

ROMANIAN MATHEMATICAL MAGAZINE

SOLUTIONS

Founding Editor DANIEL SITARU

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

SOLUTIONS

RMM SUM MER

 EDITION 2019

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro Proposed by Daniel Sitaru - Romania

Hoang Le Nhat Tung - Hanoi - Vietnam Marin Chirciu - Romania

Pedro H.O. Pantoja - Natal/ RN - Brazil
Vasile Mircea Popa - Romania
Marian Ursărescu - Romania
D.M. Bătinețu - Giurgiu - Romania

Neculai Stanciu - Romania
Shivam Sharma - New Delhi - India
George Apostolopoulos - M essolonghi - Greece

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro Solutions by

Michael Sterghiou-Greece,Tran Hong-Dong Thap-Vietnam Sanong Huayrerai-Nakon Pathom-Thailand,M ustafa Tarek-Cairo-Egypt; Marian Ursărescu-Romania,Soumava Chakraborty-Kolkata-India Khaled Abd Imouti-Damascus-Syria,Pedro H.O. Pantoja - Natal/ RN - Brazil Hoang Le Nhat Tung - Hanoi - Vietnam,Vasile Mircea Popa - Romania; Marin Chirciu - Romania,Serban George Florin - Romania; Minh Tam Le-Vietnam Thanasis Gakopoulos-Athens-Greece,Soumitra M andal-Chandar Nagore-India Zaharia Burghelea - Romania; Avishek Mitra-West Bengal-India Remus Florin Stanca-Romania; Ravi Prakash-New Delhi-India Tobi Joshua-Nigeria; Kartick Chandra Betal-India,Dimitris Kastriotis-AthensGreece,Srinivasa Raghava-AIRMC-India,Shafiqur Rahman-Bangladesh; Naren Bhandari-Bajura-Nepal,Yubian Andres Bedoya Henao-Colombia Kamel Benaicha-Algeirs-Algerie

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

JP.181. Let x, y, z be positive real numbers such that $x+y+z=3$. Find the minimum value of:

$$
\begin{gathered}
T=x^{2} \cdot \sqrt{\frac{3 y z}{2 y^{2}-y z+2 z^{2}}}+y^{2} \cdot \sqrt{\frac{3 z x}{2 z^{2}-z x+2 x^{2}}}+ \\
+z^{2} \cdot \sqrt{\frac{3 x y}{2 x^{2}-x y+2 y^{2}}}+\frac{27}{x y+y z+z x}
\end{gathered}
$$

Proposed by Hoang Le Nhat Tung - Hanoi - Vietnam

Solution by M ichael Sterghiou-Greece

$T=\left(\sum_{c y c} x^{2} \sqrt{\frac{3 y z}{2 y^{2}-y z+2 z^{2}}}\right)+\frac{27}{\sum_{c y c} x y}$ (1) Let $(p, q, r)=\left(\sum_{c y c} x, \sum_{c y c} x y, x y z\right), p=3$.We will show that $T \geq 12$. If $\frac{27}{\sum_{c y c} x y}=\frac{27}{q} \geq 12 \rightarrow q \leq \frac{9}{4}$ we are done as the rest of T is positive, so we assume $\frac{9}{4} \leq \boldsymbol{q} \leq 3$.
(1) $\rightarrow T=\left(\sum_{c y c} x^{2} \cdot \frac{\sqrt{3 x y z}}{\sqrt{2 x y^{2}-x y z+2 x z^{2}}}\right)+\frac{27}{q} \geq 12$ or $\sqrt{3 r} \cdot \sum_{c y c} \frac{x^{2}}{\sqrt{2 x y^{2}-r+2 x z^{2}}}+\frac{27}{q} \geq 12$

The function $f(t)=\frac{1}{\sqrt{t}}$ is convex on $(0,3)\left[f^{\prime \prime}(t)=\frac{3}{4 t^{\frac{5}{2}}}>0\right]$
Applying the generalized Jensen with $a_{i}=x^{2}, y^{2}, z^{2}$ for $i=1,2,3$ we have

$$
\begin{gathered}
T \geq \sqrt{3 r} \cdot \sum_{c y c} x^{2} \cdot \frac{1}{\sqrt{\frac{\sum_{c y c} x^{2}\left(2 x y^{2}-r+2 x z^{2}\right)}{\sum c y c x^{2}}}}+\frac{27}{q} \geq 12 \quad \text { (2) Given that } 12 \cdot \frac{27}{q} \geq 0 \text { and } \\
\begin{aligned}
& \sum_{c y c} x^{3} y^{2}+\sum_{c y c} x^{3} z^{2}=\left(\sum_{c y c} x\right)\left(\sum_{c y c} x^{2} y^{2}\right)-\left(\sum_{c y c} x y\right) \cdot x y z=3\left(q^{2}-6 r\right)-q r \text { we } \\
& \text { arrive at: } \frac{3 r(9-2 q)^{2}}{6\left(q^{2}-6 r\right)-2 q r-(9-2 q) r} \geq\left(12-\frac{27}{q}\right)^{2} \text { or } \\
& f(q)=r\left[-24 q^{5}+324 q^{4}-1170 q^{3}+6075 q^{2}-21870 q+26244\right]-864 q^{4}+ \\
&+3600 q^{3}-1782 q^{2}-7290 q+6561
\end{aligned}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
The function in the brackets $\boldsymbol{g}(\boldsymbol{q})$ can easily show to be ≥ 0 (starting from 3rd derivative $g^{\prime \prime \prime}(q)=-36\left(40 q^{2}-216 q+195\right)>0$ for $\frac{9}{4} \leq q \leq 3$ and going up). So, we can obtain the stronger inequality replacing $r \geq \frac{4 q-9}{3}$ (Schur):

$$
h(q)=\overbrace{(4 q-9)}^{\geq 0} \overbrace{(3-q)}^{\geq 0}\left(8 q^{4}-84 q^{3}+354 q^{2}-1377 q+2673\right)
$$

$$
=(4 q-9)(3-q) \cdot \gamma(q): \text { But } \gamma^{\prime \prime}(q)=12\left(8 q^{2}-42 q+59\right)>0 \rightarrow \gamma^{\prime}(q) \uparrow \leq \gamma^{\prime}(3)<0
$$

$\rightarrow \boldsymbol{\gamma}(\boldsymbol{q}) \downarrow \rightarrow \boldsymbol{\gamma}(\boldsymbol{q})>\gamma(3)>0$ and hence $\boldsymbol{h}(\boldsymbol{q}) \geq \mathbf{0}$. Equality for $\boldsymbol{x}=\boldsymbol{y}=\mathrm{z}=1$
Done!

JP.182. Let a, b, c be positive real numbers such that $a b+b c+c a=3$.
Prove that:

$$
\left(a^{5}-2 a+4\right)\left(b^{5}-2 b+4\right)\left(c^{5}-2 c+4\right) \geq 9 \sqrt{3\left(a^{2}+b^{2}+c^{2}\right)}
$$

Equality occurs if and only if?

Proposed by Hoang Le Nhat Tung - Hanoi - Vietnam

Solution 1 by Tran Hong-Dong Thap-Vietnam
We have: $a^{5}-2 a+4 \geq a^{3}+2 \Leftrightarrow a^{5}-2 a-a^{3}+2 \geq 0$

$$
\Leftrightarrow(a-1)^{2}\left(a^{3}+2 a^{2}+2 a+2\right) \geq 0(\text { true for } a>0)
$$

Similarly: $b^{5}-2 b+4 \geq b^{3}+2 ; c^{5}-2 c+4 \geq c^{3}+2$;
By Hölder's inequality, we have:

$$
\begin{aligned}
&\left(a^{3}+2\right)\left(b^{3}+2\right)\left(c^{3}+2\right)=\left(a^{3}+1^{3}+1^{3}\right)\left(1^{3}+b^{3}+1^{3}\right)\left(1^{3}+1^{3}+c^{3}\right) \\
& \geq(a+b+c)^{3} \\
& \text { Must show that: }(a+b+c)^{3} \geq 9 \sqrt{3\left(a^{2}+b^{2}+c^{2}\right)} \\
& \Leftrightarrow t^{3} \geq 9 \sqrt{3\left(t^{2}-6\right)} \quad(t=a+b+c \geq \sqrt{3(a b+b c+a c)}=3) \\
& \Leftrightarrow t^{6} \geq\left(9 \sqrt{3\left(t^{2}-6\right)}\right)^{2} \Leftrightarrow t^{6}-243 t^{2}+1458 \geq 0 \Leftrightarrow(t-3)^{2}(t+3)^{2}\left(t^{2}+18\right) \geq 0
\end{aligned}
$$

(True)
Equality $\Leftrightarrow a=b=c=1$.

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
Solution 2 by Sanong Huayrerai-Nakon Pathom-Thailand
For all $x>0$, we get that:

$$
\begin{gathered}
x^{5}-2 x+4=\left(x^{5}+1\right)+3-2 x=(x+1)\left(x^{4}-x^{3}+x^{2}-x+1\right)+3-2 x \\
\geq(x+1)\left(x^{3}-x+1\right)+3-2 x=x^{4}+x^{3}-x^{2}-2 x+4 \\
\geq x^{3}+x^{2}-2 x+3 \geq x^{3}+2: \text { fact }
\end{gathered}
$$

Hence for $a, b, c>0$ and $a b+b c+c a=3$, we have

$$
\begin{gathered}
\left(a^{5}-2 a+4\right)\left(b^{5}-2 b+4\right)\left(c^{5}-2 c+4\right) \geq 9 \sqrt{3\left(a^{2}+b^{2}+c^{2}\right)} \\
\text { If }\left(a^{3}+2\right)\left(b^{3}+2\right)\left(c^{2}+2\right) \geq 9 \sqrt{3\left(a^{2}+b^{2}+c^{2}\right)} \\
\text { If }(a+b+c)^{3} \geq 9 \sqrt{3\left(a^{2}+b^{2}+c^{2}\right)} \\
\text { If }(a+b+c)^{6} \geq 243\left(a^{2}+b^{2}+c^{2}\right) \\
\text { If }\left(a^{2}+b^{2}+c^{2}+2(a b+b c+c a)\right)^{3} \geq 243\left(a^{2}+b^{2}+c^{2}\right) \\
\text { If }\left(a^{2}+b^{2}+c^{2}+6\right)^{3} \geq 243\left(a^{2}+b^{2}+c^{2}\right) \\
\text { If } a^{2}+b^{2}+c^{2}+6 \geq 3 \sqrt[3]{9\left(a^{2}+b^{2}+c^{2}\right)}
\end{gathered}
$$

$$
\text { If } a^{2}+b^{2}+c^{2}+6 \geq 3 \sqrt[3]{\left(\frac{243+a^{2}+b^{2}+c^{2}}{3}\right)^{3}}=\frac{3\left(6+a^{2}+b^{2}+c^{2}\right)}{3}=a^{2}+b^{2}+c^{2}+6 \mathrm{ok}
$$

Therefore, it's true.

JP.183. In $\triangle A B C$ the following relationship holds:

$$
3 s\left(\frac{2 r}{R}\right)^{2} \leq \sum h_{a}^{2}\left(\frac{1}{b}+\frac{1}{c}\right) \leq 3 s
$$

Proposed by Marin Chirciu - Romania
Solution 1 by M ustafa Tarek-Cairo-Egypt

$$
\begin{gather*}
\sum h_{a}^{2}\left(\frac{1}{b}+\frac{1}{c}\right)=c \frac{4 \Delta^{2}}{\Delta^{2}}\left(\frac{b+c}{b c}\right)=\frac{4 \Delta^{2}}{a b c} \sum\left(\frac{b+c}{a}\right)=\frac{s r}{R} \sum\left(\frac{b+c}{a}\right) \tag{a}\\
\text { (1) } \Leftrightarrow \sum\left(\frac{b+c}{a}\right) \geq 12 \frac{r}{R^{\prime}} \text { but } \frac{b}{a}+\frac{a}{b} \geq 2 \text { etc } \\
\therefore \sum\left(\frac{b+c}{a}\right)=\sum\left(\frac{b}{a}+\frac{a}{b}\right) \geq 6 \stackrel{? ?}{\geq} 12 \frac{r}{R} \Rightarrow \text { true } \frac{1}{2} \geq \frac{r}{R} \\
\text { (1) (proved), we have } \frac{h_{a}}{w_{a}}=\frac{b+c}{a} \sin \frac{A}{2} \leq 1 \text { etc }
\end{gather*}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\therefore \text { (3) }=\frac{s r}{R} \sum\left(\frac{b+c}{a}\right) \leq \frac{s r}{R} \sum \sin \frac{A}{2}=\frac{s}{R} \sum A I \stackrel{? ?}{\leq} 3 s
$$

We must prove $\sum A I \leq 3 R$, to prove that we will prove that $\sum A I \stackrel{(1)}{\leq}_{\leq}^{\sum a b}{ }^{(5)} \leq 2$

$$
\begin{gathered}
\text { (5) } \Leftrightarrow s^{2}+4 R r+r^{2} \leq 4 R^{2}+4 r^{2}+8 R r \leftrightarrow s^{2} \leq 4 R^{2}+4 R r+3 r^{2} \\
\text { True } \rightarrow \text { (Gerretsen) } \rightarrow(5 \text {-proved) } \\
\therefore \sum A I \leq 2(R+r) \leq 3 R \leftrightarrow 2 r \leq R \rightarrow \text { true (Euler) } \\
\therefore \sum A I \leq 3 R, \therefore 2 \text { (proved) }
\end{gathered}
$$

Solution 2 by Tran Hong-Dong Thap-Vietnam
Using $h_{a}=\frac{2 S}{a}$ we obtain: $\sum h_{a}^{2}\left(\frac{1}{b}+\frac{1}{c}\right)=\sum \frac{b+c}{b c} \cdot \frac{4 S^{2}}{a^{2}}=\frac{4 S^{2}}{a b c} \sum \frac{b+c}{a}$

$$
\begin{aligned}
& =\frac{4 S^{2}}{4 R S} \sum \frac{b+c}{a}=\frac{S}{R} \sum \frac{b+c}{a}=\Omega \\
& \because \sum \frac{2 s-a}{a}=2 s\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-3 \\
& =2 s\left(\frac{a b+b c+c a}{a b c}\right)-3=2 s\left(\frac{s^{2}+4 R r+r^{2}}{4 R s r}\right)-3 \\
& =\frac{s^{2}+4 R r+r^{2}}{2 R r}-3=\frac{s^{2}-2 R r+r^{2}}{2 R r} \\
& \Rightarrow \Omega=\frac{s r}{R} \cdot \frac{s^{2}-2 R r+r^{2}}{2 R r}=\frac{s}{2 R^{2}}\left(s^{2}-2 R r+r^{2}\right) \\
& \Omega \geq 3 s\left(\frac{2 r}{R}\right)^{2} \\
& \Leftrightarrow s^{2}-2 R r+r^{2} \geq 24 r^{2} \Leftrightarrow s^{2}-2 R r \geq 23 r^{2} \\
& \therefore s^{2} \geq 16 R r-5 r^{2} \Rightarrow 14 R r-5 r^{2} \geq 23 r^{2} \\
& \Leftrightarrow 14 R r \geq 28 r^{2} \Leftrightarrow R \geq 2 r \text { (true) } \Rightarrow \text { (1) true. } \\
& \Omega \leq 3 s \text { (2) } \\
& \Leftrightarrow S^{2}-2 R r+r^{2} \leq 6 R^{2} \\
& \therefore s^{2} \leq 4 R^{2}+4 R r+3 r^{2} \Rightarrow 4 R^{2}+2 R r+4 r^{2} \leq 6 R^{2} \\
& \Leftrightarrow 2 R r+4 r^{2} \leq 2 R^{2} \Leftrightarrow R r+2 r^{2} \leq R^{2} \\
& \text { (True } \because R r+2 r^{2} \stackrel{(\text { Euler })}{\leq} R \cdot \frac{R}{2}+2 \cdot \frac{R^{2}}{4}=R^{2} \text {) } \Rightarrow \text { (2) true. }
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

JP.184. In $\triangle A B C$ the following relationship holds:

$$
\frac{18 r}{R} \leq \sum h_{a}^{2}\left(\frac{1}{b}+\frac{1}{c}\right)^{2} \leq 9
$$

Proposed by Marin Chirciu - Romania

Solution 1 by Marian Ursărescu-Romania

$$
\begin{equation*}
\sum h_{a}^{2}\left(\frac{1}{b}+\frac{1}{c}\right)^{2}=\sum \frac{4 S^{2}}{a^{2}}\left(\frac{b+c}{b c}\right)^{2}=\sum \frac{4 S^{2}(b+c)^{2}}{a^{2} b^{2} c^{2}}=\sum \frac{(b+c)^{2}}{4 R^{2}} \tag{1}
\end{equation*}
$$

From (1) we must show: $\frac{18 r}{R} \leq \frac{\Sigma(b+c)^{2}}{4 R^{2}} \leq 9 \Leftrightarrow 72 R r \leq \sum(b+c)^{2} \leq 36 R^{2}$

$$
\begin{equation*}
\sum(b+c)^{2}=2\left(a^{2}+b^{2}+c^{2}+a b+a c+b c\right) \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\text { But } a b+a c+b c \leq a^{2}+b^{2}+c^{2} \leq 9 R^{2} \tag{3}
\end{equation*}
$$

From (3)+ (4) $\Rightarrow \Sigma(b+c)^{2} \leq 36 R^{2}$
From Cauchy's inequality $\Rightarrow \Sigma(\boldsymbol{b}+\boldsymbol{c})^{2} \geq \frac{1}{3}\left(\sum(\boldsymbol{b}+\boldsymbol{c})\right)^{2} \Leftrightarrow \Sigma(\boldsymbol{b}+\boldsymbol{c})^{2} \geq \frac{16 s^{2}}{3} \Rightarrow$ we
must show: $\frac{16 s^{2}}{3} \geq 72 R r \Leftrightarrow 2 s^{2} \geq 27 R r$ which it is true (6)

$$
\text { From }(4)+(6) \Rightarrow 2 \text { it is true. }
$$

Solution 2 by Tran Hong-Dong Thap-Vietnam

$$
\text { Using } h_{a}=\frac{2 \Delta}{a}\left(\text { etc) we obtain: } \Omega=\sum h_{a}^{2}\left(\frac{1}{b}+\frac{1}{c}\right)^{2}=\sum \frac{4 \Delta^{2}}{a^{2}} \cdot \frac{(b+c)^{2}}{(b c)^{2}}=\frac{4 \Delta^{2}}{(a b c)^{2}} \sum(b+c)^{2}\right.
$$

$$
\begin{gathered}
=\frac{2\left(a^{2}+b^{2}+c^{2}+a b+b c+c a\right)}{4 R^{2}}=\frac{a^{2}+b^{2}+c^{2}+a b+b c+c a}{2 R^{2}} \\
=\frac{2 s^{2}-8 R r-2 r^{2}+s^{2}+4 R r+r^{2}}{2 R^{2}}=\frac{3 s^{2}-4 R r-r^{2}}{2 R^{2}} \\
\Omega \geq \frac{18 r}{R} \Leftrightarrow 3 s^{2}-4 R r-r^{2} \geq 36 R r \Leftrightarrow 3 s^{2} \geq 40 R r+r^{2} \\
\because s^{2} \geq 16 R r-5 r^{2} \Rightarrow 48 R r-15 r^{2} \geq 40 R r+r^{2} \Leftrightarrow 8 R r \geq 16 r^{2} \Leftrightarrow R \geq 2 r \text { (Euler) } \\
\Omega \leq 9 \Leftrightarrow 3 s^{2}-4 R r-r^{2} \leq 18 R^{2} \Leftrightarrow 3 s^{2} \leq 18 R^{2}+4 R r+r^{2} \\
\therefore s^{2} \leq 4 R^{2}+3 r^{2}+4 R r \Rightarrow 12 R^{2}+9 r^{2}+12 R r \leq 18 R^{2}+4 R r+r^{2} \\
\Leftrightarrow 8 R r+8 r^{2} \leq 6 R^{2} \Leftrightarrow 4 R r+4 r^{2} \leq 3 R^{2}
\end{gathered}
$$

It is true because: $4 R r+4 r^{2} \stackrel{(\text { Euler })}{\leq} 4 R \cdot \frac{R}{2}+4 \cdot \frac{R^{2}}{4}=3 R^{2}$. Proved.

