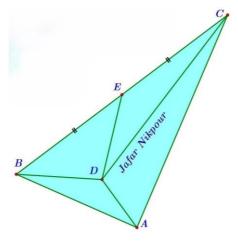
ROMANIAN MATHEMATICAL MAGAZINE

Suppose that: $\angle DBA = 20^\circ$; $\angle DAB = 30^\circ$; $\angle DBC = 40^\circ$; $\angle DAC = 60^\circ$

Prove that: $\angle DEC = 140^{\circ}$



Proposed by Jafar Nikpour – Iran

Solution by Eric - Dimitrie Cismaru – Romania We have $\measuredangle ABC = \measuredangle DBA + \measuredangle DBC = 60^\circ, \measuredangle BAC = \measuredangle DAB + \measuredangle DBC = 90^\circ, \text{ so } \triangle ABC \text{ is a right triangle and } \measuredangle BCA = 30^\circ.$

On the other hand, since *E* is the midpoint of *BC*, *AE* is a median in a right triangle, so [AE] = [BE] = [EC], and since $\ll EBA = 60^\circ$, $\triangle BEA$ is equilateral, so we have [BA] =

[AE]. The triangle $\triangle AEC$ is isosceles, so we have $\triangleleft EAC = \triangleleft ECA = 30^{\circ}$.

Therefore, $\Delta DAB \equiv \Delta DAE$, which leads us to $\measuredangle DEA = \measuredangle DBA = 20^\circ$, and since $\measuredangle AEC = 120^\circ$, we obtain $\measuredangle DEC = 140^\circ$, the conclusion.

