ROMANIAN MATHEMATICAL MAGAZINE

Suppose that: $\angle D B A=20^{\circ} ; \angle D A B=30^{\circ} ; \angle D B C=40^{\circ} ; \angle D A C=60^{\circ}$
Prove that: $\angle D E C=140^{\circ}$

Proposed by Jafar Nikpour - Iran

Solution by Eric - Dimitrie Cismaru - Romania

We have $\Varangle A B C=\Varangle D B A+\Varangle D B C=60^{\circ}, \Varangle B A C=\Varangle D A B+\Varangle D B C=90^{\circ}$, so $\triangle A B C$ is a right triangle and $\Varangle B C A=30^{\circ}$.

On the other hand, since E is the midpoint of $B C, A E$ is a median in a right triangle, so $[A E]=[B E]=[E C]$, and since $\Varangle E B A=60^{\circ}, \triangle B E A$ is equilateral, so we have $[B A]=$ $[A E]$. The triangle $\triangle A E C$ is isosceles, so we have $\Varangle E A C=\Varangle E C A=30^{\circ}$.

Therefore, $\triangle D A B \equiv \triangle D A E$, which leads us to $\Varangle D E A=\Varangle D B A=20^{\circ}$, and since $\Varangle A E C=120^{\circ}$, we obtain $\Varangle D E C=140^{\circ}$, the conclusion.