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Solution 3 by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\frac{18 r}{R} \stackrel{(1)}{\leq} \sum h_{a}^{2}\left(\frac{1}{b}+\frac{1}{c}\right)^{2} \stackrel{(2)}{\leq} 9 \\
\sum h_{a}^{2}\left(\frac{1}{b}+\frac{1}{c}\right)^{2}=\sum \frac{b^{2} c^{2}}{4 R^{2}} \cdot \frac{(b+c)^{2}}{b^{2} c^{2}} \\
=\frac{1}{4 R^{2}} \sum(b+c)^{2} \stackrel{\text { Bogdan Fustei }}{\leq} \frac{1}{4 R^{2}} \sum\left(2 \sqrt{R\left(r_{b}+r_{c}\right)}\right)^{2} \\
=\frac{1}{4 R^{2}} \sum\left(4 R \cdot 4 R \cos ^{2} \frac{A}{2}\right)=2 \sum(1+\cos A) \\
=2\left(\frac{4 R+r}{R}\right) \stackrel{\text { Euler }}{\leq} \frac{8 R+r}{R}=9 \Rightarrow(2) \text { is true }
\end{gathered}
$$

Also, $\sum h_{a}^{2}\left(\frac{1}{b}+\frac{1}{c}\right)^{2}=\frac{1}{4 R^{2}} \sum(b+c)^{2} \geq \frac{1}{12 R^{2}}\left\{\sum(b+c)\right\}^{2}=\frac{16 S^{2}}{12 R^{2}}=\frac{4 s^{2}}{3 R^{2}} \stackrel{?}{\geq} \frac{18 r}{R}$

$$
\Leftrightarrow 2 s^{2} \stackrel{?}{\geq} 27 R r \Leftrightarrow 2\left(s^{2}-16 R r+5 r^{2}\right)+5 r(R-2 r) \stackrel{?}{\geq} 0
$$

\rightarrow true by Gerretsen \& Euler $\Rightarrow(1)$ is true (proved)

JP.185. In $\triangle A B C$ the following relationship holds:

$$
\sum r_{a}^{2}\left(\frac{1}{b}+\frac{1}{c}\right)^{2} \geq \frac{9 R}{2 r}
$$

Proposed by Marin Chirciu - Romania

Solution 1 by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\text { LHS }=\sum \frac{r^{2} S^{2}}{(s-a)^{2}} \cdot \frac{(b+c)^{2} a^{2}}{16 R^{2} r^{2} s^{2}} \stackrel{(1)}{=} \frac{1}{16 R^{2}} \sum \frac{a^{2}(b+c)^{2}}{(s-a)^{2}} \\
\text { Now, } \sum \frac{a^{2}(b+c)^{2}}{(s-a)^{2}}=\sum \frac{a^{2}(s+s-a)^{2}}{(s-a)^{2}}=\sum \frac{a^{2}\left\{s^{2}+(s-a)^{2}+2 s(s-a)\right\}}{(s-a)^{2}} \\
=s^{2} \sum \frac{a^{2}-s^{2}+s^{2}}{(s-a)^{2}}+2\left(s^{2}-4 R r-r^{2}\right)+2 s \sum \frac{a^{2}-s^{2}+s^{2}}{(s-a)} \\
=s^{2} \sum \frac{a+s}{a-s}+\frac{s^{4}}{s^{2} r^{2}}\left(\sum \frac{r^{2} s^{2}}{(s-a)^{2}}\right)+2\left(s^{2}-4 R r-r^{2}\right)- \\
\quad-2 s \sum(a+s)+\frac{2 s^{3}}{r^{2} s} \sum(s-b)(s-c)
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\begin{gathered}
=s^{2} \sum \frac{a-s+2 s}{a-s}+\frac{s^{2}}{r^{2}}\left(\sum r_{a}^{2}\right)+2\left(s^{2}-4 R r-r^{2}\right)-2 s(5 s)+ \\
+\frac{2 s^{2}}{r^{2}} \sum\left(s^{2}-s(b+c)+b c\right)
\end{gathered}
$$

$$
=s^{2}(3)-\frac{2 s^{3}}{r^{2} s} \sum\left(s^{2}-s(b+c)+b c\right)+\frac{s^{2}}{r^{2}}\left\{(4 R+r)^{2}-2 s^{2}\right\}+
$$

$$
+2\left(s^{2}-4 R r-r^{2}\right)-10 s^{2}+\frac{2 s^{2}}{r^{2}} \sum\left(s^{2}-s(b+c)+b c\right)
$$

$$
=-5 s^{2}-8 R r-2 r^{2}+\frac{s^{2}}{r^{2}}\left\{(4 R+r)^{2}-2 s^{2}\right\}
$$

$$
=\frac{-r^{2}\left(5 s^{2}+8 R r+2 r^{2}\right)+s^{2}\left(16 R^{2}+8 R r+r^{2}\right)-2 s^{4}}{r^{2}}
$$

$$
\stackrel{(2)}{=} \frac{s^{2}\left(16 R^{2}+8 R r-4 r^{2}\right)-2 r^{3}(4 R+r)-2 s^{4}}{r^{2}}
$$

$$
(1),(2) \Rightarrow L H S=\frac{s^{2}\left(8 R^{2}+4 R r-2 r^{2}\right)-r^{3}(4 R+r)-s^{4}}{8 R^{2} r^{2}} \geq \frac{9 R}{2 r}
$$

$$
\Leftrightarrow \frac{s^{2}\left(8 R^{2}+4 R r-2 r^{2}\right)-r^{3}(4 R+r)-s^{4}-36 R^{3} r}{8 R^{2} r^{2}} \geq 0
$$

$$
\Leftrightarrow s^{2}\left(8 R^{2}+4 R r-2 r^{2}\right) \stackrel{(3)}{\geq} s^{4}+r^{3}(4 R+r)+36 R^{3} r
$$

Now, RHS of (3) $\stackrel{\text { Gerretsen }}{\leq} s^{2}\left(4 R^{2}+4 R r+3 r^{2}\right)+r^{3}(4 R+r)+36 R^{3} r$

$$
\stackrel{?}{\leq} s^{2}\left(8 R^{2}+4 R r-2 r^{2}\right) \Leftrightarrow s^{2}\left(4 R^{2}-5 r^{2}\right)-r^{3}(4 R+r)-36 R^{3} r \underset{(4)}{\underset{?}{2}} 0
$$

Again, LHS of (4) $\stackrel{\text { Gerretsen }}{\geq} r(16 R-5 r)\left(4 R^{2}-5 r^{2}\right)-r^{3}(4 R+r)-36 R^{3} r \geq 0$

$$
\Leftrightarrow 7 t^{3}-5 t^{2}-21 t+6 \geq ?\left(t=\frac{R}{r}\right) \Leftrightarrow(t-2)\left(7 t^{2}+9(t-2)+15\right) \stackrel{?}{\geq} 0
$$

$$
\rightarrow \text { true } \because t \stackrel{\text { Euler }}{\geq} 2 \Rightarrow(4) \Rightarrow(3) \Rightarrow \text { given inequality is true (proved) }
$$

Solution 2 by Tran Hong-Dong Thap-Vietnam

$$
\begin{gathered}
\sum r_{a}^{2}\left(\frac{1}{b}+\frac{1}{c}\right)^{2}=\sum \frac{\Delta^{2}}{(s-a)^{2}} \cdot \frac{(b+c)^{2}}{(b c)^{2}}=\frac{1}{(4 R)^{2}} \sum\left[\frac{a(b+c)}{s-a}\right]^{2}=\Omega \\
\sum\left[\frac{a(b+c)}{s-a}\right]^{2} \geq \frac{1}{3}\left[\sum \frac{a(b+c)}{s-a}\right]^{2}=\frac{1}{3}\left[\sum \frac{a(s+s-a)}{s-a}\right]^{2}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
$=\frac{1}{3}\left[\sum \frac{a s}{s-a}+\sum a\right]^{2}=\frac{1}{3}\left[s \sum \frac{a}{s-a}+2 s\right]^{2}$ $=\frac{1}{3}\left[s\left(\frac{4 R}{r}-2\right)+2 s\right]^{2}=\frac{1}{3} \cdot \frac{16 s^{2} R^{2}}{r^{2}} \Rightarrow \Omega \geq \frac{s^{2}}{3 r^{2}} \stackrel{(1)}{\geq} \frac{9 R}{2 r}$
(1) $\Leftrightarrow 2 s^{2} \geq 27 R r$
$\therefore s^{2} \geq 16 R r-5 r^{2} \Rightarrow 2 s^{2} \geq 32 R r-10 r^{2}$
$\Rightarrow 32 R r-10 r^{2} \geq 27 R r \Leftrightarrow 5 R r \geq 10 r^{2} \Leftrightarrow R \geq 2 r$ (Euler) \Rightarrow (1) true. Proved.

JP.186. Solve for real numbers:

$$
\left\{\begin{array}{c}
2 x^{2}+y^{2}=x \sqrt{y}(2 \sqrt{x}+\sqrt{y}) \\
x^{5}-3 \sqrt{x y}+4 \leq \sqrt{2 y^{2}-2 x+1}+\sqrt[3]{3 x^{3}-3 x y+1}
\end{array}\right.
$$

Proposed by Hoang Le Nhat Tung - Hanoi - Vietnam
Solution 1 by Tran Hong-Dong Thap-Vietnam

$$
\begin{gather*}
x, y \geq 0 ; \text { let } y=t x \quad(t \geq 0) \\
2 x^{2}+t^{2} x^{2}=x \sqrt{t x}(2 \sqrt{x}+\sqrt{t x}) \Leftrightarrow x^{2}\left(2+t^{2}\right)=x^{2} \sqrt{t}(2+\sqrt{t}) \\
\Leftrightarrow\left[\begin{array} { c }
{ x = 0 } \\
{ x ^ { 2 } = 0 } \\
{ 2 + t ^ { 2 } - (2 \sqrt { t } + t) = 0 }
\end{array} \Leftrightarrow \left[t^{2}-(t+2 \sqrt{t})+2=0 \quad(*)\right.\right. \\
\therefore \text { If } x=0 \Rightarrow y=0 \text { then: } \\
0^{5}-3 \sqrt{0 \cdot 0}+4 \leq \sqrt{2 \cdot 0^{2}-2 \cdot 0+1}+\sqrt[3]{3 \cdot 0^{3}-3 \cdot 0 \cdot 0+1} \\
\Leftrightarrow 4 \leq 2\left(\text { contrary } \because t^{2}-(t+2 \sqrt{t})+2=0 . \text { Let } u=\sqrt{t}(u \geq 0)\right. \\
u^{4}-\left(u^{2}+2 u\right)+2=0 \\
\Leftrightarrow u^{4}-u^{2}-2 u+2=0 \Leftrightarrow(u-1)^{2}\left[(u+1)^{2}+1\right]=0 \\
\Leftrightarrow u=1 \Leftrightarrow t=1 \Leftrightarrow y=x
\end{gather*}
$$

We must show that: $\sqrt{2 x^{2}-2 x+1}+\sqrt[3]{3 x^{3}-3 x^{2}+1} \leq x^{5}-3 x+4$

$$
\begin{gather*}
x^{5}-3 x+4 \geq 2 \sqrt{2 x^{2}-2 x+1} \tag{3}\\
\Leftrightarrow\left(x^{5}-3 x+4\right)^{2} \geq 4\left(2 x^{2}-2 x+1\right) \\
\Leftrightarrow(x-1)^{2}\left(x^{8}+2 x^{7}+3 x^{6}+4 x^{5}-x^{4}+2 x^{3}+5 x^{2}+8 x+12\right) \geq 0
\end{gather*}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro
It is true with $x \geq 0$:

$$
\begin{gathered}
\because 0 \leq x \leq 1 \Rightarrow x^{8}+2 x^{7}+3 x^{6}+4 x^{5}+2 x^{3}+5 x^{2}+8 x+12-x^{4} \geq 12-1=11>0 \\
\because x>1 \Rightarrow x^{4}\left(x^{2}-1\right)+2 x^{7}+3 x^{6}+4 x^{5}+2 x^{3}+5 x^{2}+8 x+12>0 \\
x^{5}-3 x+4 \geq 2 \sqrt[3]{3 x^{3}-3 x^{2}+1} \text { (4) } \\
\Leftrightarrow\left(x^{5}-3 x+4\right)^{3} \geq 8\left(3 x^{3}-3 x^{2}+1\right) \\
\Leftrightarrow(x-1)^{2}\left(x^{13}+2 x^{12}+3 x^{11}+4 x^{10}-4 x^{9}+\right. \\
\left.+4 x^{7}+8 x^{6}+38 x^{5}-2 x^{4}+5 x^{3}+12 x^{2}-32 x+56\right) \geq 0
\end{gathered}
$$

It is true with $x \geq 0$:

$$
\begin{gathered}
\because 0 \leq x \leq 1 \Rightarrow x^{13}+2 x^{12}+3 x^{11}+4 x^{10}+8 x^{5}+5 x^{3}+12 x^{2}+56- \\
-\left(4 x^{9}+2 x^{4}-32 x\right)>56-(4+2+32)=12>0 \\
\because x>1 \Rightarrow 4 x^{9}(x-1)>0 ; 2 x^{4}(x-1)>0 \\
56+\left\{x^{13}+2 x^{12}+3 x^{11}+6 x^{5}+5 x^{3}+12 x^{2}-32 x\right\}= \\
=56+x\left(x^{12}+2 x^{11}+3 x^{10}+\mathbf{6} x^{4}+5 x^{2}+\mathbf{1 2 x}-32\right) \\
>56+(1+2+3+6+5+12-32)=53>0
\end{gathered}
$$

$$
\text { From }(3) \text { and }(4) \Rightarrow(2) \text { true. }
$$

From (1) and (2) we have equality $\Leftrightarrow x=1 \Rightarrow y=x=1$. Hence: $(x, y)=(1,1)$
Solution 2 by Khaled Abd Imouti-Damascus-Syria

$$
\left\{\begin{array}{c}
2 x^{2}+y^{2}=x \sqrt{y}(2 \sqrt{x}+\sqrt{y}) \tag{II}\\
x^{5}-3 \sqrt{x y}+4 \leq \sqrt{2 y^{2}-2 x+1}+\sqrt[3]{3 x^{3}-3 x y+1}
\end{array}\right.
$$

From equation (I): $y^{2}+2 x^{2}=2 x \sqrt{x} \sqrt{y}+x y$ Let be the function: $f(y)=y^{2}-x y-2 x \sqrt{x} \cdot \sqrt{y}+2 x^{2}, y \geq 0$

$$
\begin{gathered}
f^{\prime}(y)=2 y-x-2 x \sqrt{x} \cdot \frac{1}{2 \sqrt{y}} ; f^{\prime}(y)=2 y-x+\frac{x \sqrt{x}}{\sqrt{y}} ; f^{\prime}(y)=\frac{2 y \sqrt{y}-x \sqrt{y}+x \sqrt{x}}{\sqrt{y}} \\
f^{\prime}(y)=0 \Rightarrow 2 y \sqrt{y}-x \sqrt{y}+x \sqrt{x}=0 ;(2 y-x) \sqrt{y}=-x \sqrt{x} ;(2 y-x)^{2} y=x^{3} \\
4 y^{3}-4 y^{2} x+x^{2} \cdot y=x^{3} ; 4 y^{3}-4 y^{2} x+x^{2} y-x^{3}=0 ;(y-x)\left(4 y^{2}+x^{2}\right)=0
\end{gathered}
$$

$$
\left\langle\begin{array}{c}
y=x \\
x=y=0 \text { impossible }
\end{array}\right.
$$

$$
\left.\boldsymbol{D}_{\boldsymbol{f}^{\prime}}=\right] \mathbf{0},+\infty[
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Equation (1) satisfying when $x=y: 2 x^{2}+x^{2}=x \sqrt{x}(2 \sqrt{x}+\sqrt{x})$

$$
3 x^{2}=x \sqrt{x}(3 \sqrt{x}) ; 3 x^{2}=3 x^{2}
$$

y	0	\boldsymbol{x}	
$\boldsymbol{f}^{\prime}(\boldsymbol{y})$	$--------0+++++++++$		
$\boldsymbol{f}(\boldsymbol{y})$	$2 x^{2}$	0	

For equation (II), $y=x$

$$
\begin{aligned}
& x^{5}-3 x+4 \leq \sqrt{2 x^{2}-2 x+1}+\sqrt[3]{3 x^{3}-3 x^{2}+1} \\
& x^{5}-3 x+4 \leq \sqrt{2 x(x-1)+1}+\sqrt[3]{3 x^{2}(x-1)+1}
\end{aligned}
$$

This inequality is true if and only if: $x=1$

$$
2 \leq \sqrt{1}+\sqrt{1}, 2 \leq 2
$$

So: the common solving is $\{(x, y)=(1,1)\}$

JP.187. There is a positive integer \boldsymbol{n} of 2018 ' \boldsymbol{s} digits such that the sequence:

$$
S(S(3 n)), S(S(2 n)), S(S(S(n)))
$$

is an increasing arithmetic progression formed by prime numbers?
Obs.: $S(n)$ denotes sum of the digits of n.
Proposed by Pedro H.O. Pantoja - Natal/ RN - Brazil

Solution by proposer

Yes. We will show that the number $n=2 \underbrace{3 \cdots 3}_{2016} 5$ satisfies the conditions of the problem. First, we calculate: $2 n=\underbrace{6 \cdots 66}_{2015} 70$ and $3 n=7 \underbrace{\mathbf{0} \cdots 0}_{2016} 5$.

Therefore, $S(3 n)=12 \Rightarrow$
$S(S(3 n))=3, S(2 n)=11+6 \cdot 2015=12101 \Rightarrow S(S(2 n))=5$ and finally, we get $S(n)=\mathbf{7 + 3} \cdot \mathbf{2 0 1 6}=\mathbf{6 0 5 5} \Rightarrow S(S(n))=16 \Rightarrow S(S(S(n)))=7$. Thus, the sequence $S(S(3 n)), S(S(2 n)), S(S(S(n)))$ it's the same as $3,5,7$.

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

JP.188. Let x, y, z be positive real numbers such that: $x+y+z=3$. Find the minimum value of:

$$
\begin{aligned}
P= & \frac{x^{3}}{y\left(2 y^{2}-y z+2 z^{2}\right)^{2}}+\frac{y^{3}}{z\left(2 z^{2}-z x+2 x^{2}\right)^{2}}+ \\
& +\frac{z^{3}}{x\left(2 x^{2}-x y+2 y^{2}\right)^{2}}+\frac{\sqrt[4]{x}+\sqrt[4]{y}+\sqrt[4]{z}}{27}
\end{aligned}
$$

Proposed by Hoang Le Nhat Tung - Hanoi - Vietnam

Solution by proposer

- By Cauchy - Schwarz inequality we have:

$$
\begin{equation*}
\sum \frac{x^{3}}{y\left(2 y^{2}-y z+2 z^{2}\right)^{2}}=\sum \frac{\left(\frac{x^{2}}{2 y^{2}-y z+2 z^{2}}\right)^{2}}{x y} \geq \frac{\left(\sum_{2 y^{2}-y z+2 z^{2}}\right)^{2}}{\sum x y} \tag{1}
\end{equation*}
$$

$$
+ \text { Other, } \Sigma \frac{x^{2}}{2 y^{2}-y z+2 z^{2}}=\sum \frac{x^{4}}{2 x^{2} y^{2}-x^{2} y z+2 x^{2} z^{2}} \geq \frac{\left(\Sigma x^{2}\right)^{2}}{\sum\left(2 x^{2} y^{2}-x^{2} y z+2 x^{2} z^{2}\right)} \geq \mathbf{1}
$$

$$
\begin{equation*}
\Leftrightarrow\left(\sum x^{2}\right)^{2} \geq 4 \sum x^{2} y^{2}-x y z \sum x \Leftrightarrow \sum x^{4}+x y z \sum x \geq 2 \sum x^{2} y^{2} \tag{2}
\end{equation*}
$$

+ By Schur's and AM-GM inequality:

$$
\begin{gather*}
\sum x^{2}(x-y)(x-z) \geq 0 \Rightarrow \sum x^{4}+x y z \sum x \geq \sum x y\left(x^{2}+y^{2}\right) \\
\sum x y\left(x^{2}+y^{2}\right) \geq \sum x y \cdot 2 x y=2 \sum x^{2} y^{2} \Rightarrow \sum x^{4}+x y z \sum x \geq 2 \sum x^{2} y^{2} \Rightarrow \text { (3) True. } \\
- \text { Let (1), (2): } \Rightarrow \sum \frac{x^{3}}{y\left(2 y^{2}-y z+2 z^{2}\right)^{2}} \geq \frac{1}{\sum x y} \text { (3) } \tag{3}
\end{gather*}
$$

