
THE METRIC RELATIONS OF THE MIXTILINEAR INCIRCLE
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1 Introduction

A mixtilinear incircle of a triangle ABC is a circle that in internally tangent to two sides of a triangle and also internally

tangent to the circumcircle of the triangle (figure 1). Some interesting properties of mixtilinear incircles, as well as proof

of their existence and uniqueness can be found in [1].

Figure 1

Every triangle has three unique mixtilinear incircles, one corresponding to each vertex. The mixtilinear incircle

of a triangle ABC tangent to the two sides containing vertex A is called the A-mixtilinear incircle. Similarly, we have

B-mixtilinear incircle and C-mixtilinear incircle for the vertices B and C (figure 2). The points of contact of the mixtilinear

incircles with the circumcircle are A1, B1 and C1.



Figure 2

In this article we will deal with four special points of the mixtilinear incircles: the points of tangency of the

mixtilinear incircles with the circumcircle and the point of concurrence of the lines that unite each vertex and the points

of tangency of its mixtilinear incircles. We will show identities that gives us the distance between those points and any

point on the plane that contains the triangle. For that, we make use of properties of the isogonal cevians of the triangle.

2 Notation

Let ABC be an acute triangle. We denote its side-lengths by BC = a, AC = b, AB = c, its semi perimeter by

s =
1

2
(a + b + c), its area by F , its circumradius by R and inradius by r. Its classical centers are the Incenter I and the

Circumcenter O.

We will need also the following relations

(a) F =
√
s(s− a)(s− b)(s− c) =

abc

4R
= sr.

(b) −a(s− b)(s− c) + b2(s− c) + c2(s− b) = s[(b− c)2 + a(s− a)]

(c) a2(s− c)− b(s− a)(s− c) + c2(s− a) = s[(a− c)2 + b(s− b)]

(d) a2(s− b) + b2(s− a)− c(s− a)(s− b) = s[(a− b)2 + c(s− c)]

(e) a2(s− b)(s− c) + b2(s− a)(s− c) + c2(s− a)(s− b) = 4rs2(R− r)



3 Definitions

1. Isogonal Cevians

In a triangle ABC the cevians AE and AD (E, D ∈ BC) which are symmetric with respect to the angle’s ]BAC

bisector are called isogonal cevians, otherway said, if AE and AD are isogonal cevians then ]BAE ≡ ]CAD (See figure

3).

Figure 3

2. External Center of Similitude of Circumcircle and Incircle The incircle and circumcircle of a triangle

ABC have two similitude centers, the internal similitude center and the external center of similitude. The external center

of similitude of the circumcircle and incircle is the isogonal conjugate of the Nagel point of triangle ABC. It is Kimberling

center X(56) and has equivalent triangle center functions [9].

4 Basic Lemma

Lemma 4.1 Let D the contact point of the A-excircle with BC (see figure figure 4). Then, ]BAA1 = ]DAC, in the

other words, AA1 and AD are isogonal with respect to triangle ABC.

Proof: The proof of above lemma can be found in [1].



Figure 4

Lemma 4.2 If two lines containing two chords AB and CD of a circle (O) intersect at P (see figure figure 5), then

PA.PB = PC.PD (1)

Proof: The proof of above lemma can be found in [7].

Figure 5

5 Theorems

Theorem 5.1 (Steiner) If in the triangle ABC, AD and AE are Isogonal Cevians, D, E are points on BC then:

BD

CD
· BE

CE
=

(
AB

AC

)2

.

Proof: Applying the law of sines, we have:



BD

AB
=

sin (]BAD)

sin (]ADB)
and

CD

AC
=

sin (]CAD)

sin (]ADC)
=

sin (]CAD)

sin (]ADB)
.

From this,

BD

CD
=

AB

AC

sin (]BAD)

sin (]CAD)
. (2)

Similarly,
BE

CE
=

AB

AC

sin (]BAE)

sin (]EAC)
(3)

Using the expressions (2) and (3), we get

BD

CD
· BE

CE
=

(
AB

AC

)2

. (4)

Hence proved

Theorem 5.2 The lines AA1, BB1, CC1 are concurrent at the external center of similitude of circumcircle and the

incircle P (see figure 2).

Proof: The proof of above lemma can be found in [8].

