About upper and lower bounds of reciprocal Fibonacci and Lucas series

Seyran Ibrahimov, Ahmad Issa

Abstract

F_{1} \cdot F_{2} \cdots F_{n}\right)^{\frac{1}{n}}}\) and $\sum_{n=1}^{\infty} \frac{1}{\left(L_{1} \cdot L_{2} \cdots L_{n}\right)^{\frac{1}{n}}}$ series

Keywords Fibonacci Numbers, Lucas Numbers, Reciprocal Fibonacci series, Reciprocal Lucas series

1 Introduction

The Fibonacci numbers were described in work by Italian mathematician Leonardo Fibonacci, which has a lot of applications in cryptology along with mathematics. Many studies have been done by mathematicians about Fibonacci numbers.Fibonacci numbers are strongly related to Lucas numbers which $F_{0}=0, F_{1}=1$ and $F_{n}=$ $F_{n-1}+F_{n-2}, n \geq 2, L_{0}=2, L_{1}=1$ and $L_{n}=L_{n-1}+L_{n-2}, n \geq 2$ are Fibonacci and Lucas numbers, respectively. These $n^{\text {th }}$ numbers can be found by the Binet's formula given as [1]

$$
F_{n}=\frac{\varphi^{n}-(-\varphi)^{-n}}{\sqrt{5}}, L_{n}=\varphi^{n}+(-\varphi)^{-n}, \varphi=\frac{\sqrt{5}+1}{2}
$$

2 preliminaires

Lemma[1] 2]If F_{n} and L_{n} are Fibonacci and Lucas numbers, respectively. Then the following inequalities are satisfied

- $\varphi^{n-1} \leq F_{n} \leq \varphi^{n}$
- $\varphi^{n-1} \leq L_{n} \leq 2 \varphi^{n}$

3 mean results

Theorem 2.1 If F_{n} are Fibonacci numbers then the following inequality is

$$
\begin{equation*}
\frac{1}{\sqrt{\varphi}(\sqrt{\varphi}-1)}<\sum_{n=1}^{\infty} \frac{1}{\left(F_{1} \cdot F_{2} \cdots F_{n}\right)^{\frac{1}{n}}}<\frac{\sqrt{\varphi}}{\sqrt{\varphi}-1} \tag{1}
\end{equation*}
$$

proof: we know for all $n \geq 1, F_{n} \geq \varphi^{n-1}$ then we obtain $F_{1} \cdot F_{2} \cdots F_{n} \geq \varphi^{0} \cdot \varphi^{1} \cdot \cdots \varphi^{n-1}=$ $\varphi^{\frac{(n-1) n}{2}}$ That means

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{\left(F_{1} \cdot F_{2} \cdots F_{n}\right)^{\frac{1}{n}}}<\frac{\sqrt{\varphi}}{\sqrt{\varphi}-1} \tag{2}
\end{equation*}
$$

and for all $n \geq 1, F_{n} \leq \varphi^{n}$ then we obtain $F_{1} \cdot F_{2} \cdots F_{n} \leq \varphi^{1} \cdot \varphi^{2} \cdots \varphi^{n}=\varphi^{\frac{n(n+1)}{2}}$ That means

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{\left(F_{1} \cdot F_{2} \cdots F_{n}\right)^{\frac{1}{n}}}>\frac{1}{\sqrt{\varphi}(\sqrt{\varphi}-1)} \tag{3}
\end{equation*}
$$

from (3) and (2) we obtain : $\frac{1}{\sqrt{\varphi}(\sqrt{\varphi}-1)}<\sum_{n=1}^{\infty} \frac{1}{\left(F_{1}, F_{2}, \cdots F_{n}\right)^{\frac{1}{n}}}<\frac{\sqrt{\varphi}}{\sqrt{\varphi}-1}$
Theorem 2.2 If L_{n} are Lucas numbers then the following inequality is satisfied

$$
\begin{equation*}
\frac{1}{\sqrt{2 \varphi}(\sqrt{2 \varphi}-1)}<\sum_{n=1}^{\infty} \frac{1}{\left(L_{1} \cdot L_{2} \cdots L_{n}\right)^{\frac{1}{n}}}<\frac{\sqrt{\varphi}}{\sqrt{\varphi}-1} \tag{4}
\end{equation*}
$$

proof: we know for all $n \geq 1, L_{n} \geq \varphi^{n-1}$ then we obtain $L_{1} \cdot L_{2} \cdots L_{n} \geq \varphi^{0} \cdot \varphi^{1} \cdots \varphi^{n-1}=$ $\varphi^{\frac{(n-1) n}{2}}$ That means

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{\left(L_{1} \cdot L_{2} \cdots L_{n}\right)^{\frac{1}{n}}}<\frac{\sqrt{\varphi}}{\sqrt{\varphi}-1} \tag{5}
\end{equation*}
$$

and for all $n \geq 1, L_{n} \leq 2 \varphi^{n}$ then we obtain $L_{1} \cdot L_{2} \cdot \cdots L_{n} \leq 2 \varphi^{1} \cdot 2 \varphi^{2} \cdot \cdots 2 \varphi^{n}=$ $(2 \varphi)^{\frac{n(n+1)}{2}}$ That means

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{\left(L_{1} \cdot L_{2} \cdots L_{n}\right)^{\frac{1}{n}}}>\frac{1}{\sqrt{2 \varphi}(\sqrt{2 \varphi}-1)} \tag{6}
\end{equation*}
$$

from (5) and (6) we obtain : $\frac{1}{\sqrt{2 \varphi}(\sqrt{2 \varphi}-1)}<\sum_{n=1}^{\infty} \frac{1}{\left(L_{1} \cdot L_{2} \cdots L_{n}\right)^{\frac{1}{n}}}<\frac{\sqrt{\varphi}}{\sqrt{\varphi}-1}$

References

[1] Thomas Koshy. Fibonacci and Lucas Numbers with Applications, Volume 2. John Wiley \& Sons, 2019.
[2] Runnan Liu and Andrew YZ Wang. Sums of products of two reciprocal fibonacci numbers. Advances in Difference Equations, 2016(1):1-26, 2016.

