A trick to solve some infinite sums.
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Let be f(x) an analytic function and its reciprocal which is locally analytic
where f(x) is non-zero, whose expansion in series of powers is:
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For some x we can therefore evaluate the infinite sum:

o)

1 _ _p[L]. z ;
D} kzzoakxk = D} || (F @) 0
For example let's consider the function:
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whose expansion, in its domain, in series of powers is:
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Applying (i) we get
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and then finally
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For some x we can therefore evaluate the infinite sum.
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For example at x = .
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