

ROMANIAN MATHEMATICAL MAGAZINE

SOLUTIONS

Founding Editor DANIEL SITARU

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

RMM SPRING EDITION 2019

SOLUTIONS

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro Proposed by

Daniel Sitaru - Romania
Nguyen Van Nho - Nghe An - Vietnam
Nguyen Viet Hung - Hanoi - Vietnam
Hoang Le Nhat Tung - Hanoi - Vietnam Marin Chirciu - Romania
Rovsen Pirguliyev - Sumgait - Azebaijan
D.M. Bătinețu-Giurgiu - Romania
Neculai Stanciu - Romania
Seyran Ibrahimov-M aasilli-Azerbaidian
Marian Ursărescu - Romania

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro Solutions by

Daniel Sitaru - Romania, Soumava Chakraborty-Kolkata-India,Tran Hong-Vietnam, Soumitra M andal-Chandar Nagore-India,M ichael Sterghiou-Greece, Ravi Prakash-New

Delhi-India,Sanong Huayrerai-Nakon Pathom-Thailand, Lahiru Samarakoon-Sri
Lanka,Ruanghaw Chaoka-Chiangrai-Thailand, Marian Ursărescu-Romania,Bogdan Fustei-
Romania, Marin Chirciu - Romania,Kelvin Hong-Rawang-M alaysia, Amit Dutta-Jamshedpur-India,Boris Colakovic-Belgrade-Serbia, Seyran Ibrahimov-M aasilli-Azerbaijan Serban George Florin-Romania, Khaled Abd Almuty-Damascus-Syria Bao Truong-Vietnam, Remus Florin Stanca-Romania,Minh Tam Le-Vietnam, Nguyen Tan Phat-Vietnam,D.M. Bătinețu-Giurgiu - Romania, Neculai Stanciu -

Romania,M yagmarsuren Yadamsuren-Darkhan-M ongolia Naren Bhandari-Bajura-Nepal, Sagar Kumar-Patna Bihar-India

Avishek Mitra-India, Abdul M ukhtar-Nigeria,Shivam Sharma-New Delhi-India, Pierre M ounir-Cairo-Egypt, Shafiqur Rahman-Bangladesh

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

JP.166. If $a, b \in[0 ;+\infty)$ and $n \in \mathbb{N}^{*} \wedge n \geq 2$ then:

$$
(a b)^{\frac{n}{2}} \leq \frac{\sum_{k=0}^{n} a^{k} b^{n-k}}{n+1} \leq \frac{a^{n}+b^{n}}{2}
$$

Proposed by Nguyen Van Nho - Nghe An - Vietnam

Solution 1 by Tran Hong-Vietnam

$$
(a b)^{\frac{n}{2}} \stackrel{(1)}{\leq} \frac{b^{n}+a b^{n-1}+a^{2} b^{n-2}+\ldots+a^{n-1} b+a^{n}}{n+1} \stackrel{(2)}{\leq} \frac{a^{n}+b^{n}}{2}
$$

Using Cauchy's inequality:

$$
\frac{b^{n}+a b^{n-1}+a^{2} b^{n-2}+\cdots+a^{n-1} b+a^{n}}{n+1} \geq \sqrt[n+1]{(a b)^{\frac{n(n+1)}{2}}}=(a b)^{\frac{n}{2}} \Rightarrow(1) \text { is true. }
$$

If $\boldsymbol{a}=\boldsymbol{b}$ then (2) true. If $\boldsymbol{a} \neq \boldsymbol{b}$ (suppose $\boldsymbol{b}>a$) we have

$$
\text { (2) } \Leftrightarrow \frac{b^{n+1}-a^{n+1}}{(n+1)} \leq \frac{a^{n}+b^{n}}{2}(b-a)
$$

Let $f(x)=x^{n}(\forall x \in[a, b])$ and $O(0,0), A(a, 0), B(b, 0), C(a, f(a)), D(b, f(b))$ we have

$$
\frac{b^{n+1}-a^{n+1}}{n+1}=\int_{a}^{b} x^{n} d x \leq S_{A B C D}=\frac{1}{2} \cdot(O C+O D)(O B-O A)=\frac{\left(a^{n}+b^{n}\right)(b-a)}{2}
$$

Proved.

Solution 2 by Soumitra M andal-Chandar Nagore-India

Let $f(x)=x^{n}$ for all $x \geq 0$ and $n \geq 2$, now $f^{\prime \prime}(x)=n(n-1) x^{n-2} \geq 0$
Hence f is a convex function, by Hermite - Hadamard

$$
\begin{gathered}
\left(\frac{a+b}{2}\right)^{n} \leq \frac{1}{b-a} \int_{a}^{b} x^{n} d x \leq \frac{a^{n}+b^{n}}{2} \text { where } a, b \in[0, \infty) \text { and } b>a \\
\Rightarrow(a b)^{\frac{n}{2}} \stackrel{A M \geq M}{\lfloor } \frac{b^{n+1}-a^{n+1}}{(b-a)(n+1)} \leq \frac{a^{n}+b^{n}}{2} \\
(a b)^{\frac{n}{2}} \leq \frac{\sum_{k=0}^{n} a^{k} b^{n-k}}{n+1} \leq \frac{a^{n}+b^{n}}{2}
\end{gathered}
$$

(Proved)
Solution 3 by Michael Sterghiou-Greece

1) $\sum_{k=0}^{n} a^{k} b^{n-k} \geq(n+1) \sqrt[n+1]{\prod_{k=0}^{n}\left(a^{k} b^{(n-k)}\right)}=(n+1) \cdot \sqrt[n+1]{a^{\sum_{0}^{n} k} \cdot b^{\sum_{0}^{n}(n-k)}}=$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
(n+1) \cdot\left[(a b)^{\frac{n(n+1)}{2}}\right]^{\frac{1}{n+1}}=(n+1) \cdot(a b)^{\frac{n}{2}}(\text { Left })
$$

2) $\left(a^{n}+b^{n}\right)(n+1) \geq 2 \cdot \sum_{k=0}^{n} a^{k} b^{n-k} \rightarrow \sum_{k=0}^{n}\left(a^{n}+b^{n}-a^{k} b^{n-k}-a^{n-k} b^{k}\right) \geq 0$
$\rightarrow \sum_{k=0}^{n}\left(a^{k}-b^{k}\right)\left(a^{n-k}-b^{n-k}\right) \geq 0$ which is true as the terms of the sum have the same sign. (Right)
JP.167. Let $O A B C$ be a tetrahedron with $\angle A O B=\angle B O C=\angle C O A=90^{\circ}$ and let P be any point inside the triangle $A B C$. Denote respectively by d_{a}, d_{b}, d_{c} the distances from P to faces $(O B C),(O C A),(O A B)$. Prove that:
(a) $d_{a}^{2}+d_{b}^{2}+d_{c}^{2}=O P^{2}$.
(b) $d_{a} d_{b} d_{c} \leq \frac{O A \cdot O B \cdot O C}{27}$
(c) $O A \cdot d_{a}^{3}+O B \cdot d_{b}^{3}+O C \cdot d_{c}^{3} \geq O P^{4}$

Proposed by Nguyen Viet Hung - Hanoi - Vietnam
Solution by Ravi Prakash-New Delhi-India

Let $O A=a \hat{\imath}, O B=b \hat{b}, O C=c \widehat{\boldsymbol{k}}, a, b>0$. Equation of plane $A B C$ is: $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$
Let $P(x, y, z)$ be any point in the interior of $\triangle A B C$. Then
(a) $d_{a}=x, d_{b}=y, d_{c}=z$

Now, $d_{a}^{2}+d_{b}^{2}+b_{y}^{2}=x^{2}+y^{2}+z^{2}=O P^{2}$

$$
\begin{aligned}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
& \text { www.ssmrmh.ro } \\
& \text { (b) } \frac{1}{3}=\frac{1}{3}\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right) \geq\left(\frac{x y z}{a b c}\right)^{\frac{1}{3}} \\
& \Rightarrow x y z \leq 27 a b c \Rightarrow d_{a} d_{b} d_{c} \leq 27(O A)(O B)(O C) \\
& \text { (c) } a x^{3}+b y^{3}+c z^{3}=\left(a x^{3}+b y^{3}+c z^{3}\right)\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)= \\
& =x^{4}+y^{4}+z^{4}+\left(\frac{b}{a} x y^{3}+\frac{a}{b} x^{3} y\right)+\left(\frac{c}{a} x z^{3}+\frac{a}{c} x z^{3}\right)+\left(\frac{b}{c} y^{3} z+\frac{c}{b} z y^{3}\right) \geq \\
& \geq x^{4}+y^{4}+z^{4}+2 x^{2} y^{2}+2 x^{2} z^{2}+2 y^{2} z^{2}=\left(x^{2}+y^{2}+z^{2}\right)^{2} \Rightarrow \\
& \Rightarrow(O A)\left(d_{a}^{3}\right)+(O B)\left(d_{b}^{3}\right)+(O C)\left(d_{c}^{3}\right) \geq O P^{4}
\end{aligned}
$$

JP.168. Let a, b, c be positive real numbers such that:

$$
\frac{1}{\sqrt{1+a^{3}}}+\frac{1}{\sqrt{1+b^{3}}}+\frac{1}{\sqrt{1+c^{3}}} \leq 1
$$

Prove that:

$$
a^{2}+b^{2}+c^{2} \geq 12
$$

Proposed by Nguyen Viet Hung - Hanoi - Vietnam
Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\sqrt{a^{3}+1}=\sqrt{(a+1)\left(a^{2}-a+1\right)} \\
G \leq A \\
\leq \frac{(a+1)+\left(a^{2}-a+1\right)}{2}=\frac{a^{2}+2}{2}, \text { equality at } a=2
\end{gathered}
$$

Similarly, $\sqrt{b^{3}+1} \stackrel{(2)}{\leq} \frac{b^{2}+2}{2}$, equality at $b=2 \& \sqrt{c^{3}+1} \stackrel{(3)}{\leq} \frac{c^{2}+2}{2}$, equality at $c=2$.

$$
\begin{gathered}
\text { (1), (2), (3) } \Rightarrow \sum \frac{1}{\sqrt{a^{3}+1}} \geq 2 \sum \frac{1}{a^{2}+2} \\
\stackrel{\text { Bergstrom }}{\geq} \frac{2(1+1+1)^{2}}{\sum a^{2}+6}=\frac{18}{\sum a^{2}+6} \& \because 1 \geq \sum \frac{1}{\sqrt{a^{3}+1}} \\
\therefore 1 \geq \frac{18}{\sum a^{2}+6} \Rightarrow \sum a^{2} \geq 12, \text { equality when } a=b=c=2
\end{gathered}
$$

(proved)

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
JP.169. Let a, b, c be positive real numbers such that: $a+b+c=3$.

Prove that:

$$
\frac{a^{4}}{b^{4} \sqrt{2 c\left(a^{3}+1\right)}}+\frac{b^{4}}{c^{4} \sqrt{2 a\left(b^{3}+1\right)}}+\frac{c^{4}}{a^{4} \sqrt{2 b\left(c^{3}+1\right)}} \geq \frac{a^{2}+b^{2}+c^{2}}{2}
$$

Proposed by Hoang Le Nhat Tung - Hanoi - Vietnam

Solution 1 by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\frac{a^{4}}{b^{4} \sqrt{2 c\left(a^{3}+1\right)}}+\frac{b^{4}}{c^{4} \sqrt{2 a\left(b^{3}+1\right)}}+\frac{c^{4}}{a^{4} \sqrt{2 b\left(c^{3}+1\right)}} \stackrel{(1)}{\geq} \frac{\sum a^{2}}{2} \\
(1) \Leftrightarrow \frac{\left(\frac{a^{2}}{b^{2}}\right)^{2}}{\sqrt{2 c\left(a^{3}+1\right)}}+\frac{\left(\frac{b^{2}}{c^{2}}\right)^{2}}{\sqrt{2 a\left(b^{3}+1\right)}}+\frac{\left(\frac{c^{2}}{a^{2}}\right)^{2}}{\sqrt{2 b\left(c^{3}+1\right)}} \stackrel{(2)}{\geq} \frac{\sum a^{2}}{2} \\
\text { Now, } \sqrt{2 c\left(a^{3}+1\right)}=\sqrt{(c(a+1))\left(2 a^{2}-2 a+2\right)} \\
G \leq A \\
\left(a, c a+c+2 a^{2}-2 a+2\right. \\
2
\end{gathered}
$$

Similarly, $\sqrt{2 a\left(b^{3}+1\right)} \stackrel{(b)}{\leq} \frac{a b+a+2 b^{2}-2 b+2}{2} \& \sqrt{2 b\left(c^{3}+1\right)} \stackrel{(c)}{\leq} \frac{b c+b+2 c^{2}-2 c+2}{2}$
(a), (b), (c) \Rightarrow LHS of (2) \geq

$$
\begin{gathered}
2\left[\begin{array}{c}
\left.\frac{\left(\frac{a^{2}}{b^{2}}\right)^{2}}{c a+c+2 a^{2}-2 a+2}+\frac{\left(\frac{b^{2}}{c^{2}}\right)^{2}}{a b+a+2 b^{2}-2 b+2}+\frac{\left(\frac{c^{2}}{a^{2}}\right)^{2}}{b c+b+2 c^{2}-2 c+2}\right] \\
\underset{\text { Bergstrom }}{\geq} \frac{2\left(\sum \frac{a^{2}}{b^{2}}\right)^{2}}{\sum a b+\sum a+2 \sum a^{2}-6+6}\left(\because 2 \sum a=6\right) \\
=\frac{2\left(\sum \frac{a^{2}}{b^{2}}\right)^{2}}{\sum a b+\frac{1}{3}\left(\sum a\right)^{2}+2 \sum a^{2}}\left(\because \sum a=3\right) \\
=\frac{6\left(\sum \frac{a^{2}}{b^{2}}\right)^{2}}{3 \sum a b+\sum a^{2}+2 \sum a b+6 \sum a^{2}}=\frac{6\left(\sum \frac{a^{2}}{b^{2}}\right)^{2}}{7 \sum a^{2}+5 \sum a b}
\end{array}\right.
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\begin{gathered}
\geq \frac{\mathbf{6}\left(\sum \frac{a^{2}}{b^{2}}\right)^{2}}{12 \sum a^{2}}\left(\because 5 \sum a b \leq 5 \sum a^{2}\right) \\
=\frac{\left(\sum \frac{a^{2}}{b^{2}}\right)^{2}}{2 \sum a^{2}} \stackrel{? \sum a^{2}}{2} \Leftrightarrow \sum \frac{a^{2}}{b^{2}} \stackrel{?}{\sum} \sum a^{2} \\
\Leftrightarrow\left(\sum a\right)^{2}\left(\sum \frac{a^{2}}{b^{2}}\right) \geq 9 \sum a^{2}\left(\because\left(\sum a\right)^{2}=\mathbf{9}\right) \\
\Leftrightarrow\left(\sum a\right)^{2}\left(\frac{\sum a^{2} b^{4}}{a^{2} b^{2} c^{2}}\right) \stackrel{?}{\geq} \sum a^{2} \\
\Leftrightarrow \sum a^{2} b^{6}+2 a b c\left(\sum a b^{4}\right)+2 \sum a^{7} b^{5}+2 a b c\left(\sum a^{2} b^{3}\right)+ \\
+\sum a^{4} b^{4} \stackrel{?}{(3)} 8 a^{2} b^{2} c^{2}\left(\sum a^{2}\right)
\end{gathered}
$$

Now, $\sum \boldsymbol{a}^{2} \boldsymbol{b}^{6}=\boldsymbol{a}^{2} \boldsymbol{b}^{2} \boldsymbol{c}^{2}\left(\frac{b^{4}}{c^{2}}+\frac{\boldsymbol{c}^{4}}{\boldsymbol{a}^{2}}+\frac{\boldsymbol{a}^{4}}{b^{2}}\right)$

$$
\underset{(\bar{i})}{\stackrel{\text { Bergstrom }}{2}} \boldsymbol{a}^{2} \boldsymbol{b}^{2} \boldsymbol{c}^{2} \frac{\left(\sum a^{2}\right)^{2}}{\sum \boldsymbol{a}^{2}}=\boldsymbol{a}^{2} \boldsymbol{b}^{2} \boldsymbol{c}^{2}\left(\sum \boldsymbol{a}^{2}\right)
$$

Also, $2 \boldsymbol{a b c}\left(\sum \boldsymbol{a} \boldsymbol{b}^{4}\right)=2 \boldsymbol{a}^{2} \boldsymbol{b}^{2} \boldsymbol{c}^{2}\left(\frac{a^{3}}{b}+\frac{b^{3}}{c}+\frac{c^{3}}{a}\right)=2 \boldsymbol{a}^{2} \boldsymbol{b}^{2} \boldsymbol{c}^{2}\left(\frac{a^{4}}{a b}+\frac{b^{4}}{b c}+\frac{c^{4}}{a c}\right)$

$$
\underset{(i i i)}{\text { Bergstrom }} 2 a^{2} b^{2} c^{2} \frac{\left(\sum a^{2}\right)^{2}}{\sum a b} \stackrel{a^{2} \sum \sum a b}{\geq} 2 a^{2} b^{2} c^{2}\left(\sum a^{2}\right)
$$

Again, $2 \sum a^{3} b^{5}+2 a b c\left(\sum a^{2} b^{3}\right)=2 a^{2} b^{2} c^{2}\left(\frac{a b^{3}}{c^{2}}+\frac{b c^{3}}{a^{2}}+\frac{c a^{3}}{b^{2}}+\frac{a b^{2}}{c}+\frac{b c^{2}}{a}+\frac{c a^{2}}{b}\right)$

$$
\begin{aligned}
= & 2 a^{2} b^{2} c^{2}\left[\left(\frac{a b^{3}}{c^{2}}+\frac{b c^{2}}{a}\right)+\left(\frac{b c^{3}}{a^{2}}+\frac{c a^{2}}{b}\right)+\left(\frac{c a^{3}}{b^{2}}+\frac{a b^{2}}{c}\right)\right] \\
& \begin{array}{l}
A-G \\
\\
\\
\text { (iii) }
\end{array} 2 a^{2} b^{2} c^{2}\left(2 b^{2}+2 c^{2}+2 a^{2}\right)=4 a^{2} b^{2} c^{2}\left(\sum a^{2}\right)
\end{aligned}
$$

Lastly, $\sum \boldsymbol{a}^{4} \boldsymbol{b}^{4} \underset{(i \bar{i})}{\stackrel{\sum x^{2} \sum \sum x y}{\lambda}} \boldsymbol{a}^{2} \boldsymbol{b}^{2} \cdot \boldsymbol{b}^{2} \boldsymbol{c}^{2}+\boldsymbol{b}^{2} \boldsymbol{c}^{2} \cdot \boldsymbol{c}^{2} \boldsymbol{a}^{2}+\boldsymbol{c}^{2} \boldsymbol{a}^{2} \cdot \boldsymbol{a}^{2} \boldsymbol{b}^{2}=$

$$
=a^{2} b^{2} c^{2}\left(\sum a^{2}\right)
$$

(i) + (ii) + (iii) + (iv) $\Rightarrow(3)$ is true (proved)

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Solution 2 by Michael Sterghiou-Greece

$$
\sum_{c y c} \frac{a^{4}}{b^{4} \sqrt{2 c\left(a^{3}+1\right)}} \geq \frac{1}{2} \sum_{c y c} a^{2}(\mathbf{1}) \operatorname{Let}(\boldsymbol{p}, \boldsymbol{q}, r, m)=\left(\sum_{c y c} a, \sum_{c y c} a b, a b c \sum_{c y c} a^{2}\right)
$$

$p=3, q \leq 3, r \leq 1, m=p^{2}-2 q=9-2 q$. By AM-GM $\sqrt{2 c\left(a^{3}+1\right)} \leq \frac{1}{2}\left(2 c+a^{3}+1\right)$
with equality when $c=a=1$; same in a cyclic manner. By this and BCS we get

$$
\begin{align*}
& \frac{\left(\sum_{c y c}^{c_{b}}\right)^{2}}{\sum_{c y c} c^{\frac{3}{3}+2 c+1}} \frac{?}{2} \frac{m}{2} \text { (2). For } x, y, z>0 \text { we know that (AM-GM) } \\
& \sum_{c y c} \frac{x}{y} \geq\left(\sum_{c y c} \boldsymbol{x}\right) \cdot(\boldsymbol{x y z})^{\frac{1}{3}} \text { with } \boldsymbol{x}=\boldsymbol{a}^{2}, \boldsymbol{y}=\boldsymbol{b}^{2}, \boldsymbol{z}=\boldsymbol{c}^{2} \text { this } \rightarrow \sum_{c y c} \frac{a^{2}}{b^{2}} \geq \boldsymbol{m} \cdot \boldsymbol{r}^{-\frac{2}{3}} \\
& \text { Now, (2) } \rightarrow \frac{2 \cdot m^{2} r^{-\frac{4}{3}}}{\sum_{\text {cyc }} a^{3}+6+3} \geq \frac{m}{2} \text { or } 36 r^{-\frac{4}{3}}+9 q-8 q r^{-\frac{4}{3}}-3 r-36 \geq 0 \tag{3}
\end{align*}
$$

where $\sum_{c y c} a^{3}=p^{3}-3 p q+3 r=27-9 q+3 r$. From (3) using the facts $q^{2} \geq 3 p r=9 r$ and $q \leq \frac{p^{3}+9 r}{4 p}=\frac{27+9 r}{12}$ (Schur) we get the stronger inequality $36 r^{-\frac{4}{3}}+27 r^{\frac{1}{2}}-8 \cdot \frac{27+9 r}{12} \cdot r^{-\frac{4}{3}}-3 r \geq 0$ (4). This using the transformation $t=r^{\frac{1}{6}}$ reduces to: $-3 t^{14}-36 r^{8}+27 t^{11}-6 t^{6}+18 \geq 0$
$\left[(4) \times r^{\frac{4}{3}}\right.$ and $\left.r^{\frac{1}{6}} \rightarrow t\right]$ or $3(1-t) \cdot\left(t^{13}+t^{12}+t^{11}-8 t^{10}-8 t^{9}-8 t^{8}+4 t^{7}+4 t^{6}+\right.$ $+6 t^{5}+6 t^{4}+6 t^{3}+6 t^{2}+6 t+6 \geq 0$ (5). We can observe that $6 t^{3}-6 t^{10} \geq 0$ $2 t^{7}-2 t^{10} \geq 0(t \leq 1)$ and similarly, we work with $-8 t^{9}$ and $-8 t^{8}$. As the rest in the term $t^{13}+t^{12}+\cdots+6$ are all positive we see that (5) holds. Done.

JP.170. Let x, y, z be positive real numbers such that: $x+y+z=3$. Find the minimum value of:

$$
P=\frac{x^{4}}{y^{4} \sqrt[3]{4 z\left(x^{5}+1\right)}}+\frac{y^{4}}{z^{4} \sqrt[3]{4 x\left(y^{5}+1\right)}}+\frac{z^{4}}{x^{4} \sqrt[3]{4 y\left(z^{5}+1\right)}}
$$

Proposed by Hoang Le Nhat Tung - Hanoi - Vietnam

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Solution by Tran Hong-Vietnam

$$
\begin{gather*}
\sqrt[3]{4 z\left(x^{5}+1\right)}=\sqrt[3]{2 z(x+1)\left\{2 x^{4}-2 x^{3}+2 x^{2}-2 x+2\right\}} \\
(\text { Cauchy }) \\
\leq \frac{2 z+x+1+2 x^{4}-2 x^{3}+2 x^{2}-2 x+2}{3} \\
=\frac{2 z+2 x^{4}-2 x^{3}+2 x^{2}-x+3}{3} ; \\
\text { Similarly, } \sqrt[3]{4 x\left(y^{5}+1\right)} \leq \frac{2 x+2 y^{4}-2 y^{3}+2 y^{2}-y+3}{3} ; \\
\sqrt[3]{4 y\left(z^{5}+1\right)} \leq \frac{2 y+2 z^{4}-2 z^{3}+2 z^{2}-z+3}{3} ; \\
\therefore \sum \frac{\left(\frac{x^{2}}{y^{2}}\right)^{2}}{\sqrt[3]{4 z\left(x^{5}+1\right)}} \quad(\text { Schwarz }) \frac{3\left(\sum \frac{a^{2}}{b^{2}}\right)^{2}}{2 \sum a^{4}-2 \sum a^{3}+2 \sum a^{2}+12} \\
\quad(\therefore a=x, b=y, c=z) \tag{1}\\
=\frac{3}{2} \cdot \frac{\left(\sum \frac{a^{2}}{b^{2}}\right)^{2}}{\left(\sum a^{4}-\sum a^{3}+\sum a^{2}+6\right)}
\end{gather*}
$$

Must show that: $\left(\sum \frac{a^{2}}{b^{2}}\right)^{2} \geq \sum a^{4}-\sum a^{3}+\sum a^{2}+6$. But $\sum \frac{a^{2}}{b^{2}} \stackrel{(2)}{\geq} \sum \boldsymbol{a}^{2}$
Must show that: $\left(\sum a^{2}\right)^{2} \geq \sum a^{4}-\sum a^{3}+\sum a^{2}+6$

$$
\begin{equation*}
\Leftrightarrow 2 \sum a^{2} b^{2}+\sum a^{3}-\sum a^{2}-6 \geq 0 \tag{}
\end{equation*}
$$

Let $p=a+b+c=3 ; q=a b+b c+c a, r=a b c$;
$\left.\mathbf{(}^{*}\right) \Leftrightarrow 2\left(\boldsymbol{q}^{2}-6 r\right)+(27-9 q+3 r)-(9-2 q)-6 \geq 0$

$$
\Leftrightarrow 2 q^{2}-7 q-9 r+12 \geq 0
$$

$$
\Leftrightarrow\left(q^{2}-9 r\right)+(q-3)(q-4) \geq 0(* *)
$$

${ }^{* *}$) true because: $q \leq \frac{p^{2}}{3}=3, q^{2} \geq 9 r$.

$$
\begin{gathered}
\Rightarrow(1) \geq \frac{3}{2} \cdot \mathbf{1}=\frac{3}{2} . \\
\Rightarrow P_{\min }=\frac{3}{2} \Leftrightarrow a=b=c=1 .
\end{gathered}
$$

Now, we will prove (2) true:

$$
\sum \frac{a^{2}}{b^{2}} \geq \sum a^{2} \Leftrightarrow\left(\sum a\right)^{2}\left(\frac{\sum a^{2} b^{4}}{a^{2} b^{2} c^{2}}\right) \geq 9 \sum a^{2}\left(\therefore \sum a=3\right)
$$

$$
\text { From }(4)+(5)+(6)+(7) \Rightarrow(3) \text { true } \Rightarrow(2) \text { true. }
$$

JP.171. Let $A B C$ be an acute triangle with perimeter 3. Prove that:

$$
\frac{1}{m_{a}^{a}}+\frac{1}{m_{b}^{b}}+\frac{1}{m_{c}^{c}} \geq \frac{3}{R+r}
$$

Proposed by Nguyen Viet Hung - Hanoi - Vietnam
Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
& L H S \underset{(1)}{\stackrel{A-G}{\geq}} 3 \sqrt[3]{\frac{1}{m_{a}^{a} m_{b}^{b} m_{c}^{c}}} \\
& \text { Now, } \sqrt[3]{m_{a}^{a} m_{b}^{b} m_{c}^{c}}=\sqrt[a+b+c]{m_{a}^{a} m_{b}^{b} m_{c}^{c}} \quad \text { weight } \frac{G M \leq A M}{\leq} \frac{\sum a m_{a}}{2 s} \Rightarrow 3 \sqrt[3]{\frac{1}{m_{a}^{a} m_{b}^{b} m_{c}^{c}}}{ }^{(2)} \geq \frac{3(2 s)}{\sum a m_{a}} \\
& \text { (1), (2) } \Rightarrow L H S \geq \frac{3(2 s)}{\sum a m_{a}} \stackrel{?}{2}_{\geq}^{2} \frac{3}{R+r} \Leftrightarrow \sum a m_{a} \sum_{(3)}^{?} 2 s(R+r) \\
& \because m_{a} \leq R(1+\cos A) \text { etc, } \sum a m_{a} \leq \sum a^{2} R \cdot 2 \frac{s(s-a)}{a b c} \\
& =\frac{2 R s}{4 R r s} \sum a^{2}(s-a)=\frac{1}{2 r}\left(s \sum a^{2}-\sum a^{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
& \text { www.ssmrmh.ro } \\
& \Leftrightarrow \sum a^{2} b^{6}+2 a b c \sum a b^{4}+2 \sum a^{3} b^{5}+2 a b c \sum a^{2} b^{3}+\sum a^{4} b^{4} \geq 8(a b c)^{2} \sum a^{2} \\
& \therefore \sum \boldsymbol{a}^{2} \boldsymbol{b}^{6}=(\boldsymbol{a b c})^{2} \sum \frac{\boldsymbol{a}^{4}}{\boldsymbol{b}^{4}} \stackrel{(\text { Schwarz })}{\geq}(\boldsymbol{a b c})^{2} \frac{\left(\sum a^{2}\right)^{2}}{\sum \boldsymbol{a}^{2}}=(\boldsymbol{a b c})^{2} \sum \boldsymbol{a}^{2} \quad \text { (4); } \\
& \therefore 2 a b c \sum a b^{4}=2(a b c)^{2} \sum \frac{a^{4}}{a b} \stackrel{(\text { Schwarz })}{\geq} \\
& 2(a b c)^{2} \frac{\left(\Sigma a^{2}\right)^{2}}{\sum a b} \geq 2(a b c)^{2} \frac{\left(\sum a^{2}\right)^{2}}{\Sigma a^{2}}=2(a b c)^{2} \sum a^{2} \\
& \therefore 2 \sum a^{3} b^{5}+2 a b c \sum a^{2} b^{3}=2(a b c)^{2}\left\{\sum \frac{a b^{3}}{c^{2}}+\sum \frac{a b^{2}}{c}\right\} \\
& =2(a b c)^{2}\left\{\left[\frac{a b^{3}}{c^{2}}+\frac{b c^{2}}{a}\right]+\left[\frac{b c^{3}}{a^{2}}+\frac{c a^{2}}{b}\right]+\left[\frac{c a^{3}}{b^{2}}+\frac{a b^{2}}{c}\right]\right\} \\
& \text { (Cauchy) } \\
& \geq 2(a b c)^{2}\left(2 b^{2}+2 c^{2}+2 a^{2}\right)=4(a b c)^{2} \sum a^{2}(6) . \\
& \therefore \sum \boldsymbol{a}^{4} \boldsymbol{b}^{4}=\sum\left\{(\boldsymbol{a b})^{2}\right\}^{2} \geq(\boldsymbol{a b c})^{2} \sum \boldsymbol{a}^{2} \text { (7); }
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\begin{aligned}
& =\frac{1}{2 r}\left\{s \cdot 2\left(s^{2}-4 R r-r^{2}\right)-2 s\left(s^{2}-6 R r-3 r^{2}\right)\right\} \\
& =\frac{s}{r}\left(2 R r+2 r^{2}\right)=2 s(R+r) \Rightarrow(3) \text { is true (Proved) }
\end{aligned}
$$

JP.172. Let a, b, c be positive real numbers such that: $a b c=1$.
Prove the inequality:

$$
\begin{aligned}
\frac{a^{4}}{b^{4} \sqrt{a^{4}+4}}+\frac{b^{4}}{c^{4} \sqrt{b^{4}+4}}+\frac{c^{4}}{a^{4} \sqrt{c^{4}+4}} \geq \sqrt{\frac{3(a+b+c)}{5}} \\
\text { Proposed by Hoang Le Nhat Tung - Hanoi - Vietnam }
\end{aligned}
$$

Solution 1 by Sanong Huayrerai-Nakon Pathom-Thailand

$$
\text { For } a b c=1, \text { give } a=\frac{x}{y} ; b=\frac{y}{z}, c=\frac{z}{x}
$$

Hence $\frac{a}{b}+\frac{b}{c}+\frac{c}{a} \geq a+b+c$. If $\frac{x y}{z^{2}}+\frac{y z}{x^{2}}+\frac{z x}{y^{2}} \geq \frac{x}{y}+\frac{y}{z}+\frac{z}{x}$
If $(x y)^{3}+(y z)^{3}+(z x)^{3} \geq x^{3} y z^{2}+y^{3} z x^{2}+z^{3} x y^{2}$ and it's true because

$$
\begin{aligned}
& (x y)^{3}+(x y)^{3}+(y z)^{3} \geq 3\left(x^{2} y^{3} z\right) \\
& (y z)^{3}+(y z)^{3}+(z x)^{3} \geq 3\left(y^{2} z^{3} x\right) \\
& (z x)^{3}+(z x)^{3}+(x y)^{3} \geq 3\left(z^{2} x^{3} y\right)
\end{aligned}
$$

Hence, similarly $\frac{a^{4}}{c^{4}}+\frac{c^{4}}{b^{4}}+\frac{b^{4}}{a^{4}} \geq \frac{a^{3}}{c}+\frac{c^{3}}{b}+\frac{b^{3}}{a}$
Because $x^{12}+y^{12}+z^{12} \geq x^{8} y z^{3}+y^{8} z x^{3}+z^{8} x y^{3}$ and $\frac{a^{4}}{c^{4}}+\frac{c^{4}}{b^{4}}+\frac{b^{4}}{a^{4}} \geq \frac{a^{3}}{b}+\frac{b^{3}}{c}+\frac{c^{3}}{a}$
Because $x^{12}+y^{12}+z^{12} \geq x^{7} z^{5}+y^{7} x^{5}+z^{7} y^{5}$ and $a^{5}+b^{5}+c^{5} \geq \frac{a^{3}}{b}+\frac{b^{3}}{c}+\frac{c^{3}}{a}$,

$$
\begin{aligned}
& \frac{a^{3}}{c}+\frac{c^{3}}{b}+\frac{b^{3}}{a} \text { consider } \frac{a^{4}}{b^{4} \sqrt{a^{4}+4}}+\frac{b^{4}}{c^{4} \sqrt{b^{4}+4}}+\frac{c^{4}}{a^{4} \sqrt{c^{4}+4}} \geq \sqrt{\frac{3(a+b+c)}{5}} \\
& \text { If }\left(\frac{a^{2}}{b^{2}}+\frac{b^{2}}{c^{2}}+\frac{c^{2}}{a^{2}}\right)^{2} \geq \sqrt{\frac{3(a+b+c)}{5}}\left(\sqrt{a^{4}+4}+\sqrt{b^{4}+4}+\sqrt{c^{4}+4}\right) \\
& \quad \text { If }\left(\frac{a^{2}}{b^{2}}+\frac{b^{2}}{c^{2}}+\frac{c^{2}}{a^{2}}\right)^{2} \geq \sqrt{\frac{9}{5}(a+b+c)\left(a^{4}+b^{4}+c^{4}+12\right)} \\
& \quad \text { If }\left(\frac{a^{2}}{b^{2}}+\frac{b^{2}}{c^{2}}+\frac{c^{2}}{a^{2}}\right)^{4} \geq \frac{9}{5}(a+b+c)\left(a^{4}+b^{4}+c^{4}+12\right)
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\begin{gathered}
\text { If } \frac{1}{3}\left(\frac{a^{8}}{b^{8}}+\frac{b^{8}}{c^{8}}+\frac{c^{8}}{a^{8}}\right)+30\left(\frac{a^{4}}{c^{4}}+\frac{c^{4}}{b^{4}}+\frac{b^{4}}{a^{4}}\right)+60\left(\frac{a^{2}}{b^{2}}+\frac{b^{2}}{c^{2}}+\frac{c^{2}}{a^{2}}\right)+ \\
+20\left(\frac{a^{6}}{b^{4} c^{2}}+\frac{b^{6}}{c^{4} a^{2}}+\frac{c^{6}}{a^{4} b^{2}}+\frac{a^{4} c^{2}}{b^{6}}+\frac{a^{4} b^{2}}{a^{6}}+\frac{b^{4} a^{2}}{c^{6}}\right) \geq 9\left(a^{5}+b^{5}+c^{5}\right)+ \\
+9\left(\frac{a^{3}}{b}+\frac{b^{3}}{c}+\frac{c^{3}}{a}+\frac{a^{3}}{c}+\frac{c^{3}}{b}+\frac{b^{3}}{a}\right)+108(a+b+c)
\end{gathered}
$$

$$
\text { If } 5\left(a^{8}+b^{8}+c^{8}\right)+40\left(a^{5}+b^{5}+c^{5}\right)+15\left(\frac{a^{3}}{b}+\frac{b^{3}}{c}+\frac{c^{3}}{a}\right)+15\left(\frac{a^{3}}{c}+\frac{c^{3}}{b}+\frac{b^{3}}{a}\right)+
$$

$$
+60\left(a^{2}+b^{2}+c^{2}\right) \geq 9\left(a^{5}+b^{5}+c^{5}\right)+9\left(\frac{a^{3}}{b}+\frac{b^{3}}{c}+\frac{c^{2}}{a}+\frac{a^{3}}{c}+\frac{c^{3}}{b}+\frac{b^{3}}{a}\right)+108(a+b+c)
$$

