A MAGICAL DOUBLE SERIES LEADING TO A MAGICAL CLOSED-FORM

Cornel Ioan Vălean

Romania
cornel2001_ro@yahoo.com
December 3, 2021
Show by series manipulations and no use of integrals that

$$
\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \frac{H_{j}}{i(i+j+1)(i+j+n+1)}=\frac{H_{n}^{3}+3 H_{n} H_{n}^{(2)}+2 H_{n}^{(3)}}{3 n}
$$

where $H_{n}^{(m)}=1+\frac{1}{2^{m}}+\cdots+\frac{1}{n^{m}}, m \geq 1$, represents the nth generalized harmonic number of order m.

Proof. Reversing the order of summation and then reindexing, the left-hand side of the main result may be written as

$$
\begin{gathered}
\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \frac{H_{j}}{i(i+j+1)(i+j+n+1)}=\sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \frac{H_{j}}{i(i+j+1)(i+j+n+1)} \\
=\sum_{j=1}^{\infty} \sum_{i=j+1}^{\infty} \frac{H_{j}}{(i-j)(i+1)(i+n+1)}=\sum_{i=1}^{\infty} \frac{1}{(i+1)(i+n+1)} \sum_{j=1}^{i-1} \frac{H_{j}}{i-j} \\
=\sum_{i=1}^{\infty} \frac{H_{i}^{2}-H_{i}^{(2)}}{(i+1)(i+n+1)}=\frac{H_{n}^{3}+3 H_{n} H_{n}^{(2)}+2 H_{n}^{(3)}}{3 n}
\end{gathered}
$$

where in the calculations I used the following results, that is $\sum_{k=1}^{n-1} \frac{H_{k}}{n-k}=H_{n}^{2}-H_{n}^{(2)}$, and then the fact that $\sum_{k=1}^{\infty} \frac{H_{k}^{2}-H_{k}^{(2)}}{(k+1)(k+n+1)}=\frac{H_{n}^{3}+3 H_{n} H_{n}^{(2)}+2 H_{n}^{(3)}}{3 n}$, which are both presented and calculated in the book (Almost) Impossible Integrals, Sums, and Series, pages 287 and 291.

Q.E.D.

