Two generalizations for Jordan's inequality

Dorin Marghidanu d.marghidanu@gmail.com

In this note, two generalizations are presented and demonstrated for a relatively well-known trigonometric inequality - Jordan's inequality. Some particular cases and an application are also presented.

Keywords : Jordan's inequality, convex/concave functions, refinement

2020 Mathematics Subject Classification : 26D20

Is well known and frequently used the inequality sin x < x, (1)

for any $x \in (0,\pi)$. Perhaps less used, but equally important is reverse inequality,

$$\sin x \ge \frac{2}{\pi} \cdot x \quad , \tag{2}$$

valid but only for $x \in [0, \pi/2]$. Inequality (2) constitutes *Jordan's inequality*.

Together, inequalities (1) and (2) provide a framing with liniar functions of the trigonometric function $\sin x$ in the interval $[0, \pi/2]$:

$$\frac{2}{\pi} \cdot x \leq \sin x < x, \qquad (3)$$

Since we still want to use the *convexity/concavity* of some functions, we remind you here the usual definition of *convexity*, as well as two other equivalent forms :

<u>**1**</u>. <u>Definition</u> The function $f: \mathbf{I} \subset (0, \infty) \longrightarrow \mathbb{R}$ is called a *convex function* on the interval I, if $f[(1-\lambda)x_1 + \lambda x_2] \leq (1-\lambda)f(x_1) + \lambda f(x_2)$, (4)

for any $x_1, x_2 \in I$ and any $\lambda \in [0, 1]$.

2. Remark

Taking , $x = (1 - \lambda) x_1 + \lambda x_2$ (that is, x is between x_1 and x_2), relation (4) is rewritten:

$$f(x) \le \frac{x_2 - x}{x_2 - x_1} \cdot f(x_1) + \frac{x - x_1}{x_2 - x_1} \cdot f(x_2) \quad , \tag{5}$$

or still, equivalently,

$$\frac{f(x) - f(x_1)}{x - x_1} \le \frac{f(x_2) - f(x)}{x_2 - x} \quad , \tag{6}$$

For a *concave function*, there are relations similar to those in (4), (5), (6), but with the inequality sign " \leq " replaced by the sign " \geq " · More about *convexity* / *concavity* , in [1], [3] – [5].

The constant $\frac{2}{\pi}$ from Jordan's inequality (2) is dependent on the interval $I = [0, \pi/2]$.

If we change the interval I - domain of definition of the *sine* function, then this constant changes as in the following,

<u>3. Proposition</u> (generalization of Jordan's inequality for intervals of the form $[0, \alpha]$)

For the angles x, α , such that $0 \le x \le \alpha \le \pi$, we have the inequality :

$$\sin x \geq \frac{\sin \alpha}{\alpha} \cdot x , \quad (\forall) x \in [0, \alpha] \quad .$$
 (7)

having equality if x = 0 or $x = \alpha$.

<u>Proof</u>

Function $sin: [0, \pi] \longrightarrow \mathbb{R}$ is concave, so using for example relation (6) (- but with the inverted inequality sign), with the choices : f(x) = sin x, $x_1 = 0$, $x_2 = \alpha$ the inequality (7) is obtained. For $\alpha = \pi/2$ Jordan's inequality is obtained.

For other values of α , interesting inequalities are obtained, as in the following,

4. Corollary

The following inequalities occur :

(a)
$$\sin x \ge \frac{3}{\pi} \cdot x$$
, $(\forall) x \in [0, \pi/6]$; (8)

(b)
$$\sin x \ge \frac{2\sqrt{2}}{\pi} \cdot x$$
, $(\forall) x \in [0, \pi/4]$; (9)

(c)
$$\sin x \ge \frac{3\sqrt{3}}{2\pi} \cdot x$$
, $(\forall) x \in [0, \pi/3]$; (10)

(d)
$$\sin x \geq \frac{3\sqrt{3}}{4\pi} \cdot x$$
, $(\forall) x \in [0, 2\pi/3]$; (11)

(e)
$$\sin x \ge \frac{2\sqrt{2}}{3\pi} \cdot x$$
, $(\forall) x \in [0, 3\pi/4]$; (12)

(f)
$$\sin x \geq \frac{3}{5\pi} \cdot x$$
, $(\forall) x \in [0, 5\pi/6]$ (13)

Proof

In inequality (7) the angle α is replaced, in turn with: (a) $\alpha = \pi/6$, (b) $\alpha = \pi/4$, (c) $\alpha = \pi/3$, (d) $\alpha = 2\pi/3$, (e) $\alpha = 3\pi/4$, (f) $\alpha = 5\pi/6$.

