ROMANIAN MATHEMATICAL MAGAZINE

If $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}>\mathbf{0}$ then:

$$
\sqrt[3]{4 a}+\sqrt[3]{9 b}+\sqrt[3]{25 c} \leq \sqrt[3]{100(a+b+c)}
$$

Proposed by Daniel Sitaru - Romania
Solution 1 by George Florin Șerban - Romania

$$
\begin{aligned}
& \begin{array}{c}
\sqrt[3]{4 a}+\sqrt[3]{9 b}+\sqrt[3]{25 c}=\sqrt[3]{2} \cdot \sqrt[3]{2} \cdot \sqrt[3]{a}+\sqrt[3]{3} \cdot \sqrt[3]{3} \cdot \sqrt[3]{b}+\sqrt[3]{5} \cdot \sqrt[3]{5} \cdot \sqrt[3]{c}^{\text {Holder }} \leq \\
\leq\left(\sqrt[3]{2}^{3}+\sqrt[3]{3}^{3}+\sqrt[3]{5}^{3}\right)^{\frac{1}{3}} \cdot\left(\sqrt[3]{2}^{3}+\sqrt[3]{3}^{3}+\sqrt[3]{5}^{3}\right)^{\frac{1}{3}} \cdot\left(\sqrt[3]{a}^{3}+\sqrt[3]{b}^{3}+\sqrt[3]{c}^{3}\right)^{\frac{1}{3}}= \\
=(2+3+5)^{\frac{1}{3}} \cdot(2+3+5)^{\frac{1}{3}} \cdot(a+b+c)^{\frac{1}{3}}= \\
=\sqrt[3]{10 \cdot 10 \cdot(a+b+c)}=\sqrt[3]{100(a+b+c)} \\
\text { then } \\
\sqrt[3]{4 a}+\sqrt[3]{9 b}+\sqrt[3]{25 c} \leq \sqrt[3]{100(a+b+c)} \\
\text { (V)a,b,c}>0, \text { true }
\end{array}
\end{aligned}
$$

Solution 2 by Michel Sterghiou - Greece

$$
\begin{gather*}
\sqrt[3]{4 a}+\sqrt[3]{9 b}+\sqrt[3]{25 c} \leq \sqrt[3]{100(a+b+c)} \tag{1}\\
\text { Let } \alpha=2 x, b=3 y, c=5 z(1) \rightarrow 2 \sqrt[3]{x}+3 \sqrt[3]{y}+5 \sqrt[3]{z} \leq \sqrt[3]{100(2 x+3 y+5 z)} \tag{2}
\end{gather*}
$$

Using the fact that if $(t)=\sqrt[3]{t} \quad(0,+\infty)$ is concave we have by generalize Jensen

$$
L H S(2) \leq(2+3+5) \cdot \sqrt[3]{\frac{2 x+3 y+5 z}{2+3+5}}=\sqrt[3]{1000 \cdot \frac{a+b+c}{10}}=\sqrt[3]{100(a+b+c)}=R H S \text { of (2). }
$$

$$
\text { Equality for } a=2, b=3, c=5 \text {. }
$$