Therefore, it's true.
Solution 2 by Tran Hong-Vietnam

$$
6 \sum a^{4} c \stackrel{\text { (Chebyshev) }}{\geq} 6 \frac{1}{3} \sum a \sum a^{4} \stackrel{(\text { Cauchy })}{\geq} 6 \sum a
$$

$$
\begin{align*}
& L H S=\frac{\left(\frac{a^{2}}{b^{2}}\right)^{2}}{\sqrt{a^{4}+4}}+\frac{\left(\frac{b^{2}}{c^{2}}\right)^{2}}{\sqrt{b^{4}+4}}+\frac{\left(\frac{c^{2}}{a^{2}}\right)^{2}}{\sqrt{c^{4}+4}} \stackrel{(\text { Schwarz })}{\geq} \frac{\left(\sum \frac{a^{2}}{b^{2}}\right)^{2}}{\sum \sqrt{a^{4}+4}} \geq \frac{\left(\sum \frac{a^{2}}{b^{2}}\right)^{2}}{\sqrt{3\left(a^{4}+b^{4}+c^{4}+12\right)}} \\
& \text { Must show that: }\left(\sum \frac{a^{2}}{b^{2}}\right)^{2} \geq \sqrt{\frac{3(a+b+c)}{5}} \sqrt{3\left(a^{4}+b^{4}+c^{4}+12\right)} \text {; } \\
& \Leftrightarrow 5\left(\sum \frac{a^{2}}{b^{2}}\right)^{4} \geq 9(a+b+c)\left(a^{4}+b^{4}+c^{4}+12\right) \\
& 5\left\{a^{16} c^{8}+c^{16} b^{8}+b^{16} a^{8}\right\}+20\left\{c^{2} a^{10}+a^{2} b^{10}+b^{2} c^{10}+c^{8} a^{10}+a^{8} b^{10}+b^{8} c^{10}\right\}+ \\
& +30\left\{b^{4} a^{8}+a^{4} c^{8}+c^{4} b^{8}\right\}+60\left\{c^{2} a^{4}+a^{2} b^{4}+b^{2} c^{4}\right\} \geq 9\left\{a^{5}+b^{5}+c^{5}\right\}+ \\
& +9\left\{a b^{4}+\boldsymbol{a} \boldsymbol{c}^{4}+\boldsymbol{b} a^{4}+\boldsymbol{b} c^{4}+\boldsymbol{c} a^{4}+\boldsymbol{c} b^{4}\right\}+108\{a+b+c\} \\
& \sum a^{2} \geq \frac{(a+b+c)^{2}}{3} \geq(a+b+c)(\because a+b+c \geq 3 \sqrt[3]{a b c}=3) \\
& 5 \sum a^{8} \stackrel{\text { (Chebyshev }+ \text { Cauchy })}{\geq} 5 \sum a^{5} \tag{1}\\
& \Rightarrow 60 \sum a^{2} b^{4} \stackrel{\text { Chebyshev }+ \text { Cauchy })}{\geq} 60 \sum a^{2} \geq 60 \sum a \tag{2}\\
& 36 \sum a^{5} \stackrel{\text { (Chebyshev) }}{\geq} 36 \cdot \frac{1}{3} \sum a^{2} \sum a^{3} \stackrel{\text { (Cauchy) }}{\geq} 36 \sum a^{2} \geq 36 \sum a \text { (3) } \\
& 30 \sum a^{8} b^{4} \geq 15 \sum a^{4} c+15 \sum a^{4} b=\left\{9 \sum a^{4} c+9 \sum a^{4} b\right\}+6\left\{\sum a^{4} c+\sum a^{4} b\right\} \tag{4}
\end{align*}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Same $6 \sum a^{4} b \geq 6 \sum a$ (6)

$$
20\left(\sum a^{2} b^{10}+\sum a^{8} b^{10}\right) \stackrel{(\text { Chebyshev +Cauchy) }}{\geq} 40 \sum a^{5}(7)
$$

$$
\text { From }(1)+(2)+(3)+(4)+(5)+(6)+(7) \Rightarrow(*) \text { true. }
$$

JP.173. Prove that in any triangle $A B C$,

$$
\frac{1}{\sin A}+\frac{1}{\sin B}+\frac{1}{\sin C} \geq \sqrt{\frac{6 R}{r}}
$$

Proposed by Nguyen Viet Hung - Hanoi - Vietnam
Solution 1 by Lahiru Samarakoon-Sri Lanka
We have to prove, $\left(\because \sum \frac{1}{\sin A}=\frac{s^{2} R+4 R r}{2 s r}\right)$

$$
\begin{gathered}
\frac{\left(s^{2}+r^{2}+4 R r\right)^{2}}{4 s^{2} r^{2}} \geq \frac{6 R}{r} \\
s^{4}+r^{4}+16 R^{2} r^{2}+2 s^{2} r^{2}+8 r^{3} R+8 R r s^{2} \geq 24 R r s^{2} \\
s^{2}\left(s^{2}+2 r^{2}-16 R r\right)+r^{4}+16 R^{2} r^{2}+8 r^{3} R \geq 0
\end{gathered}
$$

Since, $s^{2} \geq 16 R r-5 r^{2}$, then we have to prove,

$$
\left(16 R r-5 r^{2}\right)\left(s^{2}+2 r^{2}-16 R r\right)+r^{4}+16 R^{2} r^{2}+8 r^{3} R \geq 0
$$

again, we have to prove,

$$
\begin{gathered}
\left(16 R r-s r^{2}\right)^{2}+32 R r^{3}-10 r^{4}-256 R^{2} r^{2}+80 R r^{3}+r^{4}+16 R^{2} r^{2}+8 r^{3} R \geq 0 \\
16 r^{4}+16 R^{2} r^{2}-40 R r^{3} \geq 0 \\
8 r^{2}\left(2 R^{2}-s R r+2 r^{2}\right) \geq 0 \\
8 r^{2}(2 R-r) \underbrace{(R-2 r)}_{(+) \text {euler }}
\end{gathered}
$$

(proved)
Solution 2 by Ruanghaw Chaoka-Chiangrai-Thailand

$$
\left(\frac{1}{\sin A}+\frac{1}{\sin B}+\frac{1}{\sin C}\right)^{2} \stackrel{? n}{?} \frac{6 R}{r}
$$

Sine ${ }^{\prime}$ law $; \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=\frac{a b c}{2 \Delta}$

$$
\begin{aligned}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
& \qquad\left\{\begin{array}{c}
\boldsymbol{R}=\frac{\boldsymbol{a b c}}{\mathbf{4 \Delta}} \\
\boldsymbol{r}=\frac{\mathbf{2 \Delta}}{\boldsymbol{a}+\boldsymbol{b}+\boldsymbol{c}}
\end{array} \Rightarrow \frac{\mathbf{6} \boldsymbol{R}}{\boldsymbol{r}}=\frac{\mathbf{3 a b c}(\boldsymbol{a}+\boldsymbol{b}+\boldsymbol{c})}{\mathbf{4 \Delta ^ { 2 }}}\right.
\end{aligned}
$$

Now inequality becomes $(a b+b c+c a)^{2} \stackrel{?}{\geq} 3 a b c(a+b+c)$

$$
\begin{gathered}
\because(a b+b c+c a)^{2}=(a b)^{2}+(b c)^{2}+(c a)^{2}+2 a b c(a+b+c) \\
\geq a b c(a+b+c)+2 a b c(a+b+c) \\
=3 a b c(a+b+c) \text { holds at } a=b=c
\end{gathered}
$$

Solution 3 by Marian Ursărescu-Romania
We must show:

$$
\begin{equation*}
\left(\frac{1}{\sin A}+\frac{1}{\sin B}+\frac{1}{\sin C}\right)^{2} \geq \frac{6 R}{r} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{But}\left(\frac{1}{\sin A}+\frac{1}{\sin B}+\frac{1}{\sin C}\right)^{2} \geq 3 \sum \frac{1}{\sin A \sin B \sin C} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\text { But } \sum \frac{1}{\sin A \sin B}=\frac{2 R}{r} \tag{3}
\end{equation*}
$$

From (2) + (3) $\Rightarrow\left(\frac{1}{\sin A}+\frac{1}{\sin B}+\frac{1}{\sin C}\right)^{2} \geq \frac{6 R}{r} \Rightarrow(1)$ it's true.

JP.174. Prove that in any triangle $A B C$,

$$
\frac{h_{a}}{a}+\frac{h_{b}}{b}+\frac{h_{c}}{c} \geq \sqrt{6(1+\cos A \cos B \cos C)}
$$

Proposed by Nguyen Viet Hung - Hanoi - Vietnam
Solution 1 by Lahiru Samarakoon-Sri Lanka

$$
\text { For any } \triangle A B C, \sum \frac{h_{a}}{a} \geq \sqrt{6(1+\cos A \cos B \cos C)}
$$

$$
\begin{gathered}
\Pi \cos A=\frac{s^{2}-4 R^{2}-4 R r-R}{4 R^{2}} \text { so, } \\
\sum \frac{2 \Delta}{a^{2}} \geq \sqrt{6\left(1+\frac{S^{2}-4 R^{2}-4 R r-r^{2}}{4 R^{2}}\right)} \\
2 \Delta \sum \frac{1}{a^{2}} \geq \sqrt{\frac{6\left(S^{2}-4 R r-r^{2}\right)}{4 R^{2}}}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
\therefore we have to prove $\underbrace{4 \Delta^{2} R^{2}}_{a^{2} b^{2} c^{2}} \times 4\left(\sum \frac{1}{a^{2}}\right)^{2} \geq 3 \times \underbrace{2\left(S^{2}-r^{2}-4 R r\right)}_{\left(\sum a^{2}\right)}$
\therefore we have to prove, $a^{2} b^{2} c^{2} \frac{\left(\sum a^{2} b^{2}\right)^{2}}{\left(a^{2} b^{2} c^{2}\right)^{2}} \geq 3\left(\sum a^{2}\right)$

$$
\left(\sum a^{2} b^{2}\right)^{2} \geq 3 a^{2} b^{2} c^{2}\left(\sum a^{2}\right)
$$

It's true.

$$
\begin{aligned}
\because 3 a^{2} b^{2} c^{2}\left(\sum a^{2}\right) & =3\left[\left(a^{2} b^{2}\right)\left(a^{2} c^{2}\right)+\left(b^{2} a^{2}\right)\left(b^{2} c^{2}\right)+\left(b^{2} c^{2}\right)\left(a^{2} c^{2}\right)\right] \\
& \leq 3 \frac{\left(a^{2} b^{2}+b^{2} c^{2}+a^{2} c^{2}\right)^{2}}{3} . \text { So, proved }
\end{aligned}
$$

Solution 2 by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\sum \frac{h_{a}}{a} \stackrel{(1)}{\geq} \sqrt{6(1+\cos A \cos B \cos C)} \\
(1) \Leftrightarrow \sum \frac{b^{2} c^{2}}{8 R^{2} r s} \geq \sqrt{6\left(1+\frac{s^{2}-4 R^{2}-4 R r-r^{2}}{4 R^{2}}\right)} \\
\Leftrightarrow \frac{\left(\sum a^{2} b^{2}\right)^{2}}{64 R^{4} r^{2} S^{2}} \geq \frac{3 \sum a^{2}}{4 R^{2}} \Leftrightarrow\left(\sum a^{2} b^{2}\right)^{2(2)} \geq 3(a b c)^{2} \sum a^{2} \\
(\because 4 R s=a b c)
\end{gathered}
$$

Let $s-a=x, s-b=y, s-c=z \therefore a=y+z, b=z+x, c=x+y$
Using the above substitution, (2) becomes (upon simplification):

$$
\begin{aligned}
& \sum x^{8}+4 \sum x^{7} y+4 \sum x y^{7}+4 \sum x^{6} y^{2}+4 \sum x^{2} y^{6}+12 x y z\left(\sum x^{5}\right)+ \\
& \quad+6 x y z\left(\sum x^{4} y+\sum x y^{4}\right) \stackrel{(3)}{\geq} 2 \sum x^{5} y^{3}+2 \sum x^{3} y^{5}+5 \sum x^{4} y^{4}+ \\
& +10 x y z\left(\sum x^{3} y^{3}+\sum x^{2} y^{3}\right)+4 x^{2} y^{2} z^{2}\left(\sum x^{2}\right)+8 x^{2} y^{2} z^{2}\left(\sum x y\right)
\end{aligned}
$$

We have, $2 \sum x^{6} y^{2}+2 \sum x^{2} y^{6} \stackrel{\text { Chebysev }}{\geq} \frac{2}{2} \sum x^{2} y^{2}\left(x^{2}+y^{2}\right)\left(x^{2}+y^{2}\right)$

$$
\underset{(a)}{A-G} 2 \sum x^{2} y^{2}\left(x^{2}+y^{2}\right) \cdot x y=2 \sum x^{5} y^{3}+2 \sum x^{3} y^{5}
$$

Also, $2 \sum x^{6} y^{2}+2 \sum x^{2} y^{6} \underset{(\vec{b})}{\stackrel{A-G}{>}} 4 \sum x^{4} y^{4}$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro
Also, $\sum x^{7} y+\sum x y^{7} \underset{(c)}{\stackrel{A-G}{(})} 2 \sum x^{4} y^{4}$
Again, $12 x y z\left(\sum x^{5}\right)=6 x y z \sum\left(x^{5}+y^{5}\right) \stackrel{\text { Chebyshev }}{\geq} \frac{1}{2} 6 x y z \sum\left(x^{2}+y^{2}\right)\left(x^{3}+y^{3}\right)$

$$
\underset{(\bar{d})}{\stackrel{A-G}{-}} 6 x y z \sum x y \cdot x y(x+y)=6 x y z\left(\sum x^{3} y^{2}+\sum x^{2} y^{3}\right)
$$

Again, $4 x y z\left(\sum x^{4} y+\sum x y^{4}\right)=4 x y z \sum x y\left(x^{3}+y^{3}\right)$

$$
\stackrel{(e)}{\geq} 4 x y z \sum x^{2} y^{2}(x+y)=4 x y z\left(\sum x^{3} y^{2}+\sum x^{2} y^{3}\right)
$$

Moreover, $2 x y z\left(\sum x^{4} y+\sum x y^{4}\right)=2 x y z\left\{\sum z\left(x^{4}+y^{4}\right)\right\}$
$\stackrel{\text { Chebyshev }}{\geq} \frac{2 x y z}{2} \sum z\left(x^{2}+y^{2}\right)^{2} \stackrel{A-G}{(\bar{f})} x y z\left\{\sum 2 x y z\left(x^{2}+y^{2}\right)\right\}=4 x^{2} y^{2} z^{2}\left(\sum x^{2}\right)$
Also, $\sum x^{4} y^{4} \geq x^{2} y^{2} \cdot y^{2} z^{2}+y^{2} z^{2} \cdot z^{2} x^{2}+x^{2} y^{2} \cdot z^{2} x^{2}$

$$
=x^{2} y^{2} z^{2}\left(\sum x^{2}\right) \stackrel{(g)}{\geq} x^{2} y^{2} z^{2}\left(\sum x y\right)
$$

Also, $\sum x^{8} \geq \sum x^{4} y^{4} \underset{(\bar{h})}{\stackrel{b y(9)}{(\lambda)}} x^{2} y^{2} z^{2}\left(\sum x y\right)$
Lastly, $3\left(\sum x^{7} y+\sum x y^{7}\right)=3\left\{\sum z\left(z^{7}+y^{7}\right)\right\} \stackrel{\text { Chebyshev }}{\geq} \frac{3}{2} \sum z\left(x^{3}+y^{3}\right)\left(x^{4}+y^{4}\right)$

$$
\begin{gathered}
\geq \frac{3}{2} \sum z x y(x+y)\left(x^{4}+y^{4}\right) \stackrel{A-G}{\geq} 3 x y z \sum(x+y) x^{2} y^{2} \\
=3 x y z \sum\left\{z^{3}\left(x^{2}+y^{2}\right)\right\} \stackrel{A-G}{\geq} 3 x y z \sum\left(z^{3} \cdot 2 x y\right) \\
=6 x^{2} y^{2} z^{2}\left(\sum x^{2}\right) \stackrel{(j)}{\geq} 6 x^{2} y^{2} z^{2}\left(\sum x y\right)
\end{gathered}
$$

$$
(\mathbf{a})+(\mathbf{b})+(\mathbf{c})+(\mathbf{d})+(\mathbf{e})+(\mathbf{f})+(\mathrm{g})+(\mathbf{h})+(\mathbf{j}) \Rightarrow \mathbf{(3)}
$$

It is true (proved)

JP.175. Prove that in any acute triangle $A B C$,

$$
\begin{aligned}
& m_{a} r_{a}+m_{b} r_{b}+m_{c} r_{c} \leq s^{2} \\
& \quad \text { Proposed by Nguyen Viet Hung - Hanoi - Vietnam }
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
 Solution 1 by Bogdan Fustei-Romania

In any acute-angled $\triangle A B C$ we have the following inequality:

$$
\begin{gathered}
m_{a} \leq 2 R \cos ^{2} \frac{A}{2} \text { (and the analogs) } \\
r_{a}=\frac{s}{p-a} \text { (and the analogs) } \\
r_{b}+r_{c}=\frac{S}{p-b}+\frac{S}{p-c}=S\left(\frac{1}{p-b}+\frac{1}{p-c}\right)=\frac{S(p-b+p-c)}{(p-b)(p-c)} \\
r_{b}+r_{c}=\frac{s_{a}}{(p-b)(p-c)} ; S=\sqrt{p(p-a)(p-b)(p-c)} \\
r_{b}+r_{c}=\frac{a \sqrt{p(p-a)(p-b)(p-c)}}{(p-b)(p-b)}=a \sqrt{\frac{p(p-a)}{(p-b)(p-c)}} \\
\sin \frac{A}{2}=\sqrt{\frac{(p-b)(p-c)}{b c}} \text { (and the analogs) } \\
\cos \frac{A}{2}=\sqrt{\frac{p(p-a)}{b c}} \text { (and the analogs) } \\
\frac{\sin \frac{A}{2}}{\cos \frac{A}{2}}=\sqrt{\frac{(p-b)(p-c)}{p(p-a)}} \text { (and the analogs) }
\end{gathered}
$$

$\left.\begin{array}{rl}a & =2 R \sin A(\text { and the analogs) } \\ A & =2 \sin \frac{A}{2} \cos \frac{A}{2}(\text { and the analogs })\end{array}\right\} \Rightarrow a=4 R \sin \frac{A}{2} \cos \frac{A}{2}$ (and the analogs)

$$
r_{b}+r=4 R \sin \frac{A}{2} \cos \frac{A}{2} \cdot \frac{\cos \frac{A}{2}}{\sin \frac{A}{2}}=4 R \cos ^{2} \frac{A}{2}
$$

$$
\frac{r_{b}+r_{c}}{2}=2 R \cos ^{2} \frac{A}{2}(\text { and the analogs })
$$

So, we have the following: $m_{a} \leq 2 R \cos ^{2} \frac{A}{2}$ (and the analogs)

$$
\begin{gathered}
\Leftrightarrow m_{a} \leq \frac{r_{b}+r_{c}}{2} \text { (and the analogs) } \\
m_{a} r_{a} \leq \frac{r_{a}\left(r_{b}+r_{c}\right)}{2} \text { (and the analogs) }
\end{gathered}
$$

But $r_{a} r_{b}+r_{b} r_{c}+r_{a} r_{c}=p^{2}$. Summing we have

$$
m_{a} r_{a}+m_{b} r_{b}+m_{c} r_{c} \leq \frac{2 p^{2}}{2}=p^{2} \text { for } \triangle A B C \text { acute - angled. }
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Solution 2 by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\because \triangle A B C \text { is acute, } \therefore m_{a} \leq 2 R \cos ^{2} \frac{A}{2}, \text { etc., } \therefore \sum m_{a} r_{a} \leq \sum 2 R \cos ^{2} \frac{A}{2} s \tan \frac{A}{2} \\
=2 R s \sum \cos \frac{A}{2} \sin \frac{A}{2}=R s \sum\left(\frac{a}{2 R}\right)=\frac{s}{2}\left(\sum a\right)=s^{2} \text { (proved) }
\end{gathered}
$$

Solution 3 by Marian Ursărescu-Romania
In any acute $\triangle A B C$ we have: $m_{a} \leq 2 R \cos ^{2} \frac{A}{2}$
and $r_{a}=\frac{s}{s-a}$ (2). From (1)+(2) $\Rightarrow \sum m_{a} r_{a} \leq 2 R S \sum \frac{\cos \frac{2 A}{2}}{s-a} \Rightarrow$

$$
\begin{equation*}
\sum m_{a} r_{a} \leq 2 \operatorname{Rrs} \sum \frac{\cos ^{2} \frac{A}{2}}{s-a} \tag{3}
\end{equation*}
$$

But in any $\triangle A B C$ we have: $\sum \frac{\cos ^{2} \frac{A}{2}}{s-a}=\frac{s}{2 R r}$ (4)

$$
\text { From (3) }+ \text { (4) } \Rightarrow \sum m_{a} r_{a} \leq 2 R r s \cdot \frac{s}{2 R r}=s^{2}
$$

Solution 4 by Marin Chirciu - Romania

We prove the following lemma:

Lemma 1

2) In acute $\triangle A B C$:

$$
m_{a} \leq 2 R \cos ^{2} \frac{A}{2}
$$

Mircea Lascu's inequality

Proof

Let M be the middle of $B C$ side and O the circumcenter of $\triangle A B C$. In $\triangle A M O$ we have

$$
A M \leq A O+O M \Leftrightarrow m_{a} \leq R+R \cos A=R(1+\cos A)=R \cdot 2 \cos ^{2} \frac{A}{2}=2 R \cos ^{2} \frac{A}{2}
$$

Equality holds if and only if $\boldsymbol{b}=\boldsymbol{c}$ or if $\boldsymbol{A}=\mathbf{9 0}^{\circ}$.
Back to the main problem:
Using Lemma 1 and $r_{a}=\frac{s}{s-a}$ we obtain:

$$
\begin{aligned}
\sum m_{a} r_{a} \leq & \sum 2 R \cos ^{2} \frac{A}{2} \cdot \frac{S}{s-a}=2 R S \sum \frac{\cos ^{2} \frac{A}{2}}{s-a}=2 R r s \sum \frac{\frac{s(s-a)}{b c}}{s-a}= \\
& =2 R r s^{2} \sum \frac{1}{b c}=2 R r s^{2} \cdot \frac{a+b+c}{a b c}=2 R r s^{2} \cdot \frac{2 s}{4 R r s}=s^{2}
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Equality holds if and only if the triangle is equilateral.
Remark.
Let's hightlight an inequality having an opposite sense:
3) In $\triangle A B C$:

$$
m_{a} r_{a}+m_{b} r_{b}+m_{c} r_{c} \geq 27 r^{2}
$$

Proposed by Marin Chirciu - Romania

Solution

We prove the following lemma:

Lemma 2.

4) In $\triangle A B C$:

$$
m_{a} \geq \frac{b^{2}+c^{2}}{4 R}
$$

Tereshin's inequality
Proof
We write the power of M point (the middle of $B C$ side) towards the circumcircle of $\triangle A B C$:
$M A \cdot M D=M B \cdot M C \Leftrightarrow m_{a}\left(A D-m_{a}\right)=\frac{a}{2} \cdot \frac{a}{2} \Leftrightarrow m_{a} \cdot A D=\frac{a^{2}}{4}+m_{a}^{2} \Leftrightarrow m_{a} \cdot A D$

$$
=\frac{b^{2}+c^{2}}{2}
$$

As $A D \leq 2 R$ it follows $m_{a} \geq \frac{b^{2}+c^{2}}{4 R}$. Equality holds if $b=c$ or if $A=90^{\circ}$.
Back to the main problem:
Using Lemma 2 and $r_{a}=\frac{s}{s-a}$ we obtain:

$$
\begin{align*}
\sum m_{a} r_{a} \geq \sum \frac{b^{2}+c^{2}}{4 R} \cdot \frac{S}{s-a} & =\frac{S}{4 R} \sum \frac{b^{2}+c^{2}}{s-a}=\frac{S}{4 R} \cdot \frac{2\left[s^{2}(2 R+3 r)-r(4 R+r)^{2}\right]}{S}= \\
& =\frac{s^{2}(2 R+3 r)-r(4 R+r)^{2}}{2 R}(1) \tag{1}
\end{align*}
$$

Using (1) is sufficient to prove that:

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
$\frac{s^{2}(2 R+3 r)-r(4 R+r)^{2}}{2 R} \geq 27 r^{2} \Leftrightarrow s^{2}(2 R+3 r) \geq r\left(16 R^{2}+62 R r+r^{2}\right)$, which follows from Gerretsen's inequality: $s^{2} \geq 16 R r-5 r^{2}$. It remains to prove that:

$$
\left(16 R r-5 r^{2}\right)(2 R+3 r) \geq r\left(16 R^{2}+62 R r+r^{2}\right) \Leftrightarrow 2 R^{2}-3 R r-2 r^{2} \geq 0 \Leftrightarrow
$$

$\Leftrightarrow(R-2 r)(2 R+r) \geq 0$ obviously form Euler's inequality $R \geq \mathbf{2 r}$.
Equality holds if and only if the triangle is equilateral.
Remark.
We can prove the double inequality:

1) In acute-angled $\triangle A B C$:

$$
27 r^{2} \leq m_{a} r_{a}+m_{b} r_{b}+m_{c} r_{c} \leq s^{2}
$$

Solution
See inequalities 1) and 3).
Equality holds if and only if the triangle is equilateral.

JP.176. If $\boldsymbol{a}, \boldsymbol{b}>0$, then:

$$
(a+b) \cdot \frac{\sin x}{x}+\frac{2 a b}{a+b} \cdot \frac{\tan x}{x}>\frac{4 \sqrt{2} a b}{a+b}, \forall x \in\left(0 ; \frac{\pi}{2}\right)
$$

Proposed by Rovsen Pirguliyev - Sumgait - Azebaijan
Solution 1 by Tran Hong-Vietnam

$$
\begin{align*}
& \text { Inequality } \Leftrightarrow(a+b)^{2} \tan x+2 a b \sin x>4 \sqrt{2} a b x \\
& \qquad(a+b)^{2} \tan x+2 a b(\sin x-2 \sqrt{2} x)>0 \quad\left(^{*}\right) \tag{*}
\end{align*}
$$

Let $f(x)=(a+b)^{2} \tan x+2 a b(\sin x-2 \sqrt{2} x),\left(0<x<\frac{\pi}{2}\right)$

$$
f^{\prime}(x)=(a+b)^{2} \frac{1}{\cos ^{2} x}+2 a b(\cos x-2 \sqrt{2})
$$

$$
f^{\prime \prime}(x)=2(a+b)^{2} \frac{\sin x}{\cos ^{3} x}-2 a b \sin x
$$

$$
=2 \sin x\left(\frac{[a+b]^{2}}{\cos ^{3} x}-a b\right)=2 \sin x\left(\frac{[a+b]^{2}-a b \cos ^{3} x}{\cos ^{3} x}\right)
$$

$$
\geq 2 a b \sin x\left(\frac{2-\cos ^{3} x}{\cos ^{3} x}\right)>0, \forall x \in\left(0, \frac{\pi}{2}\right)
$$

$$
\begin{aligned}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
& \begin{aligned}
& \Rightarrow \boldsymbol{f}^{\prime}(\boldsymbol{x}) \nearrow \text { on }\left(\mathbf{0}, \frac{\pi}{2}\right) \Rightarrow \boldsymbol{f}^{\prime}(\boldsymbol{x})>\boldsymbol{f}^{\prime}(\mathbf{0})=(\boldsymbol{a}+\boldsymbol{b})^{2}+\mathbf{2 a b}(\mathbf{1}-\mathbf{2} \sqrt{\mathbf{2}}) \\
&=\boldsymbol{a}^{2}+\boldsymbol{b}^{2}+\mathbf{2 a b}(\mathbf{2}-\mathbf{2} \sqrt{\mathbf{2}}) \geq \mathbf{2 a b}(\mathbf{3}-\mathbf{2} \sqrt{\mathbf{2}})>0 \\
&\left.\Rightarrow \boldsymbol{f}(\boldsymbol{x}) \nearrow \mathbf{o n}\left(\mathbf{0}, \frac{\boldsymbol{\pi}}{2}\right) \Rightarrow \boldsymbol{f}(\boldsymbol{x})>f(\mathbf{0})=\mathbf{0} \Rightarrow \mathbf{(}^{*}\right) \text { true. }
\end{aligned}
\end{aligned}
$$

Solution 2 by Ravi Prakash-New Delhi-India

$$
\begin{gathered}
\text { For } 0 \leq x<\frac{\pi}{2}, \text { let } f(x)=(a+b)^{2} \sin x+2 a b \tan x-4 \sqrt{2} a b x \\
f^{\prime}(x)=(a+b)^{2} \cos x+2 a b \sec ^{2} x-4 \sqrt{2} a b \geq 4 a b \cos x+2 a b \sec ^{2} x-4 \sqrt{2} a b \\
\geq 6 a b\left[(\cos x)^{4 a b}\left(\sec ^{2} x\right)^{2 a b}\right]^{\frac{1}{6} a b}-4 \sqrt{2} a b \geq 6 a b-4 \sqrt{2} a b>0 \\
\Rightarrow f(x) \text { is an increasing function on }\left[0, \frac{\pi}{2}\right] \Rightarrow f(x)>f(0) \text { for } 0<x<\frac{\pi}{2} \\
\Rightarrow(a+b)^{2} \sin x+2 a b \tan x>4 \sqrt{2} a b x \Rightarrow(a+b) \frac{\sin x}{x}+\frac{2 a b}{a+b} \cdot \frac{\tan x}{x}>\frac{4 \sqrt{2} a b}{a+b}
\end{gathered}
$$

JP.177. If $a, b, c \geq 0$ then:

$$
2(a+b+c)+\sum_{c y c} \sqrt{a^{2}+b^{2}-a b} \geq 3(\sqrt{a b}+\sqrt{b c}+\sqrt{c a})
$$

Proposed by Daniel Sitaru - Romania

Solution 1 by Kelvin Hong-Rawang-M alaysia

$$
\begin{gathered}
\text { We have: }(a+b+c)(b+c+a) \stackrel{\text { Cauchy-Schwarz Inequality }}{\geq}(\sqrt{a b}+\sqrt{b c}+\sqrt{c a})^{2} \\
\therefore a+b+c \geq \sqrt{a b}+\sqrt{b c}+\sqrt{c a} \text {. Also, that } \\
\sum_{c y c} \sqrt{a^{2}+b^{2}-a b} \stackrel{A M-G M}{\geq} \sum_{c y c} \sqrt{2 a b-a b}=\sum_{c y c} \sqrt{a b}
\end{gathered}
$$

Therefore

$$
2(a+b+c)+\sum_{c y c} \sqrt{a^{2}+b^{2}-a b} \geq 2(\sqrt{a b}+\sqrt{b c}+\sqrt{c a})+\sum_{c y c} \sqrt{a b}=3 \sum_{c y c} \sqrt{a b}
$$

Solution 2 by Amit Dutta-Jamshedpur-India
\because We know that: $\left(a^{2}+b^{2}-a b\right)=\frac{1}{4}(a+b)^{2}+\frac{3}{4}(a-b)^{2}$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\begin{aligned}
& \Rightarrow \sqrt{a^{2}+b^{2}-a b}=\sqrt{\frac{1}{4}(a+b)^{2}+\frac{3}{4}(a-b)^{2}} \geq\left(\frac{a+b}{2}\right) \\
& \Rightarrow \sqrt{a^{2}+b^{2}-a b} \geq\left(\frac{a+b}{2}\right) \\
& \sum_{c y c} \sqrt{a^{2}+b^{2}-a b} \geq \sum_{c y c}\left(\frac{a+b}{2}\right) \geq \sum_{c y c} a \\
& \Rightarrow \sum_{c y c}(a+b)+\sum_{c y c} \sqrt{a^{2}+b^{2}-\boldsymbol{a b}} \geq \sum_{c y c}(a+b)+\sum_{\text {cyc }} a \\
& \geq 3(a+b+c) \geq \frac{3}{2}\left(\sum 2 a\right) \geq \frac{3}{2}\{(a+b)+(b+c)+(c+a)\} \\
& \stackrel{A M-G M}{\geq} \frac{3}{2}(2 \sqrt{a b}+2 \sqrt{b c}+2 \sqrt{a c}) \\
& 2(a+b+c)+\sum_{c y c} \sqrt{a^{2}+b^{2}-a b} \geq 3(\sqrt{a b}+\sqrt{b c}+\sqrt{a c}) \\
& \text { (proved) }
\end{aligned}
$$

Solution 3 by Boris Colakovic-Belgrade-Serbia

$$
\begin{align*}
& a^{2}+b^{2}-a b \geq a b \Leftrightarrow \sqrt{a^{2}+b^{2}-a b} \geq \sqrt{a b} \Leftrightarrow \sum_{c y c} \sqrt{a^{2}+b^{2}-a b} \geq \sqrt{a b}+\sqrt{b c}+\sqrt{c a} \\
& 2(a+b+c)=(a+b)+(b+c)+(c+a) \stackrel{A M-G M}{\geq} 2 \sqrt{a b}+2 \sqrt{b c}+2 \sqrt{c a} \tag{2}
\end{align*}
$$

$$
\text { From (1) and (2) } \Rightarrow \text { LHS } \geq 3(\sqrt{a b}+\sqrt{b c}+\sqrt{c a})
$$

Solution 4 by Michael Sterghiou-Greece

$$
\begin{equation*}
2 \sum_{c y c} a+\sum_{c y c} \sqrt{a^{2}+b^{2}-a b} \geq 3 \sum_{c y c} \sqrt{a b} \tag{1}
\end{equation*}
$$

LHS (1) $=\mathbf{2} \sum_{c y c} a+\sum_{c y c} \sqrt{2 a b-a b}=2 \sum_{c y c} a+\sum_{c y c} \sqrt{a b}$
It suffices to show that: $\sum_{c y c} a \geq \sum_{c y c} \sqrt{a b}$ or $\sum_{c y c}(\sqrt{a})^{2} \geq \sum_{c y c} \sqrt{a b}$
which holds (rearrangement inequality).
Solution 5 by Ravi Prakash-New Delhi-India

$$
\begin{gather*}
a+b+\sqrt{a^{2}+} b^{2}-a b \\
=3 \sqrt{a b} \geq a+b+\sqrt{2 a b-a b}-3 \sqrt{a b}= \\
=a+b-2 \sqrt{a b}=(\sqrt{a}-\sqrt{b})^{2} \geq 0 \tag{1}\\
\Rightarrow a+b+\sqrt{a^{2}+b^{2}-a b} \geq 3 \sqrt{a b}
\end{gather*}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Similarly, $b+c+\sqrt{b^{2}+c^{2}-b c} \geq 3 \sqrt{b c}$ (2)

$$
\text { and } c+a+\sqrt{c^{2}+a^{2}-c a} \geq 3 \sqrt{c a}
$$

Adding (1), (2), (3), we get:

$$
2(a+b+c)+\sum_{c y c} \sqrt{a^{2}+b^{2}-a b} \geq 3(\sqrt{a b}+\sqrt{b c}+\sqrt{c a})
$$

Solution 6 by Seyran Ibrahimov-M aasilli-Azerbaijan

$$
\begin{gathered}
\sum_{c y c} a+b+\sum_{c y c} \sqrt{a^{2}+b^{2}-a b} \geq 3 \sum_{c y c} \sqrt{a b} \\
a+b+\sqrt{a^{2}+b^{2}-a b} \geq 3 \sqrt{a b} \Rightarrow(1) \\
\Rightarrow(\sqrt{a}-\sqrt{b})^{2}+\sqrt{a^{2}+b^{2}-a b}-\sqrt{a b} \geq 0\left(\forall a, b(a-b)^{2} \geq 0\right) \\
\stackrel{a^{2}+b^{2} \geq 2 a b}{\Rightarrow} \quad(\sqrt{a}-\sqrt{b})^{2}+\sqrt{a b}-\sqrt{a b}=(\sqrt{a}-\sqrt{b})^{2} \geq 0 \quad\left(^{*}\right) \\
\stackrel{(*)}{\Rightarrow} b+c+\sqrt{b^{2}+c^{2}-b c} \geq 3 \sqrt{b c} \quad \text { (2) } \\
\wedge a+c+\sqrt{a^{2}+c^{2}-a c} \geq 3 \sqrt{a c} \quad \text { (3) } \\
(1)+(2)+(3) \Rightarrow \\
2 \sum_{c y c} a+\sum_{c y c} \sqrt{a^{2}+b^{2}-a b} \geq 3 \sum_{c y c} \sqrt{a b} \\
\text { (Proved) }
\end{gathered}
$$

Solution 7 by Tran Hong-Vietnam

Using Cauchy's inequality, we have: $a+b \geq 2 \sqrt{a b} ; b+c \geq 2 \sqrt{b c} ; c+a \geq 2 \sqrt{a c}$

$$
\begin{align*}
\rightarrow 2(a+b+c) \geq 2(\sqrt{a b}+\sqrt{a c}+\sqrt{b c}) \tag{1}\\
\sqrt{a^{2}+b^{2}-a b} \geq \sqrt{2 a b-a b}=\sqrt{a b} \tag{2}\\
\sqrt{b^{2}+c^{2}-b c} \geq \sqrt{2 b c-b c}=\sqrt{b c} \tag{3}\\
\sqrt{a^{2}+c^{2}-a c} \geq \sqrt{2 a c-a c}=\sqrt{a c} \tag{4}
\end{align*}
$$

$\rightarrow(1)+(2)+(3)+(4)$ we proved. Equality then $a=b=c$.
Solution 8 by Soumava Chakraborty-Kolkata-India

$$
2 \sum a+\sum \sqrt{a^{2}+b^{2}-a b} \stackrel{(1)}{\geq} 3\left(\sum \sqrt{a b}\right)
$$

ROMANIAN MATHEMATICAL MAGAZINE

 www.ssmrmh.ro$\because a^{2}+b^{2}-a b=\frac{1}{4}(a+b)^{2}+\frac{3}{4}(a-b)^{2} \geq \frac{(a+b)^{2}}{4}$
$\therefore \sqrt{a^{2}+b^{2}-a b} \geq \frac{a+b}{2}(\because a+b \geq \mathbf{0}$ as $a, b \geq 0)$ etc.
\therefore LHS of (1) $\stackrel{(a)}{\geq} 2 \sum a+\frac{1}{2} \sum(a+b)=3 \sum a$
Also, RHS of (1) $\stackrel{C B S}{\leq} 3 \sqrt{\sum a} \sqrt{\sum a}=3 \sum a a^{b y(a)} \leq$ LHS of (1) (Proved)
Solution 9 by Sanong Huayrerai-Nakon Pathom-Thailand

$$
\begin{gathered}
\text { For } x, y \geq 0, \text { we have } x^{2}-x y+y^{2} \geq\left(\frac{x+y}{2}\right)^{2} \\
\text { Hence for } a, b, c \geq 0 \text {, we get } \\
2(a+b+c)+\sqrt{a^{2}-a b+b^{2}}+\sqrt{b^{2}-b c+c^{2}}+\sqrt{c^{2}-c a+a^{2}} \\
\geq 2(a+b+c)+\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2} \\
=(a+b)+(b+c)+(c+a)+\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2} \\
\geq 2 \sqrt{a b}+2 \sqrt{b c}+2 \sqrt{c a}+\sqrt{a b}+\sqrt{b c}+\sqrt{c a}=3(\sqrt{a b}+\sqrt{b c}+\sqrt{c a})
\end{gathered}
$$

Therefore, it is to be true.

