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Prove that
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where Hn is the nth Harmonic number and G is Catalan’s Constant.
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Solution proposed by Narendra Bhandari,Bajura,Nepal
Since the recurrence relation of harmonic number (see [1]) is Hn+1 =
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Now using these tools we proceed to prove the results.

Proof of the first sum

By the recurrence relation of harmonic number and (1), we easily deduce
that
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We solve S1 by performing the partial fraction decomposition of the summand
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Above we used the Wallis’ Integral formula Wn [2] and on interchanging the
summation and integral we get
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The former integral is well know integral representation of Catalan’s constant
which can be easily proved by substituting sinx = t and 1−t

1+t
= u2. Therefore,

we have 3S1 = 3G− 3
2

Alternative solution

The former sum of S1,
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since the last integral is famous well know result which is equal to 2G which

we obtain by using the generating function
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|x| < 1. Moreover, this generating function can be used to evaluate the latter
sum of S1. All we need to multiply both sides by x2 and integrate it from 0
to 1 giving us −1 and collecting values gives us S1 = G− 1

2
.

Now in order to evaluate S2 sum, we shall deduce the following result, namely
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Proof : We start by the series representation of arctanhx and log(1− x2), ie
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where notation C.P stands for Cauchy product and since

n∑
k=0

(
1

2k + 2
+

1

2n− 2k + 1

)
=
∞∑
k=0

(
1

2k + 2
+

1

(2n+ 2)− 2k − 1

)

=
2n+2∑
k=1

1

k
= H2n+2
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Now on differentiating (2) with respect to x gives us

2
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Replacing x2 by
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and on dividing both sides by 4 and on integrating from x = 0 to

x = y2 for |y| < 1, we get
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Now all we need to do is to set y = sin z and perform integration within the
interval of [0, π/2]
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Here in J1 we substitute cos z = t and following integrals are easily doable
(in the same fashion of S1) resulting J1 = 4.
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To evaluate J2, we use identity arctanh(sin z) = 1
2
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(
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)
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substitution sin z = u and 1−u
1+u

= t which transform the integral J2 to the
following integrals
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here the former integral
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Here we have used the elementary integral result
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(n+1)m+1

for all m,n > −1. The series above are easy to see as we get G, π
3

32
, 1−G, 1−π3

32

respectively and on performing the operations we get 2G.Now the latter
integral ( using the same elementary result ) we obtain
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Noting
(
k+2
k

)
= (k + 1)(k + 2) which shows that on calculating each sums

individually we get divergent series however, it is still manageable to show
convergent sum. To do so we just need to separate the summand with k2

and 3k + 2 terms.
The series with 3k + 2 terms converges to 10G − 53

9
− 3π

2
and with k2

converges to
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Adding the obtained values we get B = −G − 1
2

and hence the value of
A + B = G + 3

2
and 3S2 = 3G + 9

2
. Therefore, 3S1 + 3S2 = 3 + 6G which

completes the proof.

Proof of the second sum
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By recursive relation and (1), we obtain
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Yet again by Wallis’s formula Wn we evaluate S3, ie
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So 3S3 = 3π2

8
− 3 and 3S3 + 3 + 6G = 3π2

8
+ 6G and the solution is complete.

Alternative solution
The sum S3 can also be evaluated by using generating function of 2arcsin2x =

∞∑
k=0

4n+1x2n+2

(2n+ 2)(2n+ 1)
(
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) and hence on integrating from x = 0 to x = 1 it

gives us the value π2

8
− 1.
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