Dr. Said ATTAOUI/PhD. Thesis in Applied Mathematics University of Sciences and Technology, ORAN-ALGERIA

Faculty of Mathematics and Informatics

Department of Mathematics.

Problem. Prove that

$$
J=\int_{0}^{1}\left(\frac{\sqrt{x} \log ^{2}(x)}{1+x^{2}}\right)^{2} d x=\frac{21}{80} \zeta^{2}(2) .
$$

Solution. The integral can be rewriting after making the change of variable $t=x^{2}$, as

$$
\begin{aligned}
J & =\int_{0}^{1} \frac{x \log ^{4}(x)}{\left(1+x^{2}\right)^{2}} d x \\
& =\frac{1}{32} \int_{0}^{1} \frac{2 x(2 \log (x))^{4}}{\left(1+x^{2}\right)^{2}} d x \\
& =\frac{1}{32} \int_{0}^{1} \frac{2 x\left(\log \left(x^{2}\right)\right)^{4}}{\left(1+x^{2}\right)^{2}} d x \\
& =\frac{1}{32} \int_{0}^{1} \frac{\log ^{4}(t)}{(1+t)^{2}} d t
\end{aligned}
$$

Now, by using the expansion series $\sum_{n=1}^{\infty} n(-t)^{n-1}=\frac{1}{(1+t)^{2}}$, we obtain

$$
\begin{aligned}
J= & \frac{1}{32} \int_{0}^{1} \log ^{4}(t)\left(\sum_{n=1}^{\infty} n(-t)^{n-1}\right) d t \\
= & \frac{1}{32} \sum_{n=1}^{\infty}(-1)^{n-1} n\left(\int_{0}^{1} t^{n-1} \log ^{4}(t) d t\right) \\
& \{\text { interchange between integral and summation }\} \\
= & \frac{1}{32} \sum_{n=1}^{\infty}(-1)^{n-1} n\left(\int_{0}^{\infty} z^{4} e^{-n z} d z\right) \\
& \left\{t=e^{-z}, d t=-e^{-z} d z\right\} \\
= & \frac{1}{32} \sum_{n=1}^{\infty}(-1)^{n-1} n\left(\frac{\Gamma(5)}{n^{5}}\right) \\
& \left\{\text { by the fact that for all } a>0, b>0: \int_{0}^{\infty} z^{a} e^{-b z} d t=\frac{\Gamma(a+1)}{b^{a+1}}\right\} \\
= & -\frac{4!}{32} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{4}}=-\frac{3}{4} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{4}} .
\end{aligned}
$$

Using the property $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n^{p}}=-\left(1-2^{1-p}\right) \zeta(p), p>1$, we can deduce

$$
\begin{aligned}
J & =\frac{3}{4}\left(1-\frac{1}{8}\right) \zeta(4)=\frac{21}{32} \zeta(4) \\
& =\frac{21}{32}\left(\frac{2}{5} \zeta^{2}(2)\right)=\frac{21}{80} \zeta^{2}(2)
\end{aligned}
$$