- By AM-GMinequality for 6 positive real numbers we have:

$$
\begin{gathered}
\left\{\begin{array}{c}
\sqrt[4]{x}+\sqrt[4]{x}+\sqrt[4]{x}+\sqrt[4]{x}+x^{3}+x^{2} \geq 6 \cdot \sqrt[6]{x \cdot x^{3} \cdot x^{2}}=6 x \\
\sqrt[4]{y}+\sqrt[4]{y}+\sqrt[4]{y}+\sqrt[4]{y}+y^{3}+y^{2} \geq 6 \cdot \sqrt[6]{y \cdot y^{3} \cdot y^{2}}=6 y \Leftrightarrow \\
\sqrt[4]{z}+\sqrt[4]{z}+\sqrt[4]{z}+\sqrt[4]{z}+z^{3}+z^{2} \geq 6 \cdot \sqrt[6]{z \cdot z^{3} \cdot z^{2}}=6 z
\end{array}\right. \\
\Leftrightarrow\left\{\begin{array}{l}
4 \cdot \sqrt[4]{x} \geq 6 x-x^{2}-x^{3} \\
4 \cdot \sqrt[4]{y} \geq 6 y-y^{2}-y^{3} \\
4 \cdot \sqrt[4]{z} \geq 6 z-z^{2}-z^{3}
\end{array}\right. \\
\Rightarrow 4\left(\sum \sqrt[4]{x}\right) \geq 6 \sum x-\sum x^{2}-\sum x^{3}=6 \cdot 3-\left(\sum x\right)^{2}+2 \sum x y-\sum x^{3}=2 \sum x y+9-\sum x^{3}(4) \\
+ \text { Other, because }
\end{gathered}
$$

$$
\begin{gather*}
\text { ROMANIAN MATHEMATICAL MAGAZINE } \\
\text { www.ssmrmh.ro } \\
\boldsymbol{x}+\boldsymbol{y}+\boldsymbol{z}=\mathbf{3} \boldsymbol{;} \boldsymbol{x}, \boldsymbol{y}, \mathbf{z}>0 \Rightarrow \sum(\boldsymbol{x}-\mathbf{3})(\boldsymbol{x}-\mathbf{1})^{2} \leq \mathbf{0} \Leftrightarrow \sum(\boldsymbol{x}-\mathbf{3})\left(\boldsymbol{x}^{2}-\mathbf{2 x}+\mathbf{1}\right) \leq \mathbf{0} \\
\Leftrightarrow \sum x^{3}-\mathbf{5} \sum x^{2}+\mathbf{7} \sum \boldsymbol{x}-\mathbf{9} \leq \mathbf{0} \Leftrightarrow \sum x^{3} \leq \mathbf{5} \sum x^{2}-\mathbf{7} \sum x+\mathbf{9}=\mathbf{5} \cdot \mathbf{3}^{2}-\mathbf{1 0} \sum x y-\mathbf{7} \cdot \mathbf{3}+\mathbf{9} \\
\Leftrightarrow \sum x^{3} \leq \mathbf{3 3}-\mathbf{1 0} \sum x y . \text { Let (4): } \Rightarrow \mathbf{4}\left(\sum \sqrt[4]{\boldsymbol{x}}\right) \geq \mathbf{2} \sum x y+\mathbf{9}-\left(\mathbf{3 3}-\mathbf{1 0} \sum x y\right) \Leftrightarrow \sum \sqrt[4]{\boldsymbol{x}} \geq \mathbf{3} \sum x y-\mathbf{6} \tag{5}
\end{gather*}
$$

- Let (4), (5) and using AM-GM inequality:

$$
\begin{gathered}
\Rightarrow P \geq \frac{1}{\sum x y}+\frac{3 \sum x y-6}{27}=\frac{1}{\sum x y}+\sum x y-\frac{2}{9} \geq 2 \sqrt{\sum x y \cdot \frac{\sum x y}{9}}-\frac{2}{9}=\frac{2}{3}-\frac{2}{9}=\frac{4}{9} \\
\Rightarrow P \geq \frac{4}{9} \Rightarrow P_{\min }=\frac{4}{9} . \text { Equality occurs if: }\left\{\begin{array}{l}
x=y=z>0 \\
x+y+z=3
\end{array} \Leftrightarrow x=y\right.
\end{gathered}
$$

JP.189. Prove that:

$$
\cot \frac{\pi}{26}-4 \sin \frac{5 \pi}{13}=\sqrt{13+2 \sqrt{13}}
$$

Proposed by Vasile Mircea Popa - Romania
Solution by proposer
We use the relationship:

$$
\begin{array}{r}
\sin \frac{\pi}{13}+\sin \frac{2 \pi}{13}+\sin \frac{3 \pi}{13}+\sin \frac{4 \pi}{13}+\sin \frac{5 \pi}{13}+\sin \frac{6 \pi}{13}=\frac{1}{2} \cot \frac{\pi}{26} \\
\sin \frac{\pi}{13}+\sin \frac{2 \pi}{13}+\sin \frac{3 \pi}{13}+\sin \frac{4 \pi}{13}-\sin \frac{5 \pi}{13}+\sin \frac{6 \pi}{13}=\frac{1}{2} \sqrt{13+2 \sqrt{13}} \tag{2}
\end{array}
$$

The relationship from the problem statement is resulting by subtracting the relationships (1) and (2).
The relationship (1) result immediately from the known general relationship:

$$
\sum_{k=1}^{n} \sin k x=\sin \frac{(n+1) x}{2} \sin \frac{n x}{2} \csc \frac{x}{2}
$$

The relationship (2) results by summing relationships:

$$
\begin{align*}
& \sin \frac{\pi}{13}+\sin \frac{3 \pi}{13}+\sin \frac{4 \pi}{13}=\frac{1}{2} \sqrt{\frac{13+3 \sqrt{13}}{2}} \tag{3}\\
& \sin \frac{2 \pi}{13}-\sin \frac{5 \pi}{13}+\sin \frac{6 \pi}{13}=\frac{1}{2} \sqrt{\frac{13-3 \sqrt{13}}{2}} \tag{4}
\end{align*}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
We demonstrate relationships (3) and (4).
We make the notation: $E=\sin \frac{\pi}{13}+\sin \frac{3 \pi}{13}+\sin \frac{4 \pi}{13}$. We obtain:

$$
E^{2}=\frac{3}{2}+\frac{1}{2}\left(-\cos \frac{2 \pi}{13}-\cos \frac{6 \pi}{13}+\cos \frac{5 \pi}{13}\right)+\cos \frac{2 \pi}{13}+\cos \frac{6 \pi}{13}-\cos \frac{5 \pi}{13}+\cos \frac{\pi}{13}+\cos \frac{3 \pi}{13}-\cos \frac{4 \pi}{13}
$$

We make the notation: $F=\sin \frac{2 \pi}{13}-\sin \frac{5 \pi}{13}+\sin \frac{6 \pi}{13}$. We obtain: $F^{2}=\frac{3}{2}-\frac{1}{2}\left(\cos \frac{4 \pi}{13}-\cos \frac{3 \pi}{13}-\cos \frac{\pi}{13}\right)-\cos \frac{3 \pi}{13}-\cos \frac{6 \pi}{13}+\cos \frac{4 \pi}{13}+\cos \frac{5 \pi}{13}-\cos \frac{\pi}{13}-\cos \frac{2 \pi}{13}$ Further, we use the following relationships: $\cos \frac{\pi}{13}+\cos \frac{3 \pi}{13}-\cos \frac{4 \pi}{13}=\frac{1+\sqrt{13}}{4}$ $\cos \frac{5 \pi}{13}-\cos \frac{6 \pi}{13}-\cos \frac{2 \pi}{13}=\frac{1-\sqrt{13}}{4}$. For demonstration, we make the notations: $x=\cos \frac{\pi}{13}+\cos \frac{3 \pi}{13}-\cos \frac{4 \pi}{13}, y=\cos \frac{5 \pi}{13}-\cos \frac{6 \pi}{13}-\cos \frac{2 \pi}{13}$. We obtain: $S=x+y=\frac{1}{2} ; P=x y=-\frac{3}{4}$. From the equation: $z^{2}-S_{z}+P=0$, we have: $x=\frac{1+\sqrt{13}}{4} ; y=\frac{1-\sqrt{13}}{4}$. Then, we get: $E^{2}=\frac{13+3 \sqrt{13}}{8} ; F^{2}=\frac{13-3 \sqrt{13}}{8}$
so, relationships (3) and (4) is proved. Thus, the problem is solved.

JP.190. In $\triangle A B C$ the following relationship holds:

$$
\frac{9 r}{8 R} \leq \frac{m_{a} w_{a}}{(b+c)^{2}}+\frac{m_{b} w_{b}}{(c+a)^{2}}+\frac{m_{c} w_{c}}{(a+b)^{2}} \leq \frac{9}{16}
$$

> Proposed by M arin Chirciu - Romania

Solution 1 by proposer

$$
\frac{9 r}{8 R} \leq \frac{m_{a} l_{a}}{(b+c)^{2}}+\frac{m_{b} l_{b}}{(c+a)^{2}}+\frac{m_{c} l_{c}}{(a+b)^{2}} \leq \frac{9}{16}
$$

LHS: $\frac{m_{a} l_{a}}{(b+c)^{2}}+\frac{m_{b} l_{b}}{(c+a)^{2}}+\frac{m_{c} l_{c}}{(a+b)^{2}} \geq \frac{9 r}{8 R}$ it follows from:
Using $m_{a} l_{a} \geq s(s-a)$ it follows $\sum \frac{m_{a} l_{a}}{(b+c)^{2}} \geq \sum \frac{s(s-a)}{(b+c)^{2}}$,

$$
\sum \frac{s(s-a)}{(b+c)^{2}}=\frac{s^{4}+s^{2}\left(20 R r+18 r^{2}\right)+r^{3}(4 R+r)}{4\left(s^{2}+r^{2}+2 R r\right)^{2}}
$$

It remains to prove that: $\frac{s^{4}+s^{2}\left(20 R r+18 r^{2}\right)+r^{3}(4 R+r)}{4\left(s^{2}+r^{2}+2 R r\right)^{2}} \geq \frac{9 r}{8 R} \Leftrightarrow$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
 $s^{2}\left[s^{2}(2 R-9 r)+r\left(40 R^{2}-18 r^{2}\right)\right] \geq r^{3}\left(28 R^{2}+34 R r+9 r^{2}\right)$

We distinguish the following cases:
Case 1). If $(2 R-9 r) \geq 0$, using Gerretsen's inequality: $s^{2} \geq 16 R r-5 r^{2}$.
It remains to prove that:

$$
\begin{aligned}
& \left(16 R r-5 r^{2}\right)\left[\left(16 R r-5 r^{2}\right)(2 R-9 r)+r\left(40 R^{2}-18 r^{2}\right)\right] \geq r^{3}\left(28 R^{2}+34 R r+9 r^{2}\right) \\
& \Leftrightarrow 288 R^{3}-713 R^{2} r+292 R r^{2}-36 r^{3} \geq 0 \Leftrightarrow(R-2 r)\left(288 R^{2}-137 R r+18 r^{2}\right) \geq 0
\end{aligned}
$$

obviously from Euler's inequality $R \geq 2 r$.
Case 2). If $(2 R-9 r)<0$, with the observation that: $\left[s^{2}(2 R-9 r)+r\left(40 R^{2}-18 r^{2}\right)\right]>0$ using Gerretsen's inequality: $16 R r-5 r^{2} \leq s^{2} \leq 4 R^{2}+4 R r+3 r^{2}$, it remains to
prove that:

$$
\begin{gathered}
\left(16 R r-5 r^{2}\right)\left[\left(4 R^{2}+4 R r+3 r^{2}\right)(2 R-9 r)+r\left(40 R^{2}-18 r^{2}\right)\right] \geq r^{3}\left(28 R^{2}+34 R r+9 r^{2}\right) \\
\Leftrightarrow 32 R^{4}+38 R^{3} r-142 R^{2} r^{2}-151 R r^{3}+54 r^{4} \geq 0 \Leftrightarrow \\
\Leftrightarrow(R-2 r)\left(34 R^{3}+102 R^{2} r+62 R r^{2}-27 r^{3}\right) \geq 0
\end{gathered}
$$

obviously from Euler's inequality $R \geq 2 r$.
Equality holds if and only if the triangle is equilateral.

$$
\text { RHS: } \frac{m_{a} l_{a}}{(b+c)^{2}}+\frac{m_{b} l_{b}}{(c+a)^{2}}+\frac{m_{c} l_{c}}{(a+b)^{2}} \leq \frac{9}{16} \text { it follows from: }
$$

Using $m_{a} l_{a} \leq s(s-a)+\frac{1}{8}(b-c)^{2}$ it follows $\sum \frac{m_{a} l_{a}}{(b+c)^{2}} \leq \sum \frac{s(s-a)}{(b+c)^{2}}+\frac{1}{8} \sum \frac{(b-c)^{2}}{(b+c)^{2}}$,

$$
\begin{gathered}
\sum \frac{s(s-a)}{(b+c)^{2}}=\frac{s^{4}+s^{2}\left(20 R r+18 r^{2}\right)+r^{3}(4 R+r)}{4\left(s^{2}+r^{2}+2 R r\right)^{2}}, \\
\sum \frac{(b-c)^{2}}{(b+c)^{2}}=\frac{2 s^{6}+s^{4}\left(3 r^{2}-24 R r\right)-s^{2} r^{2}\left(52 R^{2}+4 r^{2}\right)-r^{3}(4 R+r)^{3}}{s^{2}\left(s^{2}+r^{2}+2 R r\right)}, \text { wherefrom } \\
\sum \frac{m_{a} l_{a}}{(b+c)^{2}} \leq \frac{4 s^{6}+s^{4}\left(16 R r+39 r^{2}\right)+s^{2} r^{2}\left(2 r^{2}+4 R r-52 R^{2}\right)-r^{3}(4 R+r)^{3}}{8 s^{2}\left(s^{2}+r^{2}+2 R r\right)}
\end{gathered}
$$

It remains to prove that:

$$
\begin{aligned}
& \frac{4 s^{6}+s^{4}\left(16 R r+39 r^{2}\right)+s^{2} r^{2}\left(2 r^{2}+4 R r-52 R^{2}\right)-r^{3}(4 R+r)^{3}}{8 s^{2}\left(s^{2}+r^{2}+2 R r\right)} \leq \frac{9}{16} \Leftrightarrow \\
& s^{2}\left[s^{2}\left(s^{2}+4 R r-60 r^{2}\right)+r^{2}\left(140 R^{2}+28 R r+5 r^{2}\right)\right]+2 r^{3}(4 R+r)^{3} \geq 0
\end{aligned}
$$

We distinguish the following cases:
Cases 1). If $\left(s^{2}+4 R r-60 r^{2}\right) \geq 0$, the inequality is obvious.

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Case 2). If $\left(s^{2}+4 R r-60 r^{2}\right)<0$, with the observation that
$\left[s^{2}\left(s^{2}+4 R r-60 r^{2}\right)+r^{2}\left(140 R^{2}+28 R r+5 r^{2}\right)\right]<0$, using the Blundon-
Gerretsen's inequality $16 R r-5 r^{2} \leq s^{2} \leq \frac{R(4 R+r)^{2}}{2(2 R-r)} \leq 4 R^{2}+4 R r+3 r^{2}$
it remains to prove that:

$$
\begin{aligned}
& \frac{R(4 R+r)^{2}}{2(2 R-r)}\left[\left(4 R^{2}+4 R r+3 r^{2}\right)\left(16 R r-5 r^{2}+4 R r-60 r^{2}\right)+r^{2}\left(140 R^{2}+28 R r+5 r^{2}\right)\right]+2 r^{3}(4 R+r)^{3} \geq 0 \\
& \Leftrightarrow 40 R^{4}-20 R^{3} r-70 R^{2} r^{2}-99 R r^{3}-2 r^{4} \geq 0 \\
& \Leftrightarrow(R-2 r)\left(40 R^{3}+60 R^{2} r+50 R r^{2}+r^{3}\right) \geq 0, \text { obviously from Euler's inequality } R \geq 2 r .
\end{aligned}
$$

Equality holds if and only if the triangle is equilateral.
Solution 2 by Tran Hong-Dong Thap-Vietnam

$$
\begin{aligned}
& \frac{m_{a}}{w_{a}} \leq \frac{b^{2}+c^{2}}{2 b c} \Rightarrow \frac{m_{a} w_{a}}{(b+c)^{2}} \leq \frac{\left(b^{2}+c^{2}\right) w_{a}^{2}}{2 b c(b+c)^{2}}=\frac{2 b c\left(b^{2}+c^{2}\right)}{(b+c)^{4}} \cdot \cos ^{2} \frac{A}{2} \\
& \leq \frac{1}{4} \cos ^{2} \frac{A}{2} ;\left(\text { because } \frac{2 b c\left(b^{2}+c^{2}\right)}{(b+c)^{4}} \leq \frac{1}{4} \Leftrightarrow(b+c)^{4} \geq 8 b c\left(b^{2}+c^{2}\right) \Leftrightarrow(b-c)^{4} \geq 0\right. \text { (true)) } \\
& \Rightarrow \sum \frac{m_{a} w_{a}}{(b+c)^{2}} \leq \frac{1}{4} \sum \cos ^{2} \frac{A}{2}=\frac{1}{4} \sum \frac{1+\cos A}{2} \stackrel{\left(\sum \cos A \leq \frac{3}{2}\right)}{\leq} \frac{1}{4}\left(\frac{3}{2}+\frac{\frac{3}{2}}{2}\right)=\frac{1}{4}\left(\frac{3}{2}+\frac{3}{4}\right)=\frac{9}{16} \\
& \boldsymbol{m}_{a} \geq \frac{b^{2}+c^{2}}{4 R}(\mathbf{e t c}) \Rightarrow \sum \frac{m_{a} w_{a}}{(b+c)^{2}} \geq \frac{1}{4 R} \sum\left\{\frac{b^{2}+c^{2}}{(b+c)^{2}} \cdot w_{a}\right\} \geq \frac{1}{4 R} \sum\left(\frac{1}{2} \cdot w_{a}\right)=\frac{1}{8 R} \sum w_{a} \stackrel{(*)}{\geq} \frac{9 r}{8 R} \\
& \left.\mathbf{(}^{*}\right) \Leftrightarrow \sum \boldsymbol{w}_{a} \geq \mathbf{9 r} \\
& \because \sum w_{a} \geq \sum h_{a}=\frac{s^{2}+r^{2}+4 R r}{2 R} \geq 9 r \Leftrightarrow s^{2}+r^{2}+4 R r \geq 18 R r \Leftrightarrow s^{2} \geq 14 R r-r^{2}
\end{aligned}
$$

It is true because:

$$
\begin{gathered}
s^{2} \geq 16 R r-5 r^{2} \geq 14 R r-r^{2} \leftrightarrow 16 R r-5 r^{2} \geq 14 R r-r^{2} \leftrightarrow 2 R r \geq 4 r^{2} \\
\leftrightarrow R \geq 2 r \text { (Euler). Hence, (*) true. Proved. }
\end{gathered}
$$

Solution 3 by Soumava Chakraborty-Kolkata-India

$$
m_{a} w_{a} \geq \frac{b+c}{2} \cos \frac{A}{2}\left(\frac{2 b c}{b+c} \cos \frac{A}{2}\right)=b c \cdot \frac{s(s-a)}{b c} \Rightarrow m_{a} w_{a} \stackrel{(1)}{\geq} s(s-a)
$$

Similarly, $m_{b} w_{b} \stackrel{(2)}{\geq} s(s-b) \& m_{c} w_{c} \stackrel{(3)}{\geq} s(s-c)$
(1),(2),(3) $\Rightarrow \sum \frac{m_{a} w_{a}}{(b+c)^{2}} \geq \sum \frac{s(s-a)}{16 R^{2} \cos ^{2} \frac{A}{2} \cos ^{2} \frac{B-C}{2}} \geq \sum \frac{b c \cos ^{2} \frac{A}{2}}{16 R^{2} \cos ^{2} \frac{A}{2}}\left(\because 0<\cos ^{2} \frac{B-C}{2} \leq 1\right.$, etc $)$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
=\frac{\sum a b}{16 R^{2}} \stackrel{?}{\geq} \frac{9 r}{8 R} \Leftrightarrow s^{2}+4 R r+r^{2} \stackrel{?}{\geq} 18 R r
$$

$$
\Leftrightarrow s^{2}-14 R r+r^{3} \stackrel{?}{\geq} 0 \Leftrightarrow\left(s^{2}-16 R r+5 r^{2}\right)+2 r(R-2 r) \stackrel{?}{\geq} 0
$$

$$
\rightarrow \text { true } \because s^{2}-16 R r+5 r^{2} \stackrel{\text { Gerretsen }}{\geq} 0 \& R-2 r \stackrel{\text { Euler }}{\geq} 0
$$

$$
\therefore \sum \frac{m_{a} w_{a}}{(b+c)^{2}} \geq \frac{9 r}{8 R} \text {. Again, } \sum \frac{m_{a} w_{a}}{(b+c)^{2}} \stackrel{G \leq A}{\leq} \frac{1}{4} \sum \frac{\left(m_{a}+w_{a}\right)^{2}}{(b+c)^{2}}
$$

$$
\stackrel{T \text { sintsifas }}{\leq} \frac{1}{4} \sum \frac{\left(\frac{b^{2}+c^{2}}{2 b c} w_{a}+w_{a}\right)^{2}}{(b+c)^{2}}=\frac{1}{4} \sum \frac{(b+c)^{4} w_{a}^{2}}{4 b^{2} c^{2}(b+c)^{2}}
$$

$$
=\frac{1}{16} \sum(b+c)^{2}\left(\frac{4 b^{2} c^{2}}{(b+c)^{2}} \cos ^{2} \frac{A}{2}\right)=\frac{1}{8} \sum(1+\cos A)=\frac{1}{8}\left(3+1+\frac{r}{R}\right)=\frac{4 R+r}{8 R} \stackrel{?}{\leq} \frac{9}{16}
$$

$$
\Leftrightarrow 9 R \stackrel{?}{\geq} 8 R+2 r \Leftrightarrow R \stackrel{?}{\geq} 2 r \rightarrow \text { true (Euler) } \therefore \sum \frac{m_{a} w_{a}}{(b+c)^{2}} \leq \frac{9}{16} \text {. (proved) }
$$

