written as $n=a m \forall a \in \mathbb{Z}^{+}$

$$
\Longrightarrow f(m, a m)=\frac{a^{p} m^{2 p}}{2(a m)^{q}}=\frac{a^{p} m^{2 p-q}}{2 a^{q}}
$$

If $2 p-q=0$,

$$
\begin{gathered}
f(n, n)=\frac{1}{a^{q}+1} \\
f(a n, n)=\frac{a^{p}}{a^{2 q}+1} \\
f(m, a m)=\frac{a^{p}}{2 a^{q}}
\end{gathered}
$$

It is obvious that for $2 p-q=0, a^{p}\left(a^{q}+1\right) \geq 2 a^{q}$.

Proof.

$$
a^{p+q}+a^{p} \geq 2 a^{q}
$$

$$
\begin{gathered}
\text { But } q=2 p \\
a^{\frac{3 q}{2}}+a^{\frac{q}{2}} \geq 2 a^{q}
\end{gathered}
$$

By $A M-G M$ inequality,

$$
\begin{aligned}
& \frac{a^{\frac{3 q}{2}}+a^{\frac{q}{2}}}{2} \geq \sqrt{a^{\frac{3 q}{2}} \cdot a^{\frac{q}{2}}} \\
& \Longrightarrow a^{\frac{3 q}{2}}+a^{\frac{q}{2}} \geq 2 a^{q}
\end{aligned}
$$

Hence, $a^{p+q}+a^{p} \geq 2 a^{q}$ is true for all $a \in \mathbb{Z}, p, q \in \mathbb{Z}^{+}$
Also,

$$
\begin{aligned}
& a^{2 q}+1>a^{p}\left(a^{q}+1\right) \\
\Longrightarrow & a^{4 p}+1>a^{3 p}+a^{p} \\
\Longrightarrow & a^{4 p}-a^{3 p}-a^{p}+1>0 \\
\Longrightarrow & \left(a^{p}-1\right)^{2}\left(a^{2 p}+a^{p}+1\right)>0
\end{aligned}
$$

$\left(a^{p}-1\right)^{2}>0$ is always true, so to check if $a^{2 p}+a^{p}+1>0$, we add a^{p} to both sides.

$$
\begin{gathered}
\Longrightarrow a^{2 p}+2 a^{p}+1>a^{p} \\
\Longrightarrow\left(a^{p}+1\right)^{2}>a^{p}
\end{gathered}
$$

This is true, so $a^{2 p}+a^{p}+1>0$.
It implies that $\left(a^{p}-1\right)^{2}\left(a^{2 p}+a^{p}+1\right)>0$ is true.
Hence, $a^{2 q}+1>a^{p}\left(a^{q}+1\right)$ is true for all $a \in \mathbb{Z}, p, q \in \mathbb{Z}^{+}$
Therefore,

$$
\begin{gathered}
a^{2 q}+1>a^{p}\left(a^{q}+1\right) \geq 2 a^{q} \\
\Longrightarrow \frac{1}{a^{2 q}+1}<\frac{1}{a^{p}\left(a^{q}+1\right)} \leq \frac{1}{2 a^{q}} \\
\Longrightarrow \frac{a^{q}}{a^{2 q}+1}<\frac{1}{a^{2 q}+1} \leq \frac{a^{p}}{2 a^{q}}=\frac{1}{2 a^{q-p}} \\
\Longrightarrow \sup \mathcal{A}=\frac{1}{2 a^{q-p}}
\end{gathered}
$$

4.5.2 Infimum

If $m<n, m$ can be written as $m=-a n \forall a \in \mathbb{Z}^{+}$and p is odd.

$$
\begin{gathered}
f(n, n)=\frac{1}{a^{q}+1} \\
f(-a n, n)=\frac{(-1)^{p} a^{p}}{a^{2 q}+1}=-\frac{a^{p}}{a^{2 q}+1} \\
f(m,-a m)=\frac{(-1)^{p} a^{p}}{2 a^{q}}=-\frac{a^{p}}{2 a^{q}} \\
a^{2 q}+1>a^{p}\left(a^{q}+1\right) \geq 2 a^{q} \\
\Longrightarrow-\left(a^{2 q}+1\right)<-a^{p}\left(a^{q}+1\right) \leq-2 a^{q} \\
\Longrightarrow-\frac{1}{a^{2 q}+1}>-\frac{1}{a^{p}\left(a^{q}+1\right)} \geq-\frac{1}{2 a^{q}} \\
\Longrightarrow-\frac{1}{2 a^{q}} \leq-\frac{1}{a^{p}\left(a^{q}+1\right)}<-\frac{1}{a^{2 q}+1} \\
\Longrightarrow \inf \mathcal{A}=-\frac{1}{2 a^{q-p}}
\end{gathered}
$$

If p is even, we have previously that $2 p-q=0, q=2 p$ which implies that q is even whether p is odd or even.

So if p is even, \mathcal{A} is a set of positive values, so \mathcal{A} can be rewritten as

$$
\mathcal{A}:=\left\{\frac{(n m)^{p}}{(a m)^{2 p}+n^{2 p}}, n, m \in \mathbb{Z}^{+} \cup\{0\}, a, p, q \in \mathbb{Z}^{+}\right\}
$$

Since, any negative number selected in \mathbb{Z} becomes positive under an even power. Hence the minimum element in \mathcal{A} is derived if $m, n=0$.

$$
\Longrightarrow \inf \mathcal{A}=0 .
$$

Therefore, we can generalize that

Romanian Mathematical Magazine

Web: http://www.ssmrmh.ro This article is published with open access

If

$$
\begin{gathered}
\mathcal{A}:=\left\{\frac{(n m)^{p}}{(a m)^{q}+n^{q}}, n, m, a \in \mathbb{Z}, p, q \in \mathbb{Z}^{+}, a \neq 0, \wedge q=2 p\right\} \\
\inf \mathcal{A}=\left\{\begin{array}{l}
-\frac{1}{2 a^{q-p}}, \text { for } p \text { odd } \\
0, \text { for } p \text { even }
\end{array}\right.
\end{gathered}
$$

and

$$
\sup \mathcal{A}=\frac{1}{2 a^{q-p}}
$$

References

[1] Charles E. Chidume and Chukwudi O. Chidume. Foundation of Mathematical Analysis, chapter 2, pages 20-32. Ibadan University Press, 2014.
[2] K.A. Stroud and Dexter J. Booth. Advanced Engineering Mathematics, 4th edition, programme 2, pages 390-402. Palgrave macmillan, 2003.

