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       The inequalities of Nesbitt and Jensen, - two already classical inequalities - are well known in  
   mathematical literature and practice :    
    

         1. Proposition  ( Nesbitt's inequality , [5] )     
        If   a  , b , c  > 0  ,  then ,   
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      having equality iff  a  = b  = c  .  
    

 2. Proposition  ( Jensen's inequality , [1] ) 
   

 Let   f : I  ℝ   ℝ   a  convex function  on the interval  I .  Then for any Ikx   , we have 
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              If f is a concave function on I, the inequality sign in (J) is reversed.         
            Equality in (J) occurs if and only if x 1  = x 2  = ‧ ‧ ‧ = x n   , or when the function f is a function 

            linear (affine).            

            In the following we will highlight some inequalities that result from the successive application of 
         of the  inequalities of Jensen  (for case n = 3) and  Nesbitt , together with certain properties of  
         monotony of the functions considered . Here is a first result of this kind . 
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             3. Proposition  
    

  If the function  f : I  ( 0 , ∞ )   ℝ+   is a  convex  and  increasing  function on  I , then :                             
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  for any  a , b , c  > 0  .  
  

    Proof 
 

    Indeed, using Jensen's inequality for convex functions in the first instance, then by Nesbitt's inequality  
and also taking into account the fact that the function is increasing , we obtain successively :   
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             Equality occurs if  a  = b  = c  . 
 
             4. Corollary  (a generalization of Nesbitt's inequality) 

              For any   p > 1   and for any   a , b , c  > 0  ,  the following inequality occurs ,  
       

                                              ,     
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    Proof 
 

              Consider the function,    f : ( 0 , ∞)   ℝ+  , ,( ) = pf x x  p > 1  , which is obviously convex 

          and ascending, so with Proposition 3, we have :  ,   
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             with equally if a  = b  = c  .  For  p = 1 , inequality  ( N )  is obtained .   
 
             5. Application     
 

              For any  q > 1   and for any   a , b , c  > 0  , the following inequality occurs , 
       

                                            ,    + + + 3+ +
a b c

b c c a a bq q q q                                            (3) 

    Proof  
 

              |Let the function ,   f : ( 0 , ∞)   ℝ+  , ,( ) = xf x q   q > 1  , which is obviously convex  and  

           ascending, so with Proposition 3, we have :  ,
1

+ + + 23+ +
a b c

b c c a a bq q q q with equally if a  = b  = c  . 
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             6. Application  , [2] 

              For  a , b , c  > 0 ,  there is the inequality ,  
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    Proof 
 

             Let the function ,   f : I  ( 0 , ∞ )   ℝ+   ,  2( ) 1= xf x    ,   for which we have: 
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 ,  so the function f is convex and 

         increasing on ( 0 , ∞ )  . With Proposition 3, we have ,      
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           hence the inequality (2) , with equally if a  = b  = c  . 
 

             7. Remark 
   

             If  a , b , c  are the lengths of the sides of a triangle , then ,   
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             Indeed, from  b + c > a , result ,  
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             8. Application  
              For a real number   p > 1  and  a , b , c   sides of a triangle , we have the following inequality , 
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    Proof  
 

            Consider the function ,   f : ( 0 , 1)   ℝ+   ,  ( )
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the function  f  is convex and increasing on (0, 1) , so with Proposition 3, and  Remark 7, we have ,             
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              Equality occurs if  a  = b  = c  . 
      

             9. Application   
 

              In the triangle ABC ,  on the sides  a , b , c ,  we have the inequality , 
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(Remark 7) , we consider the function ,   

 f : ( 0 , 1)   ( 0, π/2 )   ,  ,( ) =f x arcsin x   which is  convex  and  ascending  on ( 0 , 1)  . 

    Then with Proposition 3, we have :     , 
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that is, the inequality in the statement . Equality occurs in the case of the equilateral triangle . 
 

             10. Proposition  
    

   If the function    f : I  ( 0 , ∞ )   ℝ+   is a  concave  and  descending  function on interval  I ,  
 

 then :                         ,                     ( )
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    Proof 
 

             First , using  Jensen inequality  for concave functions , then  Nesbitt inequality  and taking into account 
         and the fact that the function is decreasing , we obtain successively :      
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             Equality occurs if   a  = b  = c  . 
 



 
www.ssmrmh.ro 

5 ROMANIAN MATHEMATICAL MAGAZINE-JENSEN+NESBITT 
 

             11. Application , [3] 
 
 

               In triangle ABC , with sides  a , b , c ,  we have inequality , 
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    Proof  
 

    The inequality in the statement can be written in the equivalent forms : 
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            Consider the function , f : ( 0 , 1 )   ℝ+  , 2( ) 1=f x x  (the circle function- in the first dial),    
       which is obviously  concave  and  decreasing  on  (0 , 1 )   .  
          How ,  
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(Remark 7) , then with Proposition 10, we have : 
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so there is inequality  (10) .
 

 

            12. Application   , [4]  
    

In triangle ABC , with sides  a , b , c ,  we have inequality , 
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with equally if   a  = b  = c  . 

  

    Proof  
With  Remark 7 , we have , 
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To solve we consider the function , 
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f : ( 0 , 1)   ( 0, π/2 )   ,  ,( ) =f x arccos x   which is  concave  and  decreasing  on ( 0 , 1)  . 

Then with Proposition 10, we have : 
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that is, the inequality in the statement. Equality occurs in the case of the equilateral triangle . 
 

                13. Remark 
 

    Inequality  (11)  can also be obtained from inequality  (7) , using identity , 

                                 2/=arccos x arcsin x                                                 (12) 
 

                14. Remark 
 

            Note that only the possibilities of association : ( f – convex ,  f – ascending ) - from Proposition 3, 
        and  ( f – concave , f – descending ) - from Proposition 10 can be considered. The other two possibilities  
        of  association do not ensure the transitivity of the inequality relationship . 
 

            For the above applications - demonstrated by the successive application of Jensen and Nesbitt  
        inequalities - there are also other ways to demonstrate - as happened in the group posts : [2] , [3] , [4] . 
            Obviously, many other applications of Sentences 3 and 10 can be obtained and demonstrated, 
        respecting the above scenarios .  
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