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1 Introduction

The Fibonacci numbers were described in work by Italian mathematician Leonardo
Fibonacci, which has a lot of applications in cryptology along with mathematics.
Many studies have been done by mathematicians about Fibonacci numbers.Fibonacci
numbers are strongly related to Lucas numbers which F0 = 0, F1 = 1 and Fn =
Fn−1 + Fn−2, n ≥ 2 ,L0 = 2, L1 = 1 and Ln = Ln−1 + Ln−2, n ≥ 2 are Fibonacci and
Lucas numbers, respectively. These nth numbers can be found by the Binet’s formula
given as[1]
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2 preliminaires

Lemma[1][2]If Fn and Ln are Fibonacci and Lucas numbers, respectively. Then the
following inequalities are satisfied

• φn−1 ≤ Fn ≤ φn

• φn−1 ≤ Ln ≤ 2φn

3 mean results

Theorem 2.1 If Fn are Fibonacci numbers then the following inequality is
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proof : we know for all n ≥ 1, Fn ≥ φn−1 then we obtain F1.F2. · · ·Fn ≥ φ0.φ1. · · ·φn−1 =
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and for all n ≥ 1, Fn ≤ φn then we obtain F1.F2. · · ·Fn ≤ φ1.φ2. · · ·φn = φ
n(n+1)
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from (3) and (2) we obtain : 1√
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Theorem 2.2 If Ln are Lucas numbers then the following inequality is satisfied
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proof : we know for all n ≥ 1, Ln ≥ φn−1 then we obtain L1.L2. · · ·Ln ≥ φ0.φ1. · · ·φn−1 =
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and for all n ≥ 1, Ln ≤ 2φn then we obtain L1.L2. · · ·Ln ≤ 2φ1.2φ2. · · · 2φn =
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