Proposed by: Prof. Dan Sitaru

$$
\Omega=\lim _{n \rightarrow \infty} \sqrt[n]{\sum_{k=1}^{n}\binom{2 k}{k}\binom{2 n-2 k}{n-k} \frac{1}{(k+1)(n-k+1)}}
$$

Solution Proposed by : Surjeet Singh, India
We know that $\sum_{n=0}^{\infty}\binom{n}{n} x^{n}=\frac{1}{\sqrt{1-4 x}}$ for $|x|<4^{-1}$ by integrating this we get $\sum_{k=0}^{\infty}\binom{2 k}{k} \frac{x^{k+1}}{k+1}=\frac{1}{2}(1-\sqrt{1-4 x})$ Using cauchy's Product
$\left(\sum_{k=0}^{\infty}\binom{2 k}{k} \frac{x^{k+1}}{k+1}\right)^{2}=\sum_{n=0}^{\infty} c_{n} x^{n+2}=\frac{1}{2}(-2 x+1-\sqrt{1-4 x})$
Where $c_{n}=\sum_{k=0}^{n}\binom{2 k}{k}\binom{2 n-2 k}{n-k} \frac{1}{(k+1)(n-k+1)}$
Compare cofficients $\sum_{n=0}^{\infty} c_{n} x^{n+2}=-x+\sum_{k=0}^{\infty}\binom{2 k}{k} \frac{1}{k+1} x^{k+1}$
Hence $c_{n}=\binom{2 n+2}{n+1} \frac{1}{n+2}$ Now we will find our Ω

$$
\begin{gathered}
\sum_{k=1}^{n}\binom{2 k}{k}\binom{2 n-2 k}{n-k} \frac{1}{(k+1)(n-k+1)}=\frac{1}{n+2}\binom{2 n+2}{n+1}-\frac{1}{n+1}\binom{2 n}{n} \\
\quad=\frac{3 n}{(n+1)(n+2)}\binom{2 n}{n} \text { Hence } \Omega=4 \lim _{n \rightarrow \infty} \sqrt[n]{\frac{3 n}{(n+1)(n+2)}}=4
\end{gathered}
$$

