

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro
 GAKOPOULOS' LEMMAS and THEOREMS

By Thanasis Gakopoulos-Farsala-Greece
 Edited by Florică Anastase-Romania

Introduction. I have compiled into an article some basic exercises then I have created, proved and published in the past.

These exercises have been used by me and other team members as auxiliary exercises-lemmas-theorems to solve geometric problems. I think it is useful.

1. GAKOPOULOS' LEMMA or THEOREM:

$$
\begin{aligned}
& \frac{P S}{S Q}=\frac{B M}{M C} \cdot \frac{A P}{A B} \cdot \frac{A C}{A Q} \\
& \text { Or } \\
& \frac{P S}{S Q} \cdot \frac{Q A}{A P}=\frac{B M}{M C} \cdot \frac{C A}{A B}
\end{aligned}
$$

Proof.

$$
* \triangle P Q R, \overline{A S T}-(\text { Menelaus th. })
$$

$$
\begin{align*}
& \frac{S P}{S Q} \cdot \frac{T R}{T P} \cdot \frac{A Q}{A R}=1 ; \tag{1}\\
& \quad * P R \| B C \Rightarrow \frac{A P}{A R}=\frac{A B}{A C} \Rightarrow A R=A P \cdot A B \cdot A C \tag{2}
\end{align*}
$$

From (1)and (2) $\Rightarrow \frac{S P}{S Q} \cdot \frac{M C}{M B} \cdot \frac{A Q}{\frac{A P}{A B} \cdot A C}=1 \Rightarrow \frac{P S}{P Q}=\frac{B M}{M C} \cdot \frac{A P}{A B} \cdot \frac{A C}{A Q}$ or
$\frac{P S}{S Q} \cdot \frac{Q A}{A C}=\frac{B M}{M C} \cdot \frac{C A}{A B}$

Application 1.

$$
\frac{P S}{S Q}=\frac{P B}{Q C} \cdot \frac{A C}{A B}
$$

Proof.

$$
\left\{\begin{array}{c}
\frac{P S}{S Q}=\frac{B M}{M C} \cdot \frac{A P}{A B} \cdot \frac{A C}{A Q} \text { (Gakopoulos th.) } \\
\frac{B M}{M C} \cdot \frac{C Q}{Q A} \cdot \frac{A P}{P B}=1(\text { Ceva th. })
\end{array}\right.
$$

ROMANIAN MATHEMATICAL MAGAZINE

$$
\begin{gathered}
\frac{P S}{S Q}=\frac{A Q}{C Q} \cdot \frac{P B}{A P} \cdot \frac{A P}{A B} \cdot \frac{A C}{A Q} \text { or } \\
\frac{P S}{S Q}=\frac{P B}{Q C} \cdot \frac{A C}{A B}
\end{gathered}
$$

Application 2.

$$
A B=A C ; \frac{P S}{S Q}=\frac{P B}{Q C}
$$

Proof.

$$
\frac{P S}{S Q}=\frac{P B}{Q C} \cdot \frac{A C}{A B} \stackrel{A B=A C}{\Longrightarrow} \frac{P S}{S Q}=\frac{P B}{Q C}
$$

2. GAKOPOULOS-BLATSIS formulae:

$D E\|A B, D F\| B C$

$$
D_{1} E_{1}\left\|A_{1} B_{1}, D_{1} F_{1}\right\| B_{1} C C_{1}
$$

$[A B C D]=\frac{\sin B}{2}(B C \cdot B F+B A+B E) ;\left[A_{1} B_{1} C_{1} D_{1}\right]=\frac{\sin B}{2}\left(B_{1} C_{1} \cdot B_{1} F_{1}+B_{1} A_{1}+B_{1} E_{1}\right)$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

Proof.

$$
\begin{aligned}
& 2[A B C D]=2[B F D E]+2[E C D]+2[A D F] \\
& \begin{array}{c}
=[B F D E]+[D P C E]+[B F D E]+[A Q D F] \\
=[B C P F]+[A B E Q]= \\
=\frac{\sin B}{2}(B C \cdot B F)+\frac{\sin B}{2}(B A \cdot B E)
\end{array}
\end{aligned}
$$

Hence,

$$
[A B C D]=\frac{\sin B}{2}(B C \cdot B F+B A+B E) ;
$$

3. NCCQ1-NEW CRITERION FOR CYCLIC QUADRILATERAL-(1)

$D E\|A B ; F D\| B C$
$A B C D-$ is cyclic \Leftrightarrow
$B D^{2}=B C \cdot B E+B A \cdot B F$

Proof.