6 Prepositions

Theorem 6.1 Let M be any point in the plane of a triangle ABC and A1, B1 and C1 are the points of contact of the A,

B and C-mixtilinear incircles, respectively, with the circumcenter. Then:

MA2
1 =

1

s[(b− c)2 + a(s− a)]
· [−a(s− b)(s− c)MA2 + b2(s− c)MB2 + c2(s− b)MC2]. (5)

MB2
1 =

1

s[(c− a)2 + b(s− b)]
· [a2(s− c)MA2 − b(s− a)(s− c)MB2 + c2(s− a)MC2]. (6)

MC2
1 =

1

s[(a− b)2 + c(s− c)]
· [a2(s− b)MA2 + b2(s− a)MB2 − c(s− a)(s− b)MC2]. (7)

Proof: For proving the above said result, we will use of the lemma 4.1 and the theorem 5.1 in the triangle ABC (see

figure 6).

We know that D is the contact point of the A-excircle, then BD = s− c and CD = s− b. Now using (4), we have

BE

CE
=

c2

b2
· (s− b)

(s− c)
.



Figure 6

Now let BE + CE = a, it implies that

BE =
ac2(s− b)

b2(s− c) + c2(s− b)
and CE =

ab2(s− c)

b2(s− c) + c2(s− b)
.

Similarly, we can prove that:

CF =
ba2(s− c)

a2(s− c) + c2(s− a)
, AF =

bc2(s− a)

a2(s− c) + c2(s− a)
, AG =

cb2(s− a)

a2(s− b) + b2(s− a)
and BG =

ca2(s− b)

a2(s− b) + b2(s− a)
.

By Stewart’s theorem in the triangle ABC in which AE is a cevian, we get

AC2 ·BE + AB2 · CE −AE2 ·BC = BC ·BE · CE

ab2c2(s− b)

b2(s− c) + c2(s− b)
+

ab2c2(s− c)

b2(s− c) + c2(s− b)
− aAE2 =

a3b2c2(s− b)(s− c)

[b2(s− c) + c2(s− b)]2

It implies

AE2 =
ab2c2

[b2(s− c) + c2(s− b)]2
· [b2(s− c) + c2(s− b)− a(s− b)(s− c)] (8)

Now, using the lemma 4.2, we get

AE.EA1 = BE.CE =⇒ AE2.EA2
1 = BE2.CE2

By replacing we get

ab2c2

[b2(s− c) + c2(s− b)]2
· [b2(s− c) + c2(s− b)− a(s− b)(s− c)] · EA2

1 =
a4b4c4(s− b)2(s− c)2

[b2(s− c) + c2(s− b)]4



EA2
1 =

a3b2c2(s− b)2(s− c)2

[b2(s− c) + c2(s− b)]2[b2(s− c) + c2(s− b)− a(s− b)(s− c)]
(9)

Using (8) and (9), we get

AE

EA1
=

[b2(s− c) + c2(s− b)− a(s− b)(s− c)]

a(s− b)(s− c)
(10)

AE

EA1
+ 1 =

[b2(s− c) + c2(s− b)]

a(s− b)(s− c)
(11)

Now, applying the Stewart’s theorem in the triangles MBC and MAA1 (see figure 6) in which cevian ME, we have

MB2 · CE + MC2 ·BE −ME2 ·BC = BC · CE ·BE (12)

MA2
1 ·AE + MA2 · EA1 −ME2 ·AA1 = AA1 ·AE · EA1 (13)

Using (12) and replacing BE and CE, we get

ME2 =
b2(s− c) ·MB2 + c2(s− b) ·MC2

[b2(s− c) + c2(s− b)]
− a2b2c2(s− b)(s− c)

[b2(s− c) + c2(s− b)]2
(14)

Now, using (13) and considering that AA1 = AE + EA1, we get

MA2
1 ·AE + MA2 · EA1 −ME2 · (AE + EA1) = AE · EA1 · (AE + EA1)

MA2 + MA2
1 ·

AE

EA1
−ME2 · ( AE

EA1
+ 1) = AE2 + AE · EA1 (15)

Combining the lemma 4.2 with (8), (10), (11), (14), (15) and after simplifying a few steps we obtain,

MA2
1 =

1

[−a(s− b)(s− c) + b2(s− c) + c2(s− b)]
· [−a(s− b)(s− c)MA2 + b2(s− c)MB2 + c2(s− b)MC2].