JP.191. Solve for real numbers:

$$
\left\{\begin{array}{c}
x^{3}+y^{3}=\sqrt{x y}\left(x^{2}+y^{2}\right) \\
6 \sqrt[3]{2 x^{2}-2 y+1}+4 \cdot \sqrt[4]{3 x^{2} \cdot y-2 x^{4}}=2 y^{5}-5 \sqrt{x y}+13
\end{array}\right.
$$

Proposed by Hoang Le Nhat Tung - Hanoi - Vietnam

Solution 1 by Serban George Florin - Romania

$$
\begin{gathered}
\sqrt{x y}=\frac{x^{3}+y^{3}}{x^{2}+y^{2}} \underset{M g \leq M a}{\leq} \frac{x+y}{2} \Rightarrow 2\left(x^{3}+y^{3}\right) \leq(x+y)\left(x^{2}+y^{2}\right) \\
2 x^{3}+2 y^{3} \leq x^{3}+y^{3}+x y(x+y), x^{3}+y^{3} \leq x y(x+y) \\
(x+y)\left(x^{2}-x y+y^{2}\right)-x y(x+y) \leq 0,(x+y)(x-y)^{2} \leq 0 \\
\quad(x+y),(x-y)^{2} \geq 0 \text {. If } x+y \leq 0 \text { and } x y \geq 0 \Rightarrow \\
\Rightarrow x, y \leq 0 \Rightarrow \sqrt{x y}=\frac{x^{3}+y^{3}}{x^{2}+y^{2}} \leq 0 \text { false, } x^{3}, y^{3} \leq 0 \\
\Rightarrow x, y \geq \Rightarrow(x+y)(x-y)^{2} \geq 0 \Rightarrow(x+y)(x-y)^{2}=0
\end{gathered}
$$

I. If $x+y=0, x, y \geq 0 \Rightarrow x=y=0 ; 6 \cdot 1+4 \cdot 0=0-0+13$ false.

$$
\text { II. If } x=y \Rightarrow 6 \sqrt[3]{2 x^{2}-2 x+1}+4 \sqrt[4]{3 x^{3}-2 x^{4}}=2 x^{5}-5 x+13
$$

$$
2 x^{2}-2 x+1 \geq 0, \Delta=-4<0,3 x^{3}-2 x^{4} \geq 0, x^{3}(3-2 x) \geq 0
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\Rightarrow 3-2 x \geq 0 \Rightarrow x \leq \frac{3}{2} \Rightarrow x \in\left[0, \frac{3}{2}\right]
$$

$$
\sqrt[3]{2 x^{2}-2 x+1}=\sqrt[3]{\left(2 x^{2}-2 x+1\right) \cdot 1 \cdot 1}{ }_{M g \leq M a}^{\leq} \frac{2 x^{2}-2 x+1+1+1}{3} \Rightarrow 6 \sqrt[3]{2 x^{2}-2 x+1} \leq 4 x^{2}-4 x+6
$$

$$
\sqrt[4]{3 x^{3}-2 x^{4}}=\sqrt[4]{\left(3 x^{3}-2 x^{4}\right) \cdot 1 \cdot 1 \cdot 1} \underset{M g \leq M a}{\leq} \frac{3 x^{3}-2 x^{4}+1+1+1}{4} \Rightarrow 4 \sqrt[4]{3 x^{3}-2 x^{4}} \leq 3 x^{3}-2 x^{4}+3
$$

$$
\Rightarrow 2 x^{5}-5 x+13 \leq 4 x^{2}-4 x+6+3 x^{3}-2 x^{4}+3
$$

$$
\Rightarrow 2 x^{5}+2 x^{4}-3 x^{3}-4 x^{2}-x+4 \leq 0
$$

$$
\left(x^{2}-2 x+1\right)\left(2 x^{3}+6 x^{2}+7 x+4\right) \leq 0
$$

$$
2 x^{3}+6 x^{2}+7 x+4>0,(\forall) x \in\left[0, \frac{3}{2}\right]
$$

$$
\Rightarrow\left(x^{2}-2 x+1\right) \leq 0 \Rightarrow(x-1)^{2} \leq 0
$$

$$
(x-1)^{2} \geq 0 \Rightarrow(x-1)^{2}=0 \Rightarrow x-1=0 ; x=1=y
$$

$$
\Rightarrow S=\{(\mathbf{1}, \mathbf{1})\}
$$

Solution 2 by Minh Tam Le-Vietnam

JP.192. If $x, y, z>1$ then:

$$
\log _{x}\left(\frac{y^{5}+z^{5}}{y^{3}+z^{3}}\right)+\log _{y}\left(\frac{z^{5}+x^{5}}{z^{3}+x^{3}}\right)+\log _{z}\left(\frac{x^{5}+y^{5}}{x^{3}+y^{3}}\right) \geq 6
$$

$$
\begin{aligned}
& \text { Let } \begin{array}{l}
\sqrt{x}=a \\
\sqrt{y}=b
\end{array}(a, b \geq 0) . \text { But }:\left\{\begin{array}{c}
\text { We have } a^{6}+b^{6}=a b\left(a^{4}+b^{4}\right) \\
5 a^{6}+b^{6} \stackrel{A M-G M}{\geq} 6 a^{5} b \\
5 b^{6}+a^{6} \stackrel{A M-G M}{\geq} 6 a b^{5}
\end{array} \Rightarrow a^{6}+b^{6} \geq a b\left(a^{4}+b^{4}\right)\right\} \Rightarrow \\
& \Rightarrow a=b \text { or } x=y . \\
& \text { If } x=y, 6 \sqrt[6]{2 x^{2}-2 y+1}+4 \sqrt[4]{3 x^{2} y-2 x^{4}}=2 y^{5}-5 \sqrt{x y}+13 \\
& \Leftrightarrow 6 \sqrt[3]{2 x^{2}-2 x+1}+4 \sqrt[4]{3 x^{3}-2 x^{4}}=2 x^{5}-5 x+13 \\
& \text { LHS }=2 \cdot 3 \sqrt[3]{2 x^{2}-2 x+1}+4 \sqrt[4]{x^{2} \cdot x(3-2 x)} \stackrel{A M-G M}{\leq} \\
& \leq 2\left(2 x^{2}-2 x+1+1+1\right)+x^{2}+x+1+3-2 x=5 x^{2}-5 x+10 \\
& \text { RHS }=x^{5}+x^{5}+1+1+1-5 x+10 \stackrel{A M-G M}{\geq} 5 x^{2}-5 x+10 \\
& \text { So, the equality holds if } x=1 \Rightarrow y=1 \text {. Hence, } x=1 \wedge y=1
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Solution 1 by Tran Hong-Dong Thap-Vietnam

$$
\begin{gathered}
x^{5}+y^{5} \geq x y\left(x^{3}+y^{3}\right) \Rightarrow \frac{x^{5}+y^{5}}{x^{3}+y^{3}} \geq x y ; \text { etc } \\
\Rightarrow L H S \geq \log _{z}(x y)+\log _{x}(y z)+\log _{y}(x z) \\
=\left(\log _{z} x+\log _{x} z\right)+\left(\log _{x} y+\log _{y} x\right)+\left(\log _{y} z+\log _{z} y\right) \\
\stackrel{A M-G M}{\geq} 2 \sqrt{\log _{x} z \cdot \log _{z} x}+2 \sqrt{\log _{x} y \cdot \log _{y} x}+2 \sqrt{\log _{y} z \cdot \log _{z} y}=2+2+2=6
\end{gathered}
$$

Proved.

Solution 2 by Sanong Huayrerai-Nakon Pathom-Thailand

For $x, y, z>1$, we have: $\log _{x} \frac{y^{5}+z^{5}}{y^{3}+z^{3}}+\log _{y} \frac{z^{5}+x^{5}}{z^{3}+x^{3}}+\log _{z} \frac{x^{5}+y^{5}}{y^{3}+z^{3}}$
If $\log _{x} \frac{\left(y^{3}+z^{3}\right)\left(y^{2}+x^{2}\right)}{2\left(y^{3}+x^{3}\right)}+\log _{y} \frac{\left(z^{3}+x^{3}\right)\left(z^{2}+x^{2}\right)}{2\left(z^{3}+x^{3}\right)}+\log _{z} \frac{\left(x^{3}+y^{3}\right)\left(x^{2}+y^{2}\right)}{2\left(x^{3}+y^{3}\right)} \geq 6$

$$
\text { If } \log _{x} \frac{y^{2}+z^{2}}{2}+\log _{y} \frac{z^{2}+x^{2}}{2}+\log _{z} \frac{x^{2}+y^{2}}{2} \geq 6
$$

If $\log _{x} y z+\log _{y} z x+\log _{z} x y \geq 6$

$$
\text { If } 3 \sqrt[3]{\left(\frac{\log y z}{\log x}\right)\left(\frac{\log z x}{\log y}\right)\left(\frac{\log x y}{\log z}\right)} \geq 6
$$

If $(\log y+\log z)(\log z+\log x)(\log x+\log y) \geq 8 \log x \log y \log z$ and it's true.
Because $(\log y+\log z)(\log z+\log x)(\log x+\log y)$
$\geq 8 \sqrt{(\log x \log y \log z)^{2}}=8 \log x \log y \log z$. Therefore, it's true.

JP.193. In $\triangle A B C$ the following relationship holds:
$\frac{\tan ^{n} \frac{A}{2}+\tan ^{n} \frac{B}{2}}{\tan ^{n+2} \frac{A}{2}+\tan ^{n+2} \frac{B}{2}}+\frac{\tan ^{n} \frac{B}{2}+\tan ^{n} \frac{C}{2}}{\tan ^{n+2} \frac{B}{2}+\tan ^{n+2} \frac{C}{2}}+\frac{\tan ^{n} \frac{C}{2}+\tan ^{n} \frac{A}{2}}{\tan ^{n+2} \frac{C}{2}+\tan ^{n+2} \frac{A}{2}} \leq 1+\frac{4 R}{r} ; n \in \mathbb{N} ; n \geq 1$

> Proposed by Marian Ursărescu - Romania

Solution by Tran Hong-Dong Thap-Vietnam

$$
\begin{equation*}
\tan ^{n+2} \frac{A}{2}+\tan ^{n+2} \frac{B}{2}=\tan ^{n} \frac{A}{2} \cdot \tan ^{2} \frac{A}{2}+\tan ^{n} \frac{B}{2} \cdot \tan ^{2} \frac{B}{2} \tag{*}
\end{equation*}
$$

Suppose: $A \geq B \geq C \Rightarrow \boldsymbol{\operatorname { t a n }} \frac{A}{2} \geq \boldsymbol{\operatorname { t a n }} \frac{B}{2} \geq \boldsymbol{\operatorname { t a n }} \frac{C}{2} \Rightarrow \boldsymbol{\operatorname { t a n }}^{n} \frac{A}{2} \geq \boldsymbol{\operatorname { t a n }}^{n} \frac{B}{2} \geq \boldsymbol{\operatorname { t a n }}^{n} \frac{C}{2}$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

By Chebyshev's inequality: $\left({ }^{*}\right) \geq \frac{\left(\tan ^{n} \frac{A}{2}+\tan ^{n} \frac{B}{2}\right)\left(\tan ^{2} \frac{A}{2}+\tan ^{2} \frac{B}{2}\right)}{2}$

$$
\begin{gathered}
\text { Let } x=\tan \frac{A}{2} ; y=\tan \frac{B}{2} ; z=\tan \frac{C}{2}(x, y, z>0) \\
\left(x+y+z=\frac{4 R+r}{s} ; x y z=\frac{r}{s}\right) \Rightarrow \frac{x^{n}+y^{n}}{x^{n+2}+y^{n+2}} \leq \frac{2\left(x^{n}+y^{n}\right)}{\left(x^{n}+y^{n}\right)\left(x^{2}+y^{2}\right)}=\frac{2}{x^{2}+y^{2}} ;(\text { etc }) \\
\Rightarrow L H S \leq 2\left(\frac{1}{x^{2}+y^{2}}+\frac{1}{y^{2}+z^{2}}+\frac{1}{z^{2}+x^{2}}\right) \stackrel{(A M-G M)}{\leq} \\
\frac{1}{x y 1}+\frac{1}{y z}+\frac{1}{z x}=\frac{x+y+z}{x y z}=\frac{4 R+r}{s} \cdot \frac{s}{r}=\frac{4 R+r}{r}=1+\frac{4 R}{r} . \text { Proved. }
\end{gathered}
$$

JP.194. In $\triangle A B C ; B E ; C F$ internal bisectors;

$$
\begin{aligned}
& E \in(A C) ; F \in(A B) ; \boldsymbol{O} \text { - circumcentre. Prove that: } \\
& E, \boldsymbol{O}, F \text { collinears } \Leftrightarrow \cos A=\cos B+\cos C \\
& \text { Proposed by Marian Ursărescu - Romania }
\end{aligned}
$$

Solution by Thanasis Gakopoulos-Athens-Greece

E, O, F collinear $\leftrightarrow \cos A=\boldsymbol{\operatorname { c o s }} B+\cos C ; \boldsymbol{\operatorname { c o s } A}=\frac{b^{2}+c^{2}-a^{2}}{2 b c} ; \cos B=\frac{a^{2}+c^{2}-b^{2}}{2 a c}$

$$
\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
$\cos A=\cos B+\cos C \Leftrightarrow b^{3}+c^{3}-a^{3}-a^{2}(b+c)+b^{2}(a-c)+c^{2}(a-b)=0$
PLAGIOGONAL system: $A B \equiv A x, A C=A y$

$$
\begin{gathered}
A F=f_{1}=\frac{b c}{a+b}, A E=\frac{b c}{a+c}=e_{2} \quad F\left(f_{1}, 0\right), E\left(0, e_{2}\right) \\
O\left(o_{1}, o_{2}\right) \quad o_{1}=\frac{b^{2} c\left(a^{2}-b^{2}+c^{2}\right)}{16 S^{2}}, o_{2}=\frac{b c^{2}\left(a^{2}+b^{2}-c^{2}\right)}{16 S^{2}}
\end{gathered}
$$

E, O, F collinear $\leftrightarrow\left|\begin{array}{ccc}1 & 1 & 1 \\ f_{1} & o & o_{1} \\ o & e_{2} & o_{2}\end{array}\right|=0 \leftrightarrow b^{3}+c^{3}-a^{3}+b^{2}(a-c)+c^{2}(a-b)-a^{2}(b+c)$ (2)

$$
\text { So, } E, O, F \text { collinear } \leftrightarrow(2)=(1) \leftrightarrow \cos A=\cos B+\cos C
$$

JP.195. If $m \geq 0$ then in $\triangle A B C$ the following relationship holds:

$$
\frac{r_{a} \cdot r_{b}^{m+1}}{\left(r_{b}+r_{c}\right)^{m}}+\frac{r_{b} \cdot r_{c}^{m+1}}{\left(r_{c}+r_{a}\right)^{m}}+\frac{r_{c} \cdot r_{a}^{m+1}}{\left(r_{a}+r_{b}\right)^{m}} \geq \frac{s^{2}}{2^{m}}
$$

Proposed by D.M. Bătinețu - Giurgiu, Neculai - Stanciu - Romania Solution by Tran Hong-Dong Thap-Vietnam

$$
\begin{gathered}
\sum \frac{r_{a} \cdot r_{b}^{m+1}}{\left(r_{b}+r_{c}\right)^{m}}=\sum \frac{\left(r_{a} r_{b}\right)^{m+1}}{\left(r_{a} r_{b}+r_{a} r_{c}\right)^{m}} \stackrel{\text { Radon }}{\geq} \frac{\left(\sum r_{a} r_{b}\right)^{m+1}}{2^{m}\left(\sum r_{a} r_{b}\right)^{m}} \\
\quad=\frac{\sum r_{a} r_{b}}{2^{m}}=\frac{s^{2}}{2^{m}} .\left(\text { Because: } \sum r_{a} r_{b}=s^{2}\right) . \text { Proved. }
\end{gathered}
$$

SP.181. If $x, y, z>0$ then:

$$
\begin{gathered}
\tan ^{-1}\left(\frac{x^{4}+y^{4}}{\left(x^{2}+y^{2}\right)\left(x^{2}-x y+y^{2}\right)}\right)+\tan ^{-1}\left(\frac{y^{4}+z^{4}}{\left(y^{2}+z^{2}\right)\left(y^{2}-y z+z^{2}\right)}\right)+ \\
+\tan ^{-1}\left(\frac{z^{4}+x^{4}}{\left(z^{2}+x^{2}\right)\left(z^{2}-z x+x^{2}\right)}\right) \geq \frac{3 \pi}{4}
\end{gathered}
$$

Proposed by Daniel Sitaru - Romania

Solution 1 by Tran Hong-Dong Thap-Vietnam

$$
\begin{gathered}
\text { We have: } \frac{x^{4}+y^{4}}{\left(x^{2}+y^{2}\right)\left(x^{2}-x y+y^{2}\right)} \geq 1(x, y>0) \\
\Leftrightarrow x^{4}+y^{4} \geq\left(x^{2}+y^{2}\right)\left(x^{2}-x y+y^{2}\right) \Leftrightarrow x^{4}+y^{4} \geq x^{4}-x^{3} y+2 x^{2} y^{2}-x y^{3}+y^{4} \\
\Leftrightarrow x y(x-y)^{2} \geq 0 \quad(\because \text { true: } x, y>0)
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\begin{aligned}
& \text { Similarly: } \frac{y^{4}+z^{4}}{\left(y^{2}+z^{2}\right)\left(y^{2}-y z+z^{2}\right)} \geq 1 \text { and: } \frac{x^{4}+z^{4}}{\left(x^{2}+z^{2}\right)\left(x^{2}-x z+z^{2}\right)} \geq 1 \\
& \quad \Rightarrow \text { LHS } \geq 3\left(\tan ^{-1} 1\right)=3 \cdot \frac{\pi}{4} \text { (proved) }
\end{aligned}
$$

Solution 2 by Soumitra Mandal-Chandar Nagore-India
Let $a, b \geq 0$. Now, $(a+b)\left(a^{4}+b^{4}\right) \geq\left(a^{2}+b^{2}\right)\left(a^{3}+b^{3}\right) \Leftrightarrow a b(a-b)^{2}(a+b) \geq 0$
Which is true. Hence $(a+b)\left(a^{4}+b^{4}\right) \geq\left(a^{2}+b^{2}\right)\left(a^{3}+b^{3}\right)$ is established

$$
\begin{aligned}
\sum_{c y c} \tan ^{-1}\left(\frac{x^{4}+y^{4}}{\left(x^{2}+y^{2}\right)\left(x^{2}-x y+y^{2}\right)}\right) & =\sum_{c y c} \tan ^{-1}\left(\frac{(x+y)\left(x^{4}+y^{4}\right)}{\left(x^{2}+y^{2}\right)\left(x^{3}+y^{3}\right)}\right) \geq 3 \tan ^{-1}(1) \\
& =\frac{3 \pi}{4} \text { (proved) }
\end{aligned}
$$

Solution 3 by Sanong Huayrerai-Nakon Pathom-Thailand
For $a, b>0$, we get: $a^{4}+b^{4}=\left(a^{2}+b^{2}\right)\left(a^{2}+b^{2}\right)-2 a^{2} b^{2}$

$$
\begin{gathered}
=\left(a^{2}+b^{2}\right)\left(a^{2}+b^{2}-\frac{2 a^{2} b^{2}}{a^{2}+b^{2}}\right) \geq\left(a^{2}+b^{2}\right)\left(a^{2}+b^{2}-a b\right):-\frac{2 a^{2} b^{2}}{a^{2}+b^{2}} \geq-a b \\
\Rightarrow \frac{a^{4}+b^{4}}{\left(a^{2}+b^{2}\right)\left(a^{2}-a b+b^{2}\right)} \geq 1, \forall a, b>0
\end{gathered}
$$

Hence, therefore $\arctan \left[\frac{x^{4}+y^{4}}{\left(x^{2}+y^{2}\right)\left(x^{2}-x y+y^{2}\right)}\right]+\arctan \left[\frac{y^{4}+z^{4}}{\left(y^{2}+z^{2}\right)\left(y^{2}-y z+z^{2}\right)}\right]+$

$$
+\arctan \left[\frac{z^{4}+x^{4}}{\left(z^{2}+x^{2}\right)\left(z^{2}-z x+x^{2}\right)}\right] \geq \arctan (1)+\arctan (1)+\arctan (1)=
$$ $=\frac{3 \pi}{4}: \frac{\arctan (1)=\pi}{4}$. Therefore, it is true.

