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     It is already classic and intensively used , the double inequality ,                                                                                           

                                                       2
π
  sin x x x ,       ,                                                  (1) 

for any  x  [ 0 , π / 2 ] ‧   
     The inequality on the left is also called  Jordan's  inequality . (see for example [2], [5]) . 
     Inequality (1)   provide a framing with liniar functions of the trigonometric function  sin x  in the  
interval   [ 0 , π / 2 ] .  

    With the substitution x   
2
π  x  ,  we also obtain a framing with with functions of the first degree  

for function  cos x  in the interval   [ 0 , π / 2 ]  :    

                                           21
2
π

π
  cos x x x  ,       ,                                        (2) 

    In specialized literature - the inequality on the left is also called  Köber's inequality. 
 

      1. Remark 
        

      Inequalities (1) and (2) (implicitly Jordan's inequality and Köber's inequality) are equivalent - in the  

sense that each is deduced from the other - thanks to substitution   x   
2
π  x    . 

 

     Jordan's and Köber's inequalities can be called complementary inequalities  (like the functions sin and  

cos  and    the arguments  x  and  
2
π  x   that participate in these formulas). 

      In what follows, the following elementary result will be very useful  
 

      2. Lemma 

      If   a , b , c , d > 0   and   a ≤ x ≤ b  ,  c ≤ y ≤ d ,  then   
a x b

d y c
            (3) 

    Proof 
 

    Indeed, everything results from the series of inequalities : 
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      3. Proposition 
 

    For any    x ∈ ( 0 , π / 2 ) ,  we have :    
4

2 2
x x

tan x
x x

π
π (π ) π                           (4) 

    Proof 
 

    Using the framings (1) , (2) and Lemma 2 , with the choices :  a = 2
π
 x  ,   b = x  ,   c = 21

π
 x  ,   

 d = 
2
π  x  ,   x   sin x  ,      y   cos x  ,   we get  , 

  

                  
4

2 21

2

2
2

ππ
π π (π ) π

π





   sin 

cos 

x x x x x
tan x

x x xx x   
 

 
 

     4. Remark 
             

     The left inequality in Proposition 3 is known as Stečkin's inequality , mentioned  by Mitrinoviċ [3] ,  
p.246  without proof . In addition , was also obtained the inequality on the right of (3) - inequality that can  
be considered an inequality converse to Stečkin's inequality . 

                                             
     Since we still want to use the convexity / concavity of some functions, we remind you here the usual 
definition of convexity , as well as two other equivalent forms :  
 

       5.Definition   The function  f : I  ( 0 , ∞ )   ℝ   is called a convex function on the interval  I , if 
  

                                        f [(1– λ) x1 +  λ x2 ]  ≤  (1– λ) f (x1) +  λ f (x2)  ,                               (5) 
 

   for any   x1 ,  x2 ∈ I  and any   λ ∈ [ 0 , 1 ] . 
      

       6. Remark 
 

       Taking   ,  x = (1– λ) x1 +  λ x2       ( that is , x is between  x1   and  x2 )  ,  relation (4) is rewritten :  

                                            ( ) ( ) ( ) 2 1
1 2

2 1 2 1

x x x x
f x f x f x

x x x x
 

 
    ,                                  (6) 

 

  or otherwise arranged , 
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f x f x x f x x f x
f x

x x x x
x
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    ,                               (7) 

 

     For a concave function , there are relations similar to those in (5), (6), (7), but with the inequality sign  
“ ≤ ”  replaced by the sign  “ ≥ ”  ‧   
     More about convexity / concavity , in [1] , [3]  [6] . 
 

     We will have the opportunity to use such inequalities several times to prove Köber's inequality, 

                                                             21
π

 cos x x    ‧                                                  (8) 

     The constant  2
π

   from Köber 's inequality  is dependent  on the interval  I = [ 0 , π / 2 ] ‧ 

     If we change the interval  I - domain of definition of the  cosine  function , then this constant changes 
as in the following ,  
 
 
 



 
 
     7.Proposition   ( generalization of  Köber's  inequality for intervals of the form [ 0 , α ] ) 
       

     For the angles   x , α   , such that  0 ≤ x ≤ α  ≤ π / 2    ,  we have the inequality : 
 

                  , , 
 

 
cos

cos x x x 
1

1 ( ) 0


 
α

α
α

   [ ]                           (9) 

with  equality if   x = 0    or   x = α   . 
 

  Proof 
      

  Function   cos : [ 0 , π / 2  ]  ℝ     is concave , so using for example relation (6) ( - but with 
the inverted inequality sign), with the choices : f (x) = cos x , x 1 = 0 ,  x 2 = α  the inequality (8) is obtained. 