From (b), we obtain

MA2
1 =

1

s[(b− c)2 + a(s− a)]
· [−a(s− b)(s− c)MA2 + b2(s− c)MB2 + c2(s− b)MC2].

Similarly, we can prove (6) and (7).



Preposition 6.2 The external center of similitude of circumcircle and incircle P of the triangle ABC divides each cevian

in the ratio given by

AP

PE
=

(s− a)[b2(s− c) + c2(s− b)]

a2(s− b)(s− c)
(16)

BP

PF
=

(s− b)[a2(s− c) + c2(s− a)]

b2(s− a)(s− c)
(17)

CP

PG
=

(s− c)[a2(s− b) + b2(s− a)]

c2(s− a)(s− b)
(18)

Proof: Let AE, CG and BF are cevians of triangle ABC. In the triangle ABE the line CG as transversal. Applying

Menelaus’ Theorem we have

AG

BG
· BC

CE
· PE

AP
= 1

By replacing the all known relations and by little algebra, we get the conclusion (16).

In the similar manner we can prove the conclusions (17) and (18).

Theorem 6.3 Let M be any point in the plane of a triangle ABC and P the concurrence point of the lines AA1, BB1

and CC1, then

MP2 =
1

4rs2(R− r)
· [a2(s− b)(s− c)MA2 + b2(s− a)(s− c)MB2 + c2(s− a)(s− b)MC2]− R2r2

(R− r)2
. (19)

Proof: Using the expression (16) and considering that AE = AP + PE, we get

PE

AE
=

a2(s− b)(s− c)

a2(s− b)(s− c) + b2(s− a)(s− c) + c2(s− a)(s− b)
(20)

AP

AE
=

(s− a)[b2(s− c) + c2(s− b)]

a2(s− b)(s− c) + b2(s− a)(s− c) + c2(s− a)(s− b)
(21)

Applying the Stewart’s theorem in the triangles MAE (see figure 6) in which cevian MP , we have

MA2 · PE + ME2 ·AP −MP 2 ·AE = AE ·AP · PE

MA2 + ME2 · AP

PE
−MP 2 · (AP

PE
+ 1) = AP 2 + AP · PE

Now, using (8), (14), (16), (20), (21), (a) and algebraic manipulation, we get



MP 2 =
1

a2(s− b)(s− c) + b2(s− a)(s− c) + c2(s− a)(s− b)
·[a2(s−b)(s−c)MA2+b2(s−a)(s−c)MB2+c2(s−a)(s−b)MC2]− R2r2

(R− r)2
.

And by using (e) we can prove the conclusion of (19)

7 Main Result

Corollary 7.1 Let A1, B1 and C1 are the Points of contact of the A, B and C-mixtilinear incircles, respectively, with

the circumcircle of the triangle ABC, then

AA2
1 =

ab2c2

s[(b− c)2 + a(s− a)]
, BA2

1 =
ac2(s− b)2

s[(b− c)2 + a(s− a)]
and CA2

1 =
ab2(s− c)2

s[(b− c)2 + a(s− a)]
. (22)

AB2
1 =

bc2(s− a)2

s[(c− a)2 + b(s− b)]
, BB2

1 =
a2bc2

s[(c− a)2 + b(s− b)]
and CB2

1 =
a2b(s− c)2

s[(c− a)2 + b(s− b)]
. (23)

AC2
1 =

b2c(s− a)2

s[(a− b)2 + c(s− c)]
, BC2

1 =
a2c(s− b)2

s[(a− b)2 + c(s− c)]
and CC2

1 =
a2b2c

s[(a− b)2 + c(s− c)]
. (24)

Proof: For proving (22) we using the theorem 6.1, replacing M by the A and consider AA = 0, AB = c and AC = b,

then

MA2
1 =

1

s[(b− c)2 + a(s− a)]
· [−a(s− b)(s− c)AA2 + b2(s− c)AB2 + c2(s− b)AC2].

MA2
1 =

1

s[(b− c)2 + a(s− a)]
· [c2b2(s− c) + b2c2(s− b)].

Hence

AA2
1 =

ab2c2

s[(b− c)2 + a(s− a)]

By replacing M by B and C in (5) we can arrive at the required conclusions of (22).

