

www.ssmrmh.ro

LIFTING THE EXPONENT LEMMA-(LTE)

Albert Iulian Romaniuc –10th grade

National College "Roman-Vodă" Roman-Romania

Definition. We define $v_p(x)$ to be the greatest power in which a prime p divides x: if $v_p(x) = m$, then $p^m | x$ and $p^{m+1} \nmid x$. We also write $p^m | |x$ if and only if $v_p(x) = m$.

Properties.

- 1. $\mathbf{v}_{\mathbf{p}}(\mathbf{n}) = \mathbf{m} \in \mathbb{N}^* \iff \mathbf{p}^{\mathbf{m}} \mid \mathbf{n} \text{ and } \mathbf{p}^{\mathbf{m}+1} \nmid \mathbf{n}$.
- 2. $v_p(n) = 0 \Leftrightarrow gcd(p, n) = 1$.
- 3. $v_p(p) = 1$, for all primes p.
- 4. $v_p(m+n) \ge \min\{v_p(m), v_p(n)\}.$
- 5. $v_p(mn) = v_p(m) + v_p(n)$.

Note. We have $v_p(0) = \infty$ for all primes p.

Lemma 1. Let x and y be 2 integers and let n be a positive integer. Given an arbitrary prime p(in particular, we can have p = 2) such that gcd(n,p) = 1, $p \mid x-y$ and neither x, nor y is divisible by p, we have:

$$v_{\mathfrak{p}}(x^n - y^n) = v_{\mathfrak{p}}(x - y).$$

Proof. $x^n - y^n = (x - y)(x^{n-1} + x^{n-2}y + \dots + y^{n-1})$. Let's show that $p \nmid x^{n-1} + x^{n-2}y + \dots + y^{n-1}$. From $p \mid x - y \implies x \equiv y \pmod{p} \implies x^{n-1} + x^{n-2}y + \dots + y^{n-1} \equiv x^{n-1} + x^{n-2} \cdot x + \dots + x^{n-1} \equiv nx^{n-1} \pmod{p}$. Now, because we know that gcd(n, p) = 1 and $p \nmid x \implies p \nmid nx^{n-1}$.

Therefore, since $p \nmid nx^{n-1} \Longrightarrow v_p(x^n - y^n) = v_p(x - y)$, q. e. d.

Lemma 2. Let x and y be 2 integers and let n be an odd positive integer. Given an arbitrary prime p(in particular, we can have p = 2) such that gcd(n,p)=1, p | x + y and neither x, nor y is divisible by p, we have:

$$v_p(x^n + y^n) = v_p(x + y).$$

Proof. Since n is an odd positive integer, we know that $y^n = -(-y)^n \xrightarrow{\text{Lemma 1}} v_p(x^n + y^n) = v_p(x^n - (-y)^n) = v_p(x - (-y)) \Longrightarrow v_p(x^n + y^n) = v_p(x + y), q. e. d.$

www.ssmrmh.ro

Theorem 1 (First Form of LTE). Let x and y be (not necessary positive) integers, let n be a positive integer, and let p be an odd prime such that $p \mid x - y$, $p \nmid x$ and $p \nmid y$. We have:

$$v_p(x^n - y^n) = v_P(x - y) + v_p(n).$$

Theorem 2 (Second Form of LTE). Let x, y be two integers, n be an odd positive integer, and p be an odd prime such that $p \mid x + y$, $p \nmid x$ and $p \nmid y$. We have:

$$v_p(x^n+y^n)=v_p(x+y)+v_p(n). \label{eq:vp}$$

Theorem 3 (LTE for p = 2). Let x and y be two odd integers such that $4 \mid x - y$. We have:

$$v_2(x^n - y^n) = v_2(x - y) + v_2(n).$$

Theorem 4. Let x and y be two odd integers and let n be an even positive integer. We have:

$$v_2(x^n - y^n) = v_2(x - y) + v_2(x + y) + v_2(n) - 1.$$

Problem 1. Find all possible values of n, where n is a positive integer, such that $\frac{3^n-1}{2^n}$ is also an integer.

Solution. If n is even $\xrightarrow{\text{Theorem 4}} v_2(3^n-1^n) = v_2(3-1) + v_2(3+1) + v_2(n) - 1 = v_2(n) + 2$. Because $\frac{3^n-1}{2^n}$ is an integer $\Rightarrow v_2(3^n-1^n) \geq n \Rightarrow v_2(n) + 2 \geq n$, but we also know that $v_2(n) \leq \log_2 n \Rightarrow 2 + \log_2 n \geq n \Leftrightarrow \log_2 4 + \log_2 n \geq n \Leftrightarrow \log_2(4n) \geq n \Leftrightarrow 4n \geq 2^n$, which is true only for n ≤ 4 (for $n \geq 5$, it's easy to show that $2^n > 4n$ with the Principle of Mathematical Induction). Therefore, in this case we have the solutions n = 2 and n = 4.