  For  α  = π / 2  ,  Köber's inequality is obtained .   
 

  For other values of  α  , interesting inequalities are also obtained , as in the following ,  
 

     8. Corollary 
 

   The following inequalities occur : 

      (a)           , ,   / ; cos x x x 3(2 3 )
1 ( ) 0 6π

π


     [ ]            (10) 

 with  equality if   x = 0    or   x = / 6π   . 
 

      (b)           , , / ; cos x x x 2( 2 2 )
1 ( ) 0 4π

π


     [ ]           (11) 

with  equality if   x = 0    or   x = / 4π   . 
 

      (c)           , , / ; cos x x x 3
1 ( ) 0 3

2
π

π
     [ ]                (12) 

with  equality if   x = 0    or   x = / 3π   . 
       

   Proof 
      

   In inequality (9) the angle  α   is replaced  ,  in turn with :  (a)    α  =  π / 6  ,     (b)    α  =  π / 4  ,          
 (c)    α  =  π / 3  ,   si se efectueaza calcule elementare .  
 

      9. Remark 
  

   The inequalities in Proposition 7 and Corollary 8 have a simple geometric interpretation : the graph of  
the  cosine  function  is above the graph of the chord  of extremities  A(0,1)  and  B(α  , cosα  ) - on the  
considered interval .   
 

   10. Remark  
      

   Since , for example in inequality (12) , for the interval  [ 0 , π / 3 ] ⸦ [ 0 , π / 2 ] , we have  
3 21 1 4 3

2 π π
   x x   , it turns out that the inequality  cos x x

3
1

2 π
   

is stronger than  Köber's inequality . so that inequality (12)  refines  Köber's  inequality  for the   
(sub)interval  x ∈ [ 0 , π / 3 ] .  

      All inequalities (10)-(12) refine  Köber's inequality - on the respective subintervals .  
        

      At the same time, Proposition 7 also provides the following monotonicity result . 
   

     
 



     
       11. Corollary 

      The function   φ : (0 , π / 2  ]  ℝ   ,  
cos t

t
t

φ  
1

   is monotonically increasing on  (0 , π / 2  ] ‧ 

   Proof 
   

    Indeed, for  0 ≤ x ≤ α  ≤ π / 2     ,  from  Prroposition 7 we have ,  
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     12. Corollary  ( generalization of Stečkin's  inequality for intervals of the form ( 0 , α ) ) 
       

     For the angles   x , α   , such that  0 < x ≤ α  < π / 2    ,  we have the inequality : 
 

                        
2

2 1
sin x

tan x
x cos x

α α

α α α)(π )   
                                                          (13)     

   Proof 
 

   Completing the inequalities of Jordan ( see [2] ) and Köber - generalized to intervals of the form ( 0 , α ) ,  
up to a double inequality (a framing) , in the following way : 
   

    , , ,
 

 
cossin

x sin x x x cos x x x
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α
α α
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2
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and using Lemma 2 , we get   
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

      

   For  α  = π / 2   , the inequality from Proposition 2 is obtained . 
 

   In the double inequality (13), the inequality on the left is the generalization of Stečkin's inequality, and  
the one on right is the generalization of the converse of Stečkin's inequality. 
                    
 13.Proposition   ( generalization of  Köber's  inequality for intervals of the form [α  , π / 2  ] ) 

       

     For the angles   x , α   , such that  0 ≤ x ≤ α  ≤ π / 2    ,  we have the inequality : 
 

               , /
 

 
cos

cos x x x ( 2 ) , ( ) 2
2

π π
π

 
α

α
α

   [ ]                           (14) 

with  equality if   x = α    or   x = π / 2    . 
 

  Proof 
      

  Again we use the fact that function  cos : [ 0 , π / 2  ]  ℝ     is concave , so using  (6) ( - but with 
the inverted inequality sign) , with the choices  : f (x) = cos x , x 1 = α  ,  x 2 = π / 2   ,  the inequality (14)  
is obtained. 

  For  α  = 0 ,    Köber's inequality is obtained .   
 

  Here are some specifications for the important angles in the range [ 0 , π / 2  ] : 
 

    
 



 
  
      14. Corollary 
 

   The following inequalities occur : 

      (a)           , ,   / / ; cos x x x 3 3
( 2 ) ( ) 6 2

4
π π π

π
     [ ]             (15) 

 with  equality if   x = / 6π    or   x = / 2π   . 

