## ROMANIAN MATHEMATICAL MAGAZINE

If $a, b, c>0, a+b+c=3$ and $n, k \in \mathbb{N}$ then:

$$
\sum \frac{a^{n+k}}{\sqrt{b+c}} \geq \frac{a^{k}+b^{k}+c^{k}}{\sqrt{2}}
$$

Proposed by Marin Chirciu-Romania

## Solution 1 by Tapas Das-India

$$
\begin{gathered}
\sum \frac{a^{m+k}}{\sqrt{b+c}} \underset{C B S}{\geq} \frac{\sum a^{m} \cdot \sum a^{k}}{3} \\
\sum \frac{a^{m+k}}{\sqrt{b+c}} \underset{\text { Chebysev }}{\geq} \frac{1}{3} \cdot \sum a^{m+k} \cdot \sum \frac{1}{\sqrt{b+c}} \geq \underset{C B S}{\geq} \frac{1}{3} \cdot \frac{\sum a^{m} \cdot \sum a^{k}}{3} \cdot \frac{(1+1+1)^{2}}{\sqrt{6(a+b+c)}} \geq \\
\underset{C B S}{\geq} \frac{1}{9} \cdot \sum a^{k} \cdot \frac{1}{3^{m-1}} \cdot\left(\sum a\right)^{m} \cdot \frac{9}{\sqrt{6 \times 3}}=\frac{1}{9} \cdot \sum a^{k} \cdot \frac{1}{3^{m-1}} \cdot(3)^{m} \cdot \frac{9}{3 \sqrt{2}} \\
=\frac{1}{9} \cdot \sum a^{k} \cdot \frac{3 \times 9}{3 \sqrt{2}}=\frac{\sum a^{k}}{\sqrt{2}}
\end{gathered}
$$

## Solution 2 by Eric Cismaru-Romania

Without loss of generality, let us assume $\boldsymbol{a} \geq \boldsymbol{b} \geq \boldsymbol{c}$.
This implies that $a^{k} \geq b^{k} \geq c^{k}$ and that $\frac{a^{n}}{\sqrt{b+c}} \geq \frac{b^{n}}{\sqrt{a+c}} \geq \frac{c^{k}}{\sqrt{a+b}}$. Applying now Chebysev's Inequality for the sequences $\left\{\frac{a^{n}}{\sqrt{b+c}}, \frac{b^{n}}{\sqrt{a+c}}, \frac{c^{n}}{\sqrt{b+a}}\right\}$ and $\left\{\boldsymbol{a}^{k}, \boldsymbol{b}^{k}, \boldsymbol{c}^{k}\right\}$, we obtain

$$
\sum \frac{a^{n+k}}{\sqrt{b+c}} \geq \frac{1}{3}\left(\sum a^{k}\right)\left(\sum \frac{a^{n}}{\sqrt{b+c}}\right)
$$

## Using Holder's Inequality

$$
\left(\sum \frac{a^{n}}{\sqrt{b+c}}\right)^{\frac{1}{n}} \cdot\left(\sum \sqrt{b+c}\right)^{\frac{1}{n}} \underbrace{(1+1+1)^{\frac{1}{n}}(1+1+1)^{\frac{1}{n}} \ldots(1+1+1)^{\frac{1}{n}}}_{n-2} \geq \sum a
$$

and by raising this relationship to the power of $n$ and dividing by $3^{n-2}$, we find that

$$
\sum \frac{a^{n}}{\sqrt{b+c}} \geq \frac{\left(\sum a\right)^{n}}{\left(\sum \sqrt{b+c}\right) \cdot 3^{n-2}}=\frac{3^{n}}{3^{n-2} \cdot\left(\sum \sqrt{b+c}\right)}
$$

But $\sum \sqrt{b+c} \stackrel{C . B . S}{\leq} \sqrt{6(a+b+c)}=3 \sqrt{2} \Leftrightarrow \sum \frac{a^{n}}{\sqrt{b+c}} \geq \frac{3^{n}}{3^{n-1 \cdot \sqrt{2}}}=\frac{3}{\sqrt{2}}$, which is equivalent to

$$
\sum \frac{a^{n+k}}{\sqrt{b+c}} \geq\left(\sum a^{k}\right) \cdot \frac{1}{3} \cdot \frac{3}{\sqrt{2}}=\frac{a^{k}+b^{k}+c^{k}}{\sqrt{2}}
$$

## ROMANIAN MATHEMATICAL MAGAZINE

In conclusion, $\sum \frac{a^{n+k}}{\sqrt{b+c}} \geq \frac{a^{k}+b^{k}+c^{k}}{\sqrt{2}}$
Equality holds when $a=b=c=1$.

