ROMANIAN MATHEMATICAL MAGAZINE

In $\triangle A B C$ the following relationship holds:

$$
\left(h_{b}+h_{c}\right) \cdot \tan \frac{A}{2}+\left(h_{c}+h_{a}\right) \cdot \tan \frac{B}{2}+\left(h_{a}+h_{b}\right) \cdot \tan \frac{C}{2} \geq 6 \sqrt{3} r
$$

Proposed by Zaza Mzhavanadze-Georgia
Solution by Ertan Yildirim-Turkiye
Lemma: $h_{a}+h_{b}+h_{c} \geq \mathbf{9 r}$
Let $a \geq b \geq c$ then $h_{a} \leq h_{b} \leq h_{c}$ and $h_{a}+h_{b} \leq h_{a}+h_{c} \leq h_{b}+h_{c}$

$$
\begin{gathered}
\tan \frac{A}{2} \geq \tan \frac{B}{2} \geq \tan \frac{C}{2} \\
\therefore \sum\left(h_{b}+h_{c}\right) \tan \frac{A}{2} \stackrel{\text { Chebyshev }}{\geq} \frac{1}{3} \cdot 2\left(h_{a}+h_{b}+h_{c}\right) \cdot\left(\tan \frac{A}{2}+\tan \frac{B}{2}+\tan \frac{C}{2}\right) \\
\frac{\text { Lemma }}{\geq} \frac{1}{3} \cdot 2 \cdot 9 r\left(\tan \frac{A}{2}+\tan \frac{B}{2}+\tan \frac{C}{2}\right) \\
=6 r \cdot\left(\tan \frac{A}{2}+\tan \frac{B}{2}+\tan \frac{C}{2}\right) \\
f(x)=\tan x \Rightarrow f^{\prime}(x)=\sec ^{2} x \Rightarrow f^{\prime \prime}(x)=2 \sec ^{2} x \cdot \tan x>0 \text { where } x \in\left(0, \frac{\pi}{2}\right)
\end{gathered}
$$

Therefore $f(x)$ is convex

$$
\begin{gathered}
\frac{f\left(\frac{A}{2}\right)+f\left(\frac{B}{2}\right)+f\left(\frac{C}{2}\right)}{3} \geq f\left(\frac{A+B+C}{6}\right) \\
\tan \frac{A}{2}+\tan \frac{B}{2}+\tan \frac{C}{2} \geq 3 \cdot f\left(\frac{\pi}{6}\right)=3 \cdot \tan \frac{\pi}{6}=3 \frac{\sqrt{3}}{3}=\sqrt{3} \\
\therefore \sum\left(h_{b}+h_{c}\right) \tan \frac{A}{2} \geq 6 r \cdot \sum \tan \frac{A}{2} \geq 6 r \cdot \sqrt{3}=6 \sqrt{3} r
\end{gathered}
$$

