Shortest Distance between Two Points on a Right Circular Cone

Introduction

In this article, we will derive an expression, using elementary ways, for the shortest distance between two points on the surface of a right circular cone

Description and Theory

Let us consider a right circular cone of height H, radius R and slant height L. The base of the cone rests on the $x y$-plane and the vertex V lies at $(0,0, H)$. Let there be two points A and B on the surface of the cone with coordinates $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ respectively. Let us call the projections of A and B along their respective generator lines (the line passing through V and A and the line passing through V and $B)$ as P_{A} and P_{B} having coordinates $\left(x_{1} H /\left(H-z_{1}\right), y_{1} H /\left(H-z_{1}\right)\right)$ and $\left(x_{2} H /\left(H-z_{2}\right), y_{2} H /\left(H-z_{2}\right)\right)$ respectively. Let us now cut the cone in the direction of any generator of the cone and then flatten it on the $x y$-plane in the form of a circular sector with endpoints Q (coordinates $(L \cos (\alpha), L \sin (\alpha))$ and S (coordinates $(L, 0)$) such that the center of the sector (vertex V of the cone) coincides with the origin O of the $x y$-plane (i.e., one side of the sector (having endpoint S) lies on the x-axis and the other side (having endpoint Q) lies in some quadrant making an angle α (central angle of the sector) with the positive x-axis in the anti-clockwise direction). Thus, the points A, B, P_{A} and P_{B} can be mapped onto the points $A^{\prime}, B^{\prime}, P_{A}^{\prime}$ and P_{B}^{\prime} having the coordinates $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)$, $\left(L \cos \left(\theta_{A}^{\prime}+\alpha\right), L \sin \left(\theta_{A}^{\prime}+\alpha\right)\right)$ and $\left(L \cos \left(\theta_{B}^{\prime}+\alpha\right), L \sin \left(\theta_{B}^{\prime}+\alpha\right)\right)$ respectively (θ_{A}^{\prime} and θ_{B}^{\prime} are explained below). The generator should be chosen in such a way so that a straight line could pass through the points A^{\prime} and B^{\prime} without crossing any of the sides of the sector.

The Shortest Distance

Since distances are preserved in the process of cutting/bending, therefore,

$$
\begin{equation*}
|\overline{V A}|=\left|\overline{O A^{\prime}}\right| \tag{1}
\end{equation*}
$$

where, $|\overline{V A}|$ is the length of the line joining V and A and $\left|\overline{O A^{\prime}}\right|$ is the length of the line joining O and A^{\prime}.
Using (1) and the $3 D$ distance formula, we have,

$$
\left|\overline{O A^{\prime}}\right|=\sqrt{\left(0-x_{1}\right)^{2}+\left(0-y_{1}\right)^{2}+\left(H-z_{1}\right)^{2}}
$$

Similarly, for B, we have,

$$
\left|\overline{O B^{\prime}}\right|=\sqrt{\left(0-x_{2}\right)^{2}+\left(0-y_{2}\right)^{2}+\left(H-z_{2}\right)^{2}}
$$

Since the sector is formed from a cone, the circumference of the circular sector (excluding the length of the sides) must be equal to the circumference of the base of the cone, hence,

$$
\frac{2 \pi L(360-\alpha)}{360}=2 \pi R \Longrightarrow \alpha=360\left(1-\frac{R}{L}\right)
$$

where, $L=\sqrt{R^{2}+H^{2}}$ is the radius of the circular sector.
Observe that,

$$
\begin{equation*}
\left|\widehat{P_{A} Q}\right|=\left|\widehat{P_{A}^{\prime} Q}\right| \tag{2}
\end{equation*}
$$

where, $\left|\widehat{P_{A} Q}\right|$ is the length of the arc $\widehat{P_{A} Q}$ in $3 D$ and $\left|\widehat{P_{A}^{\prime} Q}\right|$ is the length of the $\operatorname{arc} \widehat{P_{A}^{\prime} Q}$ in $2 D$.
It can be shown that,

$$
\left|\widehat{P_{A} Q}\right|=\frac{2 \pi R \theta_{A}}{360}
$$

and

$$
\left|\widehat{P_{A}^{\prime} Q}\right|=\frac{2 \pi L \theta_{A}^{\prime}}{360}
$$

where, θ_{A} is the angle subtended by the arc $\widehat{P_{A} Q}$ in $3 D$ and θ_{A}^{\prime} is the angle subtended by the arc $\widehat{P_{A}^{\prime} Q}$ in $2 D$.
Since V, A and P_{A} are collinear points, therefore,

$$
\tan \left(\theta_{A}\right)=\frac{y_{1}}{x_{1}}
$$

using (2), we have,

$$
\theta_{A}^{\prime}=\frac{R}{L} \tan ^{-1}\left(\frac{y_{1}}{x_{1}}\right)
$$

Thus, the coordinates of A^{\prime} could be resolved as,

$$
a_{1}=\left|\overline{O A^{\prime}}\right| \cos \left(\theta_{A}^{\prime}+\alpha\right)=\left|\overline{O A^{\prime}}\right| \cos \left(\frac{R}{L} \tan ^{-1}\left(\frac{y_{1}}{x_{1}}\right)+360\left(1-\frac{R}{L}\right)\right)
$$

and

$$
b_{1}=\left|\overline{O A^{\prime}}\right| \sin \left(\theta_{A}^{\prime}+\alpha\right)=\left|\overline{O A^{\prime}}\right| \sin \left(\frac{R}{L} \tan ^{-1}\left(\frac{y_{1}}{x_{1}}\right)+360\left(1-\frac{R}{L}\right)\right)
$$

Similarly, the coordinates of B^{\prime} could be written as,

$$
a_{2}=\left|\overline{O B^{\prime}}\right| \cos \left(\theta_{B}^{\prime}+\alpha\right)=\left|\overline{O B^{\prime}}\right| \cos \left(\frac{R}{L} \tan ^{-1}\left(\frac{y_{2}}{x_{2}}\right)+360\left(1-\frac{R}{L}\right)\right)
$$

and

$$
b_{2}=\left|\overline{O B^{\prime}}\right| \sin \left(\theta_{B}^{\prime}+\alpha\right)=\left|\overline{O B^{\prime}}\right| \sin \left(\frac{R}{L} \tan ^{-1}\left(\frac{y_{2}}{x_{2}}\right)+360\left(1-\frac{R}{L}\right)\right)
$$

Since it is known that the shortest path between two points lying on the surface of a plane is a straight line, therefore, using the $2 D$ distance formula, the shortest distance $D_{A B}$ between the points A^{\prime} and B^{\prime} as well as A and B is given by,

$$
D_{A B}=\sqrt{\left(a_{1}-a_{2}\right)^{2}+\left(b_{1}-b_{2}\right)^{2}}
$$

Romanian Mathematical Magazine
Web: http://www.ssmrmh.ro
The Author: This article is published with open access.
ANGAD SINGH
email-id: angadsingh1729@gmail.com