SP.182. If $f(x+\pi)=-f(x)$ and $f(-x)=f(x), f:(0, \infty) \rightarrow \mathbb{R}$, then:

$$
\int_{0}^{\infty} f(x) \frac{\sin (x)}{x} d x=\int_{0}^{\frac{\pi}{2}} f(x) \cos (x) d x
$$

Proposed by Shivam Sharma - New Delhi - India

Solution by Zaharia Burghelea - Romania

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
I=\int_{0}^{\infty} f(x) \frac{\sin x}{x} d x
$$

$$
f(-x)=f(x) \Rightarrow 2 I=\int_{-\infty}^{\infty} f(x) \frac{\sin x}{x} d x=\sum_{n=-\infty}^{\infty} \int_{n \pi}^{(n+1) \pi} f(x) \frac{\sin x}{x} d x
$$

$$
f(x+\pi)=-f(x) \stackrel{x-n \pi=t}{\Rightarrow} \sum_{n=-\infty}^{\infty} \int_{0}^{\pi}(-1)^{n} f(t) \frac{(-1)^{n} \sin t}{t+n \pi} d t=\int_{0}^{\pi} \sum_{n=-\infty}^{\infty} \frac{\sin t}{t+n \pi} f(t) d t=
$$

$$
=\int_{0}^{\pi} \sum_{n=-\infty}^{\infty} \frac{\tan t}{t+n \pi} \cos t \cdot f(t) d t \stackrel{t=x}{=} \int_{0}^{\pi} f(x) \cos x d x
$$

$$
\Rightarrow I=\int_{0}^{\infty} f(x) \frac{\sin x}{x} d x=\int_{0}^{\frac{\pi}{2}} f(x) \cos x d x
$$

Where the interchange of the sum and the integral is justified since the integrand is positive, also, we have:

$$
\frac{\sin x}{x}=\lim _{n \rightarrow \infty} \prod_{k=1}^{n}\left(1-\frac{x^{2}}{(k \pi)^{2}}\right) \Rightarrow \ln \left(\frac{\sin x}{x}\right)=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \ln \left(1-\frac{x^{2}}{(k \pi)^{2}}\right)
$$

Differentiating with respect to x gives:

$$
\begin{gathered}
\cot x-\frac{1}{x}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{2 x}{x^{2}-(k \pi)^{2}}=\lim _{n \rightarrow \infty}\left(\frac{1}{x+\pi}+\frac{1}{x-\pi}+\cdots+\frac{1}{x+n \pi}+\frac{1}{x-n \pi}\right) \\
\Rightarrow \cot x=\sum_{n=-\infty}^{\infty} \frac{1}{x+n \pi} \Rightarrow \sum_{n=-\infty}^{\infty} \frac{\tan x}{x+n \pi}=1
\end{gathered}
$$

SP.183. If $\mathbf{0}<a<b$ then:

$$
\frac{\int_{a}^{b}\left(\tan ^{-1} x\right) d x}{\int_{a}^{\sqrt{a b}}\left(\tan ^{-1} x\right) d x}>1+\sqrt{\frac{b}{a}}
$$

Proposed by Daniel Sitaru - Romania
Solution by Avishek M itra-West Bengal-India

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\tan ^{-1} x \geq-\frac{\pi}{2} \Rightarrow I_{1}=\int_{a}^{b} \tan ^{-1} x d x \geq \frac{\pi}{2}(a-b)
$$

Similarly, $\Rightarrow \int_{a}^{\sqrt{a b}} \tan ^{-1} x d x \geq \frac{\pi}{2}(a-\sqrt{a b})$

$$
\begin{gathered}
\Rightarrow\left(1+\sqrt{\frac{b}{a}}\right) \int_{a}^{\sqrt{a b}} \tan ^{-1} x d x \geq \frac{\pi}{2}(a-\sqrt{a b})\left(1+\sqrt{\frac{b}{a}}\right) \Rightarrow\left(1+\sqrt{\frac{b}{a}}\right) I_{2} \geq \frac{\pi}{2}(a-b) \\
\text { Hence } I_{1}-\left(1+\sqrt{\frac{b}{a}}\right) I_{2} \geq 0 \Rightarrow \frac{I_{1}}{I_{2}} \geq 1+\sqrt{\frac{b}{a}} \Rightarrow \frac{I_{1}}{I_{2}}>\left(1+\sqrt{\frac{b}{a}}\right)
\end{gathered}
$$

SP.184. Let x, y, z be positive real numbers such that: $x+y+z=3$. Prove that: $\sqrt[6]{x}+\sqrt[6]{y}+\sqrt[6]{z}+12 \geq 5(x y+y z+z x)$.

Find the minimum value of:

$$
T+\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}+\frac{\sqrt[6]{x}+\sqrt[6]{y}+\sqrt[6]{z}}{10}
$$

Proposed by Hoang Le Nhat Tung - Hanoi - Vietnam

Solution by proposer

- Using AM-GM inequality we have:

$$
\begin{gather*}
\begin{aligned}
& \sqrt[6]{x}+\sqrt[6]{x}+\sqrt[6]{x}+\sqrt[6]{x}+\sqrt[6]{x}+\sqrt[6]{x}+x^{3}+x^{3}+x^{3}+1 \geq 10 \cdot \sqrt[10]{\sqrt[6]{x} \cdot \sqrt[6]{x} \cdot \sqrt[6]{x} \cdot \sqrt[6]{x} \cdot \sqrt[6]{x} \cdot \sqrt[6]{x} \cdot x^{3} \cdot x^{3} \cdot x^{3} \cdot 1}=10 \cdot \sqrt[10]{x^{10}}=10 x \\
& \Rightarrow 6 \sqrt[6]{x}+3 x^{2}+1 \geq 10 x \Leftrightarrow 6 \sqrt[6]{x} \geq 10 x-3 x^{3}-1 \\
&+ \text { Similar: } 6 \sqrt[6]{y} \geq 10 y-3 y^{3}-1 ; 6 \sqrt[6]{z} \geq 10 z-3 z^{3}-1
\end{aligned} \\
\Leftrightarrow 6(\sqrt[6]{x}+\sqrt[6]{y}+\sqrt[6]{z}) \geq 10 \cdot 3-3\left(x^{3}+y^{3}+z^{3}\right)-3=27-3\left(x^{3}+y^{3}+z^{3}\right) \text { (because } \\
x+y+z=3) \\
\Leftrightarrow
\end{gather*}
$$

+ Other, because $\left\{\begin{array}{c}\boldsymbol{x}, \boldsymbol{y}, \mathbf{z}>0 \\ \boldsymbol{x}+\boldsymbol{y}+\boldsymbol{z}=\mathbf{3}\end{array} \Rightarrow \mathbf{0}<x, y, z<3 \Rightarrow x-3<0 ; y-3<0 ; z-3<0\right.$.
Hence: $(x-3)(x-1)^{2}+(y-3)(y-1)^{2}+(z-3)(z-1)^{2} \leq 0$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gather*}
\Leftrightarrow(x-3)\left(x^{2}-2 x+1\right)+(y-3)\left(y^{2}-2 y+1\right)+(z-3)\left(z^{2}-2 z+1\right) \leq 0 \\
\Leftrightarrow x^{3}-5 x^{2}+7 x-3+y^{3}-5 y^{2}+7 y-3+z^{3}-5 z^{2}+7 z-3 \leq 0 \\
\Leftrightarrow x^{3}+y^{3}+z^{3} \leq 5\left(x^{2}+y^{2}+z^{2}\right)-7(x+y+z)+9=5\left[(x+y+z)^{2}-2(x y+y z+z x)\right]-7(x+y+z)+9 \\
\Leftrightarrow x^{3}+y^{3}+z^{3} \leq 5(x+y+z)^{2}-10(x y+y z+z x)-7(x+y+z)+9 \\
\Leftrightarrow x^{3}+y^{3}+z^{3} \leq 5 \cdot 3^{2}-10(x y+y z+z x)-7 \cdot 3+9=33-10(x y+y z+z x) \\
\Leftrightarrow 27-3\left(x^{3}+y^{3}+z^{3}\right) \geq 27-3[33-10(x y+y z+z x)]=30(x y+y z+z x)-72 \quad(2) \tag{2}\\
\text { - Let (1), (2): } \Rightarrow 6(\sqrt[6]{x}+\sqrt[6]{y}+\sqrt[6]{z}) \geq 30(x y+y z+z x)-72 \Rightarrow \sqrt[6]{x}+\sqrt[6]{y}+\sqrt[6]{z} \geq 5(x y+y z+z x)-12 \\
\Rightarrow \sqrt[6]{x}+\sqrt[6]{y}+\sqrt[6]{z}+12 \geq 5(x y+y z+z x) \text { and we get the result. }
\end{gather*}
$$

- Using Cauchy Schwarz inequality, we have:

$$
\begin{aligned}
& \frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=\frac{x^{2}}{x(y+z)}+\frac{y^{2}}{y(z+x)}+\frac{z^{2}}{z(x+y)} \geq \frac{(x+y+z)^{2}}{x(y+z)+y(z+x)+z(x+y)} \\
& \quad+\text { Hence } T=\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}+\frac{\sqrt[6]{x}+\sqrt[6]{y}+\sqrt[6]{z}}{10} \geq \frac{(x+y+z)^{2}}{2(x y+y z+z x)}+\frac{\sqrt[6]{x}+\sqrt[6]{y}+\sqrt[6]{z}}{10}
\end{aligned}
$$

- Using AM-GM inequality and inequality: $\sqrt[6]{x}+\sqrt[6]{y}+\sqrt[6]{z} \geq 5(x y+y z+z x)-12$

$$
\begin{aligned}
& \Rightarrow T \geq \frac{9}{2(x y+y z+z x)}+\frac{5(x y+y z+z x)-12}{10}=\frac{1}{2} \cdot\left(\frac{9}{x y+y z+z x}+x y+y z+z x\right)-\frac{6}{5} \geq \\
& \geq \frac{1}{2} \cdot 2 \cdot \sqrt{\frac{9}{x y+y z+z x} \cdot(x y+y z+z x)}-\frac{6}{5}=\frac{1}{2} \cdot 2 \cdot 3-\frac{6}{5}=3-\frac{6}{5}=\frac{9}{5} \\
& \Rightarrow T \geq \frac{9}{5} \Rightarrow T_{\min }=\frac{9}{5} . \text { Equality occurs if }\left\{\begin{array}{c}
x+y+z=3 \\
x=y=z>0 \\
x y+y z+z x=3
\end{array} \Leftrightarrow x=y=z=1\right.
\end{aligned}
$$

Hence, minimum value of $T=\frac{9}{5}$ when $x=y=z=1$.

SP.185. Let a, b, c be positive real numbers such that:

$$
\begin{gathered}
12 a+8 b+6 c=3 a b c \text {. Find the minimum value of: } \\
\qquad T=\frac{a^{3}+20}{a}+\frac{b^{4}+249}{b}+\frac{c^{4}+272}{c^{2}}
\end{gathered}
$$

Proposed by Hoang Le Nhat Tung - Hanoi - Vietnam
Solution 1 by proposer

- By AM-GM inequality we have:

$$
\begin{aligned}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
& \text { www.ssmrmh.ro } \\
& T=\frac{a^{3}+20}{a}+\frac{b^{4}+249}{b}+\frac{c^{4}+272}{c^{2}}=a^{2}+\frac{20}{a}+b^{3}+\frac{249}{b}+c^{2}+\frac{272}{c^{2}} \\
& T=\left(a^{2}+\frac{8}{a}+\frac{8}{a}\right)+\left(b^{3}+\frac{81}{b}+\frac{81}{b}+\frac{81}{b}\right)+\left(c^{2}+\frac{256}{c^{2}}\right)+\frac{4}{a}+\frac{6}{b}+\frac{16}{c^{2}} \geq \\
& \geq 3 \cdot \sqrt[3]{a^{2} \cdot \frac{8}{a} \cdot \frac{8}{a}}+4 \sqrt[4]{b^{3} \cdot \frac{81}{b} \cdot \frac{81}{b} \cdot \frac{81}{b}}+2 \sqrt{c^{2} \cdot \frac{256}{c^{2}}}+\frac{4}{a}+\frac{6}{b}+\left(\frac{16}{c^{2}}+1\right)-1 \\
& =3 \sqrt[3]{64}+4 \sqrt[4]{81^{3}}+2 \sqrt{256}+\frac{4}{a}+\frac{6}{b}+2 \sqrt{\frac{16}{c^{2}}}-1=\frac{4}{a}+\frac{6}{b}+\frac{8}{c}+151 \\
& \Rightarrow T \geq 2\left(\frac{2}{a}+\frac{3}{b}+\frac{4}{c}\right)+151 \geq 2 \sqrt{3\left(\frac{2}{a} \cdot \frac{3}{b}+\frac{3}{b} \cdot \frac{4}{c}+\frac{4}{c} \cdot \frac{2}{a}\right)}+151= \\
& =2 \sqrt{3\left(\frac{6}{a b}+\frac{12}{b c}+\frac{8}{c a}\right)}+151 \\
& \Rightarrow T \geq 2 \sqrt{3 \cdot \frac{12 a+8 b+6 c}{a b c}}+151=2 \sqrt{3 \cdot \frac{3 a b c}{a b c}}+151=157 \Rightarrow T \geq 157 \Rightarrow T_{\text {min }}=157 \\
& + \text { Equality occurs if }\left\{\begin{array} { c }
{ a , b , c > 0 ; 1 2 a + 8 b + 6 c = 3 a b c } \\
{ a ^ { 2 } = \frac { 8 } { a } ; b ^ { 3 } = \frac { 8 1 } { b } ; c ^ { 2 } = \frac { 2 5 6 } { c ^ { 2 } } } \\
{ \frac { 2 } { a } = \frac { 3 } { b } = \frac { 4 } { c } }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
a=2 \\
b=3 \\
c=4
\end{array}\right.\right.
\end{aligned}
$$

Hence, the minimum value of T is 157 then $a=2 ; b=3 ; c=4$.
Solution 2 by Michael Sterghiou-Greece

$$
\begin{gather*}
T=\frac{a^{3}+20}{a}+\frac{b^{4}+249}{b}+\frac{c^{4}+272}{c^{2}} \text { (1) } \\
\frac{a^{3}+20}{a}=a^{2}+\frac{20}{a}=a^{2}+\frac{8}{a}+\frac{8}{a}+\frac{4}{a} \stackrel{A M-G M}{\geq} 3 \sqrt[3]{64}+\frac{4}{a}=12+\frac{4}{a} \text { (2) } \\
\frac{b^{4}+249}{b}=b^{3}+\frac{249}{b}=b^{3}+\frac{81}{b}+\frac{168}{b} \stackrel{A M-G M}{\geq} 18 b+\frac{162}{b}+\frac{6}{b} \stackrel{A M-G M}{\geq} 108+\frac{6}{b} \tag{3}\\
\frac{c^{4}+272}{c^{2}}=c^{2}+\frac{272}{c^{2}}=c^{2}+\frac{256}{c^{2}}+\frac{16}{c^{2}} \stackrel{A M-G M}{\geq} 32+\frac{16}{c^{2}} \text { (3) } \tag{3}\\
\text { (1)+(2)+(3) } \rightarrow T \geq 152+\frac{4}{a}+\frac{6}{b}+\frac{16}{c^{2}} \text { (4) Let } x=12 a, y=8 b, z=6 c \\
\text { (c) } \rightarrow x+y+z=\frac{x y z}{192} \text { and (4) } \rightarrow T \geq 152+\frac{48}{x}+\frac{48}{y}+\frac{576}{z^{2}}=
\end{gather*}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
$=152+48 \cdot\left(\frac{1}{x}+\frac{1}{y}+\frac{12}{z^{2}}\right)$ (5). We will find the minimum of $f(x, y, z)=\frac{1}{x}+\frac{1}{y}+\frac{12}{z^{2}}$ under the constraint $x+y+z=\frac{x y z}{192}\left(c^{\prime}\right)$
by using the Lagrange multiplier method. Consider the function

$$
L_{0}(x, y, z, \lambda)=\frac{1}{x}+\frac{1}{y}+\frac{12}{z^{2}}+\lambda\left(x+y+z-\frac{x y z}{192}\right)
$$

$$
\frac{\partial L_{0}}{\partial x}=-\frac{1}{x^{2}}-\frac{\lambda}{192} y z+\lambda=0 \quad \text { (6), }, \frac{\vartheta L_{0}}{\vartheta y}=-\frac{1}{y^{2}}-\frac{\lambda}{192} x z+\lambda \stackrel{(7)}{=}, \frac{\vartheta L_{0}}{\vartheta z}=-\frac{24}{z^{3}}-\frac{\lambda x y}{192}+\lambda \stackrel{(8)}{=} 0
$$ and $\frac{v L_{0}}{\vartheta \lambda}=x+y+z-\frac{x y z}{192}=0$ (9) From (6) and (7) $\rightarrow x\left(x-\frac{x y z}{192}\right)=\frac{1}{\lambda}$ and $y\left(y-\frac{x y z}{192}\right)=\frac{1}{\lambda}$ hence $x(y+z)=-\frac{1}{\lambda}$ and $y(x+z)=-\frac{1}{\lambda} \rightarrow x=y(z>0)$

$\left(c^{\prime}\right) \rightarrow 2 x+z=\frac{x^{2} z}{192} \rightarrow z x^{2}-384 x-192 z=0$ (10) and from either (6), (7) and (8) with $x=y$ we get $z x^{2}-192 x-16 z^{2}=0$ (11). From (11)-(10) \rightarrow
$192 x+192 z-16 z^{2}=0 \rightarrow x=z\left(\frac{z}{12}-1\right)$. As $x .0 \rightarrow z>12$. Now (10) becomes $(z-2 y)\left(z^{2}+12 z-96\right)=0$ giving $z=2 y$ and two roots <12 and not acceptable.

$$
\text { With } z=2 y \text { we have } x=y=2 y \text { and } \lambda=-\frac{1}{2 \cdot 2 y^{2}}
$$

The point $\left(x_{0}, y_{0}, z_{0}\right)=(24,24,24)$ is global constrained \min for $f(x, y, z)$ as $d^{2} L_{0}>0$ (All $2^{\text {nd }}$ derivatives >0 and mixed $2^{\text {nd }}$ order derivatives $\left.>0\right)$ $f\left(x_{0}, y_{0}, z_{0}\right)=f(24,24,24)=\frac{1}{24}+\frac{1}{24}+\frac{12}{2 y^{2}}=\frac{5}{48}$ hence $T \geq 152+48 \cdot \frac{5}{48}=157$

$$
T_{\min }=157
$$

SP.186. Let m_{a}, m_{b} and m_{c} be the lengths of the medians of an acute triangle $A B C$ with inradius r and circumradius R. Prove that:

$$
\frac{8 \sqrt{3} r}{3 R^{3}} \leq \frac{\cot \frac{A}{2}}{m_{a}^{2}}+\frac{\cot \frac{B}{2}}{m_{b}^{2}}+\frac{\cot \frac{C}{2}}{m_{c}^{2}} \leq \frac{\sqrt{3} R}{6 \cdot r^{3}}
$$

Proposed by George Apostolopoulos - Messolonghi - Greece
Solution 1 by Marian Ursărescu-Romania

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
In any acute triangle we have $m_{a} \leq 2 R \cos ^{2} \frac{A}{2}$

$$
\begin{align*}
& \qquad \frac{\cot \frac{A}{2}}{m_{a}^{2}}+\frac{\cot \frac{B}{2}}{m_{b}^{2}}+\frac{\cot \frac{C}{2}}{m_{c}^{2}} \geq 3 \sqrt[3]{\frac{\cot \frac{A}{2} \cdot \cot \frac{B}{2} \cdot \cot \frac{C}{2}}{m_{a}^{2} m_{b}^{2} m_{c}^{2}}} \text { (2) } \tag{2}\\
& \text { From (1)+(2) } \Rightarrow \sum \frac{\cot \frac{A}{2}}{m_{a}^{2}} \geq 3 \sqrt[3]{\frac{\cot \frac{A}{2} \cdot \cot \frac{B}{2} \cdot \cot \frac{C}{2}}{64 R^{6} \cos ^{4} \frac{A}{2} \cos ^{4} \frac{B}{2} \cdot \cos ^{4} \frac{C}{2}}}
\end{align*}
$$

