# Two generalizations for Jordan's inequality 

## Dorin Marghidanu <br> d.marghidanu@gmail.com


#### Abstract

In this note, two generalizations are presented and demonstrated for a relatively well-known trigonometric inequality - Jordan's inequality.

Some particular cases and an application are also presented.


Keywords : Jordan's inequality, convex/concave functions, refinement

2020 Mathematics Subject Classification : 26D20

Is well known and frequently used the inequality $\sin \boldsymbol{x}<\boldsymbol{x}$,
for any $\boldsymbol{x} \in(\mathbf{0}, \boldsymbol{\pi}) \cdot$ Perhaps less used, but equally important is reverse inequality ,

$$
\begin{equation*}
\sin x \geq \frac{2}{\pi} \cdot x \tag{2}
\end{equation*}
$$

valid but only for $\boldsymbol{x} \in[\mathbf{0}, \boldsymbol{\pi} / \mathbf{2}]$. Inequality (2) constitutes Jordan's inequality .
Together, inequalities (1) and (2) provide a framing with liniar functions of the trigonometric function $\sin x$ in the interval $[\mathbf{0}, \boldsymbol{\pi} / \mathbf{2}]$ :

$$
\begin{equation*}
\frac{2}{\pi} \cdot x \leq \sin x<x \tag{3}
\end{equation*}
$$

Since we still want to use the convexity/ concavity of some functions, we remind you here the usual definition of convexity, as well as two other equivalent forms :
1.Definition The function $\boldsymbol{f}: \mathbf{I} \subset(\mathbf{0}, \infty) \longrightarrow \mathbb{R}$ is called a convex function on the interval $\mathbf{I}$, if

$$
\begin{equation*}
f\left[(1-\lambda) x_{1}+\lambda x_{2}\right] \leq(1-\lambda) f\left(x_{1}\right)+\lambda f\left(x_{2}\right), \tag{4}
\end{equation*}
$$

for any $\boldsymbol{x}_{\mathbf{1}}, \boldsymbol{x}_{\mathbf{2}} \in \mathbf{I}$ and any $\boldsymbol{\lambda} \in[\mathbf{0}, \mathbf{1}]$.
2. Remark

Taking, $\boldsymbol{x}=(\mathbf{1}-\boldsymbol{\lambda}) \boldsymbol{x}_{\mathbf{1}}+\boldsymbol{\lambda} \boldsymbol{x}_{\mathbf{2}}$ (that is, $\boldsymbol{x}$ is between $\boldsymbol{x}_{\mathbf{1}}$ and $\boldsymbol{x}_{\mathbf{2}}$ ), relation (4) is rewritten:

$$
\begin{equation*}
f(x) \leq \frac{x_{2}-x}{x_{2}-x_{1}} \cdot f\left(x_{1}\right)+\frac{x-x_{1}}{x_{2}-x_{1}} \cdot f\left(x_{2}\right) \tag{5}
\end{equation*}
$$

or still, equivalently,

$$
\begin{equation*}
\frac{f(x)-f\left(x_{1}\right)}{x-x_{1}} \leq \frac{f\left(x_{2}\right)-f(x)}{x_{2}-x} \tag{6}
\end{equation*}
$$

For a concave function, there are relations similar to those in (4), (5), (6), but with the inequality sign $" \leq "$ replaced by the sign " $\geq$ " . More about convexity / concavity , in [1] , [3] - [5] .

The constant $\frac{\mathbf{2}}{\boldsymbol{\pi}}$ from Jordan's inequality (2) is dependent on the interval $\mathbf{I}=[\mathbf{0}, \boldsymbol{\pi} / \mathbf{2}]$.
If we change the interval $\mathbf{I}$ - domain of definition of the sine function, then this constant changes as in the following,
3. Proposition (generalization of Jordan's inequality for intervals of the form $[0, \alpha]$ )

For the angles $\boldsymbol{x}, \boldsymbol{\alpha}$, such that $\mathbf{0} \leq \boldsymbol{x} \leq \boldsymbol{\alpha} \leq \boldsymbol{\pi}$, we have the inequality :

$$
\begin{equation*}
\sin x \geq \frac{\sin \alpha}{\alpha} \cdot x, \quad(\forall) x \in[0, \alpha] \tag{7}
\end{equation*}
$$

having equality if $\boldsymbol{x}=\mathbf{0}$ or $\boldsymbol{x}=\boldsymbol{\alpha}$.