Let $B C=a, B A=c, B E=d_{1}$,

$$
B F=d_{2}
$$

(ω)-circumcircle of $\triangle A B C$.
Plagiognal system: $B C \equiv B X, B A \equiv B y$

$$
B(0,0), C(a, 0), A(0, c), D\left(d_{1}, d_{2}\right)
$$

$$
\begin{gather*}
(\omega): x^{2}+y^{2}+2 x y \cdot \cos B-a x-c y=0 \tag{1}\\
B D^{2}=d_{1}^{2}+d_{2}^{2}+2 d_{1} d_{2} \cdot \cos B \tag{2}
\end{gather*}
$$

$A B C D-$ is cyclic $\Leftrightarrow D \in(\omega) \Leftrightarrow d_{1}^{2}+d_{2}^{2}+2 d_{1} d_{2} \cdot \cos B-a d_{1}-c d_{2}=0 \Leftrightarrow$ $B D^{2}=B C \cdot B E+B A \cdot B F$

4. NCCQ2-NEW CRITERION FOR CYCLIC QUADRILATERAL-(2)

$D E\|A B ; F D\| B C ; A B C D-$ is cyclic $\Leftrightarrow \cos B=\frac{1}{2}\left(\frac{E C}{B F}+\frac{F A}{B E}\right)$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
\text { Proof. } B D^{2}=B C \cdot B E+B A \cdot B F(N C C Q 1) ; \\
B D^{2}=B E^{2}+B F^{2}+2 B E \cdot B F \cdot \cos B ;(2) \\
A B C D-\mathrm{cyclic} \stackrel{(1)}{\Rightarrow} B D^{2}=B C \cdot B E+B A \cdot B F \stackrel{(2)}{\Rightarrow} \\
B E^{2}+B F^{2}+2 B E \cdot B F \cos B=B C \cdot B E+B A \cdot B F \\
2 B E \cdot B F \cos B=B C \cdot B E-B E^{2}+B A \cdot B F-B F^{2} \\
2 B E \cdot B F \cos B=B E(B C-B E)+B F(B A-B F) \\
2 B E \cdot B F \cos B=B E \cdot E C+B F \cdot F A
\end{gathered}
$$

5. NCCQ3-NEW CRITERION FOR CYCLIC

QUADRILATERAL-(3)

$$
\begin{gathered}
A B C D-\text { cyclic } \Leftrightarrow \\
B D=\frac{B A \cdot \sin \theta_{1}+B C \sin \theta_{2}}{\sin \left(\theta_{1}+\theta_{2}\right)}
\end{gathered}
$$

Proof.(by Mansur Mansurov)

$$
\begin{gather*}
A D=2 R \sin \theta_{2} ;(1) C D=2 R \sin \theta_{1} ;(2) \\
A C=2 R \sin \left(\theta_{1}+\theta_{2}\right) ; \tag{3}\\
A B C D-\text { cyclic } \Leftrightarrow
\end{gather*}
$$

$B C \cdot 2 R \sin \theta_{2}+B A \cdot 2 R \sin \theta_{1}=B D \cdot 2 R \sin \left(\theta_{1}+\theta_{2}\right)$

$$
\Leftrightarrow B D=\frac{B A \cdot \sin \theta_{1}+B C \sin \theta_{2}}{\sin \left(\theta_{1}+\theta_{2}\right)}
$$

6. NCCQ4-NEW CRITERION FOR CYCLIC QUADRILATERAL-(4)

$$
A B C D-\operatorname{cyclic} \Leftrightarrow \cos A=\frac{1}{2} \cdot \frac{A B \cdot A P+A D \cdot A Q}{A P \cdot A Q}
$$