From (3) we must show: $3 \sqrt[3]{\frac{\cot \frac{A}{2} \cdot \cot \frac{B}{2} \cdot \cot \frac{C}{2}}{64 R^{6} \cdot \cos ^{4} \frac{A}{2} \cos ^{4} \frac{B}{2} \cos ^{4} \frac{C}{2}}} \geq \frac{8 \sqrt{3} r}{3 R^{3}} \Leftrightarrow \frac{\sqrt{3}}{4 R^{2}} \sqrt[3]{\frac{\cot \frac{A}{2} \cdot \cot \frac{B}{2} \cdot \cot \frac{C}{2}}{\cos ^{4} \frac{A}{2} \cos ^{4} \frac{B}{2} \cos ^{4} \frac{C}{2}}} \geq \frac{8 r}{3 R^{3}} \Leftrightarrow$

$$
\begin{equation*}
\sqrt{3} \sqrt[3]{\frac{\cot \frac{A}{2} \cdot \cot \frac{B}{2} \cdot \cot \frac{C}{2}}{\cos ^{4} \frac{A}{2} \cos ^{4} \frac{B}{2} \cos ^{4} \frac{C}{2}}} \geq \frac{2^{5} r}{27 R} \tag{4}
\end{equation*}
$$

But $\cot \frac{A}{2} \cdot \cot \frac{B}{2} \cdot \cot \frac{C}{2}=\frac{s}{r}$

$$
\begin{equation*}
\text { and } \cos ^{2} \frac{A}{2} \cos ^{2} \frac{B}{2} \cos ^{2} \frac{C}{2}=\frac{s^{2}}{16 R^{2}} \tag{5}
\end{equation*}
$$

$$
\begin{array}{r}
\text { From (4)+(5)+(6) } \Rightarrow 3 \sqrt{3} \frac{\frac{s}{r}}{\frac{s^{4}}{2^{8} R^{4}}} \geq \frac{2^{15} r^{3}}{27 R^{3}} \Leftrightarrow \tag{6}\\
3 \sqrt{3} \frac{2^{8} R^{4}}{s^{3} r} \geq 2^{15} \cdot \frac{r^{3}}{27 R^{3}} \Leftrightarrow 3^{4} \sqrt{3} R^{7} \geq 2^{7} \cdot s^{3} r^{4}
\end{array}
$$

But $R \geq 2 r \Rightarrow R^{4} \geq 2^{4} r^{4}$ (8) and $R \geq \frac{2}{3 \sqrt{3}} s \Rightarrow 3 \sqrt{3} R \geq 2 s \Rightarrow 3^{4} \sqrt{3} R^{3} \geq 2^{3} s$
From (8) $+(9) \Rightarrow$ (7) it is true. Now, we have: $m_{a} \geq \frac{b+c}{2} \cdot \cos \frac{A}{2} \geq \sqrt{b c} \cos \frac{A}{2} \Rightarrow$

$$
\begin{gathered}
m_{a}^{2} \geq b c \cos \frac{A}{2} \Rightarrow \frac{1}{m_{a}^{2}} \leq \frac{1}{b c \cos \frac{A}{2}} \Rightarrow \frac{\cot \frac{A}{2}}{m_{a}^{2}} \leq \frac{1}{b c \cdot \sin \frac{A}{2} \cdot \cos \frac{A}{2}}=\frac{2}{b c \cdot \sin A}=\frac{4 R}{a b c} \Rightarrow \\
\sum \frac{\cot \frac{A}{2}}{m_{a}^{2}} \leq \frac{12 R}{a b c} \Rightarrow \text { we must show }: \frac{12 R}{a b c} \leq \frac{\sqrt{3} R}{6 r^{3}} \Leftrightarrow a b c \geq \frac{2^{3} \cdot 3^{2} \cdot r^{3}}{\sqrt{3}} . \text { But } a b c=4 s R r \Rightarrow \\
\quad s R r \geq \frac{2 \cdot 3^{2}}{\sqrt{3}} r^{3} \Leftrightarrow s R \geq 2 \cdot 3 \sqrt{3} r^{2} \text { true, because } R \geq 2 r \text { and } s \geq 3 \sqrt{3} r
\end{gathered}
$$

Solution 2 by Soumava Chakraborty-Kolkata-India

$$
\frac{8 \sqrt{3} r}{3 R^{3}} \stackrel{(1)}{\leq} \sum \frac{\cot \frac{A}{2}}{m_{a}^{2}} \stackrel{(2)}{\leq} \frac{\sqrt{3} R}{6 \cdot r^{3}}
$$

ROMANIAN MATHEMATICAL MAGAZINE

 www.ssmrmh.ro$$
\sum \frac{\cot \frac{A}{2}}{m_{a}^{2}}=\sum \frac{s}{r_{a} m_{a}^{2}}=\sum \frac{s(s-a)}{r s m_{a}^{2}}
$$

$$
\left.m_{a}^{2} \geq s(s-a), e t c\right) \frac{s(s-a)}{\leq} \sum \frac{3}{r s^{2}(s-a)} \stackrel{?}{\leq} \frac{\sqrt{3} R}{6 r^{3}} \Leftrightarrow \sqrt{3} R s \underset{(2 i)}{\stackrel{?}{\geq}} 18 r^{2}
$$

But $R \stackrel{\text { Euler }}{\geq} 2 r \& s \stackrel{\text { Mitrinovic }}{\geq} 3 \sqrt{3} r \Rightarrow \sqrt{3} R s \geq \sqrt{3}(2 r)(3 \sqrt{3} r)=18 r^{2}$

$$
\Rightarrow(2 i) \Rightarrow(2) \text { is true. Again, } \sum \frac{\cot \frac{A}{2}}{m_{a}^{2}}=\sum \frac{s}{r_{a} m_{a}^{2}}{\underset{(1 i)}{\text { Bergstrom }}}_{\sum r_{a} m_{a}^{2}}^{\frac{9 s}{}}
$$

WLOG, we may assume $a \geq b \geq c \therefore r_{a} \geq r_{b} \geq r_{c} \& m_{a}^{2} \leq m_{b}^{2} \leq m_{c}^{2}$
\therefore Chebyshev $\&(1 i) \Rightarrow \sum \frac{\cot \frac{A}{2}}{m_{a}^{2}} \geq \frac{9 s}{\frac{1}{3}\left(\sum r_{a}\right)\left(\sum m_{a}^{2}\right)}=\frac{9 s}{\frac{1}{3}(4 R+r) \frac{3}{4} \sum a^{2}}$

$$
=\frac{36 s}{(4 R+r)\left(\sum a^{2}\right)} \stackrel{\text { Leibnitz }}{\geq} \frac{36 s}{(4 R+r)\left(9 R^{2}\right)}
$$

$\stackrel{\text { Euler }}{\geq} \frac{4 s}{\frac{9 R^{3}}{2}}=\frac{8 s}{9 R^{3}} \stackrel{\text { Mitrinovic }}{\geq} \frac{8 \cdot 3 \sqrt{3} r}{9 R^{3}}=\frac{8 \sqrt{3} r}{3 R^{3}} \Rightarrow(1)$ is true (Proved)

SP.187. Let a, b, c be the lengths of sides in a triangle such that $a^{2}+b^{2}+c^{2}=3$. Find the maximum value of:

$$
\begin{aligned}
& P=\frac{1}{3 a+b c}+\frac{1}{3 b+c a}+\frac{1}{3 c+a b}+a b+b c+c a \\
& \quad \text { Proposed by Hoang Le Nhat Tung - Hanoi - Vietnam }
\end{aligned}
$$

Solution 1 by proposer

By AM-GM inequality we have:

$$
\begin{array}{r}
a^{2}+b^{2}+c^{2}+3=\left(a^{2}+1\right)+\left(b^{2}+1\right)+\left(c^{2}+1\right) \geq 2 a+2 b+2 c=2(a+b+c) \\
\Rightarrow 6 \geq 2(a+b+c) \Rightarrow 3 \geq a+b+c\left(a^{2}+b^{2}+c^{2}=3\right) \\
+ \text { Hence }\left\{\begin{array}{l}
3 a+b c \geq(a+b+c) a+b c=a(a+b)+c(a+b)=(a+b)(a+c) \\
3 b+c a \geq(a+b+c) b+c a=b(b+c)+a(b+c)=(b+c)(b+a) \\
3 c+a b \geq(a+b+c) c+a b=c(c+a)+b(c+a)=(c+a)(c+b)
\end{array}\right. \\
\Rightarrow \frac{1}{3 a+b c}+\frac{1}{3 b+c a}+\frac{1}{3 c+a b} \leq \frac{1}{(a+b)(a+c)}+\frac{1}{(b+c)(b+a)}+\frac{1}{(c+a)(c+b)}=
\end{array}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
=\frac{2(a+b+c)}{(a+b)(b+c)(c+a)}
$$

$$
\begin{equation*}
\Rightarrow P=\frac{1}{3 a+b c}+\frac{1}{3 b+c a}+\frac{1}{3 c+a b}+a b+b c+c a \leq \frac{2(a+b+c)}{(a+b)(b+c)(c+a)}+a b+b c+c a \tag{1}
\end{equation*}
$$

$$
- \text { We have } \frac{(a+b)(b+c)(c+a)}{8} \geq \frac{2 \sqrt{a b} \cdot 2 \sqrt{b c} \cdot 2 \sqrt{c a}}{8}=\frac{8 a b c}{8}=a b c
$$

$\Rightarrow(a+b+c)(a b+b c+c a)=(a+b)(b+c)(c+a)+\boldsymbol{a b c} \leq(a+b)(b+c)(c+a)+\frac{(a+b)(b+c)(c+a)}{8}$

$$
\Rightarrow(a+b+c)(a b+b c+c a) \leq \frac{9(a+b)(b+c)(c+a)}{8} \Leftrightarrow(a+b)(b+c)(c+a) \geq \frac{8(a+b+c)(a b+b c+c a)}{9}
$$

$$
\begin{equation*}
\Leftrightarrow \frac{2(a+b+c)}{(a+b)(b+c)(c+a)} \leq \frac{2(a+b+c)}{\frac{8(a+b+c)(a b+b c+c a)}{9}}=\frac{9}{4(a b+b c+c a)} \tag{2}
\end{equation*}
$$

- Let (1), (2) $\Rightarrow P \leq \frac{9}{4(a b+b c+c a)}+a b+b c+c a=\frac{9}{4 t}+t \quad$ (if $\left.t=a b+b c+c a>0\right)$
- Other, by inequality in a triangle, we have $\left\{\begin{array}{l}b+c>a \\ c+a>b \\ a+b>c\end{array} \Rightarrow\left\{\begin{array}{l}a(b+c)>a^{2} \\ b(c+a)>b^{2} \\ c(a+b)>c^{2}\end{array}\right.\right.$ $\Rightarrow \boldsymbol{a}(\boldsymbol{b}+\boldsymbol{c})+\boldsymbol{b}(\boldsymbol{c}+\boldsymbol{a})+\boldsymbol{c}(\boldsymbol{a}+\boldsymbol{b})>\boldsymbol{a}^{2}+\boldsymbol{b}^{2}+\boldsymbol{c}^{2}=\mathbf{3} \Rightarrow \mathbf{2}(\boldsymbol{a} \boldsymbol{b}+\boldsymbol{b} \boldsymbol{c}+\boldsymbol{c} \boldsymbol{a})>3 \Leftrightarrow 2 \boldsymbol{t}>3 \Leftrightarrow 2 \boldsymbol{t}-\mathbf{3}>0$
- Other, by inequality $a^{2}+b^{2}+c^{2} \geq a b+b c+c a \Rightarrow 3 \geq a b+b c+c a=t$ $\Rightarrow 3 \geq t \Rightarrow t-3 \leq 0$, with $2 t-3>0 \Rightarrow(t-3)(2 t-3) \leq 0 \Leftrightarrow 2 t-9 t+9 \leq 0 \Leftrightarrow \frac{t}{2}+\frac{9}{4 t} \leq \frac{9}{4}$

$$
\Rightarrow P \leq \frac{9}{4 t}+t \leq \frac{9}{4}+\frac{t}{2} \leq \frac{9}{4}+\frac{3}{2}=\frac{15}{4} \Rightarrow P \leq \frac{15}{4} \Rightarrow P_{\max }=\frac{15}{4}
$$

+ Equality occurs if $\left\{\begin{array}{l}a+b+c=3 \\ a=b=c>0\end{array} \Leftrightarrow a=b=c=1\right.$.
Hence, maximum value of P is: $\frac{15}{4}$ then $a=b=c=1$.
Solution 2 by Michael Sterghiou-Greece

$$
\begin{equation*}
P=\left(\sum_{c y c} \frac{1}{3 a+b c}\right)+\boldsymbol{q} \tag{1}
\end{equation*}
$$

Let $(\boldsymbol{p}, \boldsymbol{q}, \boldsymbol{r})=\left(\sum_{c y c} a, \sum_{c y c} a b, a b c\right) . \sum_{c y c} a^{2}=\boldsymbol{p}^{2}-2 \boldsymbol{q}=3$. First, we show that:
$2 \boldsymbol{q}>\sum_{c y c} \boldsymbol{a}^{2}$ (2): As $\boldsymbol{b}<a+c$ (triangle) $\rightarrow \boldsymbol{a}>b-c$ and as $\boldsymbol{c}<a+b \rightarrow a>c-b$ or $|a|>|b-c|$ and $a^{2}>(b-c)^{2}$ (3). Now (2) can be written as $\sum_{c y c} a^{2} \geq \sum_{c y c}(a-b)^{2}$
which holds true because of (3) and the cyclic relations.
(1) $\rightarrow \frac{\sum_{c y c}(3 b+c a)(3 c+a b)}{\prod_{c y c}(3 a+b c)}+q \leq \frac{15}{4}$ as we will show.

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

or $\frac{p r+3 p q-9 r+9 a}{36 r+9 q^{2}-18 p r+r^{2}}+q \leq \frac{15}{4}$ (4) [Note: we have replaced the terms $\left(\sum a^{2} b\right)+\left(\sum a^{2} c\right)$ with $p q-3 r]$. (4) reduces to
$-72 p q r+12 p q+274 p r+36 q^{3}-135 q^{2}+4 q r^{2}+144 q r+36 q-15 r^{2}-576 r \leq 0$ or $36 q^{3}-135 q^{2}+36 q+(4 q-15) r^{2}+(274 p-72 p q+144 q-576) r+2 p q \leq 0$. We have $p \leq 3 ; q \leq 3$ (due to $\sum_{c y c} x^{3}=3$) and $q \geq \frac{3}{2}$ (from (2)) so $(4 q-15)<0$ We can show easily that $(274 p-72 p q+144 q-576) \geq 0$ (we can replace p by $\sqrt{2 q+3}$ and use analysis with $q \in\left[\frac{3}{2,3}\right]$) and as $r>\frac{1}{9} p\left(4 q-p^{2}\right)$ [from Schur $3^{\text {rd }}$ degree, $\boldsymbol{q} \leq \frac{p^{3}+9 r}{4 p}$] and $r<\left(\frac{q^{2}}{3 p}\right)\left(\boldsymbol{q}^{2} \geq 3 p r\right)$ we get the stronger inequality:

$$
\begin{aligned}
f(q)= & 12 \sqrt{2 q+3} \cdot q+36 q^{3}-135 q^{4}+36 q+(4 q-15) \cdot \frac{1}{81}(2 q+3)(2 q-3)^{2}+ \\
& +(274 \sqrt{2 q+3}+144 q-72 q \sqrt{2 q+3}-576) \cdot\left(\frac{q^{2}}{3 \sqrt{2 q}+3}\right) \leq 0(5)
\end{aligned}
$$

$$
\text { (5) } \rightarrow \frac{1}{81 \sqrt{2 q+3}}\left[\begin{array}{c}
32 \sqrt{2 q+3} \cdot q^{4}+804 \sqrt{2 q+3} q^{3}+3888 q^{3}-3429 \sqrt{2 q+3} \cdot \tag{6}\\
\cdot q^{2}-13608 q^{2}+3294 \sqrt{2 q+3} \cdot q+2916 q-405 \sqrt{2 q+3}
\end{array}\right] \leq 0
$$

Keeping the function in the brackets as $\frac{1}{81} \sqrt{2 q+3}>0$ and replacing $p=\sqrt{2 q+3}$

we get:

$$
\begin{gathered}
f(p)=2 p^{9}+\frac{153}{2} p^{7}+489 p^{6}-\frac{6615}{4} p^{5}-7776 p^{4}+9288 p^{3}+34922 p^{2}-\frac{62451}{4} p-48114 \leq 0(7) \\
\text { with } p \in\left[\sqrt{\frac{9}{2}}, 3\right] \text { as } p^{2} \geq 3 q \text {. (7) reduces to: } \\
f(p)=\frac{1}{4}(p-3) g(p) \text { where } g(p)=8 p^{8}+24 p^{7}+378 p^{6}+3078 p^{5}+2619 p^{4}- \\
-\mathbf{2 3 2 4 7} p^{3}-\mathbf{3 2 5 8 9} p^{2}+\mathbf{4 2 2 0 1} p+64152 \text {. We can show that } q(p)>0: \\
g^{(4)}(p)=\mathbf{2 4} \cdot\left(560 p^{4}+\mathbf{8 4 0} p^{3}+\mathbf{5 6 7 0} p^{2}+15390 p+2619\right)>0 \\
\text { Hence } g^{(3)}(p) \uparrow \rightarrow g^{(3)}(p)>g\left(\sqrt{\frac{9}{2}}\right)>0 \rightarrow g^{\prime \prime}(p) \uparrow \text { etc up to } g(p)
\end{gathered}
$$

Therefore $f(p) \leq 0$ as $p \leq 3$ and $g(p)>0$. We are done!

