A Complex Result

Introduction

It is known from complex analysis that many curious and non-trivial identities could be derived from the method of separating a function into real and imaginary parts. In this article, we will derive a simple integral technique using the same method.

Prerequisites

Definition 1

A function f of the complex variable z is analytic in an open set if it has a derivative at each point in that set [1].

Cauchy's Integral Theorem

Let C denote a simple closed contour and f is analytic at each point interior to and on C, then [1],

$$
\oint_{C} f(z) d z=0
$$

The Integral Technique

Theorem: Let Γ be a closed rectangular contour in the complex plane having vertices $(0,0),(R, 0),(R, i)$ and $(0, i)$ traversed counterclockwise, where R tends to infinity. Let f be a function of the complex variable z satisfying the below conditions,

1. f is analytic inside and on Γ
2. $\exists M \in \mathbb{R}^{+}-\{0\}| | f(x+i y) \mid \leq M \forall x \in \mathbb{R}^{+}, 0<y<1$
3. $f(i x)=f(x)$ for all $0<x<1$
then,

$$
\int_{0}^{\infty} e^{-a x^{2}} f(x) d x=\Re\left\{\int_{0}^{\infty} e^{-a(x+i)^{2}} f(x+i) d x\right\}
$$

and

$$
\int_{0}^{1} e^{-a x^{2}} f(x) d x=-\Im\left\{\int_{0}^{\infty} e^{-a(x+i)^{2}} f(x+i) d x\right\}
$$

where, $a \in \mathbb{R}^{+}-\{0\}$.
Proof: Let

$$
J=\oint_{\Gamma} e^{-a z^{2}} f(z) d z
$$

using methods from elementary contour integration, we can divide the above integral (J) as,
$J=\lim _{R \rightarrow \infty}\left(\int_{0}^{R} e^{-a z^{2}} f(z) d z+\int_{0}^{i} e^{-a z^{2}} f(z) d z+\int_{R+i}^{i} e^{-a z^{2}} f(z) d z+\int_{i}^{0} e^{-a z^{2}} f(z) d z\right)$
using definition 1 and Cauchy's integral theorem along with condition (1), we have the following result,

$$
J=0
$$

which can be written as,

$$
\lim _{R \rightarrow \infty}\left(I_{1}+I_{2}+I_{3}+I_{4}\right)=0
$$

where,

$$
\begin{gathered}
I_{1}=\int_{0}^{R} e^{-a x^{2}} f(x) d x \\
I_{2}=i \int_{0}^{1} e^{-a(R+i y)^{2}} f(R+i y) d y \\
I_{3}=-\int_{0}^{R} e^{-a(x+i)^{2}} f(x+i) d x \\
I_{4}=-i \int_{0}^{1} e^{-a(i y)^{2}} f(i y) d y
\end{gathered}
$$

Using condition (2), we have,
$\left|I_{2}\right| \leq \int_{0}^{1}\left|e^{-a(R+i y)^{2}} f(R+i y)\right| d y \leq e^{-a\left(R^{2}-1\right)} \int_{0}^{1}|f(R+i y)| d y \leq M e^{-a\left(R^{2}-1\right)}$
which can be written as,

$$
\lim _{R \rightarrow \infty}\left|I_{2}\right| \leq \lim _{R \rightarrow \infty} M e^{-a\left(R^{2}-1\right)}=0
$$

Simplifying I_{4} and by using condition (3), we obtain,

$$
I_{4}=-i \int_{0}^{1} e^{-a(i y)^{2}} f(i y) d y=-i \int_{0}^{1} e^{a x^{2}} f(x) d x
$$

since $\Im\left\{I_{1}\right\}=\Re\left\{I_{4}\right\}=0$, the final step is to equate the real and imaginary parts of I_{2} with that of I_{1} and I_{4}, which completes the proof.

Conclusion

The clever selection of f (f satisfying all the three conditions) can be used to evaluate various new as well as already known integrals related to Weierstrass transform, Gaussian-type integrals, error function and other integral transforms.

References

[1] Brown JW Churchill RV. Complex Variables and Applications. 6th ed. New York: McGraw-Hill; 1996, 70-71, 142-144.

Romanian Mathematical Magazine
Web: http://www.ssmrmh.ro
The Author: This article is published with open access.
ANGAD SINGH
email-id: angadsingh1729@gmail.com