If $n=1 \Rightarrow \frac{3^1-1}{2^1}=1$, which is an integer and so n=1 is a solution. If n is odd and $n \ge 3 \Rightarrow m=2k+1$, where k is a positive integer. For $n \ge 3$, it's clear that $v_2(2^n) \ge 3 \Rightarrow 4 \mid 2^n$, but $3^n-1=(4-1)^n-1 \equiv -1-1 \equiv -2 \equiv 2 \pmod{4} \Rightarrow 4 \nmid 3^n-1$ for $n \ge 3$.

In conclusion, $n \in \{1, 2, 4\}$, q.e.d.

Problem 2. Find all positive integers a such that $\frac{5^a+1}{3^a}$ is an integer.

www.ssmrmh.ro

Solution. From $\frac{5^a+1}{3^a} \Rightarrow 3^a \mid 5^a+1$. If a is even, then: $5^a+1 \equiv (-1)^a+1 \equiv 2 \pmod 3$, which is false. So, a must be an odd positive integer $\xrightarrow{\text{Theorem 2}} v_3(5^a+1^a) = v_3(5^a+1) = v_3(5+1) + v_3(a) \Rightarrow v_3(5^a+1) = v_3(a) + 1$. Let $a=3^r s$, where $r \geq 0$ and $s \geq 1$ are 2 integers $\Rightarrow v_3(a) = r$, but $v_3(3^a) = a$ and because $\frac{5^a+1}{3^a}$ is an integer $\Rightarrow v_3(3^a) \leq v_3(5^a+1) \Leftrightarrow 3^r s \leq r+1$. For $r \geq 1$, it's obvious that $3^r > r+1$ (it's easy to show this with the Principle of Mathematical Induction). Therefore, $r=0 \Rightarrow s=1 \Rightarrow a=3$.

Problem 3. Let p > 2013 be a prime. Also, let a and b be positive integers such that p | a + b, but $p^2 \nmid a + b$. If $p^2 \mid a^{2013} + b^{2013}$, then find the number of positive integer $n \le 2013$ such that $p^n \mid a^{2013} + b^{2013}$.

Solution. From $p \mid a + b$ and $p^2 \nmid a + b \Longrightarrow v_p(a + b) = 1$. We also must have $v_p(a^{2013} + b^{2013}) \ge 2$. If $p \nmid a$ and $p \nmid b \xrightarrow{\text{Theorem 2}} v_p(a^{2013} + b^{2013}) = v_p(a + b) + v_p(2013) = 1$, which is obvious false.

Now, WLOG let's consider that $p \mid a$ and $p \nmid b \Rightarrow p \nmid a + b$, which is false. Therefore $p \mid a$ and $p \mid b$. If $p \mid a$ and $p \mid b \Rightarrow p^{2013} \mid a^{2013}$ and $p^{2013} \mid b^{2013} \Rightarrow p^{2013} \mid a^{2013} + b^{2013} \Rightarrow p^k \mid a^{2013} + b^{2013}$ for every $k \mid a^{2013} \mid a^{201$

Problem 4. Let a and b two integers and p \neq 3 a prime number such that p | a + b and p² | a³ + b³. Show that p² | a + b or p³ | a³ + b³.

Solution. If p | a, from p | a + b \Rightarrow p | b \Rightarrow p | a and p an

Problem 5. Find all positive integer solutions of the equation $x^{2009} + y^{2009} = 7^z$.

Solution. Because $x+y \mid x^{2009}+y^{2009}$ and $x+y>1 \Rightarrow 7 \mid x+y$. Removing the highest possible power of 7 from x, y, we get from Theorem 2 that: $v_7(x^{2009}+y^{2009})=v_7(x+y)+v_7(2009)=v_7(x+y)+2 \Rightarrow x^{2009}+y^{2009}=49k(x+y)$, where $7 \nmid k$. From $x^{2009}+y^{2009}=7^z \Rightarrow$ the only prime factor of $x^{2009}+y^{2009}$ is $7 \Rightarrow k=1$. Therefore, $x^{2009}+y^{2009}=49(x+y)$. If x=1 or $y=1 \Rightarrow y^{2009}=48+49y$ or $x^{2009}=48+49x$, which obvious doesn't have any solutions in \mathbb{Z}_+ because LHS is always greater than RHS. In conclusion, the equation $x^{2009}+y^{2009}=7^z$ doesn't have any solutions in \mathbb{Z}_+ .

www.ssmrmh.ro

Problem 6. Let k > 1 be an integer. Show that there exists infinitely many positive integers n such that $n \mid 1^n + 2^n + \cdots + k^n$.