5. Remark

The inequalities in *Proposition* 3 and *Corollary* 4 have a simple geometric interpretation : the graph of the *sine* function is above the graph of the chord starting from the origin - on the considered interval.

<u>6. Remark</u>

Since, for example in inequality (10), for the interval $[0, \pi/3] \subset [0, \pi/2]$, we have $\frac{3\sqrt{3}}{2\pi} \cdot x > \frac{2}{\pi} \cdot x$, it turns out that the inequality $\sin x \ge \frac{3\sqrt{3}}{4\pi} \cdot x$ is stronger than *Jordan's inequality*

so that inequality (10) refines *Jordan's inequality* for the (sub)interval $x \in [0, \pi/3]$.

All inequalities (8)-(10) refine *Jordan's inequality* - on the respective subintervals. How much the angle α is smaller, then the more inequality (7) is 'stronger' ! Inequalities (11)-(13) are 'weaker' than *Jordan's inequality* (on their common domain).

At the same time, Proposition 3 also provides the following monotonicity result .

<u>7. Corollary</u>

The function $\varphi: (0, \pi] \longrightarrow \mathbb{R}$, $\varphi(t) = \frac{\sin t}{t}$ is monotonically decreasing on $(0, \pi]$. *Proof*

Indeed, for $0 \le x \le \alpha \le \pi$, we have, $\sin x \ge \frac{\sin \alpha}{\alpha} \cdot x$, $(\forall) x \in [0, \alpha] \iff \frac{\sin x}{x} \ge \frac{\sin \alpha}{\alpha}$, $(\forall) x \le \alpha$.

<u>8. Proposition</u> (generalization of Jordan's inequality for intervals of the form $\lceil \alpha, \beta \rceil$)

For the angles x, α , β , such that $0 \le \alpha \le x \le \beta \le \pi$, we have the inequality :

$$\sin x \geq \frac{\sin \beta - \sin \alpha}{\beta - \alpha} \cdot x + \frac{\beta \sin \alpha - \alpha \sin \beta}{\beta - \alpha} , \quad (\forall) x \in [\alpha, \beta] , \quad (14)$$

having equality if $x = \alpha$ or $x = \beta$.

<u>Proof</u> 1

Again we use the concavity of the function $sin : [0, \pi] \longrightarrow \mathbb{R}$, for which using relation (6) (- but with the inequality sign reversed), with the choices: f(x) = sin x, $x_1 = 0$, $x_2 = \alpha$ is obtained,

$$\frac{\sin x - \sin \alpha}{x - \alpha} \geq \frac{\sin \beta - \sin x}{\beta - x} \quad \Leftrightarrow \quad (\beta - \alpha) \cdot \sin x \geq (\sin \beta - \sin x) \cdot x + \beta \sin \alpha - \alpha \sin \beta$$

hence the inequality (14).

<u>Proof</u> 2

For any $x \in [\alpha, \beta]$, there is $t \in [0, 1]$, such that $x = (1-t)\alpha + t\beta \left(\Leftrightarrow t = \frac{\beta - x}{\beta - \alpha} \right)$

With $f(x) = \sin x$, concave on $[\alpha, \beta] \subset [0, \pi]$, we get:

$$\sin x = \sin\left[t\,\alpha + (1-t)\beta\right] \ge t\sin\alpha + (1-t)\sin\beta = \frac{\beta - x}{\beta - \alpha} \cdot \sin\alpha + \left(1 - \frac{\beta - x}{\beta - \alpha}\right) \cdot \sin\beta = \frac{\beta - x}{\beta - \alpha}$$

$$=\frac{(\beta-x)\cdot\sin\alpha+(x-\alpha)\cdot\sin\beta}{\beta-\alpha}=\frac{\sin\beta-\sin\alpha}{\beta-\alpha}\cdot x + \frac{\beta\sin\alpha-\alpha\sin\beta}{\beta-\alpha}$$

For $\alpha = 0$ and $\beta = \pi / 2$, *Jordan's inequality* is obtained.

For $\alpha = 0$ and $\beta = \alpha$, the generalization of Jordan's inequality from Proposition 3 is obtained.

