ROMANIAN MATHEMATICAL MAGAZINE

In $\triangle A B C$ the following relationship holds:

$$
10-\frac{2 r}{R} \leq \sum a \sum \frac{1}{a} \leq \frac{9 R}{2 r}
$$

Proposed by Marin Chirciu-Romania
Solution by Tapas Das-India

$$
\begin{gathered}
\sum a \sum \frac{1}{a}=2 s \frac{s^{2}+r^{2}+4 R r}{4 R r s}=\frac{s^{2}+r^{2}+4 R r}{2 R r} \\
\sum a \sum \frac{1}{a}=\frac{s^{2}+r^{2}+4 R r}{2 R r} \stackrel{\text { Gerretsen }}{\leq} \frac{4 R^{2}+8 R r+4 r^{2}}{2 R r}= \\
=\frac{4(R+r)^{2}}{2 R r} \stackrel{\text { Euler }}{\leq} \frac{4\left(R+\frac{R}{2}\right)^{2}}{2 R r}=\frac{9 R}{2 r} \\
\sum a \sum \frac{1}{a}=\frac{s^{2}+r^{2}+4 R r}{2 R r} \stackrel{\text { Gerretsen }}{\geq} \frac{20 R r-4 r^{2}}{2 R r}=10-\frac{4 r}{2 R}=10-\frac{2 r}{R} \\
\text { Equality holds for } a=b=c .
\end{gathered}
$$