JP.178. If $\boldsymbol{a}, \boldsymbol{b}>0$ then:

$$
a^{3}+b^{3}+\left(\sqrt{a^{2}+b^{2}}\right)^{3}+\frac{4 a^{2} b^{2}}{a+b+\sqrt{a^{2}+b^{2}}}>4 a b \sqrt{a^{2}+b^{2}}
$$

Proposed by Daniel Sitaru - Romania
Solution 1 by Ravi Prakash-New Delhi-India
Put $a=r \cos \theta, b=r \sin \theta, 0<\theta<\frac{\pi}{2}$. The inequality

$$
\begin{gathered}
a^{3}+b^{3}+\left(\sqrt{a^{2}+b^{2}}\right)^{3}+\frac{4 a^{2} b^{2}}{a+b+\sqrt{a^{2}+b^{2}}}>4 a b \sqrt{a^{2}+b^{2}} \\
b e c o m e s \cos ^{3} \theta+\sin ^{3} \theta+1+\frac{4 \cos ^{2} \theta \sin ^{2} \theta}{\cos \theta+\sin \theta+1}>4 \cos \theta \sin \theta \\
\Leftrightarrow \cos ^{3} \theta+\sin ^{3} \theta+1+\frac{2 \cos \theta \sin \theta\left[(\sin \theta+\cos \theta)^{2}-1\right]}{\cos \theta+\sin \theta+1}>4 \cos \theta \sin \theta
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\Leftrightarrow \cos ^{3} \theta+\sin ^{3} \theta+1+2 \cos \theta \sin \theta(\cos \theta+\sin \theta-1)-4 \cos \theta \sin \theta>0
$$

$$
\Leftrightarrow 1+\cos ^{3} \theta+\sin ^{3} \theta+2 \cos ^{2} \theta \sin \theta+2 \cos \theta \sin ^{2} \theta-6 \cos \theta \sin \theta>0
$$

$$
\Leftrightarrow 1+\cos \theta\left(\cos ^{2} \theta+\sin ^{2} \theta\right)+\sin \theta\left(\sin ^{2} \theta+\cos ^{2} \theta\right)+
$$

$$
+\cos ^{2} \theta \sin \theta+\sin ^{2} \theta \cos \theta-6 \sin \theta \cos \theta>0
$$

$$
\Leftrightarrow 1+\cos \theta+\sin \theta+\cos ^{2} \theta \sin \theta+\sin ^{2} \theta \cos \theta-6 \sin \theta \cos \theta>0
$$

$$
\Leftrightarrow(\sin \theta-\cos \theta)^{2}+\left(\cos \theta+\sin ^{2} \theta \cos \theta-2 \sin \theta \cos \theta\right)+
$$

$$
+\left(\sin ^{2} \theta+\cos ^{2} \theta \sin \theta-2 \sin \theta \cos \theta\right)>0
$$

$$
\Leftrightarrow(\sin \theta-\cos \theta)^{2}+\cos \theta(1-\sin \theta)^{2}+\sin \theta(1-\cos \theta)^{2}>0
$$

which is true as at least one factor is positive.

Solution 2 by Sanong Huayrerai-Nakon Pathom-Thailand

For $a, b>0$, we have $2\left(a^{2}+b^{2}\right) \geq 4 a b \Rightarrow 4 a b+2\left(a^{2}+b^{2}\right) \geq 8 a b \Rightarrow$

$$
\Rightarrow\left(\sqrt{a^{2}+b^{2}}\right)(a+b)+2\left(a^{2}+b^{2}\right)+\frac{4 a^{2} b^{2}}{\left(\sqrt{a^{2}+b^{2}}\right)(a+b)} \geq 8 a b
$$

$$
\Rightarrow\left(\sqrt{a^{2}+b^{2}}\right)(a+b)+2\left(a^{2}+b^{2}\right)+\frac{8 a^{2} b^{2}}{\left(\sqrt{a^{2}+b^{2}}\right)(a+b)+\left(a^{2}+b^{2}\right)}>8 a b
$$

$$
\Rightarrow\left(a^{2}+b^{2}\right)(a+b)+2\left(a^{2}+b^{2}\right) \sqrt{a^{2}+b^{2}}+\frac{8 a^{2} b^{2}}{(a+b)+\sqrt{a^{2}+b^{2}}} \geq 8 a b \sqrt{a^{2}+b^{2}}
$$

$$
\Rightarrow \frac{\left(a^{2}+b^{2}\right)(a+b)}{2}+\left(a^{2}+b^{2}\right) \sqrt{a^{2}+b^{2}}+\frac{4 a^{2} b^{2}}{(a+b)+\sqrt{a^{2}+b^{2}}} \geq 4 a b \sqrt{a^{2}+b^{2}}
$$

$$
\Rightarrow a^{3}+b^{3}+\left(\sqrt{a^{2}+b^{2}}\right)^{3}+\frac{4 a^{2} b^{2}}{(a+b)+\sqrt{a^{2}+b^{2}}} \geq 4 a b \sqrt{a^{2}+b^{2}}
$$

Therefore $a^{3}+b^{3}+\left(\sqrt{a^{2}+b^{2}}\right)^{3}+\frac{4 a^{2} b^{2}}{(a+b)+\sqrt{a^{2}+b^{2}}}>4 a b \sqrt{a^{2}+b^{2}} \quad$ (true)

Solution 3 by Serban George Florin-Romania

$$
\begin{gathered}
a^{3}+b^{3}+\left(a^{2}+b^{2}\right) \sqrt{a^{2}+b^{2}}+\frac{4 a^{2} b^{2}\left(a+b-\sqrt{a^{2}+b^{2}}\right)}{(a+b)^{2}-\left(a^{2}+b^{2}\right)}>4 a b \sqrt{a^{2}+b^{2}} \\
a^{3}+b^{3}+\left(a^{2}+b^{2}\right) \sqrt{a^{2}+b^{2}}+\frac{4 a^{2} b^{2}\left(a+b-\sqrt{a^{2}+b^{2}}\right)}{2 a b}>4 a b \sqrt{a^{2}+b^{2}} \\
(a+b)\left(a^{2}-a b+b^{2}\right)+\left(a^{2}+b^{2}\right) \sqrt{a^{2}+b^{2}}+2 a b(a+b)-2 a b \sqrt{a^{2}+b^{2}}>4 a b \sqrt{a^{2}+b^{2}}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\begin{gathered}
(a+b)\left(a^{2}-a b+b^{2}+2 a b\right)+\left(a^{2}+b^{2}\right) \sqrt{a^{2}+b^{2}}>6 a b \sqrt{a^{2}+b^{2}} \\
(a+b)\left(a^{2}+a b+b^{2}\right)+\left(a^{2}+b^{2}\right) \sqrt{a^{2}+b^{2}}>6 a b \sqrt{a^{2}+b^{2}} \mid: b^{3}
\end{gathered}
$$

$$
\begin{aligned}
& \left(\frac{a}{b}+1\right)\left[\left(\frac{a}{b}\right)^{2}+\frac{a}{b}+1\right]+\left[\left(\frac{a}{b}\right)^{2}+1\right] \sqrt{\left(\frac{a}{b}\right)^{2}+1}>6\left(\frac{a}{b}\right) \sqrt{\left(\frac{a}{b}\right)^{2}+1}, \frac{a}{b}=x, x>0 \\
& (x+1)\left(x^{2}+x+1\right)+\left(x^{2}+1\right) \sqrt{x^{2}+1}>6 x \sqrt{x^{2}+1} \left\lvert\, \begin{array}{c}
(\forall) x>0 \\
: x \sqrt{x^{2}+1}
\end{array}\right. \\
& \frac{(x+1)\left(x^{2}+x+1\right)}{x \sqrt{x^{2}+1}}+\frac{\left(x^{2}+1\right) \sqrt{x^{2}+1}}{x \sqrt{x^{2}+1}}>6 \\
& \frac{(x+1) x}{x \sqrt{x^{2}+1}}+\frac{(x+1)\left(x^{2}+1\right)}{x \sqrt{x^{2}+1}}+\frac{x^{2}+1}{x}>6 \\
& \frac{x+1}{\sqrt{x^{2}+1}}+\frac{x+1}{x} \sqrt{x^{2}+1}+\frac{x^{2}+1}{x}>6 \\
& \frac{x+1}{\sqrt{x^{2}+1}}+\frac{x+1}{x} \sqrt{x^{2}+1} \stackrel{\left(M_{a} \geq M_{g}\right)}{\geq} 2 \sqrt{\frac{x+1}{\sqrt{x^{2}+1}} \cdot \frac{x+1}{x} \cdot \sqrt{x^{2}+1}}=\frac{2(x+1)}{\sqrt{x}} \stackrel{\left(M_{a} \geq M_{g}\right)}{\geq} \frac{2 \cdot 2 \sqrt{x}}{\sqrt{x}}=4 \\
& \frac{x^{2}+1}{x} \geq 2 \Leftrightarrow x^{2}+1>2 x \Leftrightarrow(x-1)^{2} \geq 0 \\
& \Rightarrow \frac{x+1}{\sqrt{x^{2}+1}}+\frac{x+1}{x} \sqrt{x^{2}+1}+\frac{x^{2}+1}{x}>4+2=6 \text { true }
\end{aligned}
$$

Solution 4 by Tran Hong-Vietnam

$$
\begin{gather*}
a^{3}+b^{3} \geq a b(a+b) \Rightarrow \\
L H S \geq a b(a+b)+\left(\sqrt{a^{2}+b^{2}}\right)^{3}+\frac{4 a^{2} b^{2}}{a+b+\sqrt{a^{2}+b^{2}}} \tag{*}
\end{gather*}
$$

We need to prove: $\left(^{*}\right)>4 a b \sqrt{a^{2}+b^{2}}$

$$
\begin{equation*}
\Leftrightarrow \frac{a+b}{\sqrt{a^{2}+b^{2}}}+\frac{a^{2}+b^{2}}{a b}+\frac{4 a b}{\left(a+b+\sqrt{a^{2}+b^{2}}\right) \sqrt{a^{2}+b^{2}}}>4 \tag{1}
\end{equation*}
$$

We have

$$
\begin{equation*}
\frac{a+b}{\sqrt{a^{2}+b^{2}}}+\frac{a^{2}+b^{2}}{a b}+\frac{4 a b}{\left(a+b+\sqrt{a^{2}+b^{2}}\right) \sqrt{a^{2}+b^{2}}} \geq 2 \sqrt{\frac{a b}{a^{2}+b^{2}}}+\frac{a^{2}+b^{2}}{a b}+\frac{4 a b}{(\sqrt{2}+1)\left(a^{2}+b^{2}\right)} \tag{**}
\end{equation*}
$$

Let $f(t)=2 t+\frac{1}{t^{2}}+\frac{4 t^{2}}{\sqrt{2}+1}$ with $t=\sqrt{\frac{a b}{a^{2}+b^{2}}}\left(0<t \leq \frac{\sqrt{2}}{2}\right)$

> ROMANIAN MATHEMATICAL MAGAZINE $\begin{gathered}\text { www.ssmrmh.ro } \\ \boldsymbol{f}^{\prime}(\boldsymbol{t})=\mathbf{2}-\frac{\mathbf{2}}{\boldsymbol{t}^{3}}+\frac{\mathbf{8}}{\mathbf{1}+\sqrt{2}} \cdot \boldsymbol{t}=\mathbf{2}\left(\frac{\mathbf{2} \boldsymbol{t}^{4}[\sqrt{2}-\mathbf{1}]+\boldsymbol{t}^{3}-\mathbf{1}}{\boldsymbol{t}^{3}}\right)<0, \forall t \in\left(\mathbf{0}, \frac{\sqrt{2}}{\mathbf{2}}\right] \\ \Rightarrow \boldsymbol{f}(\boldsymbol{t}) \searrow \mathbf{o n}\left(\mathbf{0}, \frac{\sqrt{2}}{2}\right] \Rightarrow \boldsymbol{f}(\boldsymbol{t}) \geq \boldsymbol{f}\left(\frac{\sqrt{2}}{2}\right)=\sqrt{2}+\mathbf{2}+\frac{2}{(\sqrt{2}+\mathbf{1})}=3 \sqrt{2}>4 \\ \Rightarrow\left({ }^{* *}\right)>4 \Rightarrow(1) \text { true. Proved. }\end{gathered}$

Solution 5 by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
a^{3}+b^{3}+\left(\sqrt{a^{2}+b^{2}}\right)^{3}+\frac{4 a^{2} b^{2}}{a+b+\sqrt{a^{2}+b^{2}}} \stackrel{(1)}{>} 4 a b \sqrt{a^{2}+b^{2}} \\
(1) \Leftrightarrow\left(a^{3}+b^{3}\right)\left(a+b+\sqrt{a^{2}+b^{2}}\right)+\left(a^{2}+b^{2}\right) \sqrt{a^{2}+b^{2}}\left(a+b+\sqrt{a^{2}+b^{2}}\right)+4 a^{2} b^{2}> \\
>4 a b \sqrt{a^{2}+b^{2}}\left(a+b+\sqrt{a^{2}+b^{2}}\right) \\
\Leftrightarrow 2 a^{4}+2 b^{4}+6 a^{2} b^{2}-3 a b\left(a^{2}+b^{2}\right)+\sqrt{a^{2}+b^{2}}\left(2 a^{3}+2 b^{3}-2 a b(a+b)\right)> \\
(2) a b(a+b) \sqrt{a^{2}+b^{2}} \\
\because a^{3}+b^{3} \geq a b(a+b) \Rightarrow 2 a^{3}+2 b^{3}-2 a b(a+b) \geq 0
\end{gathered}
$$

\therefore LHS of (2) $\stackrel{(a)}{>} 2 a^{4}+2 b^{4}+6 a^{2} b^{2}-3 a b\left(a^{2}+b^{2}\right)+\frac{a+b}{2}\left(2 a^{3}+2 b^{3}-2 a b(a+b)\right)$

$$
\begin{aligned}
& \quad\left(\because \sqrt{a^{2}+b^{2}} \geq \frac{a+b}{\sqrt{2}}>\frac{a+b}{2}\right) \\
& =3 a^{4}+3 b^{4}+4 a^{2} b^{2}-3 a b\left(a^{2}+b^{2}\right) \\
& \text { Also, } \because \sqrt{a^{2}+b^{2}}<a+b, \therefore \text { RHS of (2) }
\end{aligned}
$$

$$
\stackrel{(b)}{<} a b(a+b)^{2}
$$

(a), (b) \Rightarrow in order to prove (2), it suffices to prove:

$$
\begin{gathered}
3 a^{4}+3 b^{4}+4 a^{2} b^{2}-3 a b\left(a^{2}+b^{2}\right) \geq a b(a+b)^{2} \\
\Leftrightarrow 3 a^{4}+3 b^{4}+2 a^{2} b^{2}-4 a b\left(a^{2}+b^{2}\right) \geq 0 \\
\Leftrightarrow 3\left\{\left(a^{2}+b^{2}\right)^{2}-2 a^{2} b^{2}\right\}+2 a^{2} b^{2}-4 a b\left(a^{2}+b^{2}\right) \geq 0 \\
\Leftrightarrow 3 x^{2}-4 x y-4 y^{2} \geq 0\left(\text { where } x=a^{2}+b^{2} \& y=a b\right) \\
\Leftrightarrow 3 x^{2}-6 x y+2 x y-4 y^{2} \geq 0 \Leftrightarrow(x-2 y)(3 x+2 y) \geq 0 \\
\rightarrow \text { true } \because a^{2}+b^{2} \geq 2 a b \Rightarrow x \geq 2 y \& x, y>0
\end{gathered}
$$

(Proved)

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

JP.179. In acute $\triangle A B C$ the following relationship holds:

$$
\frac{a \cos A}{b \cos B}+\frac{b \cos B}{c \cos C}+\frac{c \cos C}{a \cos A} \leq \frac{3}{8 \cos A \cos B \cos C}
$$

Proposed by Daniel Sitaru - Romania

Solution 1 by Soumava Chakraborty-Kolkata-India

$$
\frac{a \cos A}{b \cos B}+\frac{b \cos B}{c \cos C}+\frac{c \cos C}{a \cos A} \stackrel{(1)}{\leq} \frac{3}{8 \cos A \cos B \cos C}
$$

(1) $\Leftrightarrow \frac{(a \cos A)(b \cos B)^{2}+(b \cos B)(c \cos C)^{2}+(c \cos C)(a \cos A)^{2}}{a b c \cos A \cos B \cos C} \leq \frac{3}{8 \cos A \cos B \cos C}$

$$
\Leftrightarrow 8 \sum(a \cos A)(b \cos B)^{2} \stackrel{(2)}{\leq} 3 a b c
$$

Now, $(a \cos A)(b \cos B)^{2}=\frac{a\left(b^{2}+c^{2}-a^{2}\right)}{2 b c} \cdot b^{2} \cdot \frac{\left(c^{2}+a^{2}-b^{2}\right)^{2}}{4 c^{2} a^{2}}=\frac{b\left(b^{2}+c^{2}-a^{2}\right)\left(c^{2}+a^{2}-b^{2}\right)^{2}}{8 c^{3} a}$

$$
\stackrel{(a)}{=} \frac{a^{2} b^{4}\left(b^{2}+c^{2}-a^{2}\right)\left(c^{2}+a^{2}-b^{2}\right)^{2}}{8(a b c)^{3}}
$$

$$
\text { Similarly, }(b \cos B)(c \cos C)^{2} \stackrel{(b)}{=} \frac{b^{2} c^{4}\left(c^{2}+a^{2}-b^{2}\right)\left(a^{2}+b^{2}-c^{2}\right)^{2}}{8(a b c)^{3}} \&
$$

$$
(c \cos C)(a \cos A)^{2} \stackrel{(c)}{=} \frac{c^{2} a^{4}\left(a^{2}+b^{2}-c^{2}\right)\left(b^{2}+c^{2}-a^{2}\right)^{4}}{8(a b c)^{3}}
$$

$$
\text { Let } b^{2}+c^{2}-a^{2}=x, c^{2}+a^{2}-b^{2}=y, a^{2}+b^{2}-c^{2}=z
$$

Then $\sum a^{2}=\sum x \Rightarrow a^{2}=\frac{y+z}{2}, b^{2}=\frac{z+x}{2}, c^{2}=\frac{x+y}{2}$
Using the above substitution \& (a), (b), (c),

$$
\begin{aligned}
& \text { (2) becomes: }\left(\frac{y+z}{2}\right) \frac{(z+x)^{2}}{4} \cdot x y^{2}+\left(\frac{z+x}{2}\right) \frac{(x+y)^{2}}{4} \cdot y z^{2}+\left(\frac{x+y}{2}\right) \frac{(y+z)^{2}}{4} \cdot z x^{2} \leq \\
& \leq 3\left(\frac{y+z}{2}\right)^{2}\left(\frac{z+x}{2}\right)^{2}\left(\frac{x+y}{2}\right)^{2} \\
& \begin{aligned}
\leq 3(x+y)^{2}(y+z)^{2}(z+x)^{2} \geq 8 x y^{2}(y+z)(z+x)^{2}+8 y z^{2}(z+x)(x+y)^{2}+ \\
+8 z x^{2}(x+y)(y+z)^{2}
\end{aligned} \\
& \Leftrightarrow 3 \sum x^{4} y^{2}+3 \sum x^{2} y^{4}+6 x y z\left(\sum x^{3}\right)+2 x y z\left(\sum x^{2} y\right)
\end{aligned}
$$

$$
\stackrel{(3)}{\geq} 2 \sum x^{3} y^{3}+6 x y z\left(\sum x y^{2}\right)+18 x^{2} y^{2} z^{2}
$$

It should be noted that, $\because\left(b^{2}+c^{2}-a^{2}\right)$ etc >0

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro
($\because \Delta A B C$ is acute-angled), $\therefore x, y, z>0$
Now, $x^{2}+z^{2} x \underset{(i)}{\stackrel{A-G}{\gtrless}} 2 z x^{2}, y^{3}+x^{2} y \underset{(i i)}{\stackrel{A-G}{\gtrless}} 2 x y^{2} \& z^{3}+y^{2} z \underset{(i i i)}{\stackrel{A-G}{\gtrless}} 2 y z^{2}$
(i) + (ii) + (iii) $\Rightarrow \sum x^{3}+\sum x^{2} y \geq 2 \sum x y^{2} \Rightarrow 3 x y z\left(\sum x^{3}+\sum x^{2} y\right) \stackrel{(i v)}{\geq} 6 x y z\left(\sum x y^{2}\right)$

Also, $\sum x^{2} y^{4} \stackrel{(v)}{\geq} x y^{2} \cdot y z^{2}+y z^{2} \cdot z x^{2}+z x^{2} \cdot x y^{2}=x y z\left(\sum x^{2} y\right)$
Again, $\sum x^{4} y^{2}+\sum x^{2} y^{4} \underset{(v i)}{\stackrel{A-G}{\gtrless}} 2 \sum x^{3} y^{3}$
Lastly, $2 \sum x^{4} y^{2}+\sum x^{2} y^{4}+3 x y z\left(\sum x^{3}\right) \underset{(v i i)}{\stackrel{A-G}{\geq}} 2 \cdot\left(3 x^{2} y^{2} z^{2}\right)+\left(3 x^{2} y^{2} z^{2}\right)+3 x y z \cdot 3 x y z=18 x^{2} y^{2} z^{2}$

$$
(\mathrm{iv})+(\mathrm{v})+(\mathrm{vi})+(\mathrm{vii}) \Rightarrow(3) \text { is true }
$$

(Hence proved)

Solution 2 by Marian Ursărescu-Romania

We use the orthic triangle: Because $\triangle A B C$ is acute let $a^{\prime}=a \cos A, b^{\prime}=b \cos B$, $\boldsymbol{c}^{\prime}=\boldsymbol{c} \cos C$ the sides of the orthic triangle of $A B C$: but $\boldsymbol{R}^{\prime}=\frac{R}{2}, \boldsymbol{R}^{\prime}=$ circumradii of orthic $\triangle A B C, r^{\prime}=2 R \cos A \cos B \cos C, r^{\prime}=$ inradius $\Rightarrow r^{\prime}=4 R^{\prime} \cos A \cos B \cos C \Rightarrow$ $\Rightarrow \cos A \cos B \cos C=\frac{r^{\prime}}{4 R^{\prime}} \Rightarrow$ we must show this: $\frac{a^{\prime}}{b^{\prime}}+\frac{b^{\prime}}{c^{\prime}}+\frac{c^{\prime}}{a^{\prime}} \leq \frac{3 R^{\prime}}{2 r^{\prime}}$, which means we must show $\frac{a}{b}+\frac{b}{c}+\frac{c}{a} \leq \frac{3 R}{2 r}$ for any Δ (1)

$$
\begin{gather*}
\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^{2} \leq\left(a^{2}+b^{2}+c^{2}\right)\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}\right) \quad \text { (2) (from Cauchy) } \\
\text { But } a^{2}+b^{2}+c^{2} \leq 9 R^{2} \text { and } \frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}} \leq \frac{1}{4 r^{2}} \tag{3}
\end{gather*}
$$

From (2)+(3) $\Rightarrow\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^{2} \leq \frac{9 R^{2}}{4 r^{2}} \Leftrightarrow \frac{a}{b}+\frac{b}{c}+\frac{c}{a} \leq \frac{3 R}{2 r} \Rightarrow$ (1) it is true.

JP.180. If $a, b \geq 0$ then:

$$
\left\{\begin{array}{c}
4 a b \leq \sqrt{a^{2}+b^{2}}\left(a+b+\sqrt{a^{2}+b^{2}}\right) \\
4 a b \sqrt{a^{2}+b^{2}} \leq\left(a^{2}+b^{2}\right)\left(a+b+\sqrt{a^{2}+b^{2}}\right)
\end{array}\right.
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Solution 1 by Amit Dutta-Jamshedpur-India

$$
\begin{gathered}
\text { Let } \boldsymbol{f}(\boldsymbol{t})=\mathbf{5} \boldsymbol{t}^{2}-\mathbf{8} \boldsymbol{t}+\mathbf{5} \\
D=\mathbf{6 4}-\mathbf{1 0 0}=-\mathbf{3 6}<0 \because D<0 \Rightarrow F(\boldsymbol{t})>0
\end{gathered}
$$

Put $t=\frac{a}{b}>0,\{a, b>0\} \Rightarrow \boldsymbol{F}(\boldsymbol{t})=\mathbf{5 t}^{\mathbf{2}} \mathbf{- 8} \boldsymbol{t}+\mathbf{5}>0$

$$
\begin{gathered}
\text { Putting } t=\left(\frac{a}{b}\right) \\
5\left(\frac{a^{2}}{b^{2}}\right)-8\left(\frac{a}{b}\right)+5>0 \\
5 a^{2}-8 a b+5 b^{2}>0 \Rightarrow 4 a^{2}+4 b^{2}+8 a b<9 a^{2}+9 b^{2} \\
\Rightarrow 4(a+b)^{2}<9\left(a^{2}+b^{2}\right) \Rightarrow 2(a+b)<3 \sqrt{a^{2}+b^{2}} \\
\Rightarrow 2\left(a+b-\sqrt{a^{2}+b^{2}}\right)<\sqrt{a^{2}+b^{2}} \\
\Rightarrow \frac{2\left(a+b-\sqrt{a^{2}+b^{2}}\right)\left(a+b+\sqrt{a^{2}+b^{2}}\right)}{\left(a+b+\sqrt{a^{2}+b^{2}}\right)}<\sqrt{a^{2}+b^{2}} \\
\Rightarrow 2(2 a b)<\sqrt{a^{2}+b^{2}}\left(a+b+\sqrt{a^{2}+b^{2}}\right)
\end{gathered}
$$

Also, if $a=b=0$, equality holds $\Rightarrow 4 a b \leq \sqrt{a^{2}+b^{2}}\left(a+b+\sqrt{a^{2}+b^{2}}\right)$
Proved
Multiplying both sides by $\sqrt{a^{2}+b^{2}}$

$$
4 a b \sqrt{a^{2}+b^{2}} \leq\left(a^{2}+b^{2}\right)\left(a+b+\sqrt{a^{2}+b^{2}}\right)
$$

Proved

Solution 2 by Khaled Abd Almuty-Damascus-Syria

$$
\text { If } a, b \geq 0 \text { then: }
$$

1) $4 a b \leq \sqrt{a^{2}+b^{2}}\left(a+b+\sqrt{a^{2}+b^{2}}\right)$
2) $4 a b \sqrt{a^{2}+b^{2}} \leq\left(a^{2}+b^{2}\right)\left(a+b+\sqrt{a^{2}+b^{2}}\right)$
3) We know: $\sqrt{x+y}\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right) \geq 2 \sqrt{2}, \forall x, y \in \mathbb{R}_{+}^{*}$

For $x=a^{2}, y=b^{2}: \sqrt{a^{2}+b^{2}}\left(\frac{1}{a}+\frac{1}{b}\right) \geq 2 \sqrt{2}$

$$
\sqrt{a^{2}+b^{2}} \cdot\left(\frac{b+a}{a b}\right) \geq 2 \sqrt{2} \Rightarrow(a+b) \sqrt{a^{2}+b^{2}} \geq 2 \sqrt{2} a b
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\begin{equation*}
(a+b) \sqrt{a^{2}+b^{2}}+a^{2}+b^{2} \geq a^{2}+b^{2}+2 \sqrt{2} a b \tag{*}
\end{equation*}
$$

Let us prove that $a^{2}+b^{2}+2 \sqrt{2} a b \stackrel{?}{\geq} 4 a b$

$$
\frac{a^{2}}{a b}+\frac{b^{2}}{a b}+2 \sqrt{2} \stackrel{?}{\geq} 4, \frac{a}{b}+\frac{b}{a}+2 \sqrt{2} \stackrel{?}{\geq} 4\left\{\frac{a}{b}=x, \frac{b}{a}=\frac{1}{x}\right\}
$$

In order to prove that: let $\left.f(x)=x+\frac{1}{x}, D=\right] 0,+\infty[$

$$
' f(x)=1-\frac{1}{x^{2}}=\frac{x^{2}-1}{x^{2}}, f(x)=0 \Rightarrow x=1, f(1)=\frac{3}{2}
$$

$$
\forall x \in] 0,+\infty\left[: f(x) \geq \frac{3}{2} \Rightarrow x+\frac{1}{x} \geq \frac{3}{2} \geq 4-2 \sqrt{2}\right.
$$

$$
\begin{gathered}
\text { So: } \frac{a}{b}+\frac{b}{a} \geq 4-2 \sqrt{2} \Rightarrow \frac{a}{b}+\frac{b}{a}+2 \sqrt{2} \geq 4 ; a \cdot b>0 \\
a^{2}+b^{2}+2 \sqrt{2} a b \geq 4 a b
\end{gathered}
$$

From relation $(*):(a+b) \sqrt{a^{2}+b^{2}}+a^{2}+b^{2} \geq a^{2}+b^{2}+2 \sqrt{2} a b \geq 4 a b$
S0: $(a+b) \sqrt{a^{2}+b^{2}}+\sqrt{a^{2}+b^{2}} \cdot \sqrt{a^{2}+b^{2}} \geq 4 a b$

$$
\sqrt{a^{2}+b^{2}}\left(a+b+\sqrt{a^{2}+b^{2}}\right) \geq 4 a b
$$

2) From relation 1):

$$
\begin{gathered}
4 a b \leq \sqrt{a^{2}+b^{2}}\left(a+b+\sqrt{a^{2}+b^{2}}\right) ; x \sqrt{a^{2}+b^{2}} \\
4 a b \sqrt{a^{2}+b^{2}} \leq\left(a^{2}+b^{2}\right)\left(a+b+\sqrt{a^{3}+b^{3}}\right)
\end{gathered}
$$

Note if $a=0$ and $b=0$ the relation (1) it is true.

$$
\text { And if } a=0 \text { and } b \neq 0: 0 \leq a(2 a) ; 2 a^{2} \geq 0 \text { it is true }
$$

Solution 3 by Michael Sterghiou-Greece

Both inequalities are homogeneous so we can assume $a^{2}+b^{2}=1$
The both become: $4 a b \leq a+b+1$
Now, $a^{2}+b^{2}=1 \rightarrow a \leq 1 \wedge b \leq 1 \rightarrow a^{2} \leq a \wedge b^{2} \rightarrow a+b \geq 1$
Also $a^{2}+b^{2}=1 \geq 2 a b \rightarrow a b \leq \frac{1}{2}$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro
 (2) $\rightarrow 4 a b \leq 2 \leq a+b+1$ which is true.

