

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

PROVING THE REFLECTIVE PROPERTY OF AN ELLIPSE

By Benny Le Van ${ }^{1}$-Vietnam
The reflective property of an ellipse states that any rays passing through a focus shall hit the boundary and reflect to the remaining focus. This property has been applied in multiple sites around the world ${ }^{2}$. In this article, we shall prove this geometric property.

SOLUTION

Given ellipse (E) as illustrated in Figure I with the following equation:

$$
\begin{equation*}
(E): \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \tag{1}
\end{equation*}
$$

Figure I. The illustrated ellipse, constructed via GeoGebra.
In (1), \boldsymbol{a} and \boldsymbol{b} are semi-axes of (E) such that $\mathbf{0}<\boldsymbol{b}<\boldsymbol{a}$, and the focus is accordingly \boldsymbol{c}. The foci are, respectively, $F(-c, 0)$ and $G(c, 0)$. Given point $H(j, k)$ which belongs to (E).

[^0]

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

If $\boldsymbol{k}=\mathbf{0}$, the problem is straightforwardly proven. We consider $\boldsymbol{k} \neq \mathbf{0}$. We are supposed to prove that HD is the bisector of triangle HFG.

The tangent line (\boldsymbol{t}) of (\boldsymbol{E}) at \boldsymbol{H} and its correspondingly perpendicular line (\boldsymbol{l}) are therefore:

$$
(t): \frac{j x}{a^{2}}+\frac{k y}{b^{2}}=1 \quad(l):\left\{\begin{array}{c}
x=j+\frac{j u}{a^{2}} \\
y=k+\frac{k u}{b^{2}} \\
(u \in \mathbb{R})
\end{array}\right.
$$

Let $D(d, 0)$ be the intersection of (l) and $F G$. Since $y_{D}=0$, we get:

$$
k+\frac{k u}{b^{2}}=0 \Leftrightarrow u=-b^{2}
$$

Accordingly,

$$
d=j\left(1-\frac{b^{2}}{a^{2}}\right)=\frac{j c^{2}}{a^{2}}
$$

We calculate $D F$ and $D G$ as follows:

$$
\begin{align*}
& D F=\frac{j c^{2}}{a^{2}}+c=\frac{c}{a^{2}}\left(a^{2}+j c\right) \tag{2}\\
& D G=c-\frac{j c^{2}}{a^{2}}=\frac{c}{a^{2}}\left(a^{2}-j c\right) \tag{3}
\end{align*}
$$

From (2) and (3), we get:

$$
\begin{equation*}
\frac{D F}{D G}=\frac{a^{2}+j c}{a^{2}-j c} \tag{4}
\end{equation*}
$$

In (4), it is noticeable that there exist $\varphi \epsilon[0,2 \pi]$ such that $j=a \cos \varphi$. This is to ensure that $\boldsymbol{a}^{2} \geq|j c|$, resulting in $D F>0$ and $D G>0$.

We calculate $\boldsymbol{H F}$ as follow:

$$
\begin{equation*}
H F^{2}=(j+c)^{2}+k^{2}=j^{2}+2 j c+c^{2}+k^{2} \tag{5}
\end{equation*}
$$

As point H belongs to (E), we get the following relation:

$$
\begin{equation*}
\frac{j^{2}}{a^{2}}+\frac{k^{2}}{b^{2}}=1 \Rightarrow \frac{k^{2}}{b^{2}}=\frac{a^{2}-j^{2}}{a^{2}} \Rightarrow k^{2}=\frac{b^{2}}{a^{2}}\left(a^{2}-j^{2}\right)=\frac{\left(a^{2}-c^{2}\right)\left(a^{2}-j^{2}\right)}{a^{2}} \tag{6}
\end{equation*}
$$

Replacing (6) into (5), we obtain:

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\begin{aligned}
& H F^{2}=j^{2}+2 j c+c^{2}+\frac{\left(a^{2}-c^{2}\right)\left(a^{2}-j^{2}\right)}{a^{2}} \\
& =\frac{a^{2} j^{2}+2 a^{2} j c+a^{2} c^{2}+a^{4}-a^{2}\left(j^{2}+c^{2}\right)+j^{2} c^{2}}{a^{2}}=\frac{a^{4}+2 a^{2} j c+j^{2} c^{2}}{a^{2}}
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
H F=\frac{a^{2}+j c}{a} \tag{7}
\end{equation*}
$$

As point H belongs to (E), we apply the definition of an ellipse:

$$
\begin{equation*}
H F+H G=2 a \tag{8}
\end{equation*}
$$

From (7) and (8), we get:

$$
\begin{equation*}
H G=2 a-H F=2 a-\frac{a^{2}+j c}{a}=\frac{a^{2}-j c}{a} \tag{9}
\end{equation*}
$$

From (7) and (9), we get:

$$
\begin{equation*}
\frac{H F}{H G}=\frac{a^{2}+j c}{a^{2}-j c} \tag{10}
\end{equation*}
$$

From (4) and (10), we obtain:

$$
\frac{D F}{D G}=\frac{H F}{H G}
$$

Henceforth, $H D$ is the bisector of triangle $H F G$, which consequences in QED.

[^0]: ${ }^{1}$ https://orcid.org/0000-0002-6428-8731.
 ${ }^{2}$ See: Dawson, S. (2021). The Reflective Property of an Ellipse. Retrieved February 10, 2023, from https://personal.math.ubc.ca/~cass/courses/m309-

 01a/dawson/index.html\#:~:text=The\%20Reflective\%20property\%20of\%20an\%20ellipse\%20is\%20simply\%20t
 his\%3A\%20when,pass\%20through \%20the\%20other\%20focus.

