ROMANIAN MATHEMATICAL MAGAZINE

Suppose that $\angle A B C=20^{0}, \angle C A B=40^{0}$. Prove that: $a^{3}-b^{3}=3 a b^{2}$

Proposed by Jafar Nikpour-Iran

Solution by Togrul Ehmedov-Azerbaijan

Using the law of cosines in $\triangle A B C$, we conclude that

$$
\begin{gathered}
A B=\sqrt{a^{2}+b^{2}-2 a b \cos \left(120^{0}\right)}=\sqrt{a^{2}+b^{2}+a b} \\
\Delta \mathrm{BCM} \sim \Delta \mathrm{MA}, \frac{M B}{M C}=\frac{M C}{A C} \Rightarrow \frac{M A+A B}{M C}=\frac{M C}{A C}
\end{gathered}
$$

$$
\frac{b+\sqrt{a^{2}+b^{2}+a b}}{a}=\frac{a}{b}, \quad b \sqrt{a^{2}+b^{2}+a b}=a^{2}-b^{2}, \quad a^{3}-b^{3}=3 a b^{2}
$$