Solution 4 by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\forall a, b \geq 0,4 a b \stackrel{(1)}{\leq} \sqrt{a^{2}+b^{2}}\left(a+b+\sqrt{a^{2}+b^{2}}\right) \& \\
4 a b \sqrt{a^{2}+b^{2}}
\end{gathered}
$$

(1) $\Leftrightarrow 4 a b \leq(a+b) \sqrt{a^{2}+b^{2}}+a^{2}+b^{2} \Leftrightarrow(a-b)^{2}+(a+b) \sqrt{a^{2}+b^{2}} \stackrel{(1 a)}{\geq} 2 a b$

$$
\begin{gathered}
\because(\sqrt{a}-\sqrt{b})^{2} \geq \mathbf{0}, \therefore a+b \stackrel{(a)}{\geq 2} \sqrt{a b} \\
\because a^{2}+b^{2} \geq \mathbf{2 a b}\left(\boldsymbol{a s}(a-b)^{2} \geq \mathbf{0}\right), \\
\therefore \sqrt{a^{2}+b^{2}} \stackrel{(b)}{\geq} \sqrt{2 a b}(\because a, b \geq \mathbf{0}) \\
\text { (a).(b) } \Rightarrow(a+b) \sqrt{a^{2}+b^{2}} \geq \mathbf{2} \sqrt{2} \boldsymbol{a} b \\
(\because a+b \geq \mathbf{0} \text { as } a, b \geq \mathbf{0} \& \sqrt{a b} \geq \mathbf{0} \text { as } a, b \geq \mathbf{0}) \\
\stackrel{?}{\geq} \mathbf{2 a b} \Leftrightarrow \mathbf{2 a b}(\sqrt{2}-\mathbf{1}) \stackrel{?}{\geq} \rightarrow \text { true } \\
\because a b \geq \mathbf{0}(\because a, b \geq \mathbf{0}) \& \sqrt{2}-1>0 \\
\therefore(1) \text { is proved }
\end{gathered}
$$

$$
\begin{gathered}
\text { (2) } \Leftrightarrow\left(a^{2}+b^{2}\right)(a+b)+\left(a^{2}+b^{2}\right) \sqrt{a^{2}+b^{2}} \stackrel{(2 a)}{\geq} 4 a b \sqrt{a^{2}+b^{2}} \\
\text { Now, }\left(a^{2}+b^{2}\right)(a+b)=\sqrt{a^{2}+b^{2}} \sqrt{a^{2}+b^{2}}(a+b) \\
\stackrel{(c)}{\geq} \sqrt{a^{2}+b^{2}} \sqrt{2 a b}(2 \sqrt{a b}) \\
\left(\because a^{2}+b^{2} \geq 2 a b a s(a-b)^{2} \geq 0 \& a+b \geq 2 \sqrt{a b} a s(\sqrt{a}-\sqrt{b})^{2} \geq 0\right) \\
=2 \sqrt{2} a b \sqrt{a^{2}+b^{2}}
\end{gathered}
$$

$$
\text { Also, }\left(a^{2}+b^{2}\right) \sqrt{a^{2}+b^{2}} \stackrel{(d)}{\geq} 2 a b \sqrt{a^{2}+b^{2}}\left(\because a^{2}+b^{2} \geq 2 a b\right)
$$

$$
\text { (c) }+ \text { (d) } \Rightarrow \text { RHS of }(2) \geq 2 a b \sqrt{a^{2}+b^{2}}(1+\sqrt{2})
$$

$$
\geq 4 a b \sqrt{a^{2}+b^{2}}\left(\because 1+\sqrt{2}>2 \& a b \sqrt{a^{2}+b^{2}} \geq 0 \text { as } a, b \geq 0\right)
$$

$$
\Rightarrow(2) \text { is true. (Done). }
$$

Solution 5 by Tran Hong-Vietnam

$$
\begin{align*}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
& \text { www.ssmrmh.ro } \\
& \qquad \sqrt{\boldsymbol{a}^{2}+\boldsymbol{b}^{2}}\left(\boldsymbol{a}+\boldsymbol{b}+\sqrt{\boldsymbol{a}^{2}+\boldsymbol{b}^{2}}\right) \geq \mathbf{4 a b} \tag{1}
\end{align*}
$$

We have: $\sqrt{a^{2}+b^{2}} \geq \frac{a+b}{\sqrt{2}}$

$$
L H S_{(1)} \geq \frac{a+b}{\sqrt{2}}\left(a+b+\frac{a+b}{\sqrt{2}}\right)=\left(\frac{1+\sqrt{2}}{2}\right)(a+b)^{2}
$$

$$
\geq \frac{1+\sqrt{2}}{2} \cdot 4 a b \geq 4 a b \Rightarrow \text { (1) true, equality } \Leftrightarrow a=b=0 .
$$

Using (1) we have
$\Leftrightarrow \sqrt{a^{2}+b^{2}} \cdot \sqrt{a^{2}+b^{2}}\left(a+b+\sqrt{a^{2}+b^{2}}\right) \geq 4 a b \sqrt{a^{2}+b^{2}}$

$$
\Leftrightarrow\left(a^{2}+b^{2}\right)\left(a+b+\sqrt{a^{2}+b^{2}}\right) \geq 4 a b \sqrt{a^{2}+b^{2}}
$$

Proved.

SP.166. Let $n \in \mathbb{N}^{*}$ and $a_{k} \in \mathbb{R}, \forall k=\overline{1 ; n}$. Find:

$$
\begin{gathered}
\Omega=\int \ln \left(\prod_{k=1}^{n}\left(x-a_{k}\right)\right) d x \\
\left(x>\max \left\{a_{k} \mid \forall k=\overline{1, n}\right\}\right)
\end{gathered}
$$

Proposed by Nguyen Van Nho - Nghe An - Vietnam

Solution by Tran Hong-Vietnam

$$
\Omega=\int\left(\prod_{k=1}^{n}\left(x-a_{k}\right)\right) d x=\sum_{k=1}^{n} \int \ln \left(x-a_{k}\right) d x
$$

$$
\text { Let } I=\int \ln \left(x-a_{k}\right) d x .\left(x>\max \left\{a_{k} \mid k=1,2, \ldots, n\right\}\right)
$$

$$
=x \ln \left(x-a_{k}\right)-\int \frac{x}{x-a_{k}} d x=x \ln \left(x-a_{k}\right)-\int\left(1+\frac{a_{k}}{x-a_{k}}\right) d x
$$

$$
=x \ln \left(x-a_{k}\right)-x-a_{k} \ln \left(x-a_{k}\right)+C
$$

$$
=\left(x-a_{k}\right) \ln \left(x-a_{k}\right)-x+C(C: \text { const })
$$

$$
\Rightarrow \Omega=-n x+\sum_{k=1}^{n}\left(x-a_{k}\right) \ln \left(x-a_{k}\right)+D
$$

(D: const)

ROMANIAN MATHEMATICAL MAGAZINE

 www.ssmrmh.roSP.167. Let x, y, z be positive real numbers such that: $x y z=1$. Prove that:

$$
\frac{x}{\sqrt{2\left(x^{4}+y^{4}\right)}+4 x y}+\frac{y}{\sqrt{2\left(y^{4}+z^{4}\right)}+4 y z}+\frac{z}{\sqrt{2\left(z^{4}+x^{4}\right)}+4 z x}+\frac{2(x+y+z)}{3} \geq \frac{5}{2}
$$

Proposed by Hoang Le Nhat Tung - Hanoi - Vietnam

Solution 1 by Bao Truong-Vietnam

$$
\begin{gathered}
\sum \frac{a}{\sqrt{2\left(a^{4}+b^{4}\right)}+4 a b} \geq \sum \frac{a}{2\left(a^{2}+b^{2}+a b\right)}=\sum \frac{a}{2\left[\frac{3}{2}(a+b)^{2}-\frac{1}{2}(a-b)^{2}-3 a b\right]} \\
\geq \\
\geq \sum \frac{a}{3(a+b)^{2}-6 a b} \Rightarrow \sum \frac{a}{\sqrt{2\left(a^{4}+b^{4}\right)}+4 a b}+\sum \frac{3(a+b)^{2}-6 a b}{9(a+b)^{2}} \geq \frac{2}{3} \sum \frac{\sqrt{a}}{a+b} \\
\geq \\
\geq \frac{2}{\sqrt[3]{\Pi(a+b)}} \geq \frac{3}{(a+b+c)} \Rightarrow \sum \frac{a}{\sqrt{2\left(a^{4}+b^{4}\right)}+4 a b}+\frac{2}{3} \sum a \geq \\
\geq \frac{3}{\sum a}+\frac{2}{3} \sum \frac{a b}{(a+b)^{2}}-1+\frac{2}{3} \sum a \geq \frac{3}{\sum a}+\frac{2}{\sqrt[3]{\Pi(a+b)^{2}}}+\frac{2}{3} \sum a-1 \\
\sum \frac{a}{\sqrt{2\left(a^{4}+b^{4}\right)}+4 a b}+\frac{2}{3} \sum a \geq \frac{3}{\sum a}+\frac{9}{2\left(\sum a\right)^{2}}+\frac{2}{3} \sum a-1=\frac{3}{\sum a}+\frac{\sum a}{3}+ \\
\quad+\frac{9}{2\left(\sum a\right)^{2}}+\frac{\sum a}{6}+\frac{\sum a}{6}-1 \Rightarrow \sum \frac{a}{\sqrt{2\left(a^{4}+b^{4}\right)}+4 a b}+\frac{2}{3} \sum a \geq 2+\frac{3}{2}-1=\frac{5}{2} \text { (R.H.D.) }
\end{gathered}
$$

Solution 2 by Michael Sterghiou-Greece

$$
\begin{equation*}
x, y, z>0 \wedge x y z=1 \rightarrow \sum_{c y c} \frac{x}{\sqrt{2\left(x^{4}+y^{4}\right)+4 x y}}+\frac{2 \sum_{c y c} x}{3} \geq \frac{5}{2} \tag{1}
\end{equation*}
$$

Let $(p, q, r)=\left(\sum_{c y c} x, \Sigma_{c y c} x y, x y z\right) . r=1, p \geq 3, q \geq 3$. (AM-GM)
Because $\left[\sqrt{2\left(x^{4}+y^{4}\right)}\right]^{2}-4\left(x^{2}+y^{2}-x y\right)^{2}=-2(x-y)^{4} \leq 0$, (1) can be written as $\sum_{c y c} \frac{(\sqrt{x})^{2}}{2\left(x^{2}+y^{2}+x y\right)}+\frac{2 p}{3}-\frac{5}{2} \geq \mathbf{0}$. Using BCS we need to show that: $\frac{9}{\left(2 p^{2}-3 q\right)}+\frac{4 p}{3}-\mathbf{5} \geq \mathbf{0}$.
(2) because $(\sqrt{x}+\sqrt{y}+\sqrt{z})^{2} \geq 3^{2}$ and $\sum_{c y c}\left(x^{2}+y^{2}+x y\right)=2 p^{2}-3 q$. (2) reduces to $(4 p-15)\left(2 p^{2}-3 q\right)+27 \geq 0$. (3). As $p^{2}-3 q \geq 0$ if $4 p-15 \geq 0$ we are done. If

ROMANIAN MATHEMATICAL MAGAZINE

 www.ssmrmh.ro$4 p-15<0$ then (3) reduces to: $8 p^{3}-30 p^{2}+3 q(15-4 p)+27$ which must be ≥ 0. We know that $q^{2} \geq 3 p r=3 p$ and as $15-4 p>0$ it suffices to show that $8 p^{3}-30 p^{2}+3 \sqrt{3} p(15-4 p)+27=f(p) \geq 0, f(3)=0, f^{\prime}(p)=\frac{3}{2 \sqrt{p}} \cdot g(p)$,

$$
\begin{aligned}
g(p) & =16 p^{\frac{5}{2}}-40 p^{\frac{3}{2}}-12 \sqrt{3} p+15 \sqrt{3} ; g^{\prime}(p)=40 p^{\frac{3}{2}}-60 p^{\frac{1}{2}}+12 \sqrt{3} \text { and } \\
g^{\prime \prime}(p) & =\frac{30(2 p-1)}{\sqrt{p}} \geq 0 \text { so easily we can deduce that } g(p)>0 \rightarrow f^{\prime}(p)>0 \rightarrow
\end{aligned}
$$

$$
\boldsymbol{f}(\boldsymbol{p}) \uparrow \rightarrow \boldsymbol{f}(\boldsymbol{p})>f(\mathbf{3})=\mathbf{0} \text {. Done! }
$$

SP.168. Let x, y, z be positive real numbers.
Find the minimum possible value of:

$$
\frac{x}{y+z}+\frac{y}{z+x}+2 \sqrt{\frac{1}{2}+\frac{z}{x+y}}
$$

Proposed by Nguyen Viet Hung - Hanoi - Vietnam

Solution 1 by Kelvin Kong-M alaysia

$$
\begin{gathered}
\text { I will prove that } A=\frac{x}{y+z}+\frac{y}{z+x}+2 \sqrt{\frac{1}{2}+\frac{z}{x+y}} \geq 3 \\
\text { Let } B=\frac{x}{y+z}+\frac{y}{z+x}, C=2 \sqrt{\frac{1}{2}+\frac{z}{x+y}} \\
C=\sqrt{\frac{2}{x+y}} \sqrt{(y+z)+(z+x)} \geq \sqrt{\frac{2}{x+y}} \sqrt{2 \sqrt{(y+z)(z+x)}}=\frac{2 \sqrt[4]{(y+z)(z+x)}}{\sqrt{x+y}}
\end{gathered}
$$

By using QM-AM inequality: $\sqrt{\frac{x^{2}+y^{2}}{2}} \geq \frac{x+y}{2}$, we have $x^{2}+y^{2} \geq \frac{1}{2}(x+y)^{2}$

$$
\begin{gathered}
B=\frac{x^{2}+y^{2}+x z+y z}{(y+z)(z+x)} \geq \frac{\frac{1}{2}(x+y)^{2}+(x+y) z}{(y+z)(z+x)}=\frac{(x+y)[(y+z)+(z+x)]}{2(y+z)(z+x)} \\
B \geq \frac{(x+y) \cdot 2 \sqrt{(y+z)(z+x)}}{2(y+z)(z+x)}=\frac{x+y}{\sqrt{(y+z)(z+x)}}
\end{gathered}
$$

Therefore

$$
\begin{aligned}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
& \begin{aligned}
& \boldsymbol{A}=\boldsymbol{B}+\boldsymbol{C} \geq \frac{\boldsymbol{x}+\boldsymbol{y}}{\sqrt{(y+z)(z+x)}}+\frac{\sqrt[4]{(y+z)(z+x)}}{\sqrt{x+y}}+\frac{\sqrt[4]{(y+z)(z+x)}}{\sqrt{x+y}} \\
& \geq 3 \sqrt[3]{\frac{x+y}{\sqrt{(y+z)(z+x)}} \cdot \frac{\sqrt[4]{(y+z)(z+x)}}{\sqrt{x+y}} \cdot \frac{\sqrt[4]{(y+z)(z+x)}}{\sqrt{x+y}}}=3
\end{aligned}
\end{aligned}
$$

In conclusion: $A=\frac{x}{y+z}+\frac{y}{z+x}+2 \sqrt{\frac{1}{2}+\frac{z}{x+y}} \geq 3$ where equality holds when $x=y=z$.
Solution 2 by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\frac{x}{y+z}+\frac{y}{z+x}=\frac{x(z+x)+y(y+z)}{(y+z)(z+x)} \stackrel{A-G}{(1)} \frac{4\left\{x^{2}+y^{2}+z(x+y)\right\}}{(2 z+x+y)^{2}} \stackrel{\text { chebyshev }}{\geq} \frac{4\left[\frac{1}{2}(x+y)^{2}+z(x+y)\right]}{(2 z+x+y)^{2}} \\
=\frac{2(x+y)(2 z+x+y)}{(2 z+x+y)^{2}}=\frac{2(x+y)}{2 z+x+y} \\
(1) \Rightarrow \frac{x}{y+z}+\frac{y}{z+x}+2 \sqrt{\frac{1}{2}+\frac{z}{x+y}} \geq \frac{2(x+y)}{2 z+x+y}+\sqrt{\frac{2 z+x+y}{2(x+y)}}+\sqrt{\frac{2 z+x+y}{2(x+y)}} \\
\\
\geq 3 \sqrt[3]{\frac{A-G}{2(x+y)(2 z+x+y)}}=3
\end{gathered}
$$

\Rightarrow regd. \min value $=3$, which occurs at $x=y=z$.

Solution 3 by Tran Hong-Vietnam

$$
\begin{gathered}
P=\frac{x}{y+z}+\frac{y}{z+x}+2 \sqrt{\frac{1}{2}+\frac{z}{x+y}}=\frac{x^{2}}{x y+x z}+\frac{y^{2}}{y z+y x}+2 \sqrt{\frac{x+y+2 z}{2(x+y)}} \\
\stackrel{(\text { Schwarz })}{\geq} \frac{(x+y)^{2}}{2 x y+z(x+y)}+2 \sqrt{\frac{x+y+2 z}{2(x+y)}} \\
\geq \frac{2(x+y)^{2}}{(x+y)^{2}+2 z(x+y)}+\sqrt{\frac{x+y+2 z}{2(x+y)}}+\sqrt{\frac{x+y+2 z}{2(x+y)}} \\
=\frac{2(x+y)}{x+y+2 z}+\sqrt{\frac{x+y+2 z}{2(x+y)}}+\sqrt{\frac{x+y+2 z}{2(x+y)}} \\
(\text { Schwarz)} \\
\geq 3 \sqrt[3]{\frac{2(x+y)}{x+y+2 z} \cdot \frac{x+y+2 z}{2(x+y)}}=3
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$\Rightarrow P_{\text {min }}=3 \Leftrightarrow x=y=z$

SP.169. Prove that for all non-negative real numbers a, b, c

$$
\sqrt{\frac{a^{2}+2}{b+c+1}}+\sqrt{\frac{b^{2}+2}{c+a+1}}+\sqrt{\frac{c^{2}+2}{a+b+1}} \geq 3
$$

Proposed by Nguyen Viet Hung - Hanoi - Vietnam

Solution 1 by Tran Hong-Vietnam

$$
\text { Suppose: } \boldsymbol{a}+\boldsymbol{b}+\boldsymbol{c}=\mathbf{3} \Rightarrow \mathbf{0}<a, b, c<3
$$

$$
\begin{equation*}
\text { Inequality } \Leftrightarrow \sqrt{\frac{a^{2}+2}{4-a}}+\sqrt{\frac{b^{2}+2}{4-b}}+\sqrt{\frac{c^{2}+2}{4-c}} \geq 3 \tag{1}
\end{equation*}
$$

For all $0<x<3$ we have: $\sqrt{\frac{x^{2}+2}{4-x}} \geq \frac{1}{2}(x+1)$
$\Leftrightarrow \frac{x^{2}+2}{4-x} \geq \frac{1}{2}(x+1)^{2} \Leftrightarrow \frac{(x-1)^{2}(x+4)}{4-x} \geq 0$. (True because $0<x<3$)
Using (*) with $\mathbf{0}<a, b, c<3$ we have

$$
\begin{aligned}
& \sqrt{\frac{a^{2}+2}{4-a}}+\sqrt{\frac{b^{2}+2}{4-b}}+\sqrt{\frac{c^{2}+2}{4-c}} \geq \frac{1}{2}(a+1)+\frac{1}{2}(b+1)+\frac{1}{2}(c+1) \\
& =\frac{1}{2}(a+b+c+3)=\frac{6}{2}=3 . \text { Proved. Equality } \Leftrightarrow a=b=c=1 .
\end{aligned}
$$

Solution 2 by Tran Hong-Vietnam

$$
\begin{gathered}
L H S=\frac{\sqrt{\left(a^{2}+2\right)(2+1)}}{\sqrt{(b+c+1)(2+1)}}+\sqrt{\frac{\left(b^{2}+2\right)(2+1)}{(c+a+1)(2+1)}}+\sqrt{\frac{\left(c^{2}+2\right)(2+1)}{(a+b+1)(2+1)}} \\
\begin{array}{c}
\geq \frac{\sqrt{(a+2)^{2}}}{\frac{b+c+1+3}{2}}+\frac{\sqrt{(b+2)^{2}}}{\frac{c+a+1+3}{2}}+\frac{\sqrt{(c+2)^{2}}}{\frac{a+b+1+3}{2}}=\frac{2 a+4}{b+c+4}+\frac{2 b+4}{c+a+4}+\frac{2 c+4}{a+b+4} \\
=\frac{2 a+4}{b+c+4}+2+\frac{2 b+4}{c+a+4}+2+\frac{2 c+4}{a+b+4}+2+6 \\
=2(a+b+c+6)\left(\frac{1^{2}}{b+c+4}+\frac{1^{2}}{c+a+4}+\frac{1^{2}}{a+b+4}\right)-6
\end{array}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\geq 2(a+b+c+6) \cdot \frac{(1+1+1)^{2}}{2(a+b+c+6)}-6=9-6=3
$$

Proved. Equality $\Leftrightarrow \boldsymbol{a}=\boldsymbol{b}=\boldsymbol{c}$.

Solution 3 by Remus Florin Stanca-Romania

We know that for any real numbers $x, y, z>0$ we have that $\sqrt{\frac{x^{2}+y^{2}+z^{2}}{3}} \geq$

$$
\begin{aligned}
& \geq \frac{x+y+z}{3} \Leftrightarrow \sqrt{\frac{a^{2}+1+1}{3}} \geq \frac{a+2}{3} \Rightarrow \sqrt{a^{2}+2} \geq \frac{a+2}{\sqrt{3}} \Rightarrow \\
& >\sqrt{\frac{a^{2}+2}{b+c+1}} \geq \frac{a+2}{\sqrt{3(b+c+1)}} \\
& \sqrt{\frac{b^{2}+2}{a+c+1}} \geq \frac{b+2}{\sqrt{3(a+c+1)}} \\
& \sqrt{\frac{c^{2}+2}{a+b+1}} \geq \frac{c+2}{\sqrt{3(a+b+1)}} \\
& \sqrt{\frac{a^{2}+2}{b+c+1}}+\sqrt{\frac{b^{2}+2}{a+c+1}}+\sqrt{\frac{c^{2}+2}{a+b+1}} \geq \sum \frac{a+2}{\sqrt{3(b+c+1)}} \\
& \sqrt{3(b+c+1)} \leq \frac{b+c+4}{2}>\frac{a+2}{\sqrt{3(b+c+1)}} \geq \frac{2 a+4}{b+c+4}> \\
& \Rightarrow \sum \frac{a+2}{\sqrt{3(b+c+1)}} \geq 2 \sum \frac{a+2}{b+2+c+2} \text { (2), we know also, that } \\
& \sum \frac{x}{y+z} \geq \frac{3}{2} \text {, we put } x=a+2, y=b+2, z=c+2 \succ 2 \sum \frac{a+2}{b+2+c+2} \geq 3 \text { (3) } \\
& \text { (1) }(\stackrel{\succ}{2})(3) \sqrt{\frac{a^{2}+2}{b+c+1}}+\sqrt{\frac{b^{2}+2}{a+c+1}}+\sqrt{\frac{c^{2}+2}{a+b+1}} \geq \text { 3. (Q.E.D.) }
\end{aligned}
$$

Solution 4 by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\because a, b, c \geq 0, \frac{a^{2}+2}{b+c+1}, \text { etc }>0 \\
\therefore \text { by A-G, LHS } \geq 3 \sqrt[3]{\sqrt{\frac{\left(a^{2}+2\right)\left(b^{2}+2\right)\left(c^{2}+2\right)}{(b+c+1)(c+a+1)(a+b+1)}}} ? 3
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\begin{gathered}
\Leftrightarrow\left(a^{2}+2\right)\left(b^{2}+2\right)\left(c^{2}+2\right) \stackrel{?}{\geq}(b+c+1)(c+a+1)(a+b+1) \\
\Leftrightarrow a^{2} b^{2} c^{2}+2 \sum a^{2} b^{2}+3 \sum a^{2}+7 \sum_{(1)}^{?} \sum a^{2} b+\sum a b^{2}+2 a b c+3 \sum a b+2 \sum a
\end{gathered}
$$

$$
\text { Now, } \frac{1}{2} a^{2}(b-1)^{2} \geq 0 \Rightarrow \frac{1}{2}\left(a^{2} b^{2}+a^{2}\right) \xrightarrow[(i)]{\geq} a^{2} b
$$

$$
\frac{1}{2} b^{2}(c-1)^{2} \geq 0 \Rightarrow \frac{1}{2}\left(b^{2} c^{2}+b^{2}\right) \stackrel{(i i)}{\geq} b^{2} c
$$

$$
\frac{1}{2} c^{2}(a-1)^{2} \geq 0 \Rightarrow \frac{1}{2}\left(c^{2} a^{2}+c^{2}\right) \stackrel{(i i i)}{\geq} c^{2} a
$$

$$
\frac{1}{2} b^{2}(a-1)^{2} \geq 0 \Rightarrow \frac{1}{2}\left(a^{2} b^{2}+b^{2}\right) \stackrel{(i v)}{\geq} a b^{2}
$$

$$
\frac{1}{2} c^{2}(b-1)^{2} \geq 0 \Rightarrow \frac{1}{2}\left(b^{2} c^{2}+c^{2}\right) \stackrel{(v)}{\geq} b c^{2}
$$

$$
\frac{1}{2} a^{2}(c-1)^{2} \geq 0 \Rightarrow \frac{1}{2}\left(c^{2} a^{2}+a^{2}\right) \stackrel{(v i)}{\geq} c a^{2}
$$

$$
\text { Also, } \because \frac{1}{2}\left[\Sigma(a-b)^{2}\right] \geq \mathbf{0}, \therefore \sum a^{2} \stackrel{(v i i)}{\geq} \sum a b
$$

$$
\because \sum(a-1)^{2} \geq 0, \therefore \sum a^{2}+3 \stackrel{(v i i i)}{\geq} 2 \sum a
$$

$$
\because(a b c-1)^{2} \geq \mathbf{0}, \therefore a^{2} b^{2} c^{2}+\mathbf{1} \stackrel{(i x)}{\geq} 2 a b c
$$

$$
\because \sum(a b-1)^{2} \geq 0, \therefore \sum a^{2} b^{2}+3 \stackrel{(x)}{\geq} 2 \sum a b
$$

$$
\text { (i) })+(i i)+(i i i)+(i v)+(\mathbf{v})+(v i)+(v i i)+(v i i i)+(i x)+(x) \Rightarrow(1) \text { is true (proved) }
$$

Solution 5 by Sanong Huayrerai-Nakon Pathom-Thailand
For $a, b, c \geq 0$, we have

$$
\begin{aligned}
&\left(a^{2}+1+1\right)\left(b^{2}+1+1\right) \geq(a+b+1)^{2} \\
&\left(b^{2}+1+1\right)\left(c^{2}+1+1\right) \geq(b+c+1)^{2} \\
&\left(c^{2}+1+1\right)\left(a^{2}+1+1\right) \geq(c+a+1)^{2} \\
& \Rightarrow\left(a^{2}+2\right)\left(b^{2}+2\right)\left(c^{2}+2\right) \geq(a+b+1)(b+c+1)(c+a+1)
\end{aligned}
$$

Hence $\sqrt{\frac{a^{2}+2}{b+c+1}}+\sqrt{\frac{b^{2}+2}{c+a+1}}+\sqrt{\frac{c^{2}+2}{a+b+1}} \geq 3 \sqrt[3]{\sqrt[2]{\left(\frac{a^{2}+2}{b+c+1}\right)\left(\frac{b^{2}+2}{c+a+1}\right)\left(\frac{c^{2}+2}{a+b+1}\right)}} \geq 3$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
Iff $\sqrt[6]{\left(\frac{a^{2}+2}{b+c+1}\right)\left(\frac{b^{2}+2}{c+a+1}\right)\left(\frac{c^{2}+2}{a+b+1}\right)} \geq 1$ and it is to be true.
Therefore, it is to be true
Solution 6 by Soumitra Mandal-Chandar Nagore-India
By Cauchy-Schwarz inequality,

$$
\left(a^{2}+1+1\right)\left(b^{2}+1+1\right) \geq\left(\sqrt{a^{2} \cdot 1}+\sqrt{b^{2} \cdot 1}+\sqrt{1 \cdot 1}\right)^{2}=(a+b+1)^{2}
$$

Similarly, $\left(b^{2}+2\right)\left(c^{2}+2\right) \geq(b+c+1)^{2}$ and $\left(c^{2}+2\right)\left(a^{2}+2\right) \geq(c+a+1)^{2}$
Multiplying the above we have $\prod_{c y c}\left(a^{2}+2\right) \geq \prod_{c y c}(a+b+1)$

$$
\sum_{c y c} \sqrt{\frac{a^{2}+2}{b+c+1}} \stackrel{A M \geq G M}{\geqq} 3 \sqrt[3]{\prod_{c y c} \sqrt{\frac{a^{2}+2}{b+c+1}}}=3
$$

SP.170. Let a, b, c, d be positive real numbers such that $a+b+c+d=2$.
Prove that:

$$
\frac{a}{\sqrt{b+\sqrt[3]{c d a}}}+\frac{b}{\sqrt{c+\sqrt[3]{d a b}}}+\frac{c}{\sqrt{d+\sqrt[3]{a b c}}}+\frac{d}{\sqrt{a+\sqrt[3]{b c d}}} \geq 2
$$

Proposed by Nguyen Viet Hung - Hanoi - Vietnam
Solution 1 by Tran Hong-Vietnam
Using Cauchy's inequality, we have:

$$
\begin{gather*}
L H S \geq \frac{a}{\sqrt{b+\frac{c+d+a}{3}}}+\frac{b}{\sqrt{c+\frac{a+b+d}{3}}}+\frac{c}{\sqrt{d+\frac{a+b+c}{3}}}+\frac{d}{\sqrt{a+\frac{b+c+d}{3}}}= \\
\sqrt{\frac{3}{2}\left(\frac{a}{\sqrt{1+b}}+\frac{b}{\sqrt{1+c}}+\frac{c}{\sqrt{1+d}}+\frac{d}{\sqrt{1+a}}\right)(*)} \tag{*}\\
\text { Let } f(x)=\frac{1}{\sqrt{1+x}}(0<x<2) \Rightarrow f^{\prime \prime}(x)=\frac{3}{4(1+x)^{\frac{5}{2}}}>0(\forall x \in(0,2)) ;
\end{gather*}
$$

Using Jensen's inequality:

$$
2 \cdot \sqrt{\frac{3}{2}}\left[\frac{a}{b} f(b)+\frac{b}{2} f(c)+\frac{c}{2} f(d)+\frac{d}{2} f(a)\right] \geq 2 \sqrt{\frac{3}{2}} f\left(\frac{a b+b c+c d+d a}{2}\right)=
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
=2 \sqrt{\frac{3}{2}} \cdot \frac{1}{\sqrt{1+\frac{a b+b c+c d+d a}{2}}}=\sqrt{12} \cdot \frac{1}{\sqrt{2+a b+b c+c d+d a}}(* *)
$$

Because:

$$
\begin{aligned}
4-4(a b+ & b c+c d+d a)=(a+b+c+d)^{2}-4(a b+b c+c d+d a)= \\
& =(a-b+c-d)^{2} \geq 0 \rightarrow a b+b c+c d+d a \leq 1 \\
\Rightarrow(* *) & \geq \sqrt{12} \cdot \sqrt{\frac{1}{2+1}}=2 . \text { Proved. Equality } \Leftrightarrow a=b=c=d=\frac{1}{2}
\end{aligned}
$$

Solution 2 by Minh Tam Le-Vietnam

$$
\begin{align*}
& \sum_{c y c}^{a, b, c, d} \frac{a}{\sqrt{b+\sqrt[3]{a c d}}} \stackrel{c B S}{\gtrless} \frac{\left(\sum a\right)^{2}}{\sum_{c y c}^{a, b, c} \boldsymbol{a} \sqrt[3]{b+\sqrt{a c d}}} \stackrel{A M-G M}{\geq} \sum_{c y c}^{a, b, c, d} \frac{4}{a \sqrt{b+\frac{a+c+d}{3}}} \\
& =\frac{4}{\sum_{c y c}^{a, b c c} a \sqrt{\frac{2+2 b}{3}}}=\frac{4}{\sum_{c y c}^{a, b, d} \frac{a}{3} \sqrt{3(2+2 b)}} \stackrel{A M-G M}{\geq} \frac{4}{\sum_{c y c}^{a, b c . d} \frac{a}{3}\left(\frac{3+2+2 b}{2}\right)}= \\
& =\frac{4}{\frac{5 \sum_{c y c}^{a b c \cdot d a}+\sum_{c y c}^{a b c} \cdot \frac{a b}{3}}{6}}=\frac{4}{\frac{5}{3}+\sum_{c y c}^{a b, c . d b}} \geq 2 \tag{*}
\end{align*}
$$

$\left.{ }^{*}{ }^{*}\right) 2 \sum_{c y c}^{a, b, c d} a b=\left(\sum_{c y c}^{a, b c . d} a\right)^{2}-\sum_{c y c}^{a, b, c . d} a^{2}-2 a c+2 b d=4-\left[(a+c)^{2}+(b+d)^{2}\right]$

$$
\stackrel{c B S}{\leq} 4-\frac{1}{2}\left(\sum_{c y c}^{a, b . c . d} a\right)^{2}=2 \Leftrightarrow \sum_{c y c}^{a, b . c . d} a b \leq 1
$$

SP.171. Let a, b, c be positive real numbers such that: $\boldsymbol{a b c}=1$. Find the minimum value of:

$$
P=\frac{a^{4}}{b^{5} \sqrt{5\left(a^{4}+4\right)}}+\frac{b^{4}}{c^{5} \sqrt{5\left(b^{4}+4\right)}}+\frac{c^{4}}{a^{5} \sqrt{5\left(c^{4}+4\right)}}
$$

Proposed by Hoang Le Nhat Tung - Hanoi - Vietnam
Solution 1 by Sanong Huayrerai-Nakon Pathom-Thailand
For $\boldsymbol{a b c}=1, \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}>0$ we have

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
\left(\frac{a^{2}}{b^{2}}+\frac{b^{2}}{c^{2}}+\frac{c^{2}}{a^{2}}\right)^{4} \geq\left(\frac{a^{4}}{b^{4}}+\frac{b^{4}}{c^{4}}+\frac{c^{4}}{a^{4}}+2\left(\frac{a^{2}}{c^{2}}+\frac{c^{2}}{b^{2}}+\frac{b^{2}}{a^{2}}\right)\right)^{2} \\
\geq 9\left(\frac{a^{4}}{b^{4}}+\frac{b^{4}}{c^{4}}+\frac{c^{4}}{a^{4}}+2\left(\frac{a^{2}}{c^{2}}+\frac{c^{2}}{b^{2}}+\frac{b^{2}}{a^{2}}\right)\right)
\end{gathered}
$$

$$
\text { Consider } \frac{a^{4}}{b^{5} \sqrt{5\left(a^{4}+4\right)}}+\frac{b^{4}}{c^{4} \sqrt{5\left(b^{4}+4\right)}}+\frac{c^{4}}{a^{5} \sqrt{5\left(c^{4}+4\right)}}
$$

$$
\geq \frac{\left(\frac{a^{2}}{b^{2}}+\frac{b^{2}}{c^{2}}+\frac{c^{2}}{a^{2}}\right)^{2}}{\sqrt{5\left(a^{4} b^{2}+4 b^{2}\right)}+\sqrt{5\left(b^{4} c^{2}+4 c^{2}\right)}+\sqrt{5\left(c^{4} a^{2}+4 c^{2}\right)}}
$$

$$
\geq \frac{\left(\frac{a^{2}}{b^{2}}+\frac{b^{2}}{c^{2}}+\frac{c^{2}}{a^{2}}\right)^{2}}{\sqrt{15\left(a^{4} b^{2}+b^{4} c^{2}+c^{4} a^{2}+4\left(a^{2}+b^{2}+c^{2}\right)\right)}} \geq \frac{3}{5}
$$

$$
\text { If } \frac{\left(\frac{a^{2}}{b^{2}}+\frac{b^{2}}{c^{2}}+\frac{c^{2}}{a^{2}}\right)^{2}}{15\left(a^{4} b^{2}+b^{4} c^{2}+c^{4} a^{2}+4\left(a^{2}+b^{2}+c^{2}\right)\right)} \geq \frac{9}{25}
$$

$$
\text { If } \frac{9\left(\frac{a^{4}}{b^{4}}+\frac{b^{4}}{c^{4}}+\frac{c^{4}}{a^{4}}+2\left(\frac{a^{2}}{b^{2}}+\frac{c^{2}}{b^{2}}+\frac{b^{2}}{c^{2}}\right)\right)}{15\left(a^{4} b^{2}+b^{4} c^{2}+c^{4} a^{2}+4\left(a^{2}+b^{2}+c^{2}\right)\right)} \geq \frac{9}{25}
$$

$$
\text { If } \frac{\frac{a^{4}}{b^{5}}+\frac{b^{4}}{c^{4}}+\frac{c^{4}}{a^{4}}+2\left(\frac{a^{2}}{c^{2}}+\frac{c^{2}}{b^{2}}+\frac{b^{2}}{c^{2}}\right)}{a^{4} b^{2}+b^{4} c^{2}+c^{4} a^{2}+4\left(a^{2}+b^{2}+c^{2}\right)} \geq \frac{3}{5} \mathbf{o k}
$$

and if is to be true, because

$$
\begin{gathered}
5\left(\frac{a^{4}}{b^{4}}+\frac{b^{4}}{c^{4}}+\frac{c^{4}}{a^{4}}\right)+7\left(a^{4} b^{2}+b^{4} c^{2}+c^{4} a^{2}\right)= \\
=5\left(a^{8} c^{4}+b^{8} a^{4}+c^{8} b^{4}\right)+7\left(a^{4} b^{2}+b^{4} a^{2}+c^{4} a^{2}\right) \\
\geq 10\left(a^{5} c+c^{5} b+b^{5} a\right)+2\left(\frac{a^{2}}{c^{2}}+\frac{c^{2}}{b^{2}}+\frac{b^{2}}{a^{2}}\right)=10\left(\frac{a^{4}}{b}+\frac{b^{4}}{c}+\frac{c^{4}}{a}\right)+2\left(\frac{a^{2}}{c^{2}}+\frac{c^{2}}{b^{2}}+\frac{b^{2}}{a^{2}}\right) \\
\geq 6\left(\frac{a^{4}}{b}+\frac{b^{4}}{c}+\frac{c^{4}}{a}\right)+6\left(a^{2}+b^{2}+c^{2}\right): \frac{a^{4}}{b}+\frac{a^{4}}{b}+\frac{b^{2}}{a^{2}} \geq 3 a^{2} \\
\geq 12\left(a^{2}+b^{2}+c^{2}\right): \frac{a^{4}}{b}+\frac{b^{4}}{c}+\frac{c^{4}}{a} \geq a^{2}+b^{2}+c^{2}
\end{gathered}
$$

Therefore, it's minimum is $\frac{3}{5}$.