 

      (b)           , ,   / / ; cos x x x 2
( 2 ) ( ) 4 2π π π

π
     [ ]                  (16) 

with  equality if   x = / 4π    or   x = / 2π   . 

 

      (c)           , ,   / / ; cos x x x 3
( 2 ) ( ) 3 2

2
π π π

π
     [ ]       (17) 

with  equality if   x = / 3π    or   x = / 2π   . 
       

   Proof 
      

   In inequality (13) the angle  α   is replaced  ,  in turn with :  (a)    α  =  π / 6  ,     (b)    α  =  π / 4  ,          
 (c)    α  =  π / 3  , and elementary calculations are then performed. 
 

      15. Proposition  ( generalization of Köber's inequality for intervals of the form  [α ,β ] ) 
       

      For the angles  x , α  , β   , such that  0 ≤ α  ≤ x ≤ β  ≤ π    ,  we have the inequality : 
 

    , ,
cos cos cos cos 

cos x x x
 
   β α β α α β

α β
β α β α

( )    [ ]  ,          (18) 

 

having equality if   x = α     or    x = β  . 
 

   Proof  1 
 

    Again we use the concavity of the function  cos : [ 0 , π / 2  ]  ℝ   , for which using relation (6)  
(- but with the inequality sign reversed), with the choices:  f (x) = cos x  ,  x 1 = α  ,  x 2 = β    is obtained ,  
 

( ) ( ) ( ) ( )
( ) , 

f f f f cos cos cos cos
f cosx x x x

    
   

 β α β α α β β α β α α β

β α β α β α β α
  

 

 hence the inequality  (18)  . 
 

     Proof  2 

  For any   x [ α  , β ] , there is  t ∈ [0 , 1] , such that  x = t α  +  (1– t)  β  
      


 β

β
t =

  x
α

   

  With   f (x) = cos x  , concave  on  [ α  , β  ] ⸦ [ 0 , π ]  , we get :   
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    For   α  = 0   and   β  = π / 2   ,  Köber's inequality is obtained . 
 

    For  α  = 0  and   β  = α  ,  the generalization of  Köber's 's inequality from Proposition 7 is obtained. 

    For  α  = α  and   β  = π / 2 , the generalization of  Köber's 's inequality from Proposition 13 is obtained. 
      

       16. Remark 
 

    The inequality in Proposition 15  has a simple geometric interpretation : the graph of the sine function on  
the interval [α  , β  ]  is above the graph of the chord of extremities  A (α  , cosα  ) , B (β  , cos β  ) , which  

has the equation :    (AB) :    
cos cos cos cos 

y x=
β β β
β β

 
 
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α α α

α α
 

      17. Corollary 
 

   The following inequalities occur : 

      (a)  , ,
(

,/ /cos x x x   
 

6 3 2) 3 3 2 2
( ) 6 4

2
π π

π
   [ ]                 (19) 

with  equality if   x = π / 6      or    x = π / 4    ;   
 

      (b)  , ,
( )

,/ /cos x x x
 

  3 3 2 3
( ) 6 3

2
π π

π
    [ ]               (20) 

with  equality if    x = π / 6      or     x = π / 3    ;  
  

      (c)  , ,
(

,/ / cos x x x
 

  6 2 1 4 2 3
( ) 4 3

2

)
π π

π
    [ ]                 (21) 

with  equality if    x = π / 4        or      x = π / 3    ;   
     

     Proof      
   

    In inequality (18) the angles  α  and  β   are replaced in turn by :  (a)    α  =  π / 6  ,    β  =  π / 4  ; 

(b)    α  =  π / 6  ,  β  =  π / 3  ;     (c)    α  =  π / 4  ,  β   =  π / 3  - and routine calculations are made . 
 

     18. Proposition  ( generalization of Stečkin's  inequality for intervals of the form  (α ,β ) ) 
       

 For the angles  x , α  , β   , such that  0 ≤ α  ≤ x ≤ β  ≤ π    ,  we have the inequality : 
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   Proof 
 

   Completing Jordan  and Köber's  inequalities – generalized to intervals of the form  (α ,β )  up to 
a double inequality (a framing) , as follows:   
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and using Lemma 2, we get , 
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   For  α  = 0 , β= π / 2     one obtains Stečkin's inequality and its converse from the Proposition 2  

   For  α  = 0 , β= α , one obtains Stečkin 's inequality and its converse (generalized over intervals of 

form ( 0 , α )  ) from Corollary 12  . 
 

   In the double inequality (22) , the inequality on the left is the generalization of Stečkin's inequality , and  
the one on right is the generalization of the converse of Stečkin's inequality . 
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