SP.188. In $\Delta A B C, r_{a}, r_{b}, r_{c}$ are exradii. Prove that:

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro
$\frac{r_{a}}{r_{b}} \cdot \sin ^{2} \frac{A}{2}+\frac{r_{b}}{r_{c}} \cdot \sin ^{2} \frac{B}{2}+\frac{r_{c}}{r_{a}} \cdot \sin ^{2} \frac{C}{2} \geq \frac{3}{4}$
Proposed by Hoang Le Nhat Tung - Hanoi - Vietnam
Solution 1 by Tran Hong-Dong Thap-Vietnam

$$
\begin{gather*}
\frac{r_{a}}{r_{b}} \cdot \sin ^{2} \frac{A}{2}=\frac{s-b}{s-a} \cdot \frac{(s-b)(s-c)}{b c} ; \frac{r_{b}}{r_{c}} \cdot \sin ^{2} \frac{B}{2}=\frac{s-c}{s-b} \cdot \frac{(s-a)(s-c)}{a c} \\
\frac{r_{c}}{r_{a}} \cdot \sin ^{2} \frac{c}{2}=\frac{s-a}{s-c} \cdot \frac{(s-a)(s-b)}{a b} \cdot \text { Must show that: } \\
a(s-b)^{3}(s-c)^{2}+b(s-c)^{3}(s-a)^{2}+c(s-a)^{3}(s-b)^{3} \\
\geq \frac{3}{4} a b c(s-a)(s-b)(s-c)\left(^{*}\right) \tag{*}
\end{gather*}
$$

(Let $x=s-a ; y=s-b ; z=s-c \Rightarrow x+y+z=s \Rightarrow$

$$
a=y+z ; b=x+z ; c=x+y)
$$

$\left.\mathbf{(}^{*}\right) \Leftrightarrow 4\left[(y+z) y^{3} z^{2}+(x+z) z^{3} x^{2}+(x+y) x^{3} y^{2}\right] \geq 3 x y z(x+y)(y+z)(z+x)$

$$
\begin{gather*}
\Leftrightarrow 4\left[y^{4} z^{2}+y^{3} z^{3}+x^{3} z^{3}+x^{2} z^{4}+y^{2} x^{4}+x^{3} y^{3}\right] \geq \\
\geq 3\left\{2(x y z)^{2}+z y^{2} x^{3}+y x^{2} z^{3}+x z^{2} y^{3}+y z^{2} x^{3}+z x^{2} y^{3}+x y^{2} z^{3}\right\} \\
3\left(y^{3} z^{3}+x^{3} z^{3}+x^{3} y^{3}\right) \stackrel{(1)}{\geq} 3\left(y x^{2} z^{3}+z y^{2} x^{2}+x z^{2} y^{3}\right) \\
\left(\because X^{3}+Y^{3}+Z^{3} \geq X Y^{2}+Y Z^{2}+Z X^{2}\right) \\
3\left(z^{2} y^{4}+y^{2} x^{4}+x^{2} z^{4}\right)=3\left\{\left(z y^{2}\right)^{2}+\left(y x^{2}\right)^{2}+\left(x z^{2}\right)^{2}\right\} \\
\stackrel{(2)}{\geq 3\left(z x^{2} y^{3}+y z^{2} x^{3}+x y^{2} z^{3}\right)} \\
y^{4} z^{2}+x^{2} z^{4}+y^{2} x^{4}+x^{3} y^{3}+y^{3} z^{3}+z^{3} x^{3} \stackrel{(A M-G M)}{\geq} \\
6 \sqrt[6]{(x y z)^{12}}=3 \cdot 2(x y z)^{2} \tag{3}
\end{gather*}
$$

From (1)+(2)+(3) $\Rightarrow(* *)$ true $\Rightarrow(*)$ true.
Solution 2 by Soumava Chakraborty-Kolkata-India

$$
\text { LHS }=\sum \frac{r_{a}^{2} \sin ^{2} \frac{A}{2}}{r_{a} r_{b}} \stackrel{\text { Bergstrom }}{\geq} \frac{\left(\sum r_{a} \sin \frac{A}{2}\right)^{2}}{s^{2}}
$$

$$
\begin{gathered}
\text { ROMANIAN MATHEMATICAL MAGAZINE } \\
=\frac{\left(\sum s \frac{\sin ^{2} \frac{A}{2}}{\cos \frac{A}{2}}\right)^{2}}{s^{2}}=\left(\sum \frac{\sin ^{2} \frac{A}{2}}{\cos \frac{A}{2}}\right)^{2} \stackrel{?}{\geq} \frac{3}{4} \Leftrightarrow \sum \frac{\sin ^{2} \frac{A}{2}}{\cos \frac{A}{2}} \geq \frac{\sqrt{3}}{2} \Leftrightarrow \sum \frac{1-\cos ^{2} \frac{A}{2}}{\cos \frac{A}{2}} \geq \frac{\sqrt{3}}{2} \\
\Leftrightarrow \sum \sec \frac{A}{2}-\sum \cos \frac{A}{2} \frac{?}{(1)} \frac{\sqrt{3}}{2}
\end{gathered}
$$

Now, $\sum \sec \frac{A}{2} \underset{(\bar{a})}{\stackrel{\text { Jensen }}{\gtrless}} 3 \sec \frac{\pi}{6}=2 \sqrt{3}\left(\because f(x)=\sec \frac{x}{2}\right.$ is convex $\left.\forall x \in(0, \pi)\right)$
Also, $\sum \cos \frac{A}{2} \stackrel{\text { Jensen }}{\leq} 3 \cos \frac{\pi}{6}=3 \frac{\sqrt{3}}{2}\left(\because \boldsymbol{f}(x)=\cos \frac{x}{2}\right.$ is convex $\left.\forall x \in(0, \pi)\right)$

$$
\Rightarrow-\sum \cos \frac{A}{2} \stackrel{(b)}{\geq}-3 \frac{\sqrt{3}}{2}
$$

(a) + (b) \Rightarrow LHS of (1) $\geq\left(2-\frac{3}{2}\right) \sqrt{3}=\frac{\sqrt{3}}{2} \Rightarrow$ (1) is true (Done)

SP.189. Let be $f: \mathbb{R} \rightarrow \mathbb{R} ; f(x)=x^{2 p+1}+e^{x-1} ; p \in \mathbb{N} ; p \neq 0$; $a_{n}=f^{-1}\left(2+\frac{1}{n}\right) ; n \in \mathbb{N} ; n \neq 0$. Find:

$$
\Omega=\lim _{n \rightarrow \infty} a_{n}^{n}
$$

Proposed by Marian Ursărescu - Romania

Solution 1 by proposer

$$
\boldsymbol{f}^{\prime}(\boldsymbol{x})=(2 \boldsymbol{p}+\mathbf{1}) \boldsymbol{x}^{2 p}+\boldsymbol{e}^{x y}>0, \forall x \in \mathbb{R} \Rightarrow \boldsymbol{f} \text { increasing } \Rightarrow \boldsymbol{f} \text { injective }
$$

\boldsymbol{x}	$-\infty$	$+\infty$
$\boldsymbol{f}^{\prime}(\boldsymbol{x})$	++++++++++++++++++	
$\boldsymbol{f}(\boldsymbol{x})$	$-\infty \longrightarrow+\infty$	

$\operatorname{Im} \boldsymbol{f}=\mathbb{R} \Rightarrow \boldsymbol{f}$ surjective $\Rightarrow \boldsymbol{f}$ bijective

$$
\begin{gather*}
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} f^{-1}\left(2+\frac{1}{n}\right)=f^{-1}\left(\lim _{n \rightarrow \infty} 2+\frac{1}{n}\right)=f^{-1}(2) \tag{1}\\
f^{-1}(2)=x \Leftrightarrow f(x)=2 \Leftrightarrow x^{2 p+1}+e^{x-1}=2 \Rightarrow x=1 \tag{2}
\end{gather*}
$$

$$
(1)+(2) \Rightarrow \lim _{n \rightarrow \infty} a_{n}=1
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\begin{align*}
& \lim _{n \rightarrow \infty} a_{n}^{n}= \lim _{n \rightarrow \infty}\left(1+a_{n}-1\right)^{n}=\lim _{n \rightarrow \infty}\left[\left(1+a_{n}-1\right)^{\frac{1}{a_{n}-1}}\right]^{\left(a_{n}-1\right)^{n}} \\
&= \tag{3}\\
&=e^{\lim _{n \rightarrow \infty}\left(a_{n}-1\right)^{n}}=e^{\lim _{n \rightarrow \infty} \frac{f^{-1}\left(2+\frac{1}{n}\right)-f^{-1}(2)}{\frac{1}{n}}}
\end{align*}
$$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{f^{-1}\left(2+\frac{1}{n}\right)-f^{-1}(2)}{\frac{1}{n}}=\left(f^{-1}\right)^{\prime}(2)=\frac{1}{f^{\prime}(1)}=\frac{1}{2 p+2} \tag{4}
\end{equation*}
$$

$$
\text { From (3)+ (4) } \Rightarrow \lim _{n \rightarrow \infty} a_{n}^{n}=e^{\frac{1}{2 p+2}}
$$

Solution 2 by Remus Florin Stanca-Romania

$$
\begin{aligned}
& f(x)=x^{2 p+1}+e^{x-1} ; p \in \mathbb{N} \Rightarrow p>0 \Rightarrow x^{2 p+1} \text { is increasing } ; e>1 \Rightarrow e^{x-1} \text { is increasing } \Rightarrow \\
& \Rightarrow e^{x-1}+x^{2 p+1} \text { is increasing. } \\
& a_{n}=f^{-1}\left(2+\frac{1}{n}\right) \Rightarrow f\left(a_{n}\right)=2+\frac{1}{n} \Rightarrow a_{n}^{2 p+1}+e^{a_{n}-1}=2+\frac{1}{n}(a) ; 2+\frac{1}{n} \text { is decreasing, }
\end{aligned}
$$

$$
\text { but } f(x)=x^{2 p+1}+e^{x-1} \text { is increasing } \Rightarrow a_{n} \text { is a decreasing sequence. }
$$

We suppose that $\boldsymbol{a}_{n}<1 \Rightarrow \boldsymbol{a}_{\boldsymbol{n}}^{2 \boldsymbol{p}+1}<1(1)(\boldsymbol{P}>0)$

$$
\begin{gathered}
a_{n}<1 \Rightarrow a_{n}-1<0 \Rightarrow e^{a_{n}-1}<1(2) \\
---------------"+\prime
\end{gathered}
$$

$a_{n} \geq 1$ and a_{n} is decreasing $\Rightarrow a_{n}$ is a verged sequence $\Rightarrow \exists l \in \mathbb{R}$ such that $\lim _{n \rightarrow \infty} a_{n}=l$

$$
a_{n}^{2 p+1}+e^{a_{n}-1}=2+\frac{1}{n} \Rightarrow l^{2 p+1}+e^{l-1}=2 ; f(l)=l^{2 p+1}+e^{l-1} \text { is an increasing }
$$

function $\Rightarrow f$ injective \Rightarrow we have a unique solution $\Rightarrow l \stackrel{\text { unique }}{=} 1 \Rightarrow \lim _{n \rightarrow \infty} a_{n}=1$

$$
\begin{gathered}
\Omega=\lim _{n \rightarrow \infty}\left(a_{n}\right)^{n}=\lim _{n \rightarrow \infty}\left(a_{n}-1+1\right)^{\frac{1}{a_{n}-1}\left(a_{n}-1\right) n}=\lim _{n \rightarrow \infty} e^{\frac{a_{n}-1}{\frac{1}{n}}} \\
a_{n}^{2 p+1}+e^{a_{n}-1}=2+\frac{1}{n} \Rightarrow \frac{1}{n}=a_{n}^{2 p+1}+e^{a_{n}-1}-2 \Rightarrow \Omega=\lim _{n \rightarrow \infty} e^{\frac{a_{n}-1}{a_{n}^{2 p+1}+e^{a_{n}-1}} \text { Stolz Cesaro }} \overline{\frac{0}{0}} \\
=\lim _{n \rightarrow \infty} e^{\frac{a_{n+1}-a_{n}}{a_{n+1}^{2 p+1}-a_{n}^{2 p+1}+e^{a_{n+1}-1}-e^{a_{n}-1}}}=\lim _{n \rightarrow \infty} e^{\frac{a_{n+1}^{2 p+1}-a_{n}^{2 p+1}}{a_{n+1}-a_{n}}+\frac{e^{a_{n+1}-1}-e^{a_{n}-1}}{a_{n+1}-a_{n}}}
\end{gathered}
$$

$$
\begin{aligned}
& \underset{(1) ;(2)}{"+1} a_{n}^{2 p+1}+e^{a_{n}-1}<2 \stackrel{(a)}{\Rightarrow} 2+\frac{1}{n}<2 \Rightarrow \frac{1}{n}<0 \Rightarrow \text { false, because } \\
& n \in \mathbb{N}^{*}(n \neq 0) \Rightarrow \text { contradiction, so } a_{n} \geq 1
\end{aligned}
$$

$$
\begin{aligned}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
= & \lim _{n \rightarrow \infty} e^{\frac{1}{\frac{\left(a_{n+1}-a_{n}\right)\left(a_{n+1}^{2 p}+a_{n+1}^{2 p-1} a_{n}^{1}+\cdots+a_{n}^{2 p}\right)}{a_{n+1}-a_{n}}+e^{a_{n}-1} \cdot \frac{e^{a_{n+1}-a_{n}-1}}{a_{n+1}-a_{n}}}}=e^{\frac{1}{2 p+2}} \Rightarrow \Omega=\sqrt[2 p+2]{e}
\end{aligned}
$$

SP.190. Let be $x_{0}>0 ; \boldsymbol{x}_{n+1}=x_{n}+\frac{1}{1+x_{n}+x_{n}^{2}+\cdots+x_{n}^{p}} ; \boldsymbol{n} \in \mathbb{N}$;

$$
\boldsymbol{p} \in \mathbb{N} ; p \neq \mathbf{0} ; \boldsymbol{p} \text { - fixed. Find: }
$$

$$
\Omega=\lim _{n \rightarrow \infty} \frac{x_{1}+x_{2}+\cdots+x_{n}}{\sqrt[p+1]{n^{p+2}}}
$$

Proposed by Marian Ursărescu - Romania

Solution 1 by Remus Florin Stanca-Romania

$$
\text { Let be } x_{0}>0 ; x_{n+1}=x_{n}+\frac{1}{1+x_{n}+x_{n}^{2}+\ldots+x_{n}^{j}} ; \boldsymbol{n} \in \mathbb{N}
$$

we prove by using the Mathematical induction that $x_{n}>0 ; \forall n \in \mathbb{N}$:

1) we know that $P(0): x_{0}>0$ is true.
2) we suppose that $P(n): x_{n}>0$ is true.
3) we prove that $P(n+1): x_{n+1}>0$ is true by using the fact that $P(n)$ is true:

$$
\left.\begin{array}{c}
x_{n}>0 \Rightarrow 1+x_{n}+\cdots+x_{n}^{p}>0 \Rightarrow \frac{1}{1+x_{n}+\cdots+x_{n}^{p}}>0 \\
x_{n}>0
\end{array}\right] \begin{gathered}
-------------{ }^{\prime}+" \\
\Rightarrow x_{n}+\frac{1}{1+x_{n}+\cdots+x_{n}^{p}}>0 \Rightarrow x_{n+1}>0 \Rightarrow P(n+1) \text { is true } \Rightarrow \\
>x_{n}>0 \forall n \in \mathbb{N} \text { (Proved) } \\
x_{n+1}=x_{n}+\frac{1}{1+x_{n}+\cdots+x_{n}^{p}} \Rightarrow x_{n+1}-x_{n}=\frac{1}{1+x_{n}+\cdots+x_{n}^{p}}>0 \Rightarrow x_{n+1}>x_{n} \Rightarrow \\
\succ\left(x_{n}\right)_{n \in \mathbb{N}} \text { is an increasing sequence (1) }
\end{gathered}
$$

We suppose that x_{n} is verged $>\mid a \in R$ such that $x_{n} \leq \alpha$ (2)

$$
\begin{aligned}
& \stackrel{(1) ;(2)}{\Rightarrow} \exists l \in \mathbb{R} \text { such that } \lim _{n \rightarrow \infty} x_{n}=l ; x_{n+1}=x_{n}+\frac{1}{1+\cdots+x_{n}^{p}} \Rightarrow \\
& \Rightarrow l=l+\frac{1}{1+l+\cdots+l^{p}} \Rightarrow \frac{1}{1+\cdots+l^{p}}, \text { false because } l \in \mathbb{R} \backslash\{+\infty ;-\infty\}
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro
$\Rightarrow l=\infty \Rightarrow \lim _{n \rightarrow \infty} x_{n}=\infty$

$$
\begin{gather*}
=\lim _{n \rightarrow \infty} \frac{x_{n+1}}{n^{\frac{p+2}{p+1}}\left(\left(\frac{n+1)}{n}\right)^{\frac{p+2}{p+1}}-1\right)^{n}}=\lim _{n \rightarrow \infty} \frac{x_{n+1}}{n^{\frac{p+2}{p+1}} \frac{\left(\frac{n+1}{n}\right)^{p+2}-1}{\left(\left(\frac{n+1}{n}\right)^{\frac{p+2}{p+1}}\right)^{0}+\cdots+\left(\left(\frac{n+1}{n}\right)^{\frac{p+2}{p+1}}\right)^{p}}}= \\
=\lim _{n \rightarrow \infty} \frac{x_{n+1}}{n^{\frac{p+2}{p+1} \cdot \frac{1}{n}\left(\left(\frac{n+1}{n}\right)^{0}+\left(\frac{n+1}{n}\right)^{p+1}\right)}} \underset{\left(\left(\frac{n+1}{n}\right)^{\frac{p+2}{p+1}}\right)^{0}+\cdots+\left(\left(\frac{n+1}{n}\right)^{\left.\frac{p+2}{p+1}\right)^{p}}\right.}{\left(\frac{p+1}{p+2} \cdot \lim _{n \rightarrow \infty} \frac{x_{n+1}}{\frac{1}{p+1}}=\frac{p+1}{p+2} \cdot \lim _{n \rightarrow \infty}\left(\frac{x_{n+1}^{p+1}}{n}\right)^{\frac{1}{p+1}}\right.} \\
x_{n+1}=x_{n}+\frac{1}{x_{n}^{0}+\cdots+x_{n}^{p}}=x_{n}+\frac{x_{n}-1}{x_{n}^{p+1}-1}=\frac{x_{n}^{p+2}-1}{x_{n}^{p+1}-1}=x_{n+1} \tag{3}
\end{gather*}
$$

$\stackrel{(3)}{\succ} \Omega_{\frac{\infty}{\infty}}^{\text {Stolz }} \underset{\frac{\text { Cesaro }}{=}}{ } \frac{p+1}{p+2} \lim _{n \rightarrow \infty}\left(x_{n+2}^{p+1}-x_{n+1}^{p+1}\right)^{\frac{1}{p+1}}=\frac{p+1}{p+2} \cdot \lim _{n \rightarrow \infty}\left(x_{n+1}^{p+1}\left(\left(\frac{x_{n+2}}{x_{n+1}}\right)^{p+1}-1\right)\right)^{\frac{1}{p+1}}=$

$$
\begin{gathered}
=\frac{p+1}{p+2} \lim _{n \rightarrow \infty}\left(x_{n+1}^{p+1} \cdot \frac{x_{n+2}-x_{n+1}}{x_{n+1}} \cdot(p+1)\right)^{\frac{1}{p+1}}= \\
=\frac{p+1}{p+2} \cdot \sqrt[p+1]{p+1} \cdot \lim _{n \rightarrow \infty}\left(x_{n+1}^{p} \cdot \frac{1}{x_{n+1}^{0}+\cdots+x_{n+1}^{p}}\right)^{\frac{1}{p+1}}= \\
=\frac{p+1}{p+2} \cdot \sqrt[p+1]{p+1} \cdot 1 \frac{1}{p+1} \Rightarrow \Omega=\frac{p+1}{p+2} \cdot \sqrt[p+1]{p+1}
\end{gathered}
$$

Solution 2 by Soumitra Mandal-Chandar Nagore-India

$$
x_{n+1}=x_{n}+\frac{1}{\sum_{m=0}^{p} x_{n}^{m}} \text { and } x_{0}>0 \text { hence } x_{1}>x_{0}, x_{2}>x_{1}, \ldots, x_{n+1}>x_{n} \text { for all }
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$n \in \mathbb{N}$. Hence $\left\{x_{n}\right\}_{n=1}^{\infty}$ is an increasing function. Hence its bounded above and converges. Let $\lim _{n \rightarrow \infty} x_{n}=l$ then $l=l+\frac{1}{1+l+l^{2}+\cdots+l^{p}} \Rightarrow l \rightarrow \infty$, hence it is a contradiction. So, $\lim _{n \rightarrow \infty} x_{n}=\infty . \lim _{u \rightarrow 0} \frac{(1+u)^{r}-1}{u}=r$ where $r \in \mathbb{R}$

$$
\begin{aligned}
& \Omega=\frac{x_{1}+x_{2}+\cdots+x_{n}}{\sqrt[p+1]{n^{p+2}}} \stackrel{\text { CAESSARO }^{\text {STOLZ }}}{=} \frac{x_{n+1}}{(n+1)^{\frac{p+2}{p+1}}-n^{\frac{p+2}{p+1}}}= \\
& =\left(\lim _{n \rightarrow \infty} \frac{1}{\frac{\left(1+\frac{1}{n}\right)^{\frac{p+2}{p+1}}-1}{\frac{1}{n}}}\right)\left(\lim _{n \rightarrow \infty} \frac{x_{n+1}}{\sqrt[p+1]{n}}\right) \\
& =\frac{p+1}{p+2} \lim _{n \rightarrow \infty} \stackrel{p+1}{\frac{x_{n+1}^{p+1}}{n}} \stackrel{\text { CAESARO }}{\stackrel{\text { STOLZ }}{=}} \frac{p+1}{p+2} \lim _{n \rightarrow \infty} \sqrt[p+1]{\frac{x_{n+2}^{p+1}-x_{n+1}^{p+1}}{n+1-n}} \\
& =\frac{p+1}{p+2} \lim _{n \rightarrow \infty} \sqrt[p+1]{\left(x_{n+1}+\frac{1}{\sum_{m=0}^{p} x_{n+1}^{m}}\right)^{p+1}-x_{n+1}^{p+1}} \\
& =\frac{p+1}{p+2} \lim _{x_{n} \rightarrow 0} \sqrt[p+1]{\frac{x_{n+1}^{p}}{\sum_{m=0}^{p} x_{n+1}^{p}} \cdot \frac{\left(1+\frac{1}{x_{n+1}\left(\sum_{m=0}^{p} x_{n+1}^{m}\right)}\right)^{p+1}}{\frac{1}{\left(\sum_{m=0}^{p} x_{n+1}^{m}\right)}}}=\frac{p+1}{p+2} \sqrt[p+1]{p+1}
\end{aligned}
$$

