## Elliptic Integral Inequality

## Introduction

In this article, we will find a simple inequality for the complete elliptic integral of the second kind.

## Prerequisite

## Definition 1

If $|k|<1$, then,

$$
E(k)=\int_{0}^{1} \sqrt{\frac{1-k^{2} t^{2}}{1-t^{2}}} d t
$$

where, $E(k)$ is the complete elliptic integral of the second kind and $k$ is the modulus.

## Lemma 1

The perimeter $P$ of an ellipse is given by,

$$
P=4 a E(e)
$$

where $a$ is the length of its semi-major axis and $e$ is its eccentricity.
Proof: It is known from calculus that, the length $L$ of a curve $y=f(x)$ between $x=x_{1}$ and $x=x_{2}$ is given by,

$$
L=\int_{x_{1}}^{x_{2}} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
$$

substituting $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ in the above equation and choosing the limits as $x_{1}=0$ and $x_{2}=a$, we obtain,

$$
L=\int_{0}^{a} \sqrt{1+\left(\frac{-b x}{a \sqrt{a^{2}-x^{2}}}\right)^{2}} d x=\int_{0}^{a} \sqrt{\frac{a^{2}-\left(1-b^{2} / a^{2}\right) x^{2}}{a^{2}-x^{2}}} d x
$$

let $e^{2}=1-b^{2} / a^{2}$, then we have the following equation,

$$
L=\int_{0}^{a} \sqrt{\frac{a^{2}-e^{2} x^{2}}{a^{2}-x^{2}}} d x \stackrel{x=a t}{=} a \int_{0}^{1} \sqrt{\frac{1-e^{2} t^{2}}{1-t^{2}}} d t
$$

using definition 1 , we finally have,

$$
L=a E(e)
$$

Observe that, $L$ is the length of the ellipse which lies in the first quadrant, therefore the perimeter $P$ of the entire ellipse is given by,

$$
P=4 a E(e)
$$

which completes the proof of lemma 1 .

## The Inequality

Theorem: If $n \in \mathbb{N},|k|<1$ and $k^{2}+k^{\prime 2}=1$, then we have the following result,
$E(k)>\frac{1}{\sqrt{n}} \sum_{m=0}^{n-1} \sqrt{\left(2 m+1-2 \sqrt{m^{2}+m}\right)+k^{\prime 2}\left(2(n-m)-1-2 \sqrt{(n-m)^{2}-(n-m)}\right)}$
Proof: Consider an ellipse of semi-major axis $a$ and semi-minor axis $b$ centered at the origin. From lemma 1, we have,

$$
P=4 a E(e)
$$

Let us find a lower bound for the length of the part of the ellipse lying in the first quadrant, that is, $a E(e)$.
Observe that, $a E(e)$ is strictly greater than the length of the line joining the points $A(0, b)$ and $B(a, 0)$, thus,

$$
a E(e)>\sqrt{a^{2}+b^{2}} \Longrightarrow E(e)>\sqrt{2-e^{2}}
$$

Now consider the point $A_{1}(a / \sqrt{2}, b / \sqrt{2})$ which lies on this ellipse. It is clear from geometry that,

$$
a E(e)>\overline{A A_{1}}+\overline{A_{1} B}=\sqrt{a^{2} / 2+(b-b / \sqrt{2})^{2}}+\sqrt{(a-a / \sqrt{2})^{2}+b^{2} / 2}
$$

after some simplification, we obtain,

$$
E(e)>\sqrt{1 / 2+\left(1-e^{2}\right)(1-1 / \sqrt{2})^{2}}+\sqrt{(1-1 / \sqrt{2})^{2}+\left(1-e^{2}\right) / 2}
$$

Continuing the above procedure, we obtain $(n-1)$ points (between the points $A$ and $B$ ) on the ellipse dividing it into $n$ parts. Thus the inequality becomes,

$$
a E(e)>\overline{A A_{1}}+\overline{A_{1} A_{2}}+\overline{A_{2} A_{3}}+\ldots+\overline{A_{n-1} B}
$$

where,

$$
A_{m}:=\left(\frac{a \sqrt{m}}{\sqrt{n}}, \frac{b \sqrt{n-m}}{\sqrt{n}}\right)
$$

and
$\overline{A_{m} A_{m+1}}=\sqrt{\frac{a^{2}}{n}\left(2 m+1-2 \sqrt{m^{2}+m}\right)+\frac{b^{2}}{n}\left(2(n-m)-1-2 \sqrt{(n-m)^{2}-(n-m)}\right)}$
where, $0 \leq m<n, A_{0}:=A$ and $A_{n}:=B$.
Therefore,
$a E(e)>\sum_{m=0}^{n-1} \sqrt{\frac{a^{2}}{n}\left(2 m+1-2 \sqrt{m^{2}+m}\right)+\frac{b^{2}}{n}\left(2(n-m)-1-2 \sqrt{(n-m)^{2}-(n-m)}\right)}$
hence
$E(e)>\frac{1}{\sqrt{n}} \sum_{m=0}^{n-1} \sqrt{\left(2 m+1-2 \sqrt{m^{2}+m}\right)+\left(1-e^{2}\right)\left(2(n-m)-1-2 \sqrt{(n-m)^{2}-(n-m)}\right)}$
which completes the proof.
Romanian Mathematical Magazine
Web: http://www.ssmrmh.ro
The Author: This article is published with open access.
ANGAD SINGH
email-id: angadsingh1729@gmail.com