## Proof

Function $\sin :[\mathbf{0}, \boldsymbol{\pi}] \longrightarrow \mathbb{R}$ is concave, so using for example relation (6) (- but with the inverted inequality sign), with the choices: $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{\operatorname { s i n }} \boldsymbol{x}, \boldsymbol{x}_{\mathbf{1}}=\mathbf{0}, \boldsymbol{x}_{\mathbf{2}}=\alpha$ the inequality (7) is obtained.

For $\boldsymbol{\alpha}=\boldsymbol{\pi} / \mathbf{2}$ Jordan's inequality is obtained.
For other values of $\boldsymbol{\alpha}$, interesting inequalities are obtained, as in the following,

## 4. Corollary

The following inequalities occur :
(a) $\quad \sin x \geq \frac{3}{\pi} \cdot x, \quad(\forall) x \in[0, \pi / 6] ;$
(b) $\quad \sin x \geq \frac{2 \sqrt{2}}{\pi} \cdot x, \quad(\forall) x \in[0, \pi / 4] \quad$;
(c) $\quad \sin x \geq \frac{3 \sqrt{3}}{2 \pi} \cdot x, \quad(\forall) x \in[0, \pi / 3] \quad ;$
(d) $\quad \sin x \geq \frac{3 \sqrt{3}}{4 \pi} \cdot x, \quad(\forall) x \in[0,2 \pi / 3] ;$
(e) $\quad \sin x \geq \frac{2 \sqrt{2}}{3 \pi} \cdot x, \quad(\forall) x \in[0,3 \pi / 4]$;
(f) $\quad \sin x \geq \frac{3}{5 \pi} \cdot x, \quad(\forall) x \in[0,5 \pi / 6] \quad$.

## Proof

In inequality (7) the angle $\boldsymbol{\alpha}$ is replaced, in turn with: (a) $\boldsymbol{\alpha}=\boldsymbol{\pi} / \mathbf{6}, \quad$ (b) $\boldsymbol{\alpha}=\boldsymbol{\pi} / \mathbf{4}$,
(c) $\alpha=\pi / 3$,
(d) $\alpha=2 \pi / 3$,
(e) $\alpha=3 \pi / 4, \quad$ (f) $\quad \alpha=5 \pi / 6$

## 5. Remark

The inequalities in Proposition 3 and Corollary 4 have a simple geometric interpretation : the graph of the sine function is above the graph of the chord starting from the origin - on the considered interval.

## 6. Remark

Since, for example in inequality (10), for the interval $[\mathbf{0}, \boldsymbol{\pi} / \mathbf{3}] \subset[\mathbf{0}, \boldsymbol{\pi} / \mathbf{2}]$, we have $\frac{\mathbf{3} \sqrt{\mathbf{3}}}{2 \pi} \cdot \boldsymbol{x}>\frac{2}{\pi} \cdot x$, it turns out that the inequality $\sin x \geq \frac{\mathbf{3} \sqrt{\mathbf{3}}}{\mathbf{4 \pi}} \cdot \boldsymbol{x}$ is stronger than Jordan's inequality
so that inequality (10) refines Jordan's inequality for the (sub)interval $\boldsymbol{x} \in[\mathbf{0}, \boldsymbol{\pi} / \mathbf{3}]$.
All inequalities (8)-(10) refine Jordan's inequality - on the respective subintervals . How much the angle $\boldsymbol{\alpha}$ is smaller, then the more inequality (7) is 'stronger' ! Inequalities (11)-(13) are 'weaker' than Jordan's inequality (on their common domain) .

At the same time, Proposition 3 also provides the following monotonicity result .

## 7. Corollary

The function $\boldsymbol{\varphi}:(\mathbf{0}, \boldsymbol{\pi}] \longrightarrow \mathbb{R}, \boldsymbol{\varphi}(\boldsymbol{t})=\frac{\boldsymbol{\operatorname { s i n }} \boldsymbol{t}}{\boldsymbol{t}}$ is monotonically decreasing on $(\mathbf{0}, \boldsymbol{\pi} \mathbf{]}$.

## Proof

Indeed, for $0 \leq x \leq \alpha \leq \pi$, we have,
$\sin x \geq \frac{\sin \alpha}{\alpha} \cdot x, \quad(\forall) x \in[0, \alpha] \quad \Leftrightarrow \quad \frac{\sin x}{x} \geq \frac{\sin \alpha}{\alpha} \quad, \quad(\forall) x \leq \alpha$.