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
 Solution 2 by Michael Sterghiou-Greece

$$
\begin{equation*}
\boldsymbol{P}=\sum_{c y c} \frac{a^{4}}{b^{5} \sqrt{5\left(a^{2}+4\right)}} \tag{1}
\end{equation*}
$$

Let $(p, q, r)=\left(\sum_{c y c} a, \sum_{c y c} a b, a b c\right) \cdot r=1 . A s \sqrt{5\left(a^{2}+4\right)} \leq \frac{1}{2}\left(a^{2}+9\right)$ (AM-GM) and using BCS in (1) in the form $\sum_{c y c} \frac{\left(\frac{a^{2}}{b^{2}}\right)^{2}}{b \sqrt{s\left(a^{2}+4\right)}}=P$

$$
\text { we get } P \geq \frac{2\left(\sum_{c y}\left(\frac{a^{2}}{b^{2}}\right)^{2}\right.}{\left.{\sum \sum \operatorname{cyc}\left(a^{2}\right.}^{2}+9\right)} \text { (2) }
$$

We will show RHS of (2) $\geq \frac{3}{5}$. We know that for $\left\{\begin{array}{c}x y z=1 \\ x, y, z>0\end{array}\right\} \sum_{c y c} \frac{x}{y} \geq x+y+z$ so,

$$
\begin{gathered}
\left(\sum_{\left.c y \frac{a^{2}}{b^{2}}\right)^{2} \geq\left(\sum_{c y c} \boldsymbol{a}^{2}\right)^{2} \geq\left[\frac{\left(\sum_{c y c} a\right)^{2}}{3}\right]^{2}=\frac{p^{4}}{9} \text { (2) reduces to the (stronger) inequality }}^{\frac{{ }_{\frac{1}{4}} p^{4}}{\left(\sum_{c y c} a^{2}\right)+9 p} \geq \frac{3}{10} \text { or } \frac{10}{9} \boldsymbol{p}^{4}-3 \sum_{c y c} a c^{3}-27 p \geq \mathbf{0 . B u t} \sum_{c y c} a c^{2} \leq \sum_{c y c} a^{3}}\right.
\end{gathered}
$$

(rearrangement) so it suffices to show that

$$
\frac{10}{9} p^{4}-3\left(p^{3}-3 p q+3\right)-27 p \geq 0 \text { or } \frac{10}{9} p^{4}-3 p^{3}-27 p+9(p q-1) \geq 0
$$

As $p q \geq 9$ (for $r=1, p \geq 3, q \geq 3$) it is enough that $\frac{10}{9} p^{4}-3 p^{3}-27 p+72 \geq 0$

$$
\begin{gathered}
\text { or } 10 p^{4}-27 p^{3}-243 p+648 \geq 0 \text { or }(p-3)\left(10 p^{3}+3 p^{2}+9 p-216\right) \geq 0 \\
\text { which clearly holds for } p \geq 3 \text {. Done! }\left[P_{\text {min }}=\frac{3}{5}\right]
\end{gathered}
$$

SP.172. Prove that for any real numbers x, y, z :

$$
(x+y+z)(y+z-x)(z+x-y)(x+y-z) \leq 4 y^{2} z^{2}
$$

Proposed by Nguyen Viet Hung - Hanoi - Vietnam

Solution 1 by Tran Hong-Vietnam

Lemma: For $x, y, z \geq 0$ we have:

$$
\begin{equation*}
(x+y-z)(y+z-x)(z+x-y) \leq x y z \tag{1}
\end{equation*}
$$

Let $P(x, y, z)=(x+y+z)(x+y-z)(y+z-x)(z+x-y)-4 y^{2} z^{2}$

> ROMANIAN MATHEMATICAL MAGAZINE $$
> \begin{array}{l}\text { www.ssmrmh.ro } \\ \Rightarrow \boldsymbol{P}(\pm \boldsymbol{x}, \pm \boldsymbol{y}, \pm \boldsymbol{z})=\boldsymbol{P}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \forall \boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in \mathbb{R} \\ \Rightarrow \text { Suppose } \boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \geq \mathbf{0} \text { and } \boldsymbol{x} \leq \boldsymbol{y} \leq \boldsymbol{z} \text {. Then, }\end{array}
>
$$

$$
(x+y+z)(x+y-z)(y+z-x)(z+x-y) \stackrel{(1)}{\leq}(x+y+z) x y z
$$

Must show that: $(x+y+z) x y z \leq 4 y^{2} z^{2}$

$$
\Leftrightarrow x(x+y+z) \leq 4 y z(*)
$$

$$
x(x+y+z) \leq y(2 y+z) \stackrel{(2)}{\leq} 4 y z
$$

\because If $\boldsymbol{y}=\mathbf{0}$ then (2) true. \because If $\boldsymbol{y}>0$ then (2) $\Leftrightarrow \mathbf{2} \boldsymbol{y}+\boldsymbol{z} \leq \mathbf{4 z}$
$\Leftrightarrow \mathbf{2 y} \leq \mathbf{3 z}$ (true because $\mathbf{0}<y \leq z \Rightarrow 2 \boldsymbol{y} \leq \mathbf{2 z}<3 z$)
Now, we must show (1) true:
If $x+y-z<0$ or $x+z-y<0$ or $y+z-x<0$ then (1) true.

$$
\text { If }\left\{\begin{array}{l}
x+y-z<0 \\
x+z-y<0
\end{array} \Rightarrow 2 x<0 \Rightarrow x<0\right. \text { (contrary) }
$$

(etc).

$$
\text { If } x+y-z, x+z-y, y+z-x>0 \text { then }
$$

$$
(m+n)(n+p)(p+m) \stackrel{(\text { Cauchy })}{\geq} 8 \boldsymbol{m n p}(m, n, p>0)
$$

Let $m=x+y-z, n=x+z-y, p=y+z-x$, we proved.
Solution 2 by Michael Sterghiou-Greece

$$
\begin{equation*}
(x+y+z)(y+z-x)(z+x-y)(x+y-z) \leq 4 y^{2} z^{2} \tag{1}
\end{equation*}
$$

(1) reduces to $-\left(x^{2}+y^{2}-z^{2}\right)^{2} \leq 0$ which is true.

SP.173. Prove that for any positive real numbers x, y, z :

$$
\frac{x^{2} \sqrt{y^{2}+z^{2}}+y^{2} \sqrt{z^{2}+x^{2}}+z^{2} \sqrt{x^{2}+y^{2}}}{x^{3}+y^{3}+z^{3}} \leq \sqrt{2}
$$

Proposed by Nguyen Viet Hung - Hanoi - Vietnam

Solution 1 by Amit Dutta-Jamshedpur-India

$$
\rightarrow x^{2} \sqrt{y^{2}+z^{2}}=\sqrt{2} x^{3} \sqrt{\frac{y^{2}+z^{2}}{2 x^{2}}} \Rightarrow \sqrt{2} x^{3} \sqrt{\frac{y^{2}+z^{2}}{2 x^{2}}} \stackrel{G M \leq A M}{\leq} \sqrt{2} x^{3}\left(\frac{y^{2}+z^{2}+2 x^{2}}{4 x^{2}}\right)
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\begin{gathered}
\leq \frac{1}{2 \sqrt{2}} x\left(y^{2}+z^{2}+2 x^{2}\right) \\
\Rightarrow x^{2} \sqrt{y^{2}+z^{2}}=\sqrt{2} x^{3} \sqrt{\frac{y^{2}+z^{2}}{2 x^{2}} \leq \frac{x}{2 \sqrt{2}}\left(y^{2}+z^{2}+2 x^{2}\right)} \\
\Rightarrow \sum_{c y c(x, y, z)} x^{2} \sqrt{y^{2}+z^{2}} \leq \sum_{c y c(x, y, z)} \frac{x}{2 \sqrt{2}}\left(y^{2}+z^{2}+2 x^{2}\right) \leq \frac{1}{2 \sqrt{2}} \sum\left(x y^{2}+x z^{2}+2 x^{3}\right)
\end{gathered}
$$

$$
\text { Now, } \because(x-y)^{2} \geq 0 \Rightarrow x^{2}+y^{2}-x y \geq x y \Rightarrow(x+y)\left(x^{2}+y^{2}-x y\right) \geq x y(x+y)
$$

$$
\Rightarrow\left(x^{3}+y^{3}\right) \geq\left(x^{2} y+x y^{2}\right) \Rightarrow \sum_{c y c}\left(x^{2} y+x y^{2}\right) \leq \sum_{c y c}\left(x^{3}+y^{3}\right) \leq 2 \sum_{c y c} x^{3}
$$

$$
\Rightarrow \sum_{c y c(x, y, z)} x^{2} \sqrt{y^{2}+z^{2}} \leq \frac{1}{2 \sqrt{2}}\left(2 \sum x^{3}+2 x^{3}\right) \leq\left(\frac{4 \sum x^{3}}{2 \sqrt{2}}\right)
$$

$$
\therefore \sum_{c y c(x, y, z)} x^{2} \sqrt{y^{2}+z^{2}} \leq \sqrt{2}\left(x^{3}+y^{3}+z^{3}\right)
$$

$$
\Rightarrow \frac{x^{2} \sqrt{y^{2}+z^{2}}+y^{2} \sqrt{z^{2}+x^{2}}+z^{2} \sqrt{x^{2}+y^{2}}}{\left(x^{3}+y^{3}+z^{3}\right)} \leq \sqrt{2}
$$

(proved) Equality when $x=y=z$.
Solution 2 by Soumitra Mandal-Chandar Nagore-India

$$
\begin{gathered}
\text { We know, } 2 \sum_{c y c} x^{3} \geq \sum_{c y c} x y(x+y) \\
\frac{\sum_{c y c} x^{2} \sqrt{y^{2}+z^{2}}}{\sum_{c y c} x^{3}}=\frac{\sum_{c y c} x^{\frac{3}{2}} \sqrt{x y^{2}+x z^{2}}}{\sum_{c y c} x^{3}} \stackrel{\substack{\text { CAUCHYY } \\
\text { CCHWZ }}}{\leq} \frac{\sqrt{\left(\sum_{c y c} x^{3}\right)\left(\sum_{c y c} x y(x+y)\right)}}{\sum_{c y c} x^{3}} \\
\leq \frac{\sqrt{2\left(\sum_{c y c} x^{3}\right)\left(\sum_{c y c} x^{3}\right)}}{\sum_{c y c} x^{3}}=\sqrt{2} \text { (proved) }
\end{gathered}
$$

Solution 3 by Tran Hong-Vietnam

$$
\begin{gathered}
\text { Let } x^{2}+y^{2}+z^{2}=3 \\
\because x^{2} \sqrt{3-x^{2}} \leq \frac{3 x+x^{3}}{2 \sqrt{2}} \Leftrightarrow \frac{\left(x^{2}-1\right)^{2}}{2 \sqrt{2}} \geq 0 \text { (true) } \\
\Rightarrow \sum x^{2} \sqrt{3-x^{2}} \leq \frac{3(x+y+z)+\left(x^{3}+y^{3}+z^{3}\right)}{2 \sqrt{2}}(*) \\
3(x+y+z)=(x+y+z)\left(x^{2}+y^{2}+z^{2}\right) \stackrel{(\text { Chebyshev })}{\leq} 3\left(x^{3}+y^{3}+z^{3}\right)
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\Leftrightarrow x+y+z \leq x^{3}+y^{3}+z^{3} \text {. Hence, }
$$

$\left(^{*}\right) \leq \frac{4\left(x^{3}+y^{3}+z^{3}\right)}{2 \sqrt{2}}=\sqrt{2}\left(x^{3}+y^{3}+z^{3}\right)$. Proved.

Solution 4 by Sanong Huayrerai-Nakon Pathom-Thailand

For all $a, b, c>0$, we have this fact $\sqrt{\frac{2\left(a^{6}+a^{3} b^{3}+a^{3} c^{3}\right)}{3}} \geq \sqrt{a^{4} a^{2}+a^{4} c^{2}}$

$$
\begin{gathered}
\text { If } \frac{2\left(a^{6}+a^{3} b^{3}+a^{3} c^{3}\right)}{3} \geq a^{4} b^{2}+a^{4} c^{2} \\
\text { If } 2\left(a^{4}+a b^{3}+a c^{3}\right) \geq 3\left(a^{2} b^{2}+a^{2} c^{2}\right) \text { and it's true. Because } \\
a^{4}+a b^{3}+a b^{3} \geq 3 a^{2} b^{2}, a^{4}+a c^{3}+a c^{3} \geq 3 a^{2} c^{2} \text {. Consider for } x, y, z>0 \text {, we get } \\
\text { that } \frac{x^{2} \sqrt{y^{2}+z^{2}+y^{2} \sqrt{z^{2}+x^{2}}+z^{2} \sqrt{x^{2}+y^{2}}} \leq \sqrt{2}}{x^{3}+y^{3}+z^{3}} \\
\text { If } \sqrt{x^{4} y^{2}+x^{4} z^{2}}+\sqrt{y^{4} z^{2}+y^{4} x^{2}}+\sqrt{z^{6} x^{2}+z^{4} y^{2}} \leq \sqrt{2}\left(x^{3}+y^{3}+z^{3}\right) \\
=\sqrt{2\left(x^{3}+y^{3}+z^{3}\right)^{2}} \\
=\sqrt{2\left(x^{6}+y^{6}+z^{6}\right)+2\left((x y)^{3}+(y z)^{3}+(z x)^{3}\right)} \\
=\sqrt{\frac{3 x^{2}}{3}\left(\left(x^{6}+x^{3} y^{3}+x^{3} z^{3}\right)+\left(y^{3}+y^{3} x^{3}+y^{3} z^{3}\right)+\left(z^{3}+z^{3} x^{3}+z^{3} y^{3}\right)\right)} \\
\leq \sqrt{\frac{2\left(x^{6}+x^{3} y^{3}+x^{3} z^{3}\right)}{3}}+\sqrt{\frac{2\left(y^{6}+y^{3} z^{3}+y^{3} x^{3}\right)}{3}}+\sqrt{\frac{2\left(z^{6}+z^{3} x^{3}+z^{3} y^{3}\right)}{3}}
\end{gathered}
$$

and it's true. Therefore, it's true.
Solution 5 by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\sum x^{2} \sqrt{y^{2}+z^{2}}=\sum x \sqrt{x^{2} y^{2}+x^{2} z^{2}} \stackrel{c B S}{\leq} \sqrt{\sum x^{2}} \sqrt{2 \sum x^{2} y^{2}} \Rightarrow \frac{\sum x^{2} \sqrt{y^{2}+z^{2}}}{\sum x^{3}} \\
\leq \frac{\sqrt{\sum x^{2}} \sqrt{2 \sum x^{2} y^{2}}}{\sum x^{3}} \leq \sqrt{2} \Leftrightarrow\left(\sum x^{3}\right)^{2} \geq\left(\sum x^{2}\right)\left(\sum x^{2} y^{2}\right) \\
\Leftrightarrow \sum x^{6}+2 \sum x^{3} y^{3} \stackrel{?}{(1)} \sum x^{4} y^{2}+\sum x^{2} y^{4}+3 x^{2} y^{2} z^{2} \\
\text { Now, } \sum x^{6}+3 x^{2} y^{2} z^{2}{ }_{(\text {ī) }}^{\text {Schur }} \sum \sum x^{4} y^{2}+\sum x^{2} y^{4} \& 2 \sum x^{3} y^{3} \underset{(i i)}{A-G} 6 x^{2} y^{2} z^{2}
\end{gathered}
$$

$$
\begin{aligned}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
& \text { www.ssmrmh.ro } \\
& \begin{array}{c}
\text { (i)+(ii) } \Rightarrow \sum x^{6}+3 x^{2} y^{2} z^{2}+2 \sum x^{3} y^{3} \geq \sum x^{4} y^{2}+\sum x^{2} y^{4}+6 x^{2} y^{2} z^{2} \\
\Rightarrow \sum x^{6}+2 \sum x^{3} y^{3} \geq \sum x^{4} y^{2}+\sum x^{2} y^{4}+3 x^{2} y^{2} z^{2} \\
\Rightarrow(\mathbf{1}) \text { is true (Hence proved) }
\end{array}
\end{aligned}
$$

SP.174. Prove that for any positive real numbers a, b, c, x, y, z :

$$
\left(a^{3}+3 x^{3}\right)\left(b^{3}+3 y^{3}\right)\left(c^{3}+3 z^{3}\right) \geq(a y z+b z x+c x y+x y z)^{3}
$$

Proposed by Nguyen Viet Hung - Hanoi - Vietnam
Solution 1 by Nguyen Tan Phat-Vietnam

$$
\begin{gathered}
\left(a^{3}+3 x^{3}\right)\left(b^{3}+3 y^{3}\right)\left(c^{3}+3 z^{3}\right)= \\
=\left(a^{3}+x^{3}+x^{3}+x^{3}\right)\left(y^{3}+b^{3}+y^{3}+y^{3}\right)\left(z^{3}+z^{3}+c^{3}+z^{3}\right)
\end{gathered}
$$

Using Holder's inequality, we have:

$$
\begin{gathered}
\left(a^{3}+x^{3}+x^{3}+x^{3}\right)\left(y^{3}+b^{3}+y^{3}+y^{3}\right)\left(z^{3}+z^{3}+c^{3}+z^{3}\right) \geq(a y z+b z x+c x y+x y z)^{3} \\
\Rightarrow\left(a^{3}+3 x^{3}\right)\left(b^{3}+3 y^{3}\right)\left(c^{3}+3 z^{3}\right) \geq(a y z+b z x+c x y+x y z)^{3}
\end{gathered}
$$

Solution 2 by Tran Hong-Vietnam

Using Cauchy's inequality:

$$
\begin{align*}
& \because \frac{a^{3}}{\left(a^{3}+3 x^{3}\right)}+\frac{y^{3}}{\left(b^{3}+3 y^{3}\right)}+\frac{z^{3}}{\left(c^{3}+3 z^{3}\right)} \geq \frac{3 a y z}{\sqrt[3]{\left(a^{3}+3 x^{3}\right)\left(b^{3}+3 y^{3}\right)\left(c^{3}+3 z^{3}\right)}} \tag{1}\\
& \because \frac{x^{3}}{\left(a^{3}+3 x^{3}\right)}+\frac{b^{3}}{\left(b^{3}+3 y^{3}\right)}+\frac{z^{3}}{\left(c^{3}+3 z^{3}\right)} \geq \frac{3 b x z}{\sqrt[3]{\left(a^{3}+3 x^{3}\right)\left(b^{3}+3 y^{3}\right)\left(c^{3}+3 z^{3}\right)}} \tag{2}\\
& \because \frac{x^{3}}{\left(a^{3}+3 x^{3}\right)}+\frac{y^{3}}{\left(b^{3}+3 y^{3}\right)}+\frac{c^{3}}{\left(c^{3}+3 z^{3}\right)} \geq \frac{3 x y c}{\sqrt[3]{\left(a^{3}+3 x^{3}\right)\left(b^{3}+3 y^{3}\right)\left(c^{3}+3 z^{3}\right)}} \tag{3}\\
& \because \frac{x^{3}}{\left(a^{3}+3 x^{3}\right)}+\frac{y^{3}}{\left(b^{3}+3 y^{3}\right)}+\frac{z^{3}}{\left(c^{3}+3 z^{3}\right)} \geq \frac{3 x y z}{\sqrt[3]{\left(a^{3}+3 x^{3}\right)\left(b^{3}+3 y^{3}\right)\left(c^{3}+3 z^{3}\right)}} \tag{4}
\end{align*}
$$

From (1)+(2) + (3) + (4) we have:

$$
\Rightarrow \sqrt[3]{\left(a^{3}+3 x^{2}\right)\left(b^{3}+3 y^{3}\right)\left(c^{3}+3 z^{3}\right)} \geq(x y z+x y c+b x z+a y z) \Rightarrow \text { Proved }
$$

SP.175. Let x, y, z be positive real numbers such that:

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

 $x^{2}+y^{2}+z^{2}+2 x y z=1$. Find the minimum value of:$$
P=\frac{x^{3}}{1+3 y-2 y z}+\frac{y^{3}}{1+3 z-2 z x}+\frac{z^{3}}{1+3 x-2 x y}
$$

Proposed by Hoang Le Nhat Tung - Hanoi - Vietnam

Solution 1 by Tran Hong-Vietnam

$$
\begin{gathered}
L H S=\sum \frac{x^{4}}{x+3 x y-2 x y z} \stackrel{(\text { Schwarz })}{\geq} \\
\frac{\left(\sum x^{2}\right)^{2}}{\sum x+3 \sum x y-6 x y z}=\frac{\left(\sum x^{2}\right)^{2}}{\sum x+3 \sum x y+3 \sum\left(\sum x^{2}-1\right)} \\
\geq \frac{\left(\sum x^{2}\right)^{2}}{\sqrt{3 \sum x^{2}}+6 \sum x^{2}-3}=\frac{t^{4}}{\sqrt{3} t+6 t^{2}-3} ;\left(t=\sqrt{\sum x^{2}}\right) \\
\therefore\left(x^{2}+y^{2}+z^{2}\right)^{3} \geq 27 x^{2} y^{2} z^{2} \Rightarrow t^{6} \geq 27(x y z)^{2} \\
\Leftrightarrow t^{3} \geq 3 \sqrt{3} x y z \Leftrightarrow x y z \leq \frac{t^{3}}{3 \sqrt{3}} \\
\because 1=2 x y z+\sum x^{2} \leq 2 \cdot \frac{t^{3}}{3 \sqrt{3}}+t^{2} \Leftrightarrow t \geq \frac{\sqrt{3}}{2} \approx 0.8660 \\
\text { Let } f(t)=\frac{t^{4}}{\sqrt{3} t+6 t^{2}-3} ; t \in\left[\frac{\sqrt{3}}{2} ;+\infty\right) \Rightarrow f^{\prime}(t)=\frac{3 t^{3}\left(4 t^{2}+\sqrt{3} t-4\right)}{\left(6 t^{2}+\sqrt{3} t-3\right)^{2}} \\
f^{\prime}(t)=0 \Leftrightarrow 4 t^{2}+\sqrt{3} t-4=0 \Leftrightarrow\left[\begin{array}{c}
\left.t=\frac{\sqrt{67}-\sqrt{3}}{8} \approx 0,8067 \notin \frac{\sqrt{3}}{2} ;+\infty\right) \\
t=\frac{-\sqrt{67}-\sqrt{3}}{8} \notin\left[\frac{\sqrt{3}}{2} ;+\infty\right) \\
\Rightarrow f^{\prime}(t)>0 \forall t \geq \frac{\sqrt{3}}{2} \Rightarrow f(t) \tau\left[\frac{\sqrt{3}}{2} ;+\infty\right) \\
\Rightarrow f(t) \geq f\left(\frac{\sqrt{3}}{2}\right)=\frac{3}{16} \Rightarrow P_{\text {min }}=\frac{3}{16} \Leftrightarrow x=y=z=\frac{1}{2}
\end{array}\right.
\end{gathered}
$$

Solution 2 by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\sum x^{2}=1-2 x y z \stackrel{A-G}{\geq} 3 \sqrt[3]{x^{2} y^{2} z^{2}} \Rightarrow 1-2 p^{3} \geq 3 p^{2}(\text { where } p=\sqrt[3]{x y z}) \\
\Rightarrow 2 p^{3}+3 p^{2}-1 \leq 0 \Rightarrow(2 p-1)(p+1)^{2} \leq 0 \Rightarrow p \leq \frac{1}{2} \Rightarrow \sqrt[3]{x y z} \leq \frac{1}{2} \Rightarrow x y z \leq \frac{1}{8}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro
$\Rightarrow-2 x y z \geq-\frac{1}{4} \Rightarrow 1-2 x y z=\sum x^{2} \geq \frac{3}{4} \Rightarrow \sqrt{3 \sum x^{2}} \stackrel{(1)}{\geq} \frac{3}{2}$
Now, $1+3 x-2 x y=\sum x^{2}+2 x y z+3 x-2 x y$
$=(x-y)^{2}+z^{2}+2 x y z+3 x>0(\because x, y, z>0)$
Similarly, $1+3 y-2 y z>0 \& 1+3 z-2 x z>0$
$\therefore p=\frac{x^{4}}{x+3 x y-2 x y z}+\frac{y^{4}}{y+3 y z-2 x y z}+\frac{z^{4}}{z+3 z x-2 x y z}$

$$
\begin{gathered}
\stackrel{\text { Bergstrom }}{\geq} \frac{\left(\sum x^{2}\right)^{2}}{\sum x+3 \sum x y-6 x y z} \geq \frac{\left(\sum x^{2}\right)^{2}}{\sqrt{3 x^{2}}+3 \sum x^{2}-6 x y z} \\
\quad\left(\because\left(\sum x\right)^{2} \leq 3 \sum x^{2} \& \sum x y \leq \sum x^{2}\right)
\end{gathered}
$$

$$
=\frac{\left(\sum x^{2}\right)^{2}}{\sqrt{3 \sum x^{2}}+3 \sum x^{2}+3 \sum x^{2}-3}\left(\because-2 x y z=\sum x^{2}-1\right)
$$

$$
=\frac{\left(\frac{t^{2}}{3}\right)^{2}}{t+t^{2}+t^{2}-3} \quad\left(\text { where } t=\sqrt{3 \sum x^{2}}\right)
$$

$$
\stackrel{?}{\geq} \frac{3}{16} \Leftrightarrow \frac{t^{4}}{9\left(2 t^{2}+t-3\right)} \stackrel{?}{\geq} \frac{3}{16} \Leftrightarrow 16 t^{4} \geq 27\left(2 t^{2}+t-3\right)
$$

$$
\binom{\because 2 t^{2}+t-3=(t-1)(2 t+3)>0}{\text { as } t=\sqrt{3 \sum x^{2}} \geq \frac{3}{2}>1(\text { from }(1))}
$$

$$
\Leftrightarrow 16 t^{4}-54 t^{2}-27 t+81 \stackrel{?}{\geq} 0 \Leftrightarrow(2 t-3)\left(8 t^{3}+12 t^{2}-9 t-27\right) \stackrel{?}{\geq} 0
$$

$$
\rightarrow \text { true } \because t=\sqrt{3 \sum x^{2}} \stackrel{b y(1)}{\geq} \frac{3}{2} \Rightarrow(2 t-3) \geq 0 \& 8 t^{3}+12 t^{2}-9 t-27
$$

$$
=\left(8 t^{3}-27\right)+3 t(4 t-3)=(2 t-3)\left(4 t^{2}+6 t+9\right)+3 t(2(2 t-3)+3)
$$

$$
>0 \text { as } t \geq \frac{3}{2}
$$

$\therefore p \geq \frac{3}{16} \Rightarrow P_{\text {min }}=\frac{3}{16}$ \& the minimum occurs when $x=y=z \& 3 x^{2}+2 x^{3}=1$ \Rightarrow when $(2 x-1)(x+1)^{2}=0 \Rightarrow$ when $x=y=z=\frac{1}{2}$
Solution 3 by Michael Sterghiou-Greece

$$
\left(\sum_{c y c} x^{2}\right)+2 x y z=1(\mathrm{~T})
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
P=\sum_{c y c} \frac{x^{3}}{1+3 y-2 y z} \text { (1) }
$$

Let $(\boldsymbol{p}, \boldsymbol{q}, \boldsymbol{r}, \boldsymbol{m})=\left(\sum_{c y c} x, \sum_{c y c} x y, x y z, \sum_{c y c} x^{2}\right)$
From (T): $m+2 r=1$. But $m \geq 3 r^{\frac{2}{3}} \rightarrow 3 r^{\frac{2}{3}}+2 r-1 \leq 0 \rightarrow$
$\rightarrow(\sqrt[3]{r}+1)^{2}(2 \sqrt[3]{r}-1) \leq 0$ or $r \leq \frac{1}{8}$ which means $m \geq \frac{3}{4}$ and $m<1$ as $r>0$. We will show that $P \geq \frac{3}{16}$. (1) $\rightarrow P=\sum_{c y c} \frac{x^{4}}{x+3 y z-2 x y z} \stackrel{(B C S)}{\geq} \frac{m^{2}}{p+3 q-6 r} \geq \frac{3}{16}$
But $m=p^{2}-2 q, r=\frac{1-m}{2}$ so, (2) $\rightarrow 32 m^{2}-9 m-9 p^{2}-6 p+18 \geq 0$
But $\frac{p^{2}}{3} \leq m$ so, (3) becomes the stronger inequality
$32 m^{2}-9 m-27 m-6 \sqrt{3 m}+18 \geq 0$ or $32 m^{2}-36 m-6 \sqrt{3 m}+18 \geq 0$ (4) with $\frac{3}{4} \leq m<1$. Let $m=\frac{t^{2}}{3}$ with $\frac{3}{2} \leq t<\sqrt{3}(4) \rightarrow 16 t^{4}-54 t^{2}-27 t+81 \geq 0$ or $(2 t-3)\left[\frac{1}{2}(2 t-3)\left(8 t^{2}+24 t+27\right)+\frac{27}{2}\right] \geq 0$ which is true for $t \geq \frac{3}{2}$

Equality for $x=y=z=\frac{1}{2}$. Done!

