A Counter Intuitive Constant

Introduction

In this article, we will find a mathematical constant related to the geometry of a right circular cone.

Description of the Cone

Consider a right circular cone C_{1}, of radius $R(A D=D B=R)$, height $H(O D=H)$, slant height $L(O A=O B=L)$ and semi-vertical angle θ $(\angle A O D=\angle D O B=\theta)$, lying on the $x y$-plane (the point B lies on the $x y$ plane) on one of its generators whose vertex lies at the origin O as shown below.

C_{1} is rotated about O keeping B on the $x y$-plane. The locus of the point A is a circle of radius $r(O C=r)$ which forms the base of another cone C_{2} of height $h(A C=h)$ and semi-vertical angle $\left(90^{\circ}-2 \theta\right)$.
If V_{1} and V_{2} be the volumes of C_{1} and C_{2} respectively, then in this article, we will find the value of $\lambda(\lambda=R / H=\tan (\theta))$, such that V_{1} becomes equal to V_{2}.

Finding the Constant

Let us first find the value of r and h in terms of R and λ by finding the area of the triangle $\triangle O A B$ in two different ways, that is,

$$
\operatorname{ar}(\Delta O A B)=\frac{1}{2}(2 R)(H)=\frac{1}{2}(L)(h) \Longrightarrow h=\frac{2 R H}{L}=\frac{2 R}{\sqrt{1+\lambda^{2}}}
$$

From $\triangle O A C$, we have,

$$
r=\frac{h}{\tan (2 \theta)}=\frac{h}{\tan \left(2 \tan ^{-1}(\lambda)\right)}=\frac{\frac{2 R}{\sqrt{1+\lambda^{2}}}}{\frac{2 \lambda}{1-\lambda^{2}}}=\frac{R\left(1-\lambda^{2}\right)}{\lambda \sqrt{1+\lambda^{2}}}
$$

Using some algebra, we obtain the value of the expression V_{1} / V_{2} as,

$$
\frac{V_{1}}{V_{2}}=\frac{\frac{1}{3} \pi r^{2} h}{\frac{1}{3} \pi R^{2} H}=\frac{R^{2}\left(1-\lambda^{2}\right)^{2}}{\lambda^{2}\left(1+\lambda^{2}\right)} \frac{2 R}{\sqrt{1+\lambda^{2}}} \frac{\lambda}{R^{3}}=\frac{2\left(1-\lambda^{2}\right)^{2}}{\lambda\left(1+\lambda^{2}\right)^{3 / 2}}
$$

Since, $\lambda \in \mathbb{R}^{+}$, squaring the above equation, substituting $t=\lambda^{2}$ and equating it to 1 , we obtain,

$$
\frac{4(1-t)^{4}}{t(1+t)^{3}}=1 \Longrightarrow 3 t^{4}-19 t^{3}+21 t^{2}-17 t+4=0
$$

using the rational root test, the only possible rational roots of the above equation are $\pm 1, \pm 2, \pm 4, \pm 1 / 3, \pm 2 / 3, \pm 4 / 3$. Of these, $1 / 3$ makes the above equation true, therefore, we have,

$$
3 t^{4}-19 t^{3}+21 t^{2}-17 t+4=0 \Longrightarrow(3 t-1)\left(t^{3}-6 t^{2}+5 t-4\right)=0
$$

To solve the above cubic equation, let us convert it into a depressed cubic equation by substituting $t=s+2$, which then gives,

$$
s^{3}-7 s-10=0
$$

If s is of the form $u^{1 / 3}+v^{1 / 3}$, then,

$$
s=u^{1 / 3}+v^{1 / 3} \Longrightarrow s^{3}-3(u v)^{1 / 3} s-(u+v)=0
$$

Comparing the above equation with $s^{3}-7 s-10=0$, we obtain,

$$
u v=\frac{343}{27} \text { and } u+v=10
$$

which finally gives,

$$
u=5+\frac{2 \sqrt{249}}{9} \text { and } v=5-\frac{2 \sqrt{249}}{9}
$$

Therefore, all positive real values of λ which makes V_{1} equal to V_{2} are given by,

$$
\lambda_{1}=\frac{1}{\sqrt{3}} \text { and } \lambda_{2}=\sqrt{2+\sqrt[3]{5+\frac{2 \sqrt{249}}{9}}+\sqrt[3]{5-\frac{2 \sqrt{249}}{9}}}
$$

The semi-vertical angles for which the volumes of C_{1} and C_{2} are equal are then given by

$$
\tan ^{-1}\left(\lambda_{1}\right)=30^{\circ}
$$

and

$$
\tan ^{-1}\left(\lambda_{2}\right)=66.28945 \ldots \circ
$$

where, $66.28945 \ldots{ }^{\circ}$ is the counter intuitive constant.

Conclusion

The semi-vertical angle obtained at the end $66.28945 . .{ }^{\circ}$ looks slightly counter intuitive. If we look at the conditions imposed on the rotation of C_{1}, the angles which naturally comes to our mind are 30° and 60°. Getting an angle of 30° confirms our intuition even more which eventually turns out to be false for the second semi-vertical angle. Thus, instead of going for the "obvious", one should always seek a well thought out proof.

Romanian Mathematical Magazine
Web: http://www.ssmrmh.ro
The Author: This article is published with open access.
ANGAD SINGH
email-id: angadsingh1729@gmail.com