## 8. Proposition (generalization of Jordan's inequality for intervals of the form $[\alpha, \beta]$ )

For the angles $\boldsymbol{x}, \alpha, \beta$, such that $\mathbf{0} \leq \alpha \leq \boldsymbol{x} \leq \boldsymbol{\beta} \leq \boldsymbol{\pi}$, we have the inequality :

$$
\begin{equation*}
\sin x \geq \frac{\sin \beta-\sin \alpha}{\beta-\alpha} \cdot x+\frac{\beta \sin \alpha-\alpha \sin \beta}{\beta-\alpha}, \quad(\forall) x \in[\alpha, \beta] \tag{14}
\end{equation*}
$$

having equality if $\boldsymbol{x}=\boldsymbol{\alpha}$ or $\boldsymbol{x}=\boldsymbol{\beta}$.

## Proof 1

Again we use the concavity of the function $\sin :[\mathbf{0}, \boldsymbol{\pi}] \longrightarrow \mathbb{R} \quad$, for which using relation (6) (- but with the inequality sign reversed), with the choices: $\boldsymbol{f}(\boldsymbol{x})=\sin \boldsymbol{x}, \boldsymbol{x}_{\mathbf{1}}=\mathbf{0}, \boldsymbol{x}_{\mathbf{2}}=\alpha$ is obtained, $\frac{\sin x-\sin \alpha}{x-\alpha} \geq \frac{\sin \beta-\sin x}{\beta-x} \Leftrightarrow(\beta-\alpha) \cdot \sin x \geq(\sin \beta-\sin x) \cdot x+\beta \sin \alpha-\alpha \sin \beta$ hence the inequality (14) .

## Proof 2

For any $\boldsymbol{x} \in[\alpha, \beta]$, there is $\mathbf{t} \in[\mathbf{0}, \mathbf{1}]$, such that $\boldsymbol{x}=(\mathbf{1}-\mathbf{t}) \boldsymbol{\alpha}+\mathbf{t} \boldsymbol{\beta}\left(\Leftrightarrow \mathbf{t}=\frac{\boldsymbol{\beta}-\boldsymbol{x}}{\boldsymbol{\beta}-\boldsymbol{\alpha}}\right)$
With $\boldsymbol{f}(\boldsymbol{x})=\sin \boldsymbol{x}$, concave on $[\boldsymbol{\alpha}, \boldsymbol{\beta}] \subset[\mathbf{0}, \boldsymbol{\pi}]$, we get :

$$
\begin{aligned}
& \sin x=\sin [t \alpha+(1-\mathbf{t}) \beta] \geq \mathrm{t} \sin \alpha+(1-\mathrm{t}) \sin \beta=\frac{\beta-x}{\beta-\alpha} \cdot \sin \alpha+\left(1-\frac{\beta-x}{\beta-\alpha}\right) \cdot \sin \beta= \\
& =\frac{(\beta-x) \cdot \sin \alpha+(x-\alpha) \cdot \sin \beta}{\beta-\alpha}=\frac{\sin \beta-\sin \alpha}{\beta-\alpha} \cdot x+\frac{\beta \sin \alpha-\alpha \sin \beta}{\beta-\alpha}
\end{aligned}
$$

For $\boldsymbol{\alpha}=\mathbf{0}$ and $\boldsymbol{\beta}=\boldsymbol{\pi} / \mathbf{2}$, Jordan's inequality is obtained.
For $\boldsymbol{\alpha}=\mathbf{0}$ and $\boldsymbol{\beta}=\boldsymbol{\alpha}$, the generalization of Jordan's inequality from Proposition 3 is obtained.

## 9. Remark

The inequality in Proposition 8 has a simple geometric interpretation : the graph of the sine function on the interval $[\alpha, \beta]$ is above the graph of the chord of extremities $\mathbf{A}(\alpha, \sin \alpha), \mathbf{B}(\boldsymbol{\beta}, \boldsymbol{\operatorname { s i n }} \boldsymbol{\beta})$, which has the equation:

$$
(\mathrm{AB}): y=\frac{\sin \beta-\sin \alpha}{\beta-\alpha} \cdot x+\frac{\beta \sin \alpha-\alpha \sin \beta}{\beta-\alpha}
$$

