ROMANIAN MATHEMATICAL MAGAZINE

Let $x, y \ge 0$ such that x + y = 1.

Find the maximum and the minimum value of $P = \sin(\sqrt{x}) + \sin(\sqrt{y})$

Proposed by Nguyen Hung Cuong-Vietnam Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco

Since $t \rightarrow \sin t$ is increasing and concave on [0, 1]

then by Jensen's inequality, we have

$$P = \sin(\sqrt{x}) + \sin(\sqrt{y}) \le 2\sin\left(\frac{\sqrt{x} + \sqrt{y}}{2}\right) \le 2\sin\left(\sqrt{\frac{x+y}{2}}\right) = 2\sin\left(\frac{\sqrt{2}}{2}\right),$$

so the maximum value of P is $2 \sin\left(\frac{\sqrt{2}}{2}\right)$, for $x = y = \frac{1}{2}$.

Also, by Jensen's inequality, we have

$$\sin(\sqrt{x}) \stackrel{\sqrt{x} \ge x}{\ge} \sin(x) = \sin(x.1 + y.0) \ge x \sin 1 + y \sin 0 = x \sin 1.$$

Similarly, we have $\sin(\sqrt{y}) \ge y \sin 1$.

Then $P \ge (x + y) \sin 1 = \sin 1$, so the minimum value of P is $\sin 1$,

for
$$x = 1$$
 and $y = 0$ or $x = 0$ and $y = 1$.