Some unique mathematical conjectures of continued fractions Author- Satyam Roy
West Bengal, India

1st conjecture

$$
\frac{6}{\pi}=3-\frac{9}{12-\frac{54}{21-\frac{135}{30-\frac{252}{39-\frac{405}{\cdots}}}}}
$$

The generalization of term is as follows-

$$
a(n)=9 \times(n)+3 \text { and } b(n)=-18 \times n+9 \times(n)
$$

We can also define $\Gamma\left(\frac{1}{2}\right)^{2}=\pi$ therefore the continued fraction will become-

$$
\frac{6}{\Gamma\left(\frac{1}{2}\right)^{2}}=3-\frac{9}{12-\frac{54}{21-\frac{135}{30-\frac{252}{39-\frac{405}{\cdots}}}}}
$$

2nd conjecture

$$
\frac{\sin \left(\frac{\pi}{2}\right)}{\sin ^{-1}(1)-\sin \left(\frac{\pi}{2}\right)}=2-\frac{3}{5-\frac{6}{8-\frac{15}{11-\frac{30}{14-\frac{49}{\cdots .}}}}}
$$

The generalization of term is as follows-

$$
a(n)=3 n+2 \text { and } b(n)=-2 n^{2}+n
$$

3rd conjecture
I have designed this interesting conjecture, that includes napier's constant e and Ramanujan's number 1729, followed by an interesting continued fraction.

$$
-\frac{1}{e}=-\frac{1729}{\sum_{n=0}^{n=\infty} \frac{(n-1+1729)}{n!}}=\frac{-3}{8+\frac{5}{32+\frac{21}{72+\frac{45}{128+\frac{77}{}}}}}
$$

The generalization of term is as follows-

$$
a(n)=8 n^{2} \text { and } b(n)=4 n^{2}-4 n-3
$$

THANK YOU