SP.176. Prove that if $m \in[0, \infty), x, y, z, t \in(0, \infty)$, then in any triangle $A B C$, with the usual notations holds:

$$
\sum_{c y c} \frac{\left(x m_{a}^{2}+y m_{b}^{2}\right)^{m+1}}{\left(z b^{2}+t w c_{c}^{2}\right)^{m}} \geq \frac{3^{m+\frac{3}{2}}(x+y)^{m+1}}{(4 z+3 t)^{m}} S
$$

Proposed by D.M. Bătinețu-Giurgiu, Neculai Stanciu - Romania

 Solution 1 by Tran Hong-Vietnam$$
\begin{gather*}
\text { We have: } \sum w_{a}^{2} \leq \sum s(s-a)=s^{2} \tag{1}\\
\text { Then, } L H S \stackrel{\text { Radon }}{\geq} \frac{\left(x \sum m_{a}^{2}+y \sum m_{a}^{2}\right)^{m+1}}{\left(z \sum a^{2}+t \sum w_{a}^{2}\right)^{m}} \\
=\frac{\left[(x+y) \sum m_{a}^{2}\right]^{m+1}}{\left(z \sum a^{2}+t \sum w_{a}^{2}\right)^{m}}=\frac{\left[(x+y) \cdot \frac{3}{4} \sum a^{2}\right]^{m+1}}{\left(z \sum a^{2}+t \sum w_{a}^{2}\right)^{m}} \stackrel{(1)}{\geq} \frac{\left(\frac{3}{4}\right)^{m+1}}{\geq} \cdot(x+y)^{m+1} \cdot\left(\sum a^{2}\right)^{m+1} \\
\left(z \sum a^{2}+t s^{2}\right)^{m}
\end{gather*}
$$

$$
\begin{aligned}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
& \geq \frac{\left(\frac{3}{4}\right)^{m+1}(x+y)^{m+1}\left(\sum a^{2}\right)^{m+1}}{\left(z a^{2}+\frac{3}{4} t \sum a^{2}\right)^{m}}\left(\because 4 s^{2}=\left(\sum a\right)^{2} \leq 3 \sum a^{2}\right) \\
& =\frac{\left(\frac{3}{4}\right)^{m+1}(x+y)^{m+1}\left(\sum a^{2}\right)^{m+1}}{\left(z+\frac{3}{4}\right)^{m}\left(\sum a^{2}\right)^{m}}=\frac{3^{m+1}(x+y)^{m+1}}{4 \cdot(4 z+3 t)^{m}} \cdot\left(\sum a^{2}\right) \stackrel{(\text { Weitzenbock })}{\geq} \\
& \frac{3^{m+1}(x+y)^{m+1} \cdot 4 \sqrt{3} S}{4(4 z+3 t)^{m}}=\frac{3^{m+\frac{3}{2}}(x+y)^{m+1} S}{(4 z+3 t)^{m}} \\
& \text { (proved) }
\end{aligned}
$$

Solution 2 by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\text { LHS } \stackrel{\text { Radon }}{\geq} \frac{(x+y)^{m+1}\left(\sum m_{a}^{2}\right)^{m+1}}{\left(z \sum a^{2}+t \sum w_{a}^{2}\right)^{m}} \stackrel{\sum w_{a}^{2} \leq s^{2}}{\geq} \frac{(x+y)^{m+1}\left(\frac{3}{4}\right)^{m+1}\left(\sum a^{2}\right)^{m+1}}{\left(z \sum a^{2}+t s^{2}\right)^{m}} \\
\stackrel{4 s^{2} \leq 3 \sum a^{2}}{\geq} \frac{(x+y)^{m+1} \cdot 3^{m+1}\left(\sum a^{2}\right)^{m+1}}{4^{m+1}\left(z \sum a^{2}+t \cdot \frac{3}{4} \sum a^{2}\right)^{m}}=\frac{4^{m}(x+y)^{m+1} \cdot 3^{m+1} \cdot\left(\sum a^{2}\right)^{m+1}}{4^{m+1}(4 z+3 t)^{m}\left(\sum a^{2}\right)^{m}} \\
=\frac{3^{m+1}(x+y)^{m+1}\left(\sum a^{2}\right)}{4(4 z+3 t)^{m}} \stackrel{\text { Weitzescu- }}{\geq} \\
=\frac{3^{m+\frac{3}{2}}(x+y)^{m+1}}{(4 z+3 t)^{m}} S \text { (Proved) }
\end{gathered}
$$

SP.177. Prove that if $m \in[0, \infty), x, y, z, t \in(0, \infty)$, then in any triangle $A B C$, with the usual notations holds:

$$
\sum_{c y c} \frac{\left(x a^{2}+y m_{b}^{2}\right)^{m+1}}{\left(z h_{c}^{2}+t h_{a}^{2}\right)^{m}} \geq \frac{(4 x+3 y)^{m+1}}{3^{m-\frac{1}{2}}(z+t)^{m}} S
$$

Proposed by D.M. Bătinețu-Giurgiu, Neculai Stanciu - Romania
Solution 1 by Tran Hong-Vietnam

$$
L H S \stackrel{(\text { Radon })}{\geq} \frac{\left(x \sum a^{2}+y \sum m_{b}^{2}\right)^{m+1}}{\left\{(z+t) \sum h_{a}^{2}\right\}^{m}}
$$

$$
\begin{gathered}
\text { ROMANIAN MATHEMATICAL MAGAZINE } \\
\geq \frac{\left(x \sum a^{2}+y \sum \boldsymbol{m}_{b}^{2}\right)^{m+1}}{(z+t)^{m}\left(\sum w_{a}^{2}\right)^{m}}\left(\because \boldsymbol{h}_{a} \leq \boldsymbol{m}_{a}, \boldsymbol{e t c} \Rightarrow \sum \boldsymbol{h}_{a}^{2} \leq \sum \boldsymbol{m}_{a}^{2}\right) \\
\geq \frac{\left(x \sum a^{2}+\frac{3}{4} y \sum a^{2}\right)^{m+1}}{(a+t)^{m}\left(s^{2}\right)^{m}}\left(\because \sum w_{a}^{2} \leq \sum s(s-a)=s^{2}\right) \\
=\frac{\left(\sum a^{2}\right)^{m+1}(4 x+3 y)^{m+1}}{4(z+t)^{m}\left(4 s^{2}\right)^{m}} \geq \frac{\left(\sum a^{2}\right)^{m+1}(4 x+3 y)^{m+1}}{4(z+t)^{m}\left(3 \sum a^{2}\right)^{m}} \\
=\frac{\left(\sum a^{2}\right)(4 x+3 y)^{m+1}}{4 \cdot 3^{m}(z+t)^{m}} \quad \geq \frac{4 \sqrt{3} S(4 x+3 y)^{m+1}}{4 \cdot 3^{m}(z+t)^{m}}=\frac{(4 x+3 y)^{m+1}}{3^{m-\frac{1}{2}}(z+t)^{m}} \cdot S \\
\text { (proved) }
\end{gathered}
$$

Solution 2 by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
& \text { LHS } \stackrel{\text { Radon }}{\geq} \frac{\left(x \sum a^{2}+y \sum m_{a}^{2}\right)^{m+1}}{\left(z \sum n_{a}^{\left.h_{a}+\sum h_{a}^{2}\right)^{m}}\right.}==\frac{\left(x \sum a^{2}+y \frac{3}{4} \sum a^{2}\right)^{m+1}}{(z+t))^{m}\left(\sum h_{a}^{2}\right)^{m}}=\frac{(4 x+3 y)^{m+1}\left(\sum a^{2}\right)^{m+1}}{4^{m+1(z+t))^{m}\left(4 r^{2} s^{2} \sum \frac{1}{a^{2}}\right)^{m}}} \\
& \stackrel{\text { Goldstone }}{\geq} \frac{(4 x+3 y)^{m+1}\left(\sum a^{2}\right)^{m+1}}{4^{m+1}(z+t)^{m}\left(\frac{4 r^{2} s^{2} \cdot 4 R^{2} s^{2}}{16 R^{2} r^{2} s^{2}}\right)^{m}}=\frac{(4 x+3 y)^{m+1}\left(\sum a^{2}\right)^{m+1}}{\left(4 s^{2}\right)^{m} \cdot 4(z+t)^{m}} \\
& \geq \frac{(4 x+3 y)^{m+1}\left(\sum a^{2}\right)^{m+1}}{\left(3 \sum a^{2}\right)^{m} \cdot 4(z+t)^{m}}\left(\because 4 s^{2}=\left(\sum a\right)^{2} \leq 3 \sum a^{2}\right) \\
& =\frac{(4 x+3 y)^{m+1}\left(\sum a^{2}\right)}{3^{m} \cdot 4(z+t)^{m}} \stackrel{\substack{\text { Ioitescu- } \\
\text { Weitenbock }}}{\geq} \frac{(4 x+3 y)^{m+1} \cdot 4 \sqrt{3} S}{3^{m} \cdot 4(z+t)^{m}}=\frac{(4 x+3 y)^{m+1}}{3^{m-\frac{1}{2}}(z+t)^{m}} S \\
& \text { (proved) }
\end{aligned}
$$

SP.178. Show that:

If $m \in[0, \infty), \boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}, \boldsymbol{t} \in(0, \infty)$, then in any triangle $A B C$, with usual notations holds:

$$
\sum_{\text {cyclic }} \frac{\left(x a^{2}+y m_{b}^{2}\right)^{m+1}}{\left(z m_{c}^{2}+t m_{a}^{2}\right)^{m}} \geq \frac{(4 x+3 y)^{m+1}}{3^{m-\frac{1}{2}}(z+t)^{m}} S
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Solution by the authors

By $\sum_{c y c l i c} \boldsymbol{m}_{a}^{2}=\frac{3}{4} \sum_{c y c l i c} a^{2}$, and J. Radon's inequality, we obtain:

$$
\begin{gather*}
\sum_{c y c l i c} \frac{\left(x a^{2}+y m_{b}^{2}\right)^{m+1}}{\left(z m_{c}^{2}+\boldsymbol{t m}_{a}^{2}\right)^{m}} \stackrel{\text { RADON }}{\geq} \frac{\left(\sum_{c y c l i c}\left(x a^{2}+y m_{b}^{2}\right)\right)^{m+1}}{\left(\sum_{c y c l i c}\left(z m_{c}^{2}+t m_{a}^{2}\right)\right)^{m}}= \\
=\frac{\left(x \sum_{c y c l i c} a^{2}+y \sum_{c y c l i c} m_{b}^{2}\right)^{m+1}}{(z+t)^{m}\left(\sum_{c y c l i c} m_{a}^{2}\right)^{m}}=\frac{\left(x \sum_{c y c l i c} a^{2}+\frac{3 y}{4} \sum_{c y c l i c} a^{2}\right)^{m+1}}{\left(\frac{3}{4}\right)^{m}(z+t)^{m}\left(\sum_{c y c l i c} a^{2}\right)^{m}}= \\
=\frac{(4 x+3 y)^{m+1}\left(\sum_{c y c l i c} a^{2}\right)^{m+1}}{4^{m+1}\left(\frac{3}{4}\right)^{m}(z+t)^{m}\left(\sum_{c y c l i c} a^{2}\right)^{m}}=\frac{(4 x+3 y)^{m+1}\left(\sum_{c y c l i c} a^{2}\right)}{4 \cdot 3^{m \cdot(z+t)^{m}}} \tag{1}
\end{gather*}
$$

By Ion Ionescu - Weitzenböck inequality, we have: $a^{2}+b^{2}+c^{2} \geq 4 \sqrt{3} S$
From (1) and (2) we obtain:

$$
\sum_{\text {cyclic }} \frac{\left(x a^{2}+y m_{b}^{2}\right)^{m+1}}{\left(z m_{c}^{2}+t m_{a}^{2}\right)^{m}} \geq \frac{(4 x+3 y)^{m+1}}{3^{m-\frac{1}{2}}(z+t)^{m}} S
$$

Q.E.D.

SP.179. If $x \in[0,1)$ then:

$$
\cos x \leq x^{3}+\tan ^{3} x+\sin ^{-1} x+e^{x}
$$

Proposed by Seyran Ibrahimov-M aasilli-Azerbaidian
Solution by Tran Hong-Vietnam

$$
\begin{gathered}
\text { Let } f(x)=x^{3}+\tan ^{3} x+\sin ^{-1} x+e^{x}-\cos x ; \forall x \in[0,1) \\
\Rightarrow f^{\prime}(x)=3 x^{2}+\frac{1}{\sqrt{1-x^{2}}}+\sin x+3 \tan ^{2} x \cdot \sec ^{2} x>0, \forall x \in[0,1) \Rightarrow \\
\Rightarrow f(x) \nearrow \text { on }[0,1) \Rightarrow f(x) \geq f(0)=0 \Rightarrow \text { Proved. }
\end{gathered}
$$

SP.180. If $x, y, z \in \mathbb{R}^{+} \wedge x^{2}+y^{2}+z^{2}=3^{n}, n \in \mathbb{N}$ then:

$$
\sqrt[4]{x+y}+\sqrt[4]{x+z}+\sqrt[4]{y+z} \leq \sqrt[4]{54 \sqrt{3^{n+1}}}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
 Proposed by Seyran Ibrahimov-Maasilli-Azerbaidian

Solution 1 by Amit Dutta-Jamshedpur-India
Using Power mean inequality, with $f_{m}=\sqrt[m]{\frac{a_{1}^{m}+a_{2}^{m}+\cdots+a_{k}^{m}}{k}}$

$$
\begin{gather*}
\text { if } \boldsymbol{m}>n \Rightarrow \boldsymbol{f}_{\boldsymbol{m}} \geq \boldsymbol{f}_{\boldsymbol{n}} \\
\Rightarrow \sqrt[m]{\frac{a_{1}^{m}+\boldsymbol{a}_{2}^{m}+\cdots+a_{k}^{m}}{k}} \geq \sqrt[n]{\frac{a_{1}^{n}+a_{2}^{m}+\cdots+a_{k}^{n}}{k}} \tag{1}
\end{gather*}
$$

Putting $a_{1}=(x+y), a_{2}=(y+z), a_{3}=(x+z)$

$$
\begin{gathered}
m=1, n=\frac{1}{4} \\
\Rightarrow \frac{1}{3}[(x+y)+(y+z)+(x+z)] \geq\left\{\frac{\sqrt[4]{x+y}+\sqrt[4]{y+z}+\sqrt[4]{x+z}}{3}\right\}^{4} \\
\Rightarrow\left\{\frac{2(x+y+z)}{3}\right\}^{\frac{1}{4}} \geq \frac{1}{3}[\sqrt[4]{x+y}+\sqrt[4]{y+z}+\sqrt[4]{x+z}] \\
\Rightarrow \sqrt[4]{x+y}+\sqrt[4]{y+z}+\sqrt[4]{x+z} \leq 3\left\{\frac{2(x+y+z)}{3}\right\}^{\frac{1}{4}}
\end{gathered}
$$

Know that, $(x+y+z)^{2} \leq 3\left(x^{2}+y^{2}+z^{2}\right) \leq 3\left(3^{n}\right) \Rightarrow(x+y+z) \leq \sqrt{3^{n+1}} \Rightarrow$

$$
\Rightarrow \sqrt[4]{x+y}+\sqrt[4]{y+z}+\sqrt[4]{x+z} \leq \sqrt[4]{54 \sqrt{3^{n+1}}}
$$

(Proved)
Solution 2 by Myagmarsuren Yadamsuren-Darkhan-M ongolia

$$
\begin{gathered}
\frac{a+b}{2} \leq \sqrt{\frac{a^{2}+b^{2}}{2}} \Rightarrow a+b \leq \sqrt{\frac{4\left(a^{2}+b^{2}\right)}{2}} \\
\sum \sqrt[4]{x+y} \leq \sum \sqrt[4]{\sqrt{4 \cdot \frac{x^{2}+y^{2}}{2}}}=\sum \sqrt[4]{2} \cdot \sqrt[8]{\frac{x^{2}+y^{2}}{2}}= \\
=\sqrt[4]{2} \cdot \sum \sqrt[8]{\frac{x^{2}+y^{2}}{2}} \leq \sqrt[C B S]{\leq} \cdot \sqrt[4]{3 \cdot \sum \sqrt[4]{\frac{x^{2}+y^{2}}{2}}}=
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\begin{gathered}
=\sqrt[4]{18} \cdot \sqrt{\sum \sqrt[4]{\frac{x^{2}+y^{2}}{2}}} \sqrt[C B S]{\leq} \sqrt[4]{18} \cdot \sqrt{\sqrt{3 \cdot \sum \sqrt{\frac{x^{2}+y^{2}}{2}}}}= \\
=\sqrt[4]{54} \cdot \sqrt[4]{\sum \sqrt{\frac{x^{2}+y^{2}}{2}}} \leq \sqrt[c B S]{\leq} \sqrt[4]{54} \cdot \sqrt[8]{3 \sum \frac{x^{2}+y^{2}}{2}}= \\
=\sqrt[4]{54} \cdot \sqrt[8]{\sum x^{2} \cdot 3}=\sqrt[4]{54 \cdot \sqrt{3^{n+1}}} \\
x=y=z=\sqrt{3^{n-1}}
\end{gathered}
$$

Solution 3 by Sanong Huayrerai-Nakon Pathom-Thailand
For $n \in \mathbb{N}$ and $x^{2}+y^{2}+z^{2}=3^{n} \Rightarrow(x+y+z)^{2} \leq 3\left(x^{2}+y^{2}+z^{2}\right)=3^{n+1}$

$$
\begin{gathered}
\Rightarrow x+y+z \leq \sqrt{3^{n+1}} \Rightarrow \sqrt[4]{x+y}+\sqrt[4]{y+z}+\sqrt[4]{z+x} \\
=(x+y)^{\frac{1}{4}}+(y+z)^{\frac{1}{4}}+(z+x)^{\frac{1}{4}} \leq \frac{(x+y+y+z+z+x)^{\frac{1}{4}}}{3^{\frac{1}{4}-1}}=3^{\frac{3}{4}}(2(x+y+z))^{\frac{1}{4}} \\
\leq 3^{\frac{3}{4}} \times 2^{\frac{1}{4}} \times\left(3^{\frac{(n+1)}{2}}\right)^{4}=\left(3^{3} \times 2\right)^{\frac{1}{4}}\left(3^{\frac{x+1}{2}}\right)^{4}=\sqrt[4]{54 \sqrt{3^{n+1}}} \mathbf{o k}
\end{gathered}
$$

Therefore, it is true.

Solution 4 by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
& \text { LHS } \stackrel{C B S}{\leq} \sqrt{3} \sqrt{\sum \sqrt{x+y}}{ }^{C B S} \leq \sqrt{3} \sqrt{\sqrt{3} \sqrt{2 \sum x}} C^{C B S} \sqrt{3} \sqrt{\sqrt{3} \sqrt{2} \sqrt{\sqrt{3} \sqrt{\sum x^{2}}}}= \\
& =\sqrt{3} \sqrt{\sqrt{6} \sqrt{\sqrt{3} 3^{\frac{n}{2}}}}\left(\because \sum x^{2}=3^{n}\right) \\
& =3^{\frac{1}{2}} \sqrt{6^{\frac{1}{2} 3^{\frac{1}{4} 3^{\frac{n}{4}}}}}=3^{\frac{1}{2}} \sqrt{2^{\frac{1}{2}} \cdot 3^{\left(\frac{3}{4}+\frac{n}{4}\right)}}=3^{\frac{1}{2}} \sqrt{2^{\frac{1}{2}} \cdot 3^{\frac{n+1}{4}} \cdot 3^{\frac{1}{2}}}=\sqrt[4]{9} \sqrt[4]{6} \sqrt[4]{\sqrt[4]{3^{n+1}}}=\sqrt[4]{54 \cdot \sqrt{3^{n+1}}} \\
& \text { (proved) }
\end{aligned}
$$

Solution 5 by Tran Hong-Vietnam

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Let $\boldsymbol{f}(\boldsymbol{t})=\sqrt[4]{\boldsymbol{t}}, \boldsymbol{t}>0 \Rightarrow \boldsymbol{f}^{\prime}(\boldsymbol{t})=-\frac{\mathbf{3}}{\mathbf{1 6}} \boldsymbol{t}^{\frac{-7}{4}}<0 \forall t>0$
Using Jensen's inequa lity, we have

$$
\begin{gathered}
f(x+y)+f(x+z)+f(y+z) \leq 3 f\left(\frac{2(x+y+z)}{3}\right)=3 \sqrt[4]{\frac{2}{3}(x+y+z)} \\
\stackrel{B C S}{\leq} \sqrt[4]{\frac{2}{3} \sqrt{3\left(x^{2}+y^{2}+z^{2}\right)}}=3 \sqrt[4]{\frac{2}{3} \sqrt{3^{n+1}}}=\sqrt[4]{54 \sqrt{3^{n+1}}} \\
\text { (proved) }
\end{gathered}
$$

Solution 6 by Marian Ursărescu-Romania

We must show: $(\sqrt[4]{x+y}+\sqrt[4]{x+z}+\sqrt[4]{y+z})^{4} \leq 54 \sqrt{3^{n+1}}$
From Hölder's inequality, we have:

$$
\begin{gather*}
(\sqrt[4]{x+y})^{4}+(\sqrt[4]{x+z})^{4}+(\sqrt[4]{y+z})^{4} \geq \frac{(\sqrt[4]{x+y}+\sqrt[4]{x+z}+\sqrt[4]{y+z})^{4}}{2 z} \Leftrightarrow \\
(\sqrt[4]{x+y}+\sqrt[4]{x+z}+\sqrt[4]{y+z})^{4} \leq 54(x+y+z) \tag{2}
\end{gather*}
$$

From (1)+ (2) we must show: $x+y+z \leq \sqrt{3^{n+1}} \Leftrightarrow(x+y+z)^{2} \leq 3^{n+1}$
From Cauchy's inequality, we have:

$$
3\left(x^{2}+y^{2}+z^{2}\right) \geq(x+y+z)^{2} \Rightarrow(x+y+z)^{2} \leq 3^{n+1} \Rightarrow(3) \text { it's true. }
$$

UP.166. Solve the equation in \mathbb{R} :

$$
\sqrt{x^{3}-2 x^{2}+2 x}+3 \sqrt[3]{x^{2}-x+1}+2 \sqrt[4]{4 x-3 x^{4}}=\frac{x^{4}-3 x^{3}}{2}+7
$$

Proposed by Hoang Le Nhat Tung - Hanoi - Vietnam

Solution by Amit Dutta-Jamshedpur-India

$$
\begin{gathered}
\text { Domain } \rightarrow\left\{\begin{array}{c}
x^{3}-2 x^{2}+2 x>0 \\
4 x-3 x^{4}>0
\end{array}\right. \\
x^{3}-2 x^{2}+2 x=x\left(x^{2}-2 x+2\right)=x\left[(x-1)^{2}+1\right] \\
\because x^{3}-2 x^{2}+2 x>0 \Rightarrow x\left[(x-1)^{2}+1\right]>0 \Rightarrow x>0 \\
\text { GM } \leq \mathrm{AM} \sqrt{x^{2}-2 x^{2}+2 x} \leq \frac{\left(x^{2}-2 x^{2}+2 x\right)+1}{2}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\begin{equation*}
\sqrt{x^{3}-2 x^{2}+2 x} \leq\left(\frac{x^{2}-2 x^{2}+2 x+1}{2}\right) \tag{a}
\end{equation*}
$$

Equality holds when $x^{2}-2 x^{2}+2 x=1$
Again, using $\mathbf{G M} \leq \mathbf{A M}$

$$
\begin{equation*}
3 \sqrt[3]{x^{2}-x+1} \leq\left(x^{2}-x+1\right)+1+1 \leq\left(x^{2}-x+3\right) \tag{2}
\end{equation*}
$$

Equality holds when $x^{2}-x+1=1$
Again, using $\mathbf{G M} \leq \mathbf{A M}$

$$
\begin{align*}
2 \sqrt[4]{4 x-3 x^{4}} & \leq 2\left\{\frac{\left(4 x-3 x^{4}\right)+1+1+1}{4}\right\} \\
& \leq\left(\frac{4 x-3 x^{4}+3}{2}\right) \tag{3}
\end{align*}
$$

Equality holds when $4 x-3 x^{4}=1$
Adding (1), (2), (3):

$$
\begin{gather*}
\sqrt{x^{3}-2 x^{2}+2 x}+3 \sqrt[3]{x^{2}-x+1}+2 \sqrt[4]{4 x-3 x^{4}} \leq \\
\leq\left(\frac{x^{3}-2 x^{2}+2 x+1}{2}\right)+\left(x^{2}-x+3\right)+\left(\frac{4 x-3 x^{4}+3}{2}\right) \\
\Rightarrow \frac{x^{4}-3 x^{3}}{2}+7 \leq \frac{-3 x^{4}+4 x+10+x^{3}}{2} \\
\Rightarrow x^{4}-3 x^{3}+14 \leq-3 x^{4}+4 x+10+x^{3} \\
\Rightarrow 4 x^{4}-4 x^{3}-4 x+4 \leq 0 \\
\Rightarrow x^{4}-x^{3}-x+1 \leq 0 \Rightarrow x^{3}(x-1)-1(x-1) \leq 0 \\
\Rightarrow\left(x^{3}-1\right)(x-1) \leq 0 \Rightarrow(x-1)\left(x^{2}+x+1\right)(x-1) \leq 0 \\
\Rightarrow(x-1)^{2}\left(x^{2}+x+1\right) \leq 0 \\
\because x^{2}+x+1=\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}>0 \Rightarrow(x-1)^{2} \leq 0 \\
(x-1)^{2}=0 \Rightarrow x=1 \tag{4}
\end{gather*}
$$

From (1), (2), (3) \& (4):
The only real solution is $x=1$.

UP.167. Let a, b, c be positive real numbers such that: $a b c=1$.

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Find the maximum value of:

$$
P=\frac{1}{\sqrt[3]{3 a^{4}-4 a+2 b^{2}+11}}+\frac{1}{\sqrt[3]{3 b^{4}-4 b+2 c^{2}+11}}+\frac{1}{\sqrt[3]{3 c^{4}-4 c+2 a^{2}+11}}
$$

Proposed by Hoang Le Nhat Tung - Hanoi - Vietnam

Solution 1 by Tran Hong-Vietnam

$$
\begin{gathered}
3 a^{4}-4 a+2 b^{2}+11=\left\{a^{4}-4 a^{3}+6 a^{2}-4 a+1\right\}+\left\{2 a^{4}+4 a^{3}-6 a^{2}+10+2 b^{2}\right\} \\
=(a-1)^{4}+2\left(a^{4}+2 a^{3}-3 a^{2}+b^{2}+5\right) \\
\geq 2\left(a^{4}+2 a^{3}-4 a^{2}+a^{2}+b^{2}+5\right) \stackrel{(*)}{\geq} 4(a+a b+1) \\
\left(^{*}\right) \Leftrightarrow a^{4}+2 a^{3}-4 a^{2}+2 a b+5 \geq 2(a+a b+1) \\
\left(^{*}\right) \Leftrightarrow a^{4}+2 a^{3}-4 a^{2}+5 \geq 2(a+1) \\
\left.\Leftrightarrow a^{4}+2 a^{3}-4 a^{2}-2 a+3 \geq 0 \Leftrightarrow(a-1)^{2}(a+1)(a+3) \geq 0 \text { (true with } a>0\right) \\
\text { Hence: } 3 a^{4}-4 a+2 b^{2}+11 \geq 4(a+a b+1), \text { etc. Now, } \\
\text { Let } f(t)=\sqrt[3]{t}, t>0 \Rightarrow f^{\prime}(t)=-\frac{2}{9} t^{-\frac{5}{3}}<0(\forall t>0)
\end{gathered}
$$

Using Jensen's inequality, we have: $P \leq 3 \sqrt[3]{\frac{Q}{3}}$

$$
\begin{aligned}
& \therefore Q=\frac{1}{3 a^{4}-4 a+2 b^{2}+11}+\frac{1}{3 b^{4}-4 b+2 c^{2}+11}+\frac{1}{3 c^{4}-4 c+2 a^{2}+11} \\
& \leq \frac{1}{4}\left(\frac{1}{a+a b+1}+\frac{1}{b+b c+1}+\frac{1}{c+c a+1}\right) \\
&= \frac{1}{4}\left(\frac{1}{a+a b+1}+\frac{a}{a+a b+1}+\frac{a b}{a+a b+1}\right)=\frac{1}{4}\left(\frac{1+a+a b}{1+a+a b}\right)=\frac{1}{4} \\
& \Rightarrow P \leq 3 \sqrt[3]{\frac{1}{4 \cdot 3}}=\frac{3}{\sqrt[3]{12}}=\sqrt[3]{\frac{9}{4}} . \text { Equality } \Leftrightarrow a=b=c=1 .
\end{aligned}
$$

Solution 2 by Michael Sterghiou-Greece

$$
\text { (1) } \mathrm{P}=\sum_{c y c} \frac{1}{\sqrt[3]{3 a^{4}-4 a+2 b^{2}+11}}
$$

As $f(x)=\sqrt[3]{x}, x>0$ is concave $\left(f^{\prime \prime}(x)=-\frac{2}{9} x^{\frac{5}{3}}\right)$ we have by Jensen that

$$
P \leq 3\left[\frac{1}{3} \cdot \sum_{c y c} \frac{1}{3 a^{4}-4 a+2 b^{2}+11}\right]^{\frac{1}{3}} \text { or } 3\left(\frac{P}{3}\right)^{3} \leq \sum_{c y c} \frac{1}{3 a^{4}-4 a+2 b^{2}+11} .
$$

Now we have successively

ROMANIAN MATHEMATICAL MAGAZINE

$$
\begin{aligned}
& 3 a^{4}+3 \geq 6 a^{2} \rightarrow \frac{P^{3}}{9} \leq \sum_{c y c} \frac{1}{6 a^{2}-4 a+2 b^{2}+8} \\
& 2 a^{2}+2 b^{2} \geq 4 a b \rightarrow \frac{P^{3}}{9} \leq \sum_{c y c} \frac{1}{4 a^{2}-4 a+4 a b+8} \text { or }
\end{aligned}
$$

$\frac{4}{9} P^{3} \leq \sum_{c y c} \frac{1}{a^{2}-a+a b+2}$. Also, $a^{2}+1 \geq 2 a$ so, the last inequality becomes $\frac{4}{9} P^{3} \leq \sum_{c y c} \frac{1}{a+a b+1}=1$ because $a b c=1$.Therefore $P \leq \sqrt[3]{\frac{9}{4}}$ which is the required maximum for $a=b=c=1$.
Solution 3 by Sanong Huayrerai-Nakon Pathom-Thailand

$$
\text { for } a, b, c>0 \text { and } a b c=1, \text { we have }
$$

$$
\begin{gathered}
\frac{1}{\sqrt[3]{3 a^{4}-4 a+2 b^{2}+11}}+\frac{1}{\sqrt[3]{3 b^{4}-4 b+2 c^{2}+11}}+\frac{1}{\sqrt[3]{3 c^{4}-4 c+2 a^{2}+11}} \leq \sqrt[3]{\frac{9}{4}} \\
\text { If } \sqrt{3^{2}\left(\frac{1}{3 a^{4}-4 a+2 b^{2}+1}+\frac{1}{3 b^{4}-4 b+2 c^{2}+11}+\frac{1}{3 c^{4}-4 c+2 a^{2}+11}\right)} \leq \sqrt[3]{\frac{9}{4}} \\
\text { If } 3^{2}\left(\frac{1}{3 a^{4}-4 a+2 b^{2}+11}+\frac{1}{3 b^{4}-4 b+2 c^{2}+11}+\frac{1}{3 c^{4}-4 c+2 a^{2}+11}\right) \leq \frac{9}{4} \\
\text { If } \frac{1}{2 a^{4}+2 b^{2}+8}+\frac{1}{2 b^{4}+2 c^{2}+8}+\frac{1}{2 c^{4}+2 a^{2}+8} \leq \frac{1}{4} \\
\text { If } \frac{1}{a^{4}+b^{2}+4}+\frac{1}{b^{4}+c^{2}+4}+\frac{1}{c^{4}+a^{2}+4} \leq \frac{1}{2} \\
\text { If } \frac{1}{2 a^{2}+b^{2}+3}+\frac{1}{2 b^{2}+c^{2}+3}+\frac{1}{2 c^{2}+a^{2}+4} \leq \frac{1}{2} \\
\text { If } \frac{1}{a b+a+1}+\frac{1}{b c+b+1}+\frac{1}{c a+c+1} \leq 1 \\
\text { If } \frac{1}{\frac{x}{z}+\frac{x}{y}+1}+\frac{1}{\frac{y}{x}+\frac{y}{z}+1}+\frac{1}{\frac{z}{y}+\frac{z}{x}+1} \leq 1, a=\frac{x}{y}, b=\frac{y}{z}, c=\frac{z}{x} \\
\text { If } \frac{y z}{x y+x z+y z}+\frac{x z}{y z+x y+x z}+\frac{x x}{z x+y z+x y}=\frac{x y+y z+z x}{x y+y z+z x}=1 \text { ok }
\end{gathered}
$$

$$
\text { Therefore, it's true (Its maximum is } \sqrt[3]{\frac{9}{4}} \text {) }
$$

UP. 168. Let be $a>0$ and $f:(-\infty,-\boldsymbol{a}-1) \cup(-a,+\infty) \rightarrow \mathbb{R}$;

$$
f(x)=\frac{1}{x^{2}+(2 a+1) x+a^{2}+a}, \text { Find: }
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

arem

Proposed by Marian Ursărescu - Romania

Solution 1 by Naren Bhandari-Bajura-Nepal

$$
\begin{gathered}
\text { For } a>0, \text { defined } \\
f(x)=\frac{1}{\left(x^{2}+2 x a+a^{2}\right)+(x+a)}=\frac{1}{(x+a)^{2}+(x+a)}= \\
=\frac{1}{(x+a+1)(x+a)}=\frac{1}{x+a}-\frac{1}{x+a+1} \\
\text { Thus } \\
=\frac{(-1)^{n} n!}{(x+a)^{n+1}}-\frac{\underbrace{n}(x)=}{\frac{d}{(x+a+1)^{n+1}}=(-1)^{n} n!\left[\frac{d}{(x+a)^{n+1}}-\frac{d}{(x+a+1)^{n+1}}\right]} \frac{d}{d x}\left(\frac{1}{x+a}-\frac{1}{x+a+1}\right))) \cdots) \\
\left(\left|\lim _{p \rightarrow \infty} \sum_{k=1}^{p} f^{n}(k)\right|_{>0}\right)^{\frac{(-1)^{n} n!}{n^{2}}}=\lim _{p \rightarrow \infty}\left(\sum_{k=1}^{p}\left[\frac{n!}{(k+a)^{n+1}}-\frac{n!}{(k+a+1)^{n+1}}\right]\right)^{\frac{1}{n^{2}}}
\end{gathered}
$$

Since the partial sum of

$$
\sum_{k=1}^{p}\left[\frac{n!}{(k+a)^{n+1}}-\frac{n!}{(k+a+1)^{n+1}}\right]=\frac{n!}{(a+1)^{n+1}}-\frac{n!}{(p+a+1)^{n+1}}
$$

As $p \rightarrow \infty$ and hence the

$$
\lim _{p \rightarrow \infty} \sum_{k=1}^{p}\left[\frac{n!}{(k+1)^{n+1}}-\frac{n!}{(k+a+1)^{n+1}}\right]=\frac{n!}{(a+1)^{n+1}}-0
$$

Finally, we obtain that

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
$\lim _{p \rightarrow \infty} \sum_{k=1}^{p}\left[\frac{n!}{(k+a)^{n+1}}-\frac{n!}{(k+a+1)^{n+1}}\right]=\frac{n!}{(a+1)^{n+1}}-0$
Finally, we obtain that

$$
\begin{gathered}
L=\left(\lim _{n \rightarrow \infty} \frac{n!}{(a+1)^{n+1}}\right)^{\frac{1}{n^{2}}}=\left(\lim _{n \rightarrow \infty} \frac{\sim \sqrt{2 \pi n}}{(a+1)^{n+1}}\left(\frac{n}{e}\right)^{n}\right)^{\frac{1}{n^{2}}} \\
=\lim _{n \rightarrow \infty} \frac{(2 \pi)^{\frac{1}{2 n^{2}}} \cdot n^{\frac{1+2 n}{n^{2}}}}{e^{\frac{n}{n^{2}}}(a+1)^{\frac{n+1}{n^{2}}}}=\lim _{n \rightarrow \infty} \exp \left(\frac{(1+2 n) \log n}{n^{2}}\right)=e^{0}=1
\end{gathered}
$$

Solution 2 by Ravi Prakash-New Delhi-India

$$
\begin{gathered}
x^{2}+(2 a+1) x+a^{2}+a=(x+a)^{2}+x+a=(x+a+1)(x+a) \\
\therefore f(x)=\frac{1}{x+a}-\frac{1}{x+a+1} \\
f^{n}(x)=\frac{(-1)^{n} n!}{(x+a)^{n+1}}-\frac{(-1)^{n} n!}{(x+a+1)^{n+1}} \\
\Rightarrow \sum_{k=1}^{p} f^{n}(k)=\sum_{k=1}^{p}\left[\frac{(-1)^{n} n!}{(k+a)^{n+1}}-\frac{(-1)^{n} n!}{(k+a+1)^{n+1}}\right]= \\
=(-1)^{n} n!\left[\frac{1}{(1+a)^{n+1}}-\frac{1}{(1+a+p)^{n+1}}\right] \\
\left|\lim _{p \rightarrow \infty} \sum_{k=1}^{p} f^{n}(k)\right|=\frac{n!}{(1+a)^{n+1}} \Rightarrow n^{2}\left|\lim _{p \rightarrow \infty} \sum_{k=1}^{p} f^{n} f^{n}(k)=\frac{(-1)^{n} n!}{(1+a)^{n+1}}\right|=\frac{(n!)^{\frac{1}{n^{2}}}}{(1+a)^{\frac{(n+1)}{n^{2}}}}
\end{gathered}
$$

For $n \geq 2,2^{n-1} \leq n!\leq n^{n}$

$$
\begin{gathered}
\left(2^{n-1}\right)^{\frac{1}{n^{2}}} \leq(n!)^{\frac{1}{n^{2}}} \leq\left(n^{n}\right)^{\frac{1}{n^{2}}} \\
\text { Or } 2^{\frac{1}{n}-\frac{1}{n^{2}}} \leq(n!)^{\frac{1}{n^{2}}} \leq n^{\frac{1}{n}}
\end{gathered}
$$

$$
\lim _{n \rightarrow \infty} 2^{\frac{1}{n}-\frac{1}{n^{2}}}=1, \lim _{n \rightarrow \infty} n^{\frac{1}{n}}=1 \therefore \lim _{n \rightarrow \infty}(n!)^{\frac{1}{n^{2}}}=1
$$

$$
\text { Also, } \lim _{n \rightarrow \infty}(1+a)^{\frac{(n+1)}{n^{2}}}=\lim _{n \rightarrow \infty}(1+a)^{\frac{1}{n}+\frac{1}{n^{2}}}=1
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Thus, $\lim _{n \rightarrow \infty} n^{2} \sqrt{\left|\lim _{p \rightarrow \infty} \sum_{k=1}^{p} f^{n}(k)\right|}=\frac{1}{1}=1$
Solution 3 by Remus Florin Stanca-Romania

$$
\begin{aligned}
& \text { Let be } a>0 \text { and } f:(-\infty ;-a-1) \cup(-a ;+\infty) \rightarrow \mathbb{R} \\
& f(x)=\frac{1}{x^{2}+(2 a+1) x+a^{2}+a} . \text { Find: } \\
& \Omega=\lim _{n \rightarrow \infty} \sqrt[n^{2}]{\left|\lim _{p \rightarrow \infty} \sum_{k=1}^{p} f^{(n)}(k)\right|} \\
& f(x)=\frac{1}{x^{2}+2 \cdot x \cdot \frac{2 a+1}{2}+\frac{4 a^{2}+4 a+1}{4}+a^{2}+a-\frac{4 a^{2}+4 a+1}{4}} \\
& =\frac{1}{\left(x+\frac{2 a+1}{2}\right)^{2}-\frac{1}{4}}=\frac{1}{(x+a)(x+a+1)}=\frac{x+a+1-(x+a)}{(x+a)(x+a+1)}=\frac{1}{x+a}-\frac{1}{x+a+1} \\
& >f^{(n)}(x)=n!\cdot(-1)^{n} \cdot \frac{1}{(x+a)^{n+1}}+(-1)^{n+1} \cdot n!\frac{1}{(x+a+1)^{n+1}} \\
& \Rightarrow \sum_{k=1}^{p} f^{(n)}(k)=n!\cdot(-1)^{n} \cdot\left(\frac{1}{(a+1)^{n+1}}-\frac{1}{(p+a+1)^{n+1}}\right) \Rightarrow\left|\lim _{p \rightarrow \infty} \sum_{k=1}^{p} f^{(n)}(k)\right|= \\
& =\frac{n!}{(a+1)^{n+1}} \Rightarrow \lim _{n \rightarrow \infty}\left(\frac{n!}{(a+1)^{n+1}}\right)^{\frac{1}{n^{2}}}=\lim _{n \rightarrow \infty} e^{\frac{\ln \left(\frac{n!}{(a+1)^{n+1}}\right)}{n^{2}}}=\lim _{n \rightarrow \infty} e^{\frac{\ln \frac{n+1}{a+1}}{2 n+1}}= \\
& =\lim _{n \rightarrow \infty} e^{\frac{\ln \frac{n+2}{n+1}}{2}}=e^{0}=1 \succ \Omega=1
\end{aligned}
$$

