Partition Function Inequality

Introduction

In this article, we will obtain an upper bound for the partition function $p(n)$ using elementary methods of combinatorics.

Prerequisite

Definition 1

Let $p(n)$ be the number of ways of writing n as the sum of positive integers (order is not important).

Definition 2

Let $p(m, n)$ be the number of solutions of the equation

$$
\sum_{i=1}^{m} a_{i}=n
$$

where, $a_{i} \in \mathbb{N} \forall 1 \leq i \leq m \leq n$ (order is not important).

Definition 3

Let $\phi(m, n)$ be the number of solutions of the equation

$$
\sum_{i=1}^{m} a_{i}=n
$$

where, $a_{i} \in \mathbb{N} \forall 1 \leq i \leq m \leq n$ (order is important).

Lemma 1

For all $m, n \in \mathbb{N}$ and $m \leq n$, we have,

$$
p(m, n) \leq \phi(m, n)
$$

Proof: Since, $p(m, n)$ and $\phi(m, n)$ differ only in the order of the summands, therefore, the number of ways of writing n as the sum of m positive integers where order is important is greater than or equal to the number of ways of writing n as the sum of m positive integers where order is not important. This completes the proof of lemma 1.

Lemma 2

For all $m, n \in \mathbb{N}$ and $m \leq n$, we have,

$$
\phi(m, n)=\binom{n-1}{m-1}
$$

Proof: From definition 3 and elementary combinatorics, it can be shown that, $\phi(m, n)$ is the coefficient of x^{n} in the series expansion of $\left(x+x^{2}+x^{3}+\right.$ $\ldots)^{m}=x^{m}(1-x)^{-m}$, that is, the coefficient of x^{n-m} in the series expansion of $(1-x)^{-m}$. We know that if $|x|<1$, then,

$$
(1-x)^{-m}=1+\sum_{k=1}^{\infty} \frac{m(m+1) \ldots(m+k-1)}{k!} x^{k}=\sum_{k=0}^{\infty} \frac{(m+k-1)!}{(m-1)!k!} x^{k}
$$

which implies, the coefficient of x^{n-m} in the series expansion of $(1-x)^{-m}$ is $\frac{(n-1)!}{(m-1)!(n-m)!}$, which completes the proof of lemma 2.

Lemma 3

For all $n \in \mathbb{N}$, we have,

$$
\sum_{m=1}^{n} p(m, n)=p(n)
$$

Proof: From definition 2, it can be shown that $p(m, n)$ is the number of ways of writing n as the sum of m positive integers where order is not important. Thus the sum,

$$
\sum_{m=1}^{n} p(m, n)
$$

represents the total number of ways of writing n as the sum of m positive integers where $m=1,2,3 \ldots, n$. This is the same as definition 1 , which completes the proof of lemma 3 .

Lemma 4

For all $n \in \mathbb{N}$, we have,

$$
\sum_{m=1}^{n}\binom{n-1}{m-1}=2^{n-1}
$$

Proof: From the binomial theorem it is known that if $n \in \mathbb{N}$ and $x \in \mathbb{C}$, then,

$$
(1+x)^{n}=\sum_{m=0}^{n}\binom{n}{m} x^{m}
$$

substituting $x=1$, replacing n by $n-1$ and replacing m by $m-1$ completes the proof of lemma 4.

Inequality

For all $n \in \mathbb{N}$, we have,

$$
p(n) \leq 2^{n-1}
$$

Proof: From lemma 1, we have,

$$
p(m, n) \leq \phi(m, n)
$$

summing up both the sides from $m=1$ to $m=n$, we obtain,

$$
\sum_{m=1}^{n} p(m, n) \leq \sum_{m=1}^{n} \phi(m, n)
$$

using lemma 2 , lemma 3 and lemma 4, we obtain,

$$
p(n) \leq \sum_{m=1}^{n}\binom{n-1}{m-1}=2^{n-1}
$$

which completes the proof of the inequality.
Romanian Mathematical Magazine
Web: http://www.ssmrmh.ro
The Author: This article is published with open access.

ANGAD SINGH
email-id: angadsingh1729@gmail.com