## 10. Corollary

The following inequalities occur :
(a) $\sin x \geq \frac{6(\sqrt{2}-1)}{\pi} \cdot x+\frac{3-2 \sqrt{2}}{2}, \quad(\forall) x \in[\pi / 6, \pi / 4]$,
with equality if $\boldsymbol{x}=\boldsymbol{\pi} / \mathbf{6}$ or $\boldsymbol{x}=\boldsymbol{\pi} / \mathbf{4}$;
(b) $\sin x \geq \frac{3(\sqrt{3}-1)}{\pi} \cdot x+\frac{2-\sqrt{3}}{2},(\forall) x \in[\pi / 6, \pi / 3]$,
with equality if $\boldsymbol{x}=\boldsymbol{\pi} / \mathbf{6}$ or $\boldsymbol{x}=\boldsymbol{\pi} / \mathbf{3}$;
(c) $\sin x \geq \frac{3}{2 \pi} \cdot x+\frac{1}{4}, \quad(\forall) x \in[\pi / 6, \pi / 2]$,
with equality if $\boldsymbol{x}=\boldsymbol{\pi} / \mathbf{6}$ sau $\boldsymbol{x}=\boldsymbol{\pi} / \mathbf{2}$;
(d) $\sin x \geq \frac{6(\sqrt{3}-\sqrt{2})}{\pi} \cdot x+\frac{4 \sqrt{2}-3 \sqrt{3}}{2}, \quad(\forall) x \in[\pi / 4, \pi / 3] \quad$,
with equality if $\boldsymbol{x}=\boldsymbol{\pi} / \mathbf{4}$ or $\boldsymbol{x}=\boldsymbol{\pi} / \mathbf{3}$;
(e) $\sin x \geq \frac{2(2-\sqrt{2})}{\pi} \cdot x+\sqrt{2}-1, \quad(\forall) x \in[\pi / 4, \pi / 2]$,
with equality if $\boldsymbol{x}=\boldsymbol{\pi} / \mathbf{4}$ or $\boldsymbol{x}=\boldsymbol{\pi} / \mathbf{2}$;

$$
\begin{equation*}
\text { (f) } \quad \sin x \geq \frac{3(2-\sqrt{3})}{\pi} \cdot x+\frac{3 \sqrt{3}-4}{2} \quad, \quad(\forall) x \in[\pi / 3, \pi / 2] \tag{20}
\end{equation*}
$$

with equality if $\boldsymbol{x}=\boldsymbol{\pi} / \mathbf{3}$ or $\boldsymbol{x}=\boldsymbol{\pi} / \mathbf{2}$.

## Proof

In inequality (14) the angles $\alpha$ and $\boldsymbol{\beta}$ are replaced in turn by: (a) $\boldsymbol{\alpha}=\boldsymbol{\pi} / \mathbf{6}, \quad \boldsymbol{\beta}=\boldsymbol{\pi} / \mathbf{4}$;
(b) $\alpha=\pi / 6, \beta=\pi / 3$; (c) $\alpha=\pi / 6, \beta=\pi / 2 ; ~(d) \quad \alpha=\pi / 4, \beta=\pi / 3$;
(e) $\alpha=\pi / 4, \beta=\pi / 2 ;$ (f) $\alpha=\pi / 3, \beta=\pi / 2$, and routine calculations are made.

The corollary chose several combinations of angles from quadrant I. Obviously, you can also choose angles from quadrant II or from the first two quadrants •

## 11. Application [2]

If in triangle ABC we have $\mathbf{A}, \mathbf{B}, \mathbf{C} \in[\boldsymbol{\pi} / \mathbf{6}, \boldsymbol{\pi} / \mathbf{2}]$, then,

$$
\begin{equation*}
\sin A+\sin B+\sin C>\frac{9}{4} \tag{21}
\end{equation*}
$$

## Proof

Using the inequality (17) with $\mathbf{A}, \mathbf{B}, \mathbf{C} \in[\boldsymbol{\pi} / \mathbf{6}, \boldsymbol{\pi} / \mathbf{2}]$,

$$
\Rightarrow \quad \sum_{c y c l} \sin A \geq \sum_{c y c l}\left(\frac{3}{2 \pi} \cdot A+\frac{1}{4}\right)=\frac{3}{2 \pi} \cdot \pi+\frac{3}{4}=\frac{3}{2}+\frac{3}{4}=\frac{9}{4}
$$

Inequality (21) is strict, because the angles of the triangle cannot take only the values $\boldsymbol{\pi} / \mathbf{6}$ and $\boldsymbol{\pi} / \mathbf{2}$.

## References

[1] Hörmander Lars, "Notions of Convexity", Birkhäuser, Boston, Basel, Berlin, 1994 .
[2] Marghidanu Dorin, Proposed problem, in Mathematical Inequalities, 3 Aug. 2022, on line : https://www.facebook.com/photo?fbid=5720560064669721\&set=gm.3258395914448447
[3] Niculescu P. Constantin, Persson Lars-Erik ,"Convex Functions and Their Applications . A Contemporary Approach", 2nd edition, Springer, 2018
[4] Pecaric Josip , Proschan Frank, Tong Y.L., "Convex function, partial orderings and statistical applications" , Academic Press, Inc. 1992.
[5] Sándor Jozsef, "Selected chapters of Geometry, Analysis and Number theory", RGMIA Monographs ; Victoria University, 2006 .