Proof. Let $A B=b, A P=p, A D=d, A Q=q$
Plagiogonal system: $A B \equiv A x, A D \equiv A y$

$$
A(0,0), B(b, 0), P(p, 0), D(0, d), Q(0, q), C\left(c_{1}, c_{2}\right)
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\left\{\begin{array} { l }
{ B Q : \frac { x } { b } + \frac { y } { q } = 1 } \tag{1}\\
{ P D : \frac { x } { p } + \frac { y } { d } = 1 }
\end{array} \Rightarrow \left\{\begin{array}{l}
x=c_{1}=\frac{b p(q-d)}{p q-b d} \\
y=c_{2}=\frac{q d(p-d)}{p q-b d}
\end{array}\right.\right.
$$

From $N C C Q 1$, we have $A B C D$ is cyclic $\Leftrightarrow A C^{2}=A B \cdot c_{1}+A D \cdot c_{2} \Leftrightarrow$

$$
\begin{gathered}
c_{1}^{2}+c_{2}^{2}+2 c_{1} c_{2} \cos A=b c_{1}+d c_{2} \Leftrightarrow \cos A=\frac{1}{2} \cdot \frac{b p+d q}{p q} \\
\Leftrightarrow \cos A=\frac{1}{2} \cdot \frac{A B \cdot A P+A D \cdot A Q}{A P \cdot A Q}
\end{gathered}
$$

7. AREA OF CYCLIC QUADRILATERAL

$$
[A B C D]=B D^{2} \cdot \frac{\sin B}{2}
$$

Proof. $B D^{2}=B E \cdot B C+B F \cdot B A($ by $N C C Q 1)$

$$
\begin{aligned}
& {[\boldsymbol{A B C D}]=\frac{\sin B}{2}(\boldsymbol{B C} \cdot \boldsymbol{B F}+\boldsymbol{B} \boldsymbol{A} \cdot \boldsymbol{B E}) ;(\text { Gakopoulos }- \text { Blatsis formulae })} \\
& B E=B F \Rightarrow \frac{[A B C D]}{B D^{2}}=\frac{\sin B}{2} \\
& {[A B C D]=B D^{2} \cdot \frac{\sin B}{2}}
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

8. LENGTH OF ANGLE BISECTOR OF TRIANGLE

$$
B E=\frac{B A \cdot B C}{B D}
$$

Proof. From NCCQ3, we have:

$$
\begin{gather*}
B D=\frac{B A \cdot \sin \theta+B C \sin \theta}{\sin (2 \theta)}= \\
=\frac{B A+B C}{2 \cos \theta} ;(1) \\
B E=\frac{2 B A \cdot B C}{B A+B C} \cos \theta \\
\frac{B A+B C}{2 \cos \theta}=\frac{B A \cdot B C}{B E} ;(2) \tag{2}
\end{gather*}
$$

From (1) and (2): $B E=\frac{B A \cdot B C}{B D}$

9. CIRCUMRADIUS OF TRIANGLE

$$
R^{2}=\frac{O P^{2}+O Q^{2}-P Q^{2}}{2}
$$

Proof. From NCCQ4, we have:

$$
\begin{gather*}
\cos A=\frac{1}{2} \cdot \frac{A B \cdot A P+A D \cdot A Q}{A P \cdot A Q} \tag{1}\\
\cos A=\frac{A P^{2}+A Q^{2}-P Q^{2}}{2 A P \cdot P Q} ;(2 \tag{2}
\end{gather*}
$$

From (1) and (2), we get: $A P^{2}+A Q^{2}-P Q^{2}=A B \cdot A P+A C \cdot A Q \Leftrightarrow$

$$
\begin{gathered}
A P(A P-A B)+A Q(A Q-A C)-P Q^{2}=0 \Leftrightarrow \\
A P \cdot P B+A Q \cdot Q C-P Q^{2}=0 \Leftrightarrow \\
O P^{2}-R^{2}+O Q^{2}-R^{2}-P Q^{2}=0 \Leftrightarrow R^{2}=\frac{O P^{2}+O Q^{2}-P Q^{2}}{2}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

 www.ssmrmh.ro

10. PERPENDICULAR CRITERION

$$
\begin{aligned}
& D \in(\widehat{A C}), D E\|A B, \quad D F\| B C \\
& P Q \perp B C \Leftrightarrow \frac{E F}{B F}+\frac{F A}{B E}=2 \cdot \frac{B P}{P Q}
\end{aligned}
$$