Solution. Case I. k is not a power of 2. Let p be any odd prime divisor of k. Let's show that $n = p^m$ works for any positive integer m.

 $\begin{array}{l} \text{Consider } i^n + (p-i)^n, \text{ where } i = 1,2,3,...,p-1. \text{ From Theorem 2, we have: } v_p(i^n + (p-i)^n) = \\ = v_p(p) + v_p(n) = 1 + m. \text{ Therefore, } p^{m+1} \mid i^n + (p-i)^n. \text{ Summing, we have: } p^{m+1} \mid 2(1^n + (p-i)^n + (p-i)^n) \text{ and so } p^{m+1} \mid 1^n + 2^n + \cdots + (p-1)^n + p^n + (p+1)^n + \cdots + k^n. \end{array}$

In conclusion, $n = p^m$ works for every positive integer m.

Case II. k is a power of 2.

Let p be any odd prime divisor of k + 1. Using a similar proof above, it's easy to show that $n = p^m$ works again for any positive integer m.

Problem 7. Let k be a positive integer. Find all positive integers n such that $3^k \mid 2^n - 1$.

Solution. If n is an odd positive integer \Rightarrow n = 2a + 1, where a is a nonnegative integer. Then, $2^n-1=2^{2a+1}-1=(3-1)^{2a+1}-1\equiv -1-1\equiv -2\equiv 1 \pmod 3$, but because $v_3(3^k)>0$, this case is impossible. So, n is an even number, n = 2m, where m is a positive integer. Now, we have: $3^k \mid 4^m-1$. From Theorem 1: $v_3(4^m-1)=v_3(4^m-1^m)=v_3(4-1)+v_3(m)=1+v_3(m) \Rightarrow v_3(m) \geq k-1$. Therefore, the answer is $n=2\cdot 3^{k-1}\cdot t$, where t is a nonnegative integer.

Problem 8. Prove that for all positive integers n, there is a positive integer m that $7^n \mid 3^m + 5^m - 1$.

Solution. We will show that $m = 7^{n-1}$ works. From Theorem $1 \Rightarrow v_7(3^{7^{n-1}} + 4^{7^{n-1}}) = v_7(3+4) + v_7(7^{n-1}) = 1 + n - 1 = n \Rightarrow 3^{7^{n-1}} \equiv -4^{7^{n-1}} \pmod{7^n}$.

In a similar way, we get $5^m \equiv -2^m (\text{mod } 7^n) \Leftrightarrow 5^{7^{n-1}} \equiv -2^{7^{n-1}} (\text{mod } 7^n)$. So, we get: $3^{7^{n-1}} + 5^{7^{n-1}} \equiv -4^{7^{n-1}} - 2^{7^{n-1}} (\text{mod } 7^n) \Leftrightarrow 3^{7^{n-1}} + 5^{7^{n-1}} - 1 \equiv -\left(4^{7^{n-1}} + 2^{7^{n-1}} + 1\right) (\text{mod } 7^n)$. Since we want to show that $3^{7^{n-1}} + 5^{7^{n-1}} - 1 \equiv 0 (\text{mod } 7^n)$, it's enough to show that $4^{7^{n-1}} + 2^{7^{n-1}} + 1 \equiv \equiv 0 (\text{mod } 7^n)$. Since $7 \nmid 2^{7^{n-1}} - 1 (\text{since } 2^i \equiv 2,4,1 \pmod{7})$ and $2^i \equiv 1 (\text{mod } 7) \Leftrightarrow i \equiv 0 (\text{mod } 3))$, it is enough to show that: $(4^{7^{n-1}} + 2^{7^{n-1}} + 1)(2^{7^{n-1}} - 1) \equiv 0 (\text{mod } 7) \Leftrightarrow 8^{7^{n-1}} - 1 \equiv 0 (\text{mod } 7)$, which is actually true from Theorem 1: $v_7(8^{7^{n-1}} - 1) = v_7(8 - 1) + v_7(7^{n-1}) = n$.

In conclusion, there is a positive integer m such that $7^n \mid 3^m + 5^m - 1$, m = 7^{n-1} .

www.ssmrmh.ro

References:

- [1] https://artofproblemsolving.com/community/c6_high_school_olympiads
- [2] https://pregatirematematicaolimpiadejuniori.files.wordpress.com/2016/07/lte.pdf
- [3] https://brilliant.org/wiki/lifting-the-exponent/
- [4] https://pregatirematematicaolimpiadejuniori.files.wordpress.com/2016/07/material-lte-iunie-2016.pdf