
A Simple Diophantine Equation

Introduction

The history of the theory of numbers and Diophantine analysis is rich and
immense [1]. Since antiquity, people have contributed tremendously to find-
ing the solutions to higher degree Diophantine equations and to near misses
of those equations for which no integer solutions exists such as an + bn = cn

where a, b, c ∈ Z, n ∈ N and n ≥ 3 [2]. In this article, we will find some
parametric solutions to such a Diophantine equation and will derive a simple
proof of the universality of that equation.

The Diophantine Equation

The equation [3] which we will examine in this article is,

p2 + q2 = r2 + n (1)

where, p, q, r, n ∈ N. The solution to (1) when n = 0 is known since antiquity.
If we vary the value of n in the above equation, we can obtain a family of
“near-miss” equations.

The Parametric Solution

Let us divide the solution to (1) in the following two cases:

Case 1: When n = 2k, k ∈ N
Let p = Ak + B, q = Ck + D and r = Ek + F be a possible parametric
solution to (1), where, A,B,C,D,E, F ∈ Z. Then, we have the following
equality,

(Ak + B)2 + (Ck + D)2 = (Ek + F )2 + 2k (2)

since (2) is an identity for all k, therefore, comparing the coefficients of all
the powers of k, we obtain,

A2 + C2 = E2, AB + CD = EF + 1, B2 + D2 = F 2
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selecting the two smallest Pythagorean triplets (A,C,E) and (B,D, F ) which
satisfies the condition AB +CD = EF + 1, we obtain the following identity,

(3k − 8)2 + (4k − 15)2 = (5k − 17)2 + 2k (3)

where, k ∈ N.

Case 2: When n = 2k − 1, k ∈ N
Observe that, (1) can be written as,

p2 − (2k − 1) = r2 − q2

it is known from the identity 2a + 1 = (a + 1)2 − a2 that any odd integer
2a − 1 can be written as the difference of two integer squares, therefore by
letting p be any even number 2m, we obtain the following identity,

(2m)2 − (2k − 1) = 2(2m2 − k) + 1 = (2m2 − k + 1)2 − (2m2 − k)2

rearranging the above terms, we finally have,

(2m)2 + (2m2 − k)2 = (2m2 − k + 1)2 + (2k − 1)

where, m ∈ N.

Conclusion

Continuing the procedure used in “Case-1”, some similar identities follows,

(5k − 8)2 + (12k − 15)2 = (13k − 17)2 + 2k

(5k − 12)2 + (12k − 35)2 = (13k − 37)2 + 2k

(7k − 12)2 + (24k − 35)2 = (25k − 37)2 + 2k

(7k − 16)2 + (24k − 63)2 = (25k − 65)2 + 2k

(9k − 16)2 + (40k − 63)2 = (41k − 65)2 + 2k

(9k − 20)2 + (40k − 99)2 = (41k − 101)2 + 2k

(11k − 20)2 + (60k − 99)2 = (61k − 101)2 + 2k

(11k − 24)2 + (60k − 143)2 = (61k − 145)2 + 2k
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and so on.
Generalizing the above identities, we obtain the following pair of symmetric
identities,

(
∣∣a2 − b2

∣∣ k − 4a)2 + ((2ab)k − (4a2 − 1))2 = ((a2 + b2)k − (4a2 + 1))2 + 2k

and

(
∣∣a2 − b2

∣∣ k − 4b)2 + ((2ab)k − (4b2 − 1))2 = ((a2 + b2)k − (4b2 + 1))2 + 2k

where, |a− b| = 1 and a, b ∈ N.
Similarly, a nice parametric solution to (1) for “Case-2” could be given by
subtracting 1 from both the sides of (3), i.e.,

(3k−8)2+(4k−15)2−1 = (5k−17)2+2k−1 = 25k2−168k+288 = (3k−12)2+(4k−12)2

from which we obtain the following identity,

(3k − 12)2 + (4k − 12)2 = (5k − 17)2 + 2k − 1

where, k ∈ N− {3, 4}.
The above parametric solutions shows that for every natural number n there
exists infinitely many integers p, q and r such that (1) is true. Hence, any
natural number n can be written in the form x2 + y2 − z2 which proves
its universality. This is a useful result/lemma in the field of Diophantine
analysis, additive number theory and combinatorics.
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