UP.169. Let be the sequence $x_{1}>0$ and $x_{1}^{p}+x_{2}^{p}+\cdots+x_{n}^{p}=\frac{1}{\sqrt[p+1]{x_{n+1}}}$,
$\forall \boldsymbol{n} \in \mathbb{N}, \boldsymbol{p} \in \mathbb{N}^{*}$. Find:

$$
\lim _{n \rightarrow \infty} n^{p+1} \cdot x_{n}^{p^{2}+p+1}
$$

Proposed by Marian Ursărescu - Romania
Solution 1 by Soumitra Mandal-Chandar Nagore-India

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\frac{1}{\sqrt[p+1]{x_{n+1}}}=\sum_{k=1}^{n} x_{k}^{p}=\frac{1}{\sqrt[p+1]{x_{n}}}+x_{n}^{p} \Rightarrow \frac{1}{\sqrt[p+1]{x_{n+1}}}-\frac{1}{\sqrt[p+1]{x_{n}}}=x_{n}^{p}>0
$$

$\therefore x_{n}>x_{n+1}$ for all $n \in \mathbb{N}$, hence $\left\{x_{n}\right\}_{n=1}^{\infty}$ is decreasing, hence bounded
Let $\lim _{n \rightarrow \infty} x_{n}=l$ then $\frac{1}{\sqrt[p+1]{l}}=\frac{1}{\sqrt[p+1]{l}}+l \boldsymbol{l} \Rightarrow l=0$

$$
\begin{aligned}
& \Omega=\lim _{n \rightarrow \infty} n^{p+1} \cdot x_{n}^{p^{2}+p+1} \Rightarrow \sqrt[p+1]{\Omega}=\lim _{n \rightarrow \infty} \frac{n}{\frac{1}{x_{n} p^{2}+p+1}} \stackrel{\stackrel{\text { CAESARO }}{\text { STOLZ }}}{=} \lim _{n \rightarrow \infty} \frac{n+1-n}{\frac{1}{x_{n}^{\frac{p^{2}+p+1}{p+1}}-\frac{1}{x^{\frac{p^{2}+p+1}{p+1}}}}} \\
& =\lim _{n \rightarrow \infty} \frac{1}{\left(\frac{1}{\sqrt[p+1]{x_{n}}}+x_{n}^{p}\right)^{p^{2}+p+1}-\frac{1}{x_{n}^{\frac{p^{2}+p+1}{p+1}}}}=\lim _{n \rightarrow \infty} \frac{1}{\left(1+x_{n}^{\frac{p^{2}+p+1}{p+1}}\right)^{p^{2}+p+1}-1} \\
& =\frac{1}{p^{2}+p+1} \Rightarrow \Omega=\frac{1}{\left(p^{2}+p+1\right)^{p+1}} \text { (Answer) }
\end{aligned}
$$

Solution 2 by Remus Florin Stanca-Romania

$$
\begin{gather*}
\lim _{n \rightarrow \infty} n^{p+1} x_{n}^{p^{2}+p+1}=\lim _{n \rightarrow \infty} n^{p+1} x_{n}^{(p+1)^{2}} \cdot \frac{1}{x_{n}^{p}}==\lim _{n \rightarrow \infty} \frac{n^{p+1} x_{n}^{(p+1)^{2}} x_{n}}{x_{n}^{p+1}} \tag{1}\\
x_{1}^{p}+\cdots+x_{n}^{p}=\frac{1}{\sqrt[p+1]{x_{n+1}}} \succ \frac{1}{\sqrt[p+1]{x_{n}}}+x_{n}^{p}=\frac{1}{\sqrt[p+1]{x_{n+1}}}
\end{gather*}
$$

we prove by using the Mathematical induction that $x_{n}>0 ; \forall n \in \mathbb{N}$:

1. we prove that $P(0)$: " $x_{0}>0$ " is true (true).
2. we suppose that $P(n)$: " $x_{n}>0$ " is true
3. we prove that $P(n+1)$: " $x_{n+1}>0$ " is true by using $P(n)$:

$$
\frac{1}{\sqrt[p+1]{x_{n+1}}}=x_{n}^{p}+\frac{1}{\sqrt[p+1]{x_{n}}} ; x_{n}>0 \Rightarrow \frac{1}{\sqrt[p+1]{x_{n+1}}}>0 \Rightarrow x_{n+1}>0 \Rightarrow \text { true } \Rightarrow x_{n}>0 ; \forall n \in \mathbb{N}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\frac{1}{\sqrt[p+1]{x_{n}}}+x_{n}^{p}=\frac{1}{\sqrt[p+1]{x_{n+1}}}>\frac{1}{\sqrt[p+1]{x_{n+1}}}-\frac{1}{\sqrt[p+1]{x_{n}}}=x_{n}^{p}>0>\sqrt[p+1]{x_{n+1}}<\sqrt[p+1]{x_{n}}
$$

$>\boldsymbol{x}_{\boldsymbol{n}+1}<\boldsymbol{x}_{\boldsymbol{n}}>\left(\boldsymbol{x}_{\boldsymbol{n}}\right)_{\boldsymbol{n} \in \mathbb{N}}$ is a decreasing sequence, $\boldsymbol{x}_{\boldsymbol{n}}>0>l l \in \mathbb{R}$ such that:

$$
\begin{gathered}
\lim _{n \rightarrow \infty} x_{n}=l=\frac{1}{\sqrt[p+1]{l}}=l+\frac{1}{\sqrt[p+1]{l}} \Rightarrow l=0 \Rightarrow \lim _{n \rightarrow \infty} x_{n}=0 \\
(1) \Rightarrow \lim _{n \rightarrow \infty} n^{p+1} x_{n}^{p^{2}+p+1}=\lim _{n \rightarrow \infty}\left(\frac{x_{n}^{p+1} \cdot n^{p+1} \sqrt{x_{n}}}{x_{n}}\right)^{p+1} \\
=\lim _{n \rightarrow \infty}\left(x_{n}^{p} \cdot n \cdot \sqrt[p+1]{x_{n}}\right)^{p+1}=L^{p+1} \\
x_{n}^{p}=\frac{1}{\sqrt[p+1]{x_{n+1}}}-\frac{1}{\sqrt[p+1]{x_{n}}} \Rightarrow L=\lim _{n \rightarrow \infty}\left(\left(\frac{1}{\sqrt[p+1]{x_{n+1}}}-\frac{1}{p+1} \sqrt[x_{n+1}]{\sqrt[p]{x}}\right) \cdot n \cdot \sqrt[p+1]{x_{n}}\right)= \\
\lim _{n \rightarrow \infty}\left(n \cdot\left(\sqrt[p+1]{\frac{x_{n}}{x_{n+1}}}-1\right)\right)(2) \\
x_{n}^{p}=\frac{1}{\sqrt[p+1]{x_{n+1}}}-\frac{1}{p+1} \sqrt{x_{n}} \Rightarrow \lim _{n \rightarrow \infty} \sqrt[p+1]{\frac{x_{n+1}}{x_{n}}}=1
\end{gathered}
$$

$$
\stackrel{(2)}{\Rightarrow} L=\lim _{n \rightarrow \infty} n \cdot \frac{\frac{x_{n}}{x_{n+1}}-1}{\left(\sqrt[p+1]{\frac{x_{n}}{x_{n+1}}}\right)^{0}+\cdots+\left(\sqrt[p+1]{\frac{x_{n}}{x_{n+1}}}\right)^{p}}=\frac{1}{p+1} \cdot \lim _{n \rightarrow \infty} n\left(\frac{x_{n}}{x_{n+1}}-1\right)=
$$

$$
=\frac{1}{p+1} \cdot \lim _{n \rightarrow \infty}\left(\left(x_{n}^{\frac{p^{2}+p+1}{p+1}}\right)^{p+1}-1\right)
$$

$$
=\frac{1}{p+1} \cdot \lim _{n \rightarrow \infty} n \cdot x_{n}^{\frac{p^{2}+p+1}{p+1}}(p+1)=\lim _{n \rightarrow \infty} \frac{n}{x_{n}^{-\frac{p^{2}+p+1}{p+1}}} \stackrel{\text { Stolz Cesaro }}{=}
$$

$$
=\lim _{n \rightarrow \infty} \frac{1}{x_{n+1}^{-\frac{p^{2}+p+1}{p+1}}-x_{n}^{-\frac{p^{2}+p+1}{p+1}}}
$$

$$
\lim _{n \rightarrow \infty} x_{n+1}^{-\frac{p^{2}+p+1}{p+1}}-x_{n}^{-\frac{p^{2}+p+1}{p+1}}=\lim _{n \rightarrow \infty}\left(x_{n}^{p}+\frac{1}{\sqrt[p+1]{x_{n}}}\right)^{p^{2}+p+1}-x_{n}^{-\frac{p^{2}+p+1}{p+1}}=
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

$$
\begin{aligned}
&=\lim _{n \rightarrow \infty}\left(\frac{1}{\sqrt[p+1]{x_{n}}}\right)^{p^{2}+p+1} \cdot\left(\left(\frac{x_{n}^{p}+\frac{1}{p+1} \sqrt{x_{n}}}{\frac{1}{p+1} \sqrt{x_{n}}}\right)^{p^{2}+p+1}-1\right)-1 \\
&= \lim _{n \rightarrow \infty}\left(\frac{1}{\sqrt[p+1]{x_{n}}}\right)^{p^{2}+p+1} \cdot\left(x_{n}^{p+\frac{1}{p+1}}+1\right)^{p^{2}+p+1} \\
&=\left(p^{2}+p+1\right) \cdot x_{n}^{p+\frac{1}{p+1}}= \\
& x_{n \rightarrow \infty} x_{n}^{\frac{p^{2}+p+1}{p+1}} \cdot x_{n}^{-\frac{p^{2}+p+1}{p+1}}=p^{2}+p+1 \\
& \Rightarrow L=\frac{1}{p^{2}+p+1} \Rightarrow \lim _{n \rightarrow \infty} n^{p+1} \cdot x_{n}^{p^{2}+p+1}=\frac{1}{\left(p^{2}+p+1\right)^{p+1}}
\end{aligned}
$$

UP.170. Find:

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{\arctan (n x) \ln (1+x)}{1+x^{2}} d x
$$

Proposed by Marian Ursărescu - Romania
Solution 1 by Sagar Kumar-Patna Bihar-India

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{\tan ^{-1}(n x) \ln (1+x)}{\left(1+x^{2}\right)} d x=I \\
I=\frac{\pi}{2} \int_{0}^{1} \frac{\ln (1+x)}{1+x^{2}} d x
\end{gathered}
$$

Put $x=\tan \theta$

$$
\begin{gather*}
d x=\sec ^{2} \theta d \theta \\
I=\frac{\pi}{2} \int_{0}^{\frac{\pi}{4}} \ln (1+\tan \theta) \tag{1}\\
I=\frac{\pi}{2} \int_{0}^{\frac{\pi}{4}} \ln \left(\frac{1+\tan \theta+1-\tan \theta}{1+\tan \theta}\right) \tag{2}
\end{gather*}
$$

(1) $+(2)$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
 $$
I=\frac{\pi^{2}}{16} \ln 2
$$

Solution 2 by Avishek Mitra-India

$$
\begin{gathered}
\Omega=\lim _{n \rightarrow \infty} \int_{0}^{1} \tan ^{-1}(n x) \frac{\ln (1+x)}{\left(1+x^{2}\right)} d x=\frac{\pi}{2} \int_{0}^{1} \frac{\ln (1+x)}{\left(1+x^{2}\right)} d x \\
\text { Let } I=\int_{0}^{1} \frac{\ln (1+x) d x}{\left(1+x^{2}\right)}=\left[\ln (1+x) \cdot \tan ^{-1} x\right]_{0}^{1}-\int_{0}^{1} \frac{\tan ^{-1} x d x}{(1+x)} \\
{\left[\operatorname{let} x=\tan z \Rightarrow d x=\sec ^{2} z d z\right]} \\
=\frac{\pi}{4} \ln 2-\int_{0}^{\frac{\pi}{4}} \frac{z \cdot \sec ^{2} z d z}{(1+\tan z)}=\frac{\pi}{4} \ln 2-\int_{0}^{\frac{\pi}{4}} \frac{z d z}{\cos z(\sin z+\cos z)} \\
\text { Let } I_{1}=\int_{0}^{\frac{\pi}{4}} \frac{z d z}{\cos z(\sin z+\cos z)}=\int_{0}^{\frac{\pi}{4}} \frac{\cos \left(\frac{\pi}{4}-z\right)\left[\sin \left(\frac{\pi}{4}-z\right)+\cos \left(\frac{\pi}{4}-z\right)\right]}{4}-z \\
\quad=\frac{\pi}{4} \int_{0}^{\frac{\pi}{4}} \frac{d z}{\cos z(\sin z+\cos z)}-I_{1} \Rightarrow \\
\Rightarrow 2 I_{1}=\frac{\pi}{4} \int_{0}^{\frac{\pi}{4}} \frac{\sec ^{2} z d z}{(1+\tan z)}=\frac{\pi}{4}[\ln (1+\tan z)]_{0}^{\frac{\pi}{4}} \ln 2 \Rightarrow I_{1}=\frac{\pi}{8} \ln 2
\end{gathered}
$$

$$
\text { Hence } I=\frac{\pi}{4} \ln 2-\frac{\pi}{8} \ln 2=\frac{\pi}{8} \ln 2
$$

$$
\text { Hence } \Omega=\frac{\pi}{2} \cdot \frac{\pi}{8} \ln 2=\frac{\pi^{2}}{16} \ln 2 \text { (answer) }
$$

Solution 3 by Abdul Mukhtar-Nigeria
$\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{\arctan (n x) \ln (1+x)}{1+x^{2}} d x=\int_{0}^{1}\left(\lim _{n \rightarrow 0} \tan ^{-1}(n x)\right) \times \frac{\ln (1+x)}{1+x^{2}} d x$
we know $n=\infty \Rightarrow \tan ^{-1}(\infty \cdot x)=\tan ^{-1}(\infty)=\frac{\pi}{2} \Rightarrow \frac{\pi}{2} \int_{0}^{1} \frac{\ln (1+x)}{1+x^{2}} d x$

$$
\text { let } x=\tan \theta
$$

$$
d x=\sec ^{2} \theta d \theta
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\frac{\pi}{2} \int_{0}^{1} \frac{\ln (1+x)}{1+x^{2}} d x=\frac{\pi}{2} \int_{0}^{\frac{\pi}{4}} \frac{\ln (1+\tan \theta)}{1+\tan ^{2} \theta} \cdot \sec ^{2} \theta d \theta
$$

$$
\frac{\pi}{2} \int_{0}^{\frac{\pi}{4}} \ln (1+\tan \theta) d \theta
$$

$$
\operatorname{Set} \phi=\frac{\pi}{4}-\theta
$$

$$
=\frac{\pi}{2} \int_{\frac{\pi}{4}}^{0} \ln \left(1+\tan \left(\frac{\pi}{4}-\phi\right)\right)-d \phi
$$

$$
\frac{\pi}{2} \int_{0}^{\frac{\pi}{4}} \ln \left(1+\tan \left(\frac{\pi}{4}-\phi\right)\right) d \phi=\frac{\pi}{2} \int_{0}^{\frac{\pi}{4}}\left(1+\frac{1-\tan \phi}{1+\tan \phi}\right) d \phi
$$

$$
=\frac{\pi}{2} \int_{0}^{\frac{\pi}{4}} \ln \left(\frac{2}{1+\tan \phi}\right) d \phi=\frac{\pi}{2} \int_{0}^{\frac{\pi}{4}} \ln 2 d \phi-\int_{0}^{\frac{\pi}{4}} \ln (1+\tan \phi) \Rightarrow
$$

$$
\Rightarrow 2 I=\frac{\pi}{4} \ln 2 \Rightarrow I=\int_{0}^{\frac{\pi}{4}} \ln (1+\tan \phi) d \phi=\frac{\pi}{2}\left(\frac{\pi}{8} \ln 2\right) \Rightarrow \frac{\pi^{2}}{16} \ln 2
$$

Solution 4 by Shivam Sharma-New Delhi-India

$$
\Rightarrow \int_{0}^{1}\left(\lim _{n \rightarrow \infty} a x \tan (n x)\right) \frac{\ln (1+x)}{1+x^{2}} d x \Rightarrow \frac{\pi}{2} \int_{0}^{1} \frac{\ln (1+x)}{1+x^{2}} d x
$$

Let $x=\tan \theta \Rightarrow \frac{\pi}{2} \int_{0}^{\frac{\pi}{4}} \ln (1+\tan \theta) d \theta \Rightarrow \frac{\pi}{2} \int_{0}^{\frac{\pi}{2}} \ln \left(1+\tan \left(\frac{\pi}{4}-\theta\right)\right) d \theta \Rightarrow$

$$
\Rightarrow \frac{\pi}{2} \int_{0}^{\frac{\pi}{4}} \ln \left(1+\left(\frac{1-\tan \theta}{1+\tan \theta}\right)\right) d \theta \Rightarrow \frac{\pi}{2} \int_{0}^{\frac{\pi}{4}} \ln (2) d \theta-\frac{\pi}{2} \int_{0}^{\frac{\pi}{4}} \ln (1+\tan \theta) d \theta
$$

$$
\Rightarrow \frac{\pi}{2} \int_{0}^{\frac{\pi}{4}} \ln (2)-\Omega
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

 (OR)
 $\Omega=\frac{\pi^{2}}{16} \ln (2)$ (Answer)

UP.171. Find that in any acute-angled $\triangle A B C$ the following inequality holds:

$$
\begin{array}{r}
\min \left(\frac{\sin A}{\sin B+\sin C}, \frac{\sin B}{\sin A+\sin C}, \frac{\sin C}{\sin A+\sin B}\right) \leq \frac{\cos A+\cos B+\cos C}{3} \leq \\
\leq \max \left(\frac{\sin A}{\sin B+\sin C}, \frac{\sin B}{\sin A+\sin C}, \frac{\sin C}{\sin A+\sin B}\right) \\
\text { Proposed by Marian Ursărescu - Romania }
\end{array}
$$

Solution 1 by Tran Hong-Vietnam

$$
\text { Let } T=\left\{\frac{\sin A}{\sin B+\sin C} ; \frac{\sin B}{\sin A+\sin C} ; \frac{\sin C}{\sin A+\sin B}\right\}
$$

Suppose: $A \leq B \leq C \Rightarrow\left\{\begin{array}{c}a \leq b \leq c \\ \sin A \leq \sin B \leq \sin C^{\prime}\end{array}\right.$ ((with A, B, C : acute angled)
We will prove that:

$$
\min T \stackrel{(*)}{\leq} \frac{\cos A+\cos B+\cos C}{3} \stackrel{(* *)}{\leq} \max T
$$

First:

$$
\begin{gather*}
\because \min T=\frac{\sin A}{\sin B+\sin C}=\frac{a}{b+c} \\
\because \frac{\cos A+\cos B+\cos C}{3}=\frac{a^{2} b+b^{2} a+a^{2} c+c^{2} a+b^{2} c+c^{2} b-\left(a^{3}+b^{3}+c^{3}\right)}{6 a b c} \tag{2}
\end{gather*}
$$

From (1) and (2) we have:

$$
\begin{gather*}
\mathbf{6} b c a^{2} \leq(b+c)\left\{a^{2} b+b^{2} a+a^{2} c+c^{2} a+b^{2} c+c^{2} b-\left(a^{3}+b^{3}+c^{3}\right)\right\} \\
\Leftrightarrow(a+b+c)\left\{b\left(a^{2}-c^{2}\right)+c\left(a^{2}-b^{2}\right)-\mathbf{2 a}\left(b^{2}-b c+\boldsymbol{c}^{2}\right)+b^{3}+\boldsymbol{c}^{3}\right\} \leq 0 \\
\Leftrightarrow(a+b+c)\left\{b\left(a^{2}-\boldsymbol{c}^{2}\right)+\boldsymbol{c}\left(a^{2}-b^{2}\right)+\left(b^{2}-b c+\boldsymbol{c}^{2}\right)(b+c-2 a)\right\} \leq 0 \\
\Leftrightarrow(b-a)\left\{(b-c)^{2}-a c\right\}+(c-a)\left\{(b-c)^{2}-a b\right\} \leq 0 \text { (3) } \\
(b-c)^{2}-a c \leq(b-c)^{2}-a^{2}=-(b+a-c)(c+a-b)<0 \\
\Rightarrow(b-a)\left\{(b-c)^{2}-a c\right\} \leq 0 \text { (4) } \tag{4}
\end{gather*}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\begin{gather*}
(b-c)^{2}-a b \leq(b-c)^{2}-a^{2}=-(b+c-c)(c+a-b)<0 \\
\Rightarrow(c-a)\left\{(b-c)^{2}-a b\right\} \leq 0 \quad \text { (5) } \tag{5}\\
\left.\stackrel{(4),(5)}{\cong}(3) \text { true } \Rightarrow \mathbf{(}^{*}\right) \text { true. }
\end{gather*}
$$

Second: $\frac{\cos A+\cos B+\cos C}{3} \leq \frac{\frac{3}{2}}{3}=\frac{1}{2}$

$$
\begin{equation*}
\max T=\frac{\sin C}{\sin A+\sin B}=\frac{c}{a+b} \geq \frac{1}{2} \tag{6}
\end{equation*}
$$

(6),(7)
$\xlongequal[\Rightarrow]{ }\left({ }^{* *}\right)$ true. Hence: For any a cute-angled $\triangle A B C$.
Solution 2 by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
& \min \left(\frac{\sin A}{\sin B+\sin C}, \frac{\sin B}{\sin A+\sin C}, \frac{\sin C}{\sin A+\sin B}\right) \stackrel{(1)}{\leq} \frac{\sum \cos A}{3} \leq \\
& \stackrel{(2)}{\leq} \max \left(\frac{\sin A}{\sin B+\sin C}, \frac{\sin B}{\sin A+\sin C}, \frac{\sin C}{\sin A+\sin B}\right) \\
& \text { RHS of (2) } \geq \frac{1}{3} \sum \frac{\sin A}{\sin B+\sin C}=\frac{1}{3} \sum \frac{a}{b+c}= \\
& =\frac{1}{3} \frac{\sum a(c+a)(a+b)}{2 s\left(s^{2}+2 R r+r^{2}\right)}=\frac{\sum a\left(\sum a b+a^{2}\right)}{3 \cdot 2 s\left(s^{2}+2 R r+r^{2}\right)} \\
& =\frac{\left(\sum a b\right)(2 s)+2 s\left(s^{2}-6 R r-3 r^{2}\right)}{3 \cdot 2 s\left(s^{2}+2 R r+r^{2}\right)} \\
& =\frac{2 s^{2}-2 R r-2 r^{2}}{3\left(s^{2}+2 R r+r^{2}\right)} \stackrel{?}{\geq} \frac{\sum \cos A}{3}=\frac{R+r}{3 R} \\
& \Leftrightarrow R\left(2 s^{2}-2 R r-2 r^{2}\right) \stackrel{?}{\geq}(R+r)\left(s^{2}+2 R r+r^{2}\right) \\
& \Leftrightarrow(R-r) s^{2} \stackrel{?}{\geq}(R+r)\left(2 R r+r^{2}\right)+R\left(2 R r+2 r^{2}\right) \\
& \stackrel{(2 a)}{=} 2 R^{2} r+R r^{2}+2 R r^{2}+r^{3}+2 R^{2} r+2 R r^{2}=4 R^{2} r+5 R r^{2}+r^{3} \\
& \text { Now, LHS of (2a) } \stackrel{\text { Gerretsen }}{\geq}(R-r)\left(16 R r-5 r^{2}\right) \stackrel{?}{\geq} 4 R^{2} r+5 R r^{2}+r^{3} \\
& \Leftrightarrow 16 R^{2}-21 R r+5 r^{2} \xrightarrow[\geq]{\geq} 4 R^{2}+5 R r+r^{2} \\
& \Leftrightarrow 12 R^{2}-26 R r+4 r^{2} \stackrel{?}{\geq} 0 \Leftrightarrow 6 R^{2}-13 R r+2 r^{2} \stackrel{?}{\geq} 0 \\
& \Leftrightarrow(R-2 r)(6 R-r) \stackrel{?}{\geq} 0 \rightarrow \text { true } \because R \stackrel{\text { Euler }}{\geq} 2 r \Rightarrow(2 a) \& \text { hence (1) is true } \\
& \text { We shall now focus on proving (1), which is: }
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
3 \min \left(\frac{a}{b+c}, \frac{b}{c+a}, \frac{c}{a+b}\right) \stackrel{(1 a)}{\leq} 1+\frac{\Delta}{s} \cdot \frac{4 \Delta}{a b c} \\
=1+\frac{4 s(s-a)(s-b)(s-c)}{s a b c}=1+\frac{4 x y z}{(x+y)(y+z)(z+x)} \\
(\text { where } s-a=x, s-b=y, s-c=z) \\
=\frac{6 x y z+\sum x^{2} y+\sum x y^{2}}{(x+y)(y+z)(z+x)}
\end{gathered}
$$

Case 1) $\min \left(\frac{a}{b+c}, \frac{b}{c+a}, \frac{c}{a+b}\right)=\frac{a}{b+c}$

$$
\therefore \frac{a}{b+c} \leq \frac{b}{c+a} \Rightarrow a \leq b \Rightarrow y+z \leq z+x \Rightarrow x \geq y
$$

$$
\& \frac{a}{b+c} \leq \frac{c}{a+b} \Rightarrow a \leq c \Rightarrow y+z \leq x+y \Rightarrow x \geq z
$$

Now, (1a) $\Leftrightarrow \frac{3(y+z)}{2 x+y+z} \leq \frac{6 x y z+\sum x^{2} y+\sum x y^{2}}{(x+y)(y+z)(z+x)}$
$\Leftrightarrow x^{3} y+x^{3} z+4 x^{2} y z-2 y^{2} z^{2}-x y^{3}-x z^{3}-y^{3} z-y z^{3} \stackrel{(1 b)}{\geq} 0$
Now, $2 x^{2} y z-2 y^{2} z^{2}=2 y z\left(x^{2}-y z\right) \geq 0(\because x \geq y z)$,

$$
\begin{aligned}
& x^{2} y z-y^{3} z=y z\left(x^{2}-y^{2}\right) \geq 0(\because x \geq y) \\
& x^{2} y z-y z^{3}=y z\left(x^{2}-z^{2}\right) \geq 0(\because x \geq z) \\
& x^{3} y-x y^{3}=x y\left(x^{2}-y^{2}\right) \geq 0(\because x \geq y) \\
& x^{3} z-x z^{3}=x z\left(x^{2}-z^{2}\right) \geq 0(\because x \geq z)
\end{aligned}
$$

Adding the last 5 inequalities, (1b) \& hence (1a) \& hence (1) is true.

$$
\begin{gathered}
\text { Case 2) } \min \left(\frac{a}{b+c}, \frac{b}{c+a}, \frac{c}{a+b}\right)=\frac{b}{c+a} \\
\therefore \frac{b}{c+a} \leq \frac{a}{b+c} \Rightarrow b \leq a \Rightarrow z+x \leq y+z \Rightarrow y \geq x \& \\
\frac{b}{c+a} \leq \frac{c}{a+b} \Rightarrow b \leq c \Rightarrow z+x \leq x+y \Rightarrow y \geq z \\
\text { Now, (1a) } \Leftrightarrow \frac{3(z+x)}{x+2 y+z} \leq \frac{6 x y z+\sum x^{2} y+\sum x y^{2}}{(x+y)(y+z)(z+x)} \\
\Leftrightarrow x y^{3}+y^{3} z+4 x y^{2} z-2 z^{2} x^{2}-x z^{3}-y z^{3}-x^{3} y-x^{3} z \stackrel{(1 c)}{\geq} 0 \\
\text { Now, } 2 x y^{2} z-2 z^{2} x^{2}=2 z x\left(y^{2}-z x\right) \geq 0(\because y \geq z, x), \\
x y^{2} z-x z^{3}=z x\left(y^{2}-z^{2}\right) \geq 0(\because y \geq z), \\
x y^{2} z-x^{3} z=x z\left(y^{2}-x^{2}\right) \geq 0(\because y \geq x),
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\begin{aligned}
& y^{3} z-y z^{3}=y z\left(y^{2}-z^{2}\right) \geq 0(\because y \geq z) \\
& x y^{3}-x^{3} y=x y\left(y^{2}-x^{2}\right) \geq 0(\because y \geq x)
\end{aligned}
$$

Adding the last 5 inequalities, (1c) \& hence, (1a) \& hence, (1) is true.

$$
\begin{gathered}
\text { Case 3) } \min \left(\frac{a}{b+c}, \frac{b}{c+a}, \frac{c}{a+b}\right)=\frac{c}{a+b} \\
\therefore \frac{c}{a+b} \leq \frac{a}{b+c} \Rightarrow c \leq a \Rightarrow x+y \leq y+z \Rightarrow z \geq x \& \\
\frac{c}{a+b} \leq \frac{b}{c+a} \Rightarrow c \leq b \Rightarrow x+y \leq z+x \Rightarrow z \geq y \\
\text { Now, (1a) } \Leftrightarrow \frac{3(x+y)}{x+y+2 z} \leq \frac{6 x y z+\sum x^{2} y+\sum x y^{2}}{(x+y)(y+z)(z+x)} \\
\Leftrightarrow y z^{3}+z x^{3}+4 x y z^{2}-x^{3} y-x^{3} z-2 x^{2} y^{2}-x y^{3}-y^{3} z \stackrel{(1 d)}{\geq} 0 \\
\text { Now, } 2 x y z^{2}-2 x^{2} y^{2}=2 x y\left(z^{2}-x y\right) \geq 0(\because z \geq x, y), \\
x y z^{2}-x y^{3}=x y\left(z^{2}-y^{2}\right) \geq 0(\because z \geq x), \\
x y z^{2}-x^{3} y=x y\left(z^{2}-x^{2}\right) \geq 0(\because z \geq x), \\
y z^{3}-y^{3} z=y z\left(z^{2}-y^{2}\right) \geq 0(\because z \geq y) \\
x z^{3}-x^{3} z=x z\left(z^{2}-x^{2}\right) \geq 0(\because z \geq x)
\end{gathered}
$$

Adding the last 5 inequalities, (1d) \& hence (1a) \& hence (1) is true.
Combining the 3 cases, (1) is always true.
(This completes the proof)

UP.172. Let be $A \in M_{5}(\mathbb{R})$, invertible such that: $\operatorname{det}\left(A^{2}+I_{5}\right)=\mathbf{0}$.