9. Remark

The inequality in *Proposition* 8 has a simple geometric interpretation : the graph of the *sine* function on the interval $[\alpha, \beta]$ is above the graph of the chord of extremities $A(\alpha, sin \alpha), B(\beta, sin \beta)$, which has the equation:

(AB):
$$y = \frac{\sin\beta - \sin\alpha}{\beta - \alpha} \cdot x + \frac{\beta \sin\alpha - \alpha \sin\beta}{\beta - \alpha}$$

<u>10. Corollary</u>

The following inequalities occur :

(a)
$$\sin x \ge \frac{6(\sqrt{2}-1)}{\pi} \cdot x + \frac{3-2\sqrt{2}}{2}, \quad (\forall) x \in [\pi/6, \pi/4] ,$$
 (15)

with equality if $x = \pi/6$ or $x = \pi/4$;

(b)
$$\sin x \geq \frac{3(\sqrt{3}-1)}{\pi} \cdot x + \frac{2-\sqrt{3}}{2}$$
, $(\forall) x \in [\pi/6, \pi/3]$, (16)

with equality if $x = \pi/6$ or $x = \pi/3$;

(c)
$$\sin x \ge \frac{3}{2\pi} \cdot x + \frac{1}{4}$$
, $(\forall) x \in [\pi/6, \pi/2]$, (17)

with equality if $x = \pi/6$ sau $x = \pi/2$;

(d)
$$\sin x \geq \frac{6(\sqrt{3}-\sqrt{2})}{\pi} \cdot x + \frac{4\sqrt{2}-3\sqrt{3}}{2}, \quad (\forall) x \in [\pi/4, \pi/3] , \quad (18)$$

with equality if $x = \pi/4$ or $x = \pi/3$;

(e)
$$\sin x \geq \frac{2(2-\sqrt{2})}{\pi} \cdot x + \sqrt{2} - 1$$
, $(\forall) x \in [\pi/4, \pi/2]$, (19)

with equality if $x = \pi/4$ or $x = \pi/2$;

(f)
$$\sin x \ge \frac{3(2-\sqrt{3})}{\pi} \cdot x + \frac{3\sqrt{3}-4}{2}$$
, $(\forall) x \in [\pi/3, \pi/2]$, (20)

with equality if $x = \pi/3$ or $x = \pi/2$.

Proof

In inequality (14) the angles α and β are replaced in turn by: (a) $\alpha = \pi/6$, $\beta = \pi/4$; (b) $\alpha = \pi/6$, $\beta = \pi/3$; (c) $\alpha = \pi/6$, $\beta = \pi/2$; (d) $\alpha = \pi/4$, $\beta = \pi/3$; (e) $\alpha = \pi/4$, $\beta = \pi/2$; (f) $\alpha = \pi/3$, $\beta = \pi/2$, and routine calculations are made.

The corollary chose several combinations of angles from quadrant I. Obviously, you can also choose angles from quadrant II or from the first two quadrants \cdot

<u>11. Application</u> [2]

If in triangle ABC we have A, B, C $\in [\pi/6, \pi/2]$, then,

$$\sin A + \sin B + \sin C > \frac{9}{4}$$
 (21)

<u>Proof</u>

Using the inequality (17) with A, B, C $\in [\pi/6, \pi/2]$,

$$\Rightarrow \quad \sum_{cycl} \sin A \geq \sum_{cycl} \left(\frac{3}{2\pi} \cdot A + \frac{1}{4} \right) = \frac{3}{2\pi} \cdot \pi + \frac{3}{4} = \frac{3}{2} + \frac{3}{4} = \frac{9}{4}$$

Inequality (21) is strict, because the angles of the triangle cannot take only the values $\pi/6$ and $\pi/2$.

References

- [1] Hörmander Lars, "Notions of Convexity", Birkhäuser, Boston, Basel, Berlin, 1994.
- [2] Marghidanu Dorin, Proposed problem, in Mathematical Inequalities, 3 Aug. 2022, on line: https://www.facebook.com/photo?fbid=5720560064669721&set=gm.3258395914448447
- [3] Niculescu P. Constantin, Persson Lars-Erik, "Convex Functions and Their Applications. A Contemporary Approach", 2nd edition, Springer, 2018
- [4] Pecaric Josip, Proschan Frank, Tong Y.L., "Convex function, partial orderings and statistical applications", Academic Press, Inc. 1992.
- [5] Sándor Jozsef, "Selected chapters of Geometry, Analysis and Number theory", RGMIA Monographs; Victoria University, 2006.