Proof. From NCCQ2, we have: $\frac{1}{2} \cdot \frac{E C}{B F}+\frac{F A}{B E}=\cos B$; (1)

$$
P Q \perp B C \Leftrightarrow \cos B=\frac{B P}{B Q} \Rightarrow \frac{E C}{B F}+\frac{F A}{B E}=2 \cdot \frac{B P}{B Q}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

11. LINE PASSES THROUGH THE INCENTER OF TRIANGLE

$$
D, I, F-\text { collinear } \Leftrightarrow\left(\frac{1}{B D}-\frac{1}{B C}\right)+\left(\frac{1}{B F}-\frac{1}{B A}\right)=\frac{A C}{B C \cdot B A}
$$

Proof.

$$
\begin{gather*}
B I_{1}=B I_{2}=I I_{1}=I I_{2}=i \\
\Varangle I I_{1} C=B \\
\Delta I E I_{1}: \sin \left(I I_{1} E\right)=\frac{r}{i} \\
i=\frac{F}{s} \cdot \frac{1}{\sin B}=\frac{a c \sin B \cdot 1 / 2}{\frac{a+b+c}{2} \sin B} \\
i=\frac{a c}{a+b+c} ;(1) \tag{1}
\end{gather*}
$$

$$
\begin{aligned}
&\left\{\begin{array}{l}
\Delta D I I_{1} \sim \Delta D B F \\
\Delta F I I_{2} \sim \Delta F D B
\end{array}\right. \Rightarrow\left\{\begin{array}{l}
\frac{D I}{D F}=\frac{i}{B F} \\
\frac{F I}{F D}=\frac{i}{B D}
\end{array}\right. \\
& \Rightarrow \frac{i}{B F}+\frac{i}{B D} \\
&=1 ;(2)
\end{aligned}
$$

$$
D, I, F-\text { collinear } \Leftrightarrow \frac{i}{B F}+\frac{i}{B D}=1 \Leftrightarrow \frac{1}{B F}+\frac{1}{B D}=\frac{1}{i}
$$

$$
\frac{1}{B F}+\frac{1}{B D}=\frac{A B+B C+C A}{B C \cdot B A} \Leftrightarrow \frac{1}{B D}+\frac{1}{B F}=\frac{1}{B C}+\frac{1}{B A}+\frac{A C}{B C \cdot B A} \Leftrightarrow
$$

$$
\left(\frac{1}{B D}-\frac{1}{B C}\right)+\left(\frac{1}{B F}-\frac{1}{B A}\right)=\frac{A C}{B C \cdot B A}
$$

12. LINE PASSES THROW

CIRCUMCENTER OF TRIANGLE

B, $\boldsymbol{O}, \boldsymbol{D}$-collinear \Leftrightarrow

$$
\begin{aligned}
& \frac{A D}{D C}=\frac{c(a-c \cos B)}{a(c-a \cos B)} \Leftrightarrow \\
& \cos B=\frac{a c(A D-D C)}{a^{2} A D-c^{2} D C}
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Proof.

Let $A D=d_{2}, D C=d_{1}$. From Plagiogonal system theory, we have:

$$
\begin{gathered}
B D_{1}=\frac{a d_{2}}{d_{1}+d_{2}} \\
B D_{2}=\frac{c d_{1}}{d_{1}+d_{2}} \\
B O_{1}=\frac{a-c \cos B}{2 \sin ^{2} B} \\
B O_{2}=\frac{c-a \cos B}{2 \sin ^{2} B} \\
B, O, D-\text { collinear } \Leftrightarrow \frac{B D_{1}}{B D_{2}}=\frac{B O_{1}}{B O_{2}} \Leftrightarrow \frac{a d_{2}}{c d_{1}}=\frac{a-c \cos B}{c-a \cos B} \Leftrightarrow \\
\frac{d_{2}}{d_{1}}=\frac{A D}{D C}=c(a-c \cos B) / a(c-a \cos B) \Leftrightarrow \cos B=\frac{a c(A D-D C)}{a^{2} A D-c^{2} D C}
\end{gathered}
$$

REFERENCES: ROMANIAN MATHEMATICAL MAGAZINE-www.ssmrmh.ro