Prove that:

$$
\operatorname{Tr} A^{*}=1+\operatorname{det} A \cdot \operatorname{Tr} A^{-1}
$$

Proposed by Marian Ursărescu - Romania
Solution by Ravi Prakash-New Delhi-India

$$
\begin{gathered}
\operatorname{As} \operatorname{det}\left(A^{2}+I_{5}\right)=0 \\
\operatorname{det}\left[\left(A+i I_{5}\right)\left(A-i I_{5}\right)\right]=0 \Rightarrow \operatorname{det}\left(A+i I_{5}\right)=0 \text { or } \operatorname{det}\left(A-i I_{5}\right)=0 \\
\Rightarrow i \text { or }-i \text { is an eigenvalue of } A .
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
As characteristic equation of \boldsymbol{A} it has real coefficients, both $\boldsymbol{i},-\boldsymbol{i}$ are eigenvalues of
A. Let $\lambda_{1}, \lambda_{2}, \lambda_{3}$ be other eigenvalues of \boldsymbol{A}.

$$
\begin{gathered}
\operatorname{Tr}\left(A^{*}\right)=\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)(i-i)+\lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}+\lambda_{2} \lambda_{3}+i(-i) \\
=\lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}+\lambda_{2} \lambda_{3}+1 . \text { Also, } \operatorname{det} A=\lambda_{1} \lambda_{2} \lambda_{3}(i)(-i)=\lambda_{1} \lambda_{2} \lambda_{3} \\
\operatorname{Tr}\left(A^{-1}\right)=\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}+\frac{1}{\lambda_{3}}+\frac{1}{i}-\frac{1}{i}=\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}+\frac{1}{\lambda_{3}} \\
\operatorname{det}(\boldsymbol{A}) \operatorname{tr}\left(A^{-1}\right)=\lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}+\lambda_{2} \lambda_{3} \\
\operatorname{Thus}, \operatorname{tr}\left(A^{*}\right)=1+\operatorname{det}(A) \operatorname{tr}\left(A^{-1}\right)
\end{gathered}
$$

UP.173. Find:

$$
\Omega=\lim _{n \rightarrow \infty} \sqrt[n]{6-2 \sum_{i=2}^{n} \frac{1}{i+1}\binom{2 i}{i}+3 \sum_{i=2}^{n}\binom{2 i}{i}}
$$

Proposed by Daniel Sitaru - Romania
Solution 1 by Remus Florin Stanca-Romania

$$
\begin{gather*}
6-2 \sum_{i=2}^{n} \frac{1}{i+1}\binom{2 i}{i}+3 \sum_{i=2}^{n}\binom{2 i}{i}=6+\sum_{i=2}^{n}\binom{2 i}{i} \cdot \frac{3 i+1}{i+1}= \\
=6+\sum_{i=2}^{n-1}\binom{2 i}{i} \cdot \frac{3 i+1}{i+1}+\binom{2 n}{n} \cdot \frac{3 n+1}{n+1}=6+\sum_{i=2}^{n-1}\binom{2 i}{i} \cdot \frac{3 i+1}{i+1}+\frac{(2 n)!}{(n!)^{2}} \cdot \frac{3 n+1}{n+1} \tag{1}\\
\lim _{n \rightarrow \infty} \frac{(2 n)!}{(n!)^{2}} \cdot \frac{3 n+1}{n+1}=3 \cdot \lim _{n \rightarrow \infty} \frac{(2 n)!}{(n!)^{2}} \\
\text { Let } x_{n}=\frac{(2 n)!}{(n!)^{2}} \succ \frac{x_{n+1}}{x_{n}}=\frac{(2 n+2)!}{((n+1)!)^{2}} \cdot \frac{(n!)^{2}}{(2 n)!}=\frac{(2 n+1)(2 n+2)}{(n+1)(n+1)} \succ \\
>\lim _{n \rightarrow \infty} \frac{x_{n+1}}{x_{n}}=4>1>\lim _{n \rightarrow \infty} x_{n}=\infty>\lim _{n \rightarrow \infty} \frac{(2 n)!}{(n!)^{2}}=\infty> \\
\Rightarrow \lim _{n \rightarrow \infty} \frac{(2 n)!}{(n!)^{2}} \cdot \frac{3 n+1}{n+1}=\infty \stackrel{(1)}{\Rightarrow} \lim _{n \rightarrow \infty}\left(6-\sum_{i=2}^{n} \frac{1}{i+1} \cdot\binom{2 i}{i}+3 \sum_{i=2}^{n}\binom{2 i}{i}\right)=\infty \Rightarrow
\end{gather*}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\begin{aligned}
& >\lim _{n \rightarrow \infty} \sqrt[n]{6-2 \sum_{i=2}^{n} \frac{1}{i+1} \cdot\binom{2 i}{i}+3 \sum_{i=2}^{n}\binom{2 i}{i}}= \\
& =\lim _{n \rightarrow \infty}\left(6-2 \sum_{i=2}^{n} \frac{1}{i+1}\binom{2 i}{i}+3 \sum_{i=2}^{n}\binom{2 i}{i}\right)^{\frac{1}{n}} \stackrel{\infty^{0}}{=} \lim _{n \rightarrow \infty} e^{\frac{\ln \left(6+\sum_{i=2}^{n}\binom{2 i}{i} \cdot \frac{3 i+1}{i+1}\right)}{n} \text { Stolz Cesaro }}= \\
& =\lim _{n \rightarrow \infty} e^{\ln \left(\frac{6+\sum_{i=2}^{n+1}\binom{2 i}{i} \cdot \frac{3 i+1}{i+1}}{6+\sum_{i=2}^{n}\binom{2 i}{i} \cdot \frac{3 i+1}{i+1}}\right)} \text { Stolz Cesaro }=\lim _{n \rightarrow \infty} \frac{\binom{2 n+4}{n+2} \cdot \frac{3 n+7}{n+3}}{\binom{2 n+2}{n+1} \cdot \frac{3 n+4}{n+2}}= \\
& =\lim _{n \rightarrow \infty} \frac{(2 n+4)!}{(n+2)!(n+2)!} \cdot \frac{3 n+7}{n+3} \cdot \frac{n+2}{3 n+4} \cdot \frac{(n+1)!(n+1)!}{(2 n+2)!}= \\
& =\lim _{n \rightarrow \infty} \frac{(2 n+3)(2 n+4)}{(n+2)(n+2)}=4 \Rightarrow \Omega=4
\end{aligned}
$$

Solution 2 by Pierre M ounir-Cairo-Egypt

$$
\begin{gathered}
L=\sqrt[n]{6-2 \sum_{k=2}^{n}\left(\frac{1}{k+1}\right)\binom{2 k}{k}+3 \sum_{k=2}^{n}\binom{2 k}{k}} \\
=\sqrt[n]{6+\sum_{k=2}^{n}\left(\frac{3 k+1}{k+1}\right)\binom{2 k}{k}}=\sqrt[n]{1+\sum_{k=0}^{n}\left(\frac{3 k+1}{k+1}\right)\binom{2 k}{k}} \\
\text { Let } S_{n}=1+\sum_{k=0}^{n}\left(\frac{3 k+1}{k+1}\right)\binom{2 k}{k} \Rightarrow L=\lim _{n \rightarrow \infty} \sqrt[n]{S_{n}} \\
=\lim _{n \rightarrow \infty} \frac{\left(\frac{3 n+4}{n+2}\right)\binom{2 n+2}{n+1}}{\left(\frac{3 n+1}{n+1}\right)\binom{2 n}{n}}=\lim _{n \rightarrow \infty} \frac{(3 n+4)(n+1)(2 n+2)!(n!)^{2}}{(3 n+1)(n+2)(2 n)!(n+1)!^{2}} \\
=\lim _{n \rightarrow \infty} \frac{(3 n+4)(n+1)(2 n+2)(2 n+1)}{(3 n+1)(n+2)(n+1)^{2}}=4 \\
\lim _{n \rightarrow \infty} \frac{S_{n+1}}{S_{n}} \stackrel{S C}{\lim _{n \rightarrow \infty} \frac{S_{n+1}-S_{n}}{S_{n}-S_{n-1}}\left(S_{n} \rightarrow \infty \text { as } n \rightarrow \infty\right)} \\
\therefore L=\lim _{n \rightarrow \infty} \sqrt[n]{S_{n}}=\lim _{n \rightarrow \infty} \frac{S_{n+1}}{S_{n}}=4
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

UP.174. If $\boldsymbol{f}:[\boldsymbol{a}, \boldsymbol{b}] \rightarrow[\mathbf{1}, \infty) ; \mathbf{0}<a \leq b ; f$ integrable then:

$$
\int_{a}^{b} \int_{a}^{b} \int_{a}^{b} \frac{3+f(x)+f(y)+f(z)}{f(x) f(y)+f(y) f(z)+f(z) f(y)} d x d y d z \leq(b-a)^{3}+\left(\int_{a}^{b} \frac{d x}{f(x)}\right)^{3}
$$

Proposed by Daniel Sitaru - Romania
Solution by proposer

$$
\begin{align*}
& f(x) ; f(y) ; f(z) \in[1, \infty) \Rightarrow f(x) \geq 1 ; f(y) \geq 1 \\
& \Rightarrow f(x)(f(y)-1)+f(y)(f(x)-1) \geq 0 \\
&2 f(x) f(y)-f(x)-f(y) \geq 0 \quad 1) \tag{1}\\
& f(x) \geq 1 ; f(y) \geq 1 \Rightarrow f(x) f(y)-1 \geq 0 \quad \text { (2) } \tag{2}
\end{align*}
$$

By (1); (2):

$$
\begin{gathered}
\sum_{c y c}(f(x) f(y)-1)(2 f(x) f(y)-f(x)-f(y)) \geq 0 \\
\sum_{c y c}\left(\frac{f(x)+f(y)+2 f^{2}(x) f^{2}(y)-2 f(x) f(y)-f^{2}(x) f(y)-f(x) f^{2}(y)}{2 f(x) f(y)}\right) \geq 0 \\
\sum_{c y c}\left(\frac{f(x)+f(y)}{2 f(x) f(y)}+f(x) f(y)-1-\frac{f(x)}{2}-\frac{f(y)}{2}\right) \geq 0 \\
\sum_{c y c} \frac{f(x)+f(y)}{2 f(x) f(y)}+\sum_{c y c} f(x) f(y) \geq 3+\sum_{c y c} f(x) \\
\sum_{c y c} \frac{1}{f(x)}+\sum_{c y c} f(x) f(y) \geq 3+\sum_{c y c} f(x) \\
\left(\sum_{c y c} f(x) f(y)\right) \frac{1}{f(x) f(y) f(z)}+\sum_{c y c} f(x) f(y) \geq 3+\sum_{c y c} f(x) \\
1+\frac{1}{f(x) f(y) f(z)} \geq \frac{3+f(x)+f(y)+f(z)}{f(x) f(y)+f(y) f(z)+f(z) f(x)} \\
\int_{a}^{b} \int_{a}^{b} \int_{a}^{b}\left(\frac{3+f(x)+f(y)+f(z)}{f(x) f(y)+f(y) f(z)+f(z) f(x)}\right) d x d y d z \leq
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\leq \int_{a}^{b} \int_{a}^{b} \int_{a}^{b} d x d y d z+\int_{a}^{b} \int_{a}^{b} \int_{a}^{b}\left(\frac{d x d y d z}{f(x) f(y) f(z)}\right)==(b-a)^{3}+\left(\int_{a}^{b} \frac{d x}{f(x)}\right)^{3}
$$

UP.175. In acute $\triangle A B C$ the following relationship holds:

$$
\frac{b^{2}+c^{2}+2 b c}{b^{2}+c^{2}-a^{2}}+\frac{c^{2}+a^{2}+2 c a}{c^{2}+a^{2}-b^{2}}+\frac{a^{2}+b^{2}+2 a b}{a^{2}+b^{2}-c^{2}}>9
$$

Proposed by Daniel Sitaru - Romania
Solution 1 by Tran Hong-Vietnam

$$
\begin{gather*}
L H S=\frac{(b+c)^{2}}{b^{2}+c^{2}-a^{2}}+\frac{(c+a)^{2}}{c^{2}+a^{2}-b^{2}}+\frac{(a+b)^{2}}{a^{2}+b^{2}-c^{2}} \\
\geq \frac{4 b c}{b^{2}+c^{2}-a^{2}}+\frac{4 c a}{c^{2}+a^{2}-b^{2}}+\frac{4 a b}{a^{2}+b^{2}-c^{2}} \\
=\frac{2}{\cos A}+\frac{2}{\cos B}+\frac{2}{\cos C}=2\left(\frac{1}{\cos A}+\frac{1}{\cos B}+\frac{1}{\cos C}\right) \\
\left.=2 \cdot \frac{p^{2}+r^{2}-4 R^{2}}{p^{2}-(2 R-r)^{2}} \quad{ }^{*}\right) \tag{*}
\end{gather*}
$$

We prove

(*) ≥ 12
$\Leftrightarrow p^{2}+r^{2}-4 R^{2} \geq 6 p^{2}-6(2 R-r)^{2} \Leftrightarrow p^{2}+r^{2}-4 R^{2} \geq 6 p^{2}-6\left(4 R^{2}-4 R r+r^{2}\right)$ $\Leftrightarrow 20 R^{2}+7 r^{2}+24 R r \geq 5 p^{2}$

Which is true because

$$
\begin{gathered}
p^{2} \leq 4 R^{2}+4 R r+3 r^{2} \Leftrightarrow 5 p^{2} \leq 20 R^{2}+20 R r+15 r^{2} \stackrel{(1)}{\leq} 20 R^{2}+24 R r+7 r^{2} \\
\text { (1) } \Leftrightarrow 4 R r \geq 8 r^{2} \Leftrightarrow R \geq 2 r \Rightarrow\left(^{*}\right) \geq 12>9 . \text { Proved. }
\end{gathered}
$$

Solution 2 by Soumava Chakraborty-Kolkata-India

$$
\frac{b^{2}+c^{2}+2 b c}{b^{2}+c^{2}-a^{2}}+\frac{c^{2}+a^{2}+2 c a}{c^{2}+a^{2}-b^{2}}+\frac{a^{2}+b^{2}+2 a b}{a^{2}+b^{2}-c^{2}} \geq 12
$$

Let $\boldsymbol{b}^{2}+\boldsymbol{c}^{2}-\boldsymbol{a}^{2}=x, \boldsymbol{c}^{2}+\boldsymbol{a}^{2}-\boldsymbol{b}^{2}=\boldsymbol{y}, \boldsymbol{a}^{2}+\boldsymbol{b}^{2}-\boldsymbol{c}^{2}=z \therefore \boldsymbol{a}^{2}=\frac{y+z}{2}, \boldsymbol{b}^{2}=\frac{z+x}{2}, \boldsymbol{c}^{2}=\frac{x+y}{2}$

$$
\text { Now, LHS } \frac{b^{2}+c^{2}-a^{2}+a^{2}+2 b c}{b^{2}+c^{2}-a^{2}}+\frac{c^{2}+a^{2}-b^{2}+b^{2}+2 c a}{c^{2}+a^{2}-b^{2}}+\frac{a^{2}+b^{2}-c^{2}+c^{2}+2 a b}{a^{2}+b^{2}-c^{2}}=
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\begin{gathered}
=3+\sum \frac{a^{2}}{b^{2}+c^{2}-a^{2}}+\sum \frac{2 b c}{b^{2}+c^{2}-a^{2}}=3+\sum \frac{a^{2}}{b^{2}+c^{2}-a^{2}}+\sum \frac{2 b c}{2 b c \cos A}= \\
=3+\sum\left(\frac{\frac{y+z}{2}}{x}\right)+\sum \frac{1}{\cos A}
\end{gathered}
$$

(using above substitution) $\stackrel{\text { Bergstrom }}{\geq} 3+\left(\frac{1}{2}\right) \sum\left(\frac{x}{y}+\frac{y}{x}\right)+\frac{9}{\sum \cos A} \stackrel{A-G}{\geq} 3+3+\frac{9}{\sum \cos A} \geq 6+\frac{9}{\frac{3}{2}}$

$$
\left(\because \sum \cos A \leq \frac{3}{2}\right)=12>9 \quad \text { (equality when } \triangle A B C \text { is equila teral) }
$$

Solution 3 by Lahiru Samarakoon-Sri Lanka

$$
\sum \frac{a^{2}+b^{2}+2 b a}{a^{2}+b^{2}-c^{2}}>9
$$

for acute $A B C, \cos A, \cos B, \cos C>0$ then:

$$
L H S=\sum \frac{a^{2}+b^{2}+2 b a}{a^{2}+b^{2}-c^{2}}=\stackrel{A M-G M}{\geq} \sum \frac{4 b a}{2 b a \cos C}=\frac{2 \sum \cos A \cos B}{\prod \cos A}
$$

We have to prove, $2 \sum \cos A \cos B>9 \Pi \cos A$

$$
\begin{gathered}
\frac{2\left(s^{2}+r^{2}-4 R^{2}\right)}{4 R^{2}}>\frac{9\left(s^{2}-4 R^{2}-4 R r-r^{2}\right)}{4 R^{2}} \\
28 R^{2}+36 R r+11 r^{2}>7 S^{2}
\end{gathered}
$$

Since, $s^{2} \leq 4 R^{2}+4 R r+3 r^{2}$, then we have to prove,

$$
\begin{gathered}
28 R^{2}+36 R r+11 r^{2}>7(4 R+4 R+3 R) \\
8 R r>10 r^{2} \\
R>\frac{10}{8} r \text { it's true (proved) }
\end{gathered}
$$

Solution 4 by Ravi Prakash-New Delhi-India

$$
\begin{gather*}
b^{2}+c^{2}+2 b c \geq 2 b c+2 b c=4 b c \\
b^{2}+c^{2}-a^{2}=2 b c \cos A, \text { etc } \\
\therefore L H S \geq \frac{4 b c}{2 b c \cos A}+\frac{4 c a}{2 a c \cos B}+\frac{4 a b}{2 a b \cos C} \\
=\frac{2}{\cos A}+\frac{2}{\cos B}+\frac{2}{\cos C} \tag{1}
\end{gather*}
$$

For $\mathbf{0}<x<\frac{\pi}{2}$, let

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\begin{aligned}
& f(x)=\frac{1}{\cos x}=\sec x \\
& f^{\prime}(x)=\sec x \tan x
\end{aligned}
$$

$$
f^{\prime \prime}(x)=\sec x \tan ^{2} x+\sec ^{3} x>0, \forall x \in\left(\mathbf{0}, \frac{\pi}{2}\right)
$$

$$
\text { Thus, } \frac{1}{3}(\sec A+\sec B+\sec C) \geq \sec \left(\frac{A+B+C}{3}\right)
$$

$$
\begin{equation*}
\Rightarrow \sec A+\sec B+\sec C \geq 6 \tag{2}
\end{equation*}
$$

From (1), (2): $L H S \geq 12>9$

UP.176. Let a, b be positive real numbers such that: $a+b=2$. Find the minimum value of:

$$
P=\frac{1}{a^{3}+b^{3}+2}+\frac{1}{a b}+\sqrt[3]{a b}
$$

Proposed by Hoang Le Nhat Tung - Hanoi - Vietnam

Solution 1 by Tran Hong-Vietnam

$$
\begin{gathered}
P=\frac{1}{(a+b)\left[(a+b)^{2}-3 a b\right]+2}+\frac{1}{a b}+\sqrt[3]{a b}= \\
=\frac{1}{2(4-3 a b)+2}+\frac{1}{a b}+\sqrt[3]{a b}=\frac{1}{10-6 a b}+\frac{1}{a b}+\sqrt[3]{a b}
\end{gathered}
$$

Let $t=\sqrt[3]{a b} \Rightarrow t^{3}=a b\left(0<t \leq 1\right.$, because: $\left.0<a b \leq \frac{(a+b)^{2}}{4}=1\right)$

$$
\begin{gathered}
P=f(t)=\frac{1}{10-6 t^{3}}+\frac{1}{t^{3}}+t \Rightarrow f^{\prime}(t)=1-\frac{3}{t^{4}}+\frac{9 t^{2}}{2\left(3 x^{3}-5\right)^{3}}<0, \forall t \in(0,1] \\
\Rightarrow f(t) \searrow \text { on }(0 ; 1] \Rightarrow f(t) \geq f(1)=\frac{9}{4} \Rightarrow P_{\text {min }}=\frac{9}{4} \Leftrightarrow a=b=1 .
\end{gathered}
$$

Solution 2 by Sanong Huayrerai-Nakon Pathom-Thailand
For $a, b>0$ and $a+2=2 \Rightarrow a b \leq 1$. Give $a b=x^{3} \leq 1 \Rightarrow x^{3} \leq x \leq 1$
Consider $\frac{1}{a^{3}+b^{2}+2}+\frac{1}{a b}+\sqrt[3]{a b}=\frac{1}{(a+b)^{3}-3 a b(a+b)+2}+\frac{1}{a b}+\sqrt[3]{a b}=\frac{1}{10-6 a b}+\frac{1}{a b}+\sqrt[3]{a b} \geq \frac{9}{4}$

$$
\text { If } \frac{1}{5-3 x^{3}}+\frac{2}{x^{3}}+2 x \geq \frac{9}{2}
$$

Iff $2 x^{3}+20-12 x^{3}+20 x^{4}-12 x^{7} \geq 45 x^{3}-27 x^{6}$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
Iff $\left(12 x^{6}-12 x^{7}\right)+\left(20 x^{4}-20 x^{3}\right)+\left(15 x^{6}-15 x^{3}\right)+\left(20-20 x^{3}\right) \geq 0$
Iff $12 x^{6}(1-x)-20 x^{3}(1-x)-15 x^{3}\left(1-x^{3}\right)+20\left(1-x^{3}\right) \geq 0$
Iff $12 x^{6}-20 x^{3}-15 x^{3}\left(1+x+x^{2}\right)+20\left(1+x+x^{2}\right) \geq 0$
Iff $12 x^{6}+20 x^{2}+20 x+20 \geq 35 x^{3}+15 x^{4}+15 x^{5}$ and it is to be true.
Because $\left(10 x^{6}+2\right)+\left(2 x^{6}+1\right) \geq 12 x^{5}+3 x^{4} \geq 15 x^{5}$

$$
\begin{gathered}
20 x^{2} \geq 15 x^{4}+5 x^{3} \\
20 x \geq 20 x^{3} \\
10 \geq 10 x^{3}
\end{gathered}
$$

Therefore, it's minimum is $\frac{9}{4}$.
UP.177. If $x, y, z, t>1$ then:

$$
\left(\log _{x z t} x\right)\left(\log _{x y t} y\right)\left(\log _{x y z} z\right)\left(\log _{y z t} t\right)<\frac{1}{16}
$$

Proposed by Daniel Sitaru - Romania

Solution 1 by Tran Hong-Vietnam

$$
\begin{gather*}
\text { LHS }=\frac{1}{\log _{x}(z x t)} \cdot \frac{1}{\log _{y}(x y t)} \cdot \frac{1}{\log _{z}(x y z)} \cdot \frac{1}{\log _{t}(y z t)}= \\
=\left(\frac{1}{1+\log _{x} z+\log _{x} t}\right) \cdot\left(\frac{1}{1+\log _{y} x+\log _{y} t}\right) \cdot\left(\frac{1}{1+\log _{z} x+\log _{z} y}\right) \\
\cdot\left(\frac{1}{1+\log _{t} y+\log _{t} z}\right)=\frac{1}{\left(1+\log _{x} z+\log _{x} t\right)\left(1+\log _{y} x+\log _{y} t\right)\left(1+\log _{z} x+\log _{z} y\right)\left(1+\log _{t} y+\log _{t} y\right)} \tag{*}\\
1+\log _{x} z+\log _{x} t \geq 3 \sqrt[3]{\log _{x} z \cdot \log _{x} t} \\
1+\log _{y} x+\log _{y} t \geq 3 \sqrt[3]{\log _{y} x \cdot \log _{y} t} \\
1+\log _{z} x+\log _{z} y \geq 3 \sqrt[3]{\log _{z} x \cdot \log _{z} y} \\
1+\log _{t} y+\log _{t} z \geq 3 \sqrt[3]{\log _{t} y \cdot \log _{t} z} \\
\Rightarrow(*) \leq \frac{1}{3^{43} \sqrt{\log _{x} z \cdot \log _{x} t \cdot \log _{y} x \cdot \log _{y} t \cdot \log _{z} x \cdot \log _{z} y \cdot \log _{t} y \cdot \log _{t} z}}=\frac{1}{3^{4}}<\frac{1}{16} . \text { Proved. }
\end{gather*}
$$

Solution 2 by Amit Dutta-Jamshedpur-India

$$
\because \boldsymbol{A M} \geq \boldsymbol{G} \boldsymbol{M}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro $\log x+\log z+\log t \geq 3 \sqrt[3]{\log x \log z \log t} \Rightarrow \log (x z t) \geq \sqrt[3]{(\log x)(\log z)(\log t)}$

Similarly, $\log (x y t) \geq 3 \sqrt[3]{(\log x)(\log y)(\log t)}$

$$
\begin{aligned}
\log (x y z) & \geq 3 \sqrt[3]{(\log x)(\log y)(\log z)} \\
\log (y z t) & \geq 3 \sqrt[3]{(\log y)(\log z)(\log t)}
\end{aligned}
$$

Let $P=\left(\log _{x z t} x\right)\left(\log _{x y t} y\right)\left(\log _{x y z} z\right)\left(\log _{y z t} t\right)$

$$
P=\left(\frac{\log x}{\log x+\log z+\log t}\right)\left(\frac{\log y}{\log x+\log y+\log t}\right)\left(\frac{\log z}{\log x+\log y+\log z}\right)\left(\frac{\log t}{\log y+\log z+\log t}\right)
$$

$$
\begin{gathered}
P \stackrel{A M>G M}{<}\left(\frac{\log x}{3 \sqrt[3]{\log x \log z \log t}}\right)\left(\frac{\log y}{3 \sqrt[3]{\log x \log y \log t}}\right)\left(\frac{\log z}{3 \sqrt[3]{\log x \log y \log z}}\right)\left(\frac{\log t}{3 \sqrt[3]{\log y \log z \log t}}\right) \\
P<\frac{1}{81}<\frac{1}{16} \quad \text { (proved) }
\end{gathered}
$$

Solution 3 by Sanong Huayrerai-Nakon Pathom-Thailand
For $x, y, z, t>1$, we have: $\left(\log _{x z t} x\right)\left(\log _{y t x} y\right)\left(\log _{z x y} z\right)\left(\log _{t y z} t\right)=$

$$
\begin{gathered}
=\left(\frac{1}{1+\log _{x} z+\log _{x} t}\right)\left(\frac{1}{1+\log _{y} t+\log _{y} x}\right)\left(\frac{1}{1+\log _{z} x+\log _{z} y}\right)\left(\frac{1}{1+\log _{t} y+\log _{t} z}\right) \\
\leq \frac{1}{(1+1+1)^{4}}=\frac{1}{3^{4}}=\frac{1}{81}<\frac{1}{16} \text { Ok }
\end{gathered}
$$

Therefore, it is to be true

$$
\begin{aligned}
& 1=\left(\log _{x} z\right)\left(\log _{y} x\right)\left(\log _{z} y\right)(1) \\
& 1=\left(\log _{x} t\right)\left(\log _{z} x\right)\left(\log _{t} z\right)(1) \\
& \mathbf{1}=\left(\log _{y} t\right)\left(\log _{t} z\right)\left(\log _{z} t\right)(1)
\end{aligned}
$$

UP.178. Let be $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) ; B=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$.
Find: $\Omega=e^{A} \cdot\left(e^{B}\right)^{-1}$; ($e^{A}-$ exponential matrix)
Proposed by Daniel Sitaru - Romania
Solution by Ravi Prakash-New Delhi-India

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), A^{n}=\left(\begin{array}{ll}
1 & n \\
0 & 1
\end{array}\right) \\
& B=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right), B^{n}=\left(\begin{array}{ll}
1 & 0 \\
n & 1
\end{array}\right)
\end{aligned}
$$

$$
\begin{gathered}
\text { ROMANIAN MATHEMATICAL MAGAZINE } \\
\text { www.ssmrmh.ro } \\
\boldsymbol{e}^{\boldsymbol{A}}=\boldsymbol{I}+\boldsymbol{A}+\frac{\mathbf{1}}{\mathbf{2}!} \boldsymbol{A}^{2}+\frac{\mathbf{1}}{3!} A^{3}+\cdots \\
=\left(\begin{array}{ll}
\mathbf{1} & \mathbf{0} \\
\mathbf{0} & \mathbf{1}
\end{array}\right)+\left(\begin{array}{ll}
\mathbf{1} & \mathbf{1} \\
\mathbf{0} & \mathbf{1}
\end{array}\right)+\frac{\mathbf{1}}{\mathbf{2}!}\left(\begin{array}{ll}
\mathbf{1} & \mathbf{2} \\
\mathbf{0} & \mathbf{1}
\end{array}\right)+\frac{\mathbf{1}}{\mathbf{3}!}\left(\begin{array}{ll}
\mathbf{1} & \mathbf{3} \\
\mathbf{0} & \mathbf{1}
\end{array}\right)+\cdots \\
=\left(\begin{array}{ll}
\boldsymbol{e} & \boldsymbol{e} \\
\mathbf{0} & \boldsymbol{e}
\end{array}\right)=\boldsymbol{e}\left(\begin{array}{ll}
\mathbf{1} & \mathbf{1} \\
\mathbf{0} & \mathbf{1}
\end{array}\right)
\end{gathered}
$$

Similarly, $e^{B}=\left(\begin{array}{ll}e & 0 \\ e & e\end{array}\right)=e\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$

$$
\Omega=e^{A}\left(e^{B}\right)^{-1}=e\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(e^{-1}\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right)\right)=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right)=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

UP.179. If in $\triangle A B C, a \geq b \geq c$ then the following relationship holds:

$$
\sqrt[5]{\frac{m_{a}}{m_{b}}}+\sqrt[5]{\frac{m_{b}}{m_{c}}}+\sqrt[5]{\frac{m_{c}}{m_{a}}}-\sqrt[5]{\frac{m_{a}}{m_{c}}}-\sqrt[5]{\frac{m_{b}}{m_{a}}}-\sqrt[5]{\frac{m_{c}}{m_{b}}}<1
$$

Proposed by Daniel Sitaru - Romania

Solution by proposer

First, we prove that if $x \leq y \leq z$ then:

$$
\begin{gathered}
\frac{x}{y}+\frac{y}{z}+\frac{z}{x} \geq \frac{y}{x}+\frac{z}{y}+\frac{x}{z} \\
\frac{x}{y}-\frac{y}{x}+\frac{y}{z}-\frac{z}{y}+\frac{z}{x}-\frac{x}{z} \geq 0 \\
\frac{x^{2}-y^{2}}{x y}+\frac{y^{2}-z^{2}}{2 y}+\frac{z^{2}-x^{2}}{x z} \geq 0 \\
z\left(x^{2}-y^{2}\right)+x\left(y^{2}-z^{2}\right)+y\left(z^{2}-x^{2}\right) \geq 0 \\
x^{2} z-z y^{2}+x y^{2}-x z^{2}+y z^{2}-y x^{2} \geq 0 \\
x z(x-z)+y^{2}(x-z)+y(z-x)(z+x) \geq 0 \\
(x-z)\left(x z+y^{2}-y z-y x\right) \geq 0 \\
(x-z)[y(y-x)-z(y-x)] \geq 0 \\
(x-z)(y-x)(y-z) \geq 0 \\
(z-x)(y-x)(z-y) \geq 0 \text { which is true because, } \\
z-x \geq 0 ; y-x \geq 0, z-y \geq 0
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
By $a \leq b \leq c \Rightarrow m_{a} \geq m_{b} \geq m_{c} \Rightarrow \sqrt[5]{m_{a}} \leq \sqrt[5]{m_{b}} \leq \sqrt[5]{m_{c}}$
We take in (1):

$$
\begin{gathered}
x=\sqrt[5]{m_{a}} ; y=\sqrt[5]{m_{b}} ; z=\sqrt[5]{m_{c}} \\
\frac{\sqrt[5]{m_{a}}}{\sqrt[5]{m_{b}}}+\frac{\sqrt[5]{m_{b}}}{\sqrt[5]{m_{c}}}+\frac{\sqrt[5]{m_{c}}}{\sqrt[5]{m_{a}}} \geq \frac{\sqrt[5]{m_{b}}}{\sqrt[5]{m_{a}}}+\frac{\sqrt[5]{m_{c}}}{\sqrt[5]{m_{b}}}+\frac{\sqrt[5]{m_{a}}}{\sqrt[5]{m_{c}}} \\
\sqrt[5]{\frac{m_{a}}{m_{b}}}+\sqrt[5]{\frac{m_{b}}{m_{c}}}+\sqrt[5]{\frac{m_{c}}{m_{a}}}-\sqrt[5]{\frac{m_{a}}{m_{c}}}-\sqrt[5]{\frac{m_{b}}{m_{a}}}-\sqrt[5]{\frac{m_{c}}{m_{b}}}<1
\end{gathered}
$$

UP.180. If $f:(0, \infty) \rightarrow(0, \infty)$ such that exists

$$
\begin{gathered}
\lim _{x \rightarrow \infty} \frac{f(x+1)}{x f(x)}=a>0 \text { and exists } \lim _{x \rightarrow \infty} \frac{(f(x))^{\frac{1}{x}}}{x} \text { then find: } \\
\Omega=\lim _{x \rightarrow \infty}\left((f(x))^{\frac{2}{x+1}} \cdot\left(\frac{(f(x+1))^{\frac{1}{x+1}}}{(x+1)^{2}}-\frac{(f(x))^{\frac{1}{x}}}{x^{2}}\right)\right)
\end{gathered}
$$

Proposed by D.M. Bătinețu - Giurgiu, Neculai Stanciu - Romania

Solution 1 by Pierre M ounir Cairo-Egypt

Given: $f:(\mathbf{0}, \infty) \rightarrow(\mathbf{0}, \infty), \lim _{x \rightarrow \infty} \frac{f(x+1)}{x f(x)}=a>0$

$$
\text { Find: } \Omega=\lim _{x \rightarrow \infty} f(x)^{\frac{2}{x+1}}\left[\frac{f(x+1)^{\frac{1}{x+1}}}{(x+1)^{2}}-\frac{f(x) \frac{1}{x}}{x^{2}}\right]
$$

We'll make use of the following two theorems of Cauchy:
(1) Let \boldsymbol{f} be defined on (a, ∞), and $\boldsymbol{f}(\boldsymbol{x})>0 \forall x$ and
$\lim _{x \rightarrow \infty} \frac{f(x+1)}{f(x)}$ exists, then $\lim _{x \rightarrow \infty} f(x)^{\frac{1}{x}}=\lim _{x \rightarrow \infty} \frac{f(x+1)}{f(x)}$
(2) Let f be defined on (a, ∞) and $\lim _{x \rightarrow \infty}[f(x+1)-f(x)]$ exists, then $\lim _{x \rightarrow \infty} \frac{f(x)}{x}=\lim _{x \rightarrow \infty}[f(x+1)-f(x)]$
Now, let $g(x)=\frac{f(x)}{x^{x}}$, then $g(x)>0(x, f(x)>0)$

$$
\because \lim _{x \rightarrow \infty} \frac{g(x+1)}{g(x)}=\lim _{x \rightarrow \infty} \frac{f(x+1)}{(x+1)^{x+1}} \times \frac{x^{x}}{f(x)}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
=\lim _{x \rightarrow \infty} \frac{f(x+1)}{x f(x)} \times \lim _{x \rightarrow \infty} \frac{1}{\left(1+\frac{1}{x}\right)^{x+1}}=a \times \frac{1}{e}=\frac{a}{e}
$$

\therefore According to theorem (1) above:

$$
\begin{gathered}
\lim _{x \rightarrow \infty} g(x)^{\frac{1}{x}}=\lim _{x \rightarrow \infty}\left[\frac{f(x)}{x^{x}}\right]^{\frac{1}{x}}=\lim _{x \rightarrow \infty} \frac{g(x+1)}{g(x)}=\frac{a}{e} \\
\therefore \lim _{x \rightarrow \infty} \frac{f(x)^{\frac{1}{x}}}{x}=\frac{a}{e}=\lim _{x \rightarrow \infty} \frac{f(x+1)^{\frac{1}{x+1}}}{x+1}(x \rightarrow x+1) \\
\text { Also, let } h(x)=\frac{f(x)^{\frac{1}{x}}}{x^{2}} \text {, then: } \\
\because \lim _{x \rightarrow \infty}[h(x+1)-h(x)]=\lim _{x \rightarrow \infty}\left[\frac{f(x+1)^{\frac{1}{x+1}}}{(x+1)^{2}}-\frac{f(x)^{\frac{1}{x}}}{x^{2}}\right]= \\
\lim _{x \rightarrow \infty} \frac{1}{x+1} \times \frac{f(x+1)^{\frac{1}{x+1}}}{x+1}-\lim _{x \rightarrow \infty} \frac{1}{x} \times \frac{f(x)^{\frac{1}{x}}}{x}=0 \times \frac{a}{e}-0 \times \frac{a}{e}=0
\end{gathered}
$$

\therefore According to theorem (2) above:
$\lim _{x \rightarrow \infty} \frac{h(x)}{x}=\lim _{x \rightarrow \infty}[\boldsymbol{h}(x+1)-\boldsymbol{h}(x)]=\lim _{x \rightarrow \infty} \frac{f(x)^{\frac{1}{x}}}{x^{3}} \rightarrow\left({ }^{*}\right)$
$\therefore \Omega=\lim _{x \rightarrow \infty} f(x)^{\frac{2}{x+1}}\left[\frac{f(x+1)^{\frac{1}{x+1}}}{(x+1)^{2}}-\frac{f(x)^{\frac{1}{x}}}{x^{2}}\right]$

$$
=\lim _{x \rightarrow \infty} f(x)^{\frac{2}{x+1}} \times \lim _{x \rightarrow \infty}[h(x+1)-h(x)]
$$

$$
=\lim _{x \rightarrow \infty} f(x)^{\frac{2}{x+1}} \times \lim _{x \rightarrow \infty} \frac{f(x)^{\frac{1}{x}}}{x^{3}}[\text { from }(*)]
$$

$$
=\lim _{x \rightarrow \infty} f(x)^{\frac{2}{x+1}+\frac{1}{x}} \times \frac{1}{x^{3}}=\lim _{x \rightarrow \infty} \frac{f(x)^{\frac{3 x+1}{x(x+1)}}}{(x)^{\frac{3 x+1}{x+1}}} \times \frac{(x)^{\frac{3 x+1}{x+1}}}{x^{3}}
$$

$$
=\lim _{x \rightarrow \infty}\left[\frac{f(x)^{\frac{1}{x}}}{x}\right]^{\frac{3 x+1}{x+1}} \times\left(x^{\frac{1}{x}}\right)^{-\frac{2 x}{x+1}}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

$$
\begin{gathered}
=\left[\lim _{x \rightarrow \infty} \frac{f(x)^{\frac{1}{x}}}{x}\right]^{\lim _{x \rightarrow \infty} \frac{3 x+1}{x+1}} \times\left(\lim _{x \rightarrow \infty} x^{\frac{1}{x}}\right)^{\lim _{x \rightarrow \infty}-\frac{2 x}{x+1}} \\
=\left(\frac{a}{e}\right)^{3} \times(1)^{-2}=\left(\frac{a}{e}\right)^{3}
\end{gathered}
$$

Solution 2 by Shafiqur Rahman-Bangladesh

$$
\begin{gathered}
\Omega=\lim _{x \rightarrow \infty}(f(x))^{\frac{2}{x+1}}\left(\frac{(f(x+1))^{\frac{1}{x+1}}}{(x+1)^{2}}-\frac{(f(x))^{\frac{1}{x}}}{x^{2}}\right)= \\
=\lim _{x \rightarrow \infty}\left(x^{-\frac{2}{x+1}}\left(\frac{(f(x))^{\frac{1}{x}}}{x}\right)^{\frac{2}{1+\frac{1}{x}}}\left(x^{2}\left(\frac{\left(\frac{(f(x+1))^{\frac{1}{x+1}}}{x+1}\right)}{x+1}-\frac{\left(\frac{(f(x))^{\frac{1}{x}}}{x}\right)}{x}\right)\right)\right) \\
=\lim _{x \rightarrow \infty}\left(\left(\frac{\frac{f(x+1)}{(x+1)^{x+1}}}{\frac{f(x)}{x^{x}}}\right)^{2}\left(-\frac{f(x+1)}{\frac{f(x)}{x^{x}}}\right)\right)=-\lim _{x \rightarrow \infty}\left(\frac{\frac{f(x+1)}{x f(x)}}{\left(1+\frac{1}{x}\right)^{x+1}}\right) \\
\therefore \lim _{x \rightarrow \infty}(f(x))^{\frac{2}{x+1}}\left(\frac{(f(x+1))^{\frac{1}{x+1}}}{(x+1)^{2}}-\frac{(f(x))^{\frac{1}{x}}}{x^{2}}\right)=\left(\frac{a}{e}\right)^{3}
\end{gathered}
$$

