# A Simple Diophantine Equation 

## Introduction

The history of the theory of numbers and Diophantine analysis is rich and immense [1]. Since antiquity, people have contributed tremendously to finding the solutions to higher degree Diophantine equations and to near misses of those equations for which no integer solutions exists such as $a^{n}+b^{n}=c^{n}$ where $a, b, c \in \mathbb{Z}, n \in \mathbb{N}$ and $n \geq 3[2]$. In this article, we will find some parametric solutions to such a Diophantine equation and will derive a simple proof of the universality of that equation.

## The Diophantine Equation

The equation [3] which we will examine in this article is,

$$
\begin{equation*}
p^{2}+q^{2}=r^{2}+n \tag{1}
\end{equation*}
$$

where, $p, q, r, n \in \mathbb{N}$. The solution to (1) when $n=0$ is known since antiquity. If we vary the value of $n$ in the above equation, we can obtain a family of "near-miss" equations.

## The Parametric Solution

Let us divide the solution to (1) in the following two cases:
Case 1: When $n=2 k, k \in \mathbb{N}$
Let $p=A k+B, q=C k+D$ and $r=E k+F$ be a possible parametric solution to (1), where, $A, B, C, D, E, F \in \mathbb{Z}$. Then, we have the following equality,

$$
\begin{equation*}
(A k+B)^{2}+(C k+D)^{2}=(E k+F)^{2}+2 k \tag{2}
\end{equation*}
$$

since (2) is an identity for all $k$, therefore, comparing the coefficients of all the powers of $k$, we obtain,

$$
A^{2}+C^{2}=E^{2}, A B+C D=E F+1, B^{2}+D^{2}=F^{2}
$$

selecting the two smallest Pythagorean triplets $(A, C, E)$ and $(B, D, F)$ which satisfies the condition $A B+C D=E F+1$, we obtain the following identity,

$$
\begin{equation*}
(3 k-8)^{2}+(4 k-15)^{2}=(5 k-17)^{2}+2 k \tag{3}
\end{equation*}
$$

where, $k \in \mathbb{N}$.
Case 2: When $n=2 k-1, k \in \mathbb{N}$ Observe that, (1) can be written as,

$$
p^{2}-(2 k-1)=r^{2}-q^{2}
$$

it is known from the identity $2 a+1=(a+1)^{2}-a^{2}$ that any odd integer $2 a-1$ can be written as the difference of two integer squares, therefore by letting $p$ be any even number $2 m$, we obtain the following identity,

$$
(2 m)^{2}-(2 k-1)=2\left(2 m^{2}-k\right)+1=\left(2 m^{2}-k+1\right)^{2}-\left(2 m^{2}-k\right)^{2}
$$

rearranging the above terms, we finally have,

$$
(2 m)^{2}+\left(2 m^{2}-k\right)^{2}=\left(2 m^{2}-k+1\right)^{2}+(2 k-1)
$$

where, $m \in \mathbb{N}$.

## Conclusion

Continuing the procedure used in "Case-1", some similar identities follows,

$$
\begin{gathered}
(5 k-8)^{2}+(12 k-15)^{2}=(13 k-17)^{2}+2 k \\
(5 k-12)^{2}+(12 k-35)^{2}=(13 k-37)^{2}+2 k \\
(7 k-12)^{2}+(24 k-35)^{2}=(25 k-37)^{2}+2 k \\
(7 k-16)^{2}+(24 k-63)^{2}=(25 k-65)^{2}+2 k \\
(9 k-16)^{2}+(40 k-63)^{2}=(41 k-65)^{2}+2 k \\
(9 k-20)^{2}+(40 k-99)^{2}=(41 k-101)^{2}+2 k \\
(11 k-20)^{2}+(60 k-99)^{2}=(61 k-101)^{2}+2 k \\
(11 k-24)^{2}+(60 k-143)^{2}=(61 k-145)^{2}+2 k
\end{gathered}
$$

and so on.
Generalizing the above identities, we obtain the following pair of symmetric identities,

$$
\left(\left|a^{2}-b^{2}\right| k-4 a\right)^{2}+\left((2 a b) k-\left(4 a^{2}-1\right)\right)^{2}=\left(\left(a^{2}+b^{2}\right) k-\left(4 a^{2}+1\right)\right)^{2}+2 k
$$

and

$$
\left(\left|a^{2}-b^{2}\right| k-4 b\right)^{2}+\left((2 a b) k-\left(4 b^{2}-1\right)\right)^{2}=\left(\left(a^{2}+b^{2}\right) k-\left(4 b^{2}+1\right)\right)^{2}+2 k
$$

where, $|a-b|=1$ and $a, b \in \mathbb{N}$.
Similarly, a nice parametric solution to (1) for "Case-2" could be given by subtracting 1 from both the sides of (3), i.e.,

$$
(3 k-8)^{2}+(4 k-15)^{2}-1=(5 k-17)^{2}+2 k-1=25 k^{2}-168 k+288=(3 k-12)^{2}+(4 k-12)^{2}
$$

from which we obtain the following identity,

$$
(3 k-12)^{2}+(4 k-12)^{2}=(5 k-17)^{2}+2 k-1
$$

where, $k \in \mathbb{N}-\{3,4\}$.
The above parametric solutions shows that for every natural number $n$ there exists infinitely many integers $p, q$ and $r$ such that (1) is true. Hence, any natural number $n$ can be written in the form $x^{2}+y^{2}-z^{2}$ which proves its universality. This is a useful result/lemma in the field of Diophantine analysis, additive number theory and combinatorics.

## References

[1] Dickson, Leonard Eugene, History of the Theory of Numbers, Volume II : Diophantine Analysis. Carnegie Institution of Washington, Washington (1920)
[2] Hardy, G.H. and Wright, E.M. and Heath-Brown, D.R. and HeathBrown, R. and Silverman, J. and Wiles, A., An Introduction to the Theory of Numbers, OUP Oxford (2008)
[3] Andreescu, T. and Andrica, D. and Cucurezeanu, I., An Introduction to Diophantine Equations: A Problem-Based Approach. Birkhäuser Boston (2010)

Romanian Mathematical Magazine
Web: http://www.ssmrmh.ro
The Author: This article is published with open access.
ANGAD SINGH
email-id: angadsingh1729@gmail.com