In the similar manner, using (6) and (7), we can prove the conclusion (23) and (24).

Corollary 7.2 Be I the Incenter of the triangle ABC and A1, B1 and C1 are the points of contact of the A, B and

C-mixtilinear incircles, respectively, with the circumcircle, then

IA2
1 =

abc(s− b)(s− c)

s[(b− c)2 + a(s− a)]
, IB2

1 =
abc(s− a)(s− c)

s[(c− a)2 + b(s− b)]
and IC2

1 =
abc(s− a)(s− b)

[(a− b)2 + c(s− c)]
. (25)



Proof: In Theorem 6.1, replace in (22) M by the incenter I. We get

IA2
1 =

1

s[(b− c)2 + a(s− a)]
· [−a(s− b)(s− c)IA2 + b2(s− c)IB2 + c2(s− b)IC2].

Now, we know that

IA2 =
bc(s− a)

s
, IB2 =

ac(s− b)

s
and IC2 =

ab(s− c)

s
.

Then,

IA2
1 =

1

s[(b− c)2 + a(s− a)]
· [−a(s− b)(s− c) · bc(s− a)

s
+ b2(s− c) · ac(s− b)

s
+ c2(s− b) · ab(s− c)

s
].

IA2
1 =

abc(s− b)(s− c)

s2[(b− c)2 + a(s− a)]
· [−(s− a) + b + c].

Hence,

IA2
1 =

abc(s− b)(s− c)

s[(b− c)2 + a(s− a)]

In the similar manner, using (6) and (7), we can prove the relations IB1 and IC1.

Corollary 7.3 Be O the circumcenter of the triangle ABC and A1, B1 and C1 are the points of contact of the A, B and

C-mixtilinear incircles, respectively, with the circumcircle, then

OA1 = OB1 = OC1 = R (26)

Proof: In Theorem 6.1, replace in (5), (6) and (7) M by the circumcenter O, and consider that OA = OB = OC = R,

we get conclusion (26).

Corollary 7.4 Be I the Incenter of the triangle ABC and P the external center of similitude of circumcircle and the

incircle, then

IP2 =
Rr2(R− 2r)

(R− r)2
(27)

Proof: In Theorem 6.3, replace M by the incenter I. We get

IP 2 =
1

4rs2(R− r)
· [a2(s− b)(s− c)IA2 + b2(s− a)(s− c)IB2 + c2(s− a)(s− b)IC2]− R2r2

(R− r)2
.

IP 2 =
1

4rs2(R− r)
· [a2(s− b)(s− c)

bc(s− a)

s
+ b2(s− a)(s− c)

ac(s− b)

s
+ c2(s− a)(s− b)

ab(s− c)

s
]− R2r2

(R− r)2
.



IP 2 =
abc(s− a)(s− b)(s− c)

2rs2(R− r)
− R2r2

(R− r)2
.

Now using (a), we get

IP 2 =
2Rr2

(R− r)
− R2r2

(R− r)2
.

Hence,

IP 2 =
Rr2(R− 2r)

(R− r)2
.

Corollary 7.5 Be O the circumcenter of the triangle ABC and P is center of similitude of the circumcircle and the

incircle, then

OP2 =
R3(R− 2r)

(R− r)2
(28)

Proof: In Theorem 6.3, replace M by the circumcenter O, and consider OA = OB = OC = R. We get

OP 2 =
R2

4rs2(R− r)
· [a2(s− b)(s− c) + b2(s− a)(s− c) + c2(s− a)(s− b)]− R2r2

(R− r)2
.

Using the expression (e), then

OP 2 = R2 − R2r2

(R− r)2
.

Hence,

OP 2 =
R3(R− 2r)

(R− r)2
.

8 Conclusion

In this the current paper we proved metric relations of the main points of the mixtilinear circles. To arrive at the result,

we use a propertie of the isogonal cevians of the triangle as the main tool. Using these metric relations we can find the

distance between the these points and other notable centers of the triangle, as well as investigate interesting properties of

the mixtilinear circles. The proofs presented here only require basic knowledge of geometry and its manipulation and

application.



References

[1] BACA, Jafet. ”On Mixtilinear Incircles”. Mathematical Reflections, 2020.
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