SP.191. Let be $f:[a, b] \rightarrow \mathbb{R} ; f$ - continuous and $\int_{a}^{b} f(x) d x=0$.
Prove that exists $c \in(a, b)$ such that:

$$
\begin{aligned}
& c \cdot f(c) \cdot \int_{a}^{c} f(t) d t=c \cdot f(c)+\int_{a}^{c} f(t) d t \\
& \text { Proposed by M arian Ursărescu - Romania }
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
Solution by Tran Hong-Dong Thap-Vietnam

$$
\begin{gathered}
\text { Let } g(x)=x \int_{a}^{x} f(t) d t \cdot e^{-\int_{a}^{x} f(t) d t}(x \in[a, b]) \\
\Rightarrow g^{\prime}(x)=e^{-\int_{a}^{x} f(t) d t}\left[x f(x)+\int_{a}^{x} f(t) d t-x f(x) \int_{a}^{x} f(t) d t\right]
\end{gathered}
$$

We have: $\boldsymbol{g}(\boldsymbol{a})=\boldsymbol{g}(\boldsymbol{b})=0$, by Rolle's theorem exists $\boldsymbol{c} \in(\boldsymbol{a}, \boldsymbol{b})$ such that: $\boldsymbol{g}^{\prime}(\boldsymbol{c})=0$

$$
\begin{gathered}
\Leftrightarrow e^{-\int_{a}^{c} f(t) d t}\left[c f(c)+\int_{a}^{c} f(t) d t-c f(c) \int_{a}^{c} f(t) d t\right]=0 \\
\Leftrightarrow c f(c) \int_{a}^{c} f(t) d t=c f(c)+\int_{a}^{c} f(t) d t \text {. Proved }
\end{gathered}
$$

SP.192. Let be $A \in M_{4}(\mathbb{R}) ; \operatorname{det} A=1 ; \operatorname{det}\left(A^{2}+I_{n}\right)=0$. Prove that:

$$
\operatorname{Tr}\left(A^{-1}\right)=\operatorname{Tr} A
$$

Proposed by Marian Ursărescu - Romania

Solution by Ravi Prakash-New Delhi-India

$$
\text { As } \operatorname{det}\left(A^{2}+I_{4}\right)=0 \Rightarrow \operatorname{det}\left[\left(A+i A_{4}\right)\left(A-i I_{4}\right)\right]=0
$$

$$
\Rightarrow \operatorname{det}\left(A+i I_{4}\right) \operatorname{det}\left(A-i I_{4}\right)=0 \Rightarrow \operatorname{det}\left(A+i I_{4}\right)=0 \text { or } \operatorname{det}\left(A-i I_{4}\right)=0
$$

$\Rightarrow i$ or $-i$ is an eigenvalue of A. As $A \in M_{4}(\mathbb{R})$, both $i,-i$ are eigenvalues of A
Let λ, μ be other eigenvalues of A, then $1=\operatorname{det}(A)=i(-i) \lambda \mu=\lambda \mu$

$$
\Rightarrow \lambda \mu=1 \Rightarrow \mu=\frac{1}{\lambda} \therefore \operatorname{Tr}(A)=i+(-i)+\lambda+\frac{1}{\lambda}=\lambda+\frac{\mathbf{1}}{\lambda}
$$

Also, $\operatorname{Tr}\left(A^{-1}\right)=\frac{1}{i}+\frac{1}{(-i)}+\frac{1}{\lambda}+\lambda=\frac{1}{\lambda}+\lambda$. $\operatorname{Thus}, \operatorname{Tr}\left(A^{-1}\right)=\operatorname{Tr}(A)$

SP.193. If $A, B, C \in M_{2}(\mathbb{R}) ; \operatorname{det} A, \operatorname{det} B, \operatorname{det} C>0 ; \operatorname{det}(A B C)=8$ then:

$$
\begin{gathered}
\operatorname{det}\left(A^{2}+B^{2}+C^{2}\right)+\operatorname{det}\left(A^{2}+B^{2}-C^{2}\right)+\operatorname{det}\left(A^{2}-B^{2}+C^{2}\right)+ \\
+\operatorname{det}\left(-A^{2}+B^{2}+C^{2}\right) \geq 48
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Solution by Marian Ursărescu - Romania

We use the theorem: If $M, N \in M_{2}(\mathbb{C})$ then:
$P(x)=\operatorname{det}(M+N x)=\operatorname{det} M+a x+\operatorname{det} N x^{2}$
Let $p_{1}(x)=\operatorname{det}\left(A^{2}+B^{2}+C^{2} x\right)=\operatorname{det}\left(A^{2}+B^{2}\right)+a_{1} x+\operatorname{det} C^{2} x^{2}$ $\left.\begin{array}{c}P_{1}(1)=\operatorname{det}\left(A^{2}+B^{2}+C^{2}\right)=\operatorname{det}\left(A^{2}+B^{2}\right)+a_{1}+\operatorname{det} C^{2} \\ P_{1}(-1)=\operatorname{det}\left(A^{2}+B^{2}-C^{2}\right)=\operatorname{det}\left(A^{2}+B^{2}\right)-a_{1}+\operatorname{det} C^{2}\end{array}\right\} \Rightarrow$
$\operatorname{det}\left(A^{2}+B^{2}+C^{2}\right)+\operatorname{det}\left(A^{2}+B^{2}-C^{2}\right)=2\left(\operatorname{det}\left(A^{2}+B^{2}\right)+\operatorname{det} C^{2}\right)$
Let $P_{2}(x)=\operatorname{det}\left(C^{2}+\left(A^{2}-B^{2}\right) x\right)=\operatorname{det} C^{2}+a_{2} x+\operatorname{det}\left(A^{2}-B^{2}\right) x^{2}$

$$
\left.\begin{array}{c}
P_{2}(1)=\operatorname{det}\left(C^{2}+A^{2}-B^{2}\right)=\operatorname{det} C^{2}+a_{2}+\operatorname{det}\left(A^{2}-B^{2}\right) \\
P_{2}(-1)=\operatorname{det}\left(C^{2}-A^{2}+B^{2}\right)=\operatorname{det} C^{2}-a_{2}+\operatorname{det}\left(A^{2}-B^{2}\right)
\end{array}\right\} \Rightarrow
$$

$$
\begin{equation*}
\operatorname{det}\left(C^{2}+A^{2}-B^{2}\right)+\operatorname{det}\left(C^{2}-A^{2}+B^{2}\right)=2\left(\operatorname{det} C^{2}+\operatorname{det}\left(A^{2}-B^{2}\right)\right) \tag{2}
\end{equation*}
$$

From (1) $+(2) \Rightarrow \operatorname{det}\left(A^{2}+B^{2}+C^{2}\right)+\operatorname{det}\left(A^{2}+B^{2}-C^{2}\right)+$ $+\operatorname{det}\left(A^{2}-B^{2}+C^{2}\right)+\operatorname{det}\left(A^{2}+B^{2}+C^{2}\right)=4 \operatorname{det} C^{2}+2\left(\operatorname{det}\left(A^{2}+B^{2}\right)+\operatorname{det}\left(A^{2}-B^{2}\right)\right)$

Let $P_{3}(x)=\operatorname{det}\left(A^{2}+x B^{2}\right)=\operatorname{det} A^{2}+a_{3} x+\operatorname{det} B^{2} x^{2}$

$$
\left.\begin{array}{c}
P_{3}(1)=\operatorname{det}\left(A^{2}+B^{2}\right)=\operatorname{det} A^{2}+a_{3}+\operatorname{det} B^{2} \tag{3}\\
P_{3}(-1)=\operatorname{det}\left(A^{2}-B^{2}\right)=\operatorname{det} A^{2}-a_{3}+\operatorname{det} B^{2}
\end{array}\right\} \Rightarrow
$$

$\operatorname{det}\left(A^{2}+B^{2}\right)+\operatorname{det}\left(A^{2}-B^{2}\right)=2\left(\operatorname{det} A^{2}+\operatorname{det} B^{2}\right)$
From (3)+ (4) $\Rightarrow \operatorname{det}\left(A^{2}+B^{2}+C^{2}\right)+\operatorname{det}\left(A^{2}+B^{2}-C^{2}\right)+$
$+\operatorname{det}\left(A^{2}-B^{2}+C^{2}\right)+\operatorname{det}\left(-A^{2}+B^{2}+C^{2}\right)=4\left(\operatorname{det} A^{2}+\operatorname{det} B^{2}+\operatorname{det} C^{2}\right)$

$$
\begin{align*}
& \text { But } \operatorname{det} A^{2}+\operatorname{det} B^{2}+\operatorname{det} C^{2} \geq 3 \sqrt[3]{(\operatorname{det} A+\operatorname{det} B+\operatorname{det} C)^{2}}= \tag{5}\\
&=3 \sqrt[3]{(\operatorname{det}(A B C))^{2}}=3 \sqrt[3]{64}=12
\end{align*}
$$

From (5) $+(6) \Rightarrow \operatorname{det}\left(A^{2}+B^{2}+C^{2}\right)+\operatorname{det}\left(A^{2}+B^{2}-C^{2}\right)+$

$$
+\operatorname{det}\left(A^{2}-B^{2}+C^{2}\right)+\operatorname{det}\left(-A^{2}+B^{2}+C^{2}\right) \geq 48
$$

SP.194. Find all continuous functions $f: \mathbb{R} \rightarrow(0,+\infty)$ having the property:

$$
f(x) \cdot f(a x) \cdot f\left(a^{2} x\right)=a^{x}, \forall x \in \mathbb{R}, a \in(\mathbf{0}, \mathbf{1}) \text { - fixed. }
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
 Solution by Ravi Prakash-New Delhi-India

$$
\begin{equation*}
f(x) f(a x) f\left(a^{2} x\right)=a^{x} \quad \forall x \in \mathbb{R} \tag{1}
\end{equation*}
$$

Put $x=0, f(0)^{3}=1 \Rightarrow f(0)=1$. Replacing x by $a x$

$$
\begin{equation*}
f(a x) f\left(a^{2} x\right) f\left(a^{3} x\right)=a^{a x} \tag{2}
\end{equation*}
$$

From (1), (2), we get: $\frac{f(x)}{f\left(a^{3} x\right)}=\frac{a^{x}}{a^{a x}}=a^{x(1-a)}$

$$
\begin{gather*}
\frac{f\left(a^{3} x\right)}{f\left(a^{3} a^{3} x\right)}=a^{a^{3} x(1-a)} \tag{*}\\
{\left[\operatorname{Replacing} x \text { by } a^{2} x\right]} \\
\Rightarrow \frac{f\left(a^{3} x\right)}{f\left(a^{6} x\right)}=a^{a^{3} x(1-a)} \tag{*}\\
\Rightarrow \frac{f\left(a^{6} x\right)}{f\left(a^{9} x\right)}=a^{a^{6} x(1-a)} \tag{*}\\
\vdots \\
\frac{f\left(a^{3 n-3} x\right)}{f\left(a^{3 n} x\right)}=a^{a^{3 n-3} x(1-a)} \tag{*}
\end{gather*}
$$

Multiplying n equations marked with (*), we get

$$
\frac{f(x)}{f\left(a^{3 n} x\right)}=a^{x(1-a)\left[1+a^{3}+\cdots+a^{3 n-3}\right]}=a^{x(1-a)\left(1-a^{3 n}\right) /\left(1-a^{3}\right)}
$$

Taking limit as $n \rightarrow \infty$

$$
\left(\boldsymbol{a}^{3 n} \rightarrow \mathbf{0} \text { as } n \rightarrow \infty(\because \mathbf{0}<a<1)\right)
$$

we obtain using continuity of \boldsymbol{f} that

$$
\frac{f(\boldsymbol{x})}{f(\mathbf{0})}=\boldsymbol{a}^{x(1-a) /\left(1-a^{3}\right)}=a^{x /\left(1+a+a^{2}\right)} \Rightarrow \boldsymbol{f}(x)=a^{x /\left(1+a+a^{2}\right)}
$$

SP.195. Find:

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\lim _{x \rightarrow 0} \frac{\left(e^{x}-\cos x\right)\left(e^{2 x}-\cos 2 x\right) \cdot \ldots \cdot\left(e^{n x}-\cos n x\right)-n!x^{n}}{\sin ^{n+1}(n+1) x}}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro
Solution by Remus Florin Stanca - Romania

$$
\begin{align*}
& \Omega=\lim _{n \rightarrow \infty} \sqrt[n]{\lim _{x \rightarrow 0} \frac{\left(e^{x}-\cos x\right)\left(e^{2 x}-\cos 2 x\right) \cdot \ldots \cdot\left(e^{n x}-\cos (n x)\right)-n!\cdot x^{n}}{\sin ^{(n+1)}((n+1) x)}} \\
& \lim _{x \rightarrow 0} \frac{\left(e^{x}-\cos x\right) \cdot \ldots \cdot\left(e^{n x}-\cos (n x)\right)-n!x^{n}}{\sin ^{(n+1)}((n+1) x)} \cdot \frac{((n+1) x)^{n+1}}{((n+1) x)^{n+1}}= \\
& =\lim _{x \rightarrow 0} \frac{\left(e^{x}-\cos x\right) \cdot \ldots \cdot\left(e^{n x}-\cos n x\right)-n!x^{n}}{((n+1) x)^{n+1}}= \\
& =\lim _{x \rightarrow 0} \frac{1}{(n+1)^{n+1}} \cdot \frac{\left(e^{x}-\cos x\right) \cdot \ldots \cdot\left(e^{n x}-\cos n x\right)-n!x^{n}}{x^{n+1}}= \\
& \text { Let } x_{n}=\lim _{x \rightarrow 0} \frac{\left(e^{x}-\cos x\right) \cdots:\left(e^{n x}-\cos n x\right)-n!x^{n}}{x^{n+1}} \\
& >x_{n+1}=\lim _{x \rightarrow 0} \frac{\left(e^{x}-\cos x\right) \cdot \ldots \cdot\left(e^{(n+1) x}-\cos (n+1) x\right)-(n+1)!x^{n+1}}{x^{n+2}}= \\
& =x_{n} \cdot \lim _{x \rightarrow 0} \frac{e^{(n+1) x}-\cos (n+1) x}{x}+\lim _{x \rightarrow 0} \frac{n!x^{n}\left(e^{(n+1) x}-\cos (n+1) x\right)}{x^{n+2}}-\lim _{x \rightarrow 0} \frac{(n+1)!x^{n+1}}{x^{n+2}} \tag{1}\\
& \lim _{x \rightarrow 0} \frac{e^{(n+1) x}-\cos (n+1) x}{x}=\lim _{x \rightarrow 0} \frac{e^{(n+1) x}-1}{x}+\lim _{x \rightarrow 0} \frac{1-\cos (n+1) x}{x}=n+1+ \\
& +\lim _{x \rightarrow 0} \frac{1-\cos (n+1) x}{x} \stackrel{L^{\prime} H}{\frac{L^{\prime}}{0}} \lim _{x \rightarrow 0} \frac{(n+1) \sin (n+1) x}{1}+n+1=n+1 \\
& >x_{n+1}=(n+1) x_{n}+n!\cdot\left(\lim _{x \rightarrow 0} \frac{e^{(n+1) x}-\cos ((n+1) x)-(n+1) x}{x^{2}}\right) \\
& \lim _{x \rightarrow 0} \frac{e^{(n+1) x}-\cos (n+1) x-(n+1) x}{x^{2}} \frac{L^{\prime} H}{\overline{0}} \\
& =\lim _{x \rightarrow 0} \frac{e^{(n+1) x}(n+1)+(n+1) \sin ((n+1) x)-(n+1)}{2 x}= \\
& =(n+1) \lim _{x \rightarrow 0} \frac{e^{(n+1) x}+\sin ((n+1) x)-1}{2 x}=(n+1) \lim _{x \rightarrow 0} \frac{1}{2} \cdot \frac{e^{(n+1) x}-1}{x}+\frac{1}{2} . \\
& \cdot \lim _{x \rightarrow 0} \frac{\sin ((n+1) x)}{(n+1) x}(n+1)=(n+1)\left(\frac{n+1}{2}+\frac{n+1}{2}\right)=(n+1)^{2} \Rightarrow \\
& \Rightarrow x_{n+1}=(n+1) x_{n}+n!(n+1)(n+1)=(n+1) x_{n}+(n+1)!(n+1)=x_{n+1} \\
& x_{1}=\lim _{x \rightarrow 0} \frac{e^{x}-\cos x-x}{x^{2}} \stackrel{L^{\prime} H}{=} \lim _{x \rightarrow 0} \frac{e^{x}+\sin x-1}{2 x}=1 \Rightarrow x_{1}=1 \text { (3) }
\end{align*}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

We prove by using the Mathematical induction that: $x_{n}=n!\frac{n(n+1)}{2}=\frac{n(n+1)!}{2}$

1. we prove that $P(1): x_{1}=\frac{1 \cdot(1+1)!}{2}$ is true

$$
P(1) \Leftrightarrow x_{1}=\frac{1 \cdot 2!}{2}=1 \stackrel{(3)}{\Rightarrow} P(1) \text { is true }
$$

2. we suppose that $P(n): x_{n}=\frac{n(n+1)!}{2}$ is true
3. we prove that $P(n+1): x_{n+1}=\frac{(n+1)(n+2)!}{2}$ is true by using the fact that $P(n)$ is true:

$$
\begin{gathered}
x_{n+1}=(n+1) x_{n}+(n+1)!(n+1) \Leftrightarrow x_{n+1}=(n+1) \cdot \frac{n(n+1)!}{2}+(n+1)!(n+1)= \\
=(n+1)!(n+1)\left(\frac{n}{2}+1\right)=\frac{(n+1)!(n+1)(n+2)}{2}=\frac{(n+2)!(n+1)}{2} \Rightarrow \\
\Rightarrow P(n+1) \text { is true } \Rightarrow x_{n}=\frac{n(n+1)!}{2} \forall n \in \mathbb{N}^{*} \Rightarrow \text { proved } \\
>\lim _{x \rightarrow 0} \frac{\left(e^{x}-\cos x\right) \cdot \ldots \cdot\left(e^{n x}-\cos (n x)\right)-n!x^{n}}{x^{n+1}}=\frac{n(n+1)!}{2} \\
\Omega=\lim _{n \rightarrow \infty} \sqrt[n]{\frac{x_{n}}{(n+1)^{n+1}}}=\lim _{n \rightarrow \infty} e^{\frac{\ln \frac{x_{n}}{(n+1)^{n+1}}}{n} \text { stolz Cesaro }}=\lim _{n \rightarrow \infty}\left(\frac{x_{n+1}}{x_{n}} \cdot\left(\frac{n+1}{n+2}\right)^{(n+1)} \cdot \frac{1}{n+2}\right)= \\
=\frac{1}{e} \cdot \lim _{n \rightarrow \infty}\left(\frac{x_{n+1}}{x_{n}} \cdot \frac{1}{n+2}\right)=\frac{1}{e} \cdot \frac{(n+1)(n+2)!}{n(n+1)!} \cdot \frac{1}{n+2}=\frac{1}{e} \cdot \lim _{n \rightarrow \infty} \frac{n+1}{n}=\frac{1}{e}>\Omega=\frac{1}{e}
\end{gathered}
$$

UP.181. If $0<a \leq b<\frac{\pi}{2}$ then:

$$
\int_{a}^{b}\left(e^{\sin ^{2} x+\frac{\sin ^{4} x}{2 \cos ^{2} x}}\right) d x \geq \tan b-\tan a
$$

Proposed by Daniel Sitaru - Romania

Solution 1 by Tran Hong-Dong Thap-Vietnam

$$
\begin{align*}
& e^{\sin ^{2} x+\frac{\sin ^{4} x}{2 \cos ^{2} x} \geq \frac{1}{\cos ^{2} x}\left(0<x<\frac{\pi}{2}\right)} \\
& \Leftrightarrow e^{\left(1-\cos ^{2} x\right)+\frac{\left(1-\cos ^{2} x\right)^{2}}{2 \cos ^{2} x}} \geq \frac{1}{\cos ^{2} x} \tag{*}
\end{align*}
$$

$$
\begin{aligned}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
& \text { www.ssmrmh.ro } \\
& \text { Let } t=\cos ^{2} x \quad(0<t<1) \because \boldsymbol{f}(\boldsymbol{t})=\boldsymbol{e}^{(1-t)+\frac{(1-t)^{2}}{2 t}}-\frac{1}{t} \quad(0<t<1) \\
& \Rightarrow f^{\prime}(t)=-\frac{t^{2}+1}{2 t^{2}} \cdot e^{(1-t)+\frac{(1-t)^{2}}{2 t}}+\frac{1}{t^{2}}=\frac{2-\left[\left(t^{2}+1\right) e^{(1-t)+\frac{(1-t)^{2}}{2 t}}\right]}{2 t^{2}}<0 \\
& \text { (} \because \text { Because: }\left(\boldsymbol{t}^{2}+\mathbf{1}\right) \cdot \boldsymbol{e}^{(1-t)+\frac{(1-t)^{2}}{2 t}}>2 \quad(0<t<1) \text {) } \\
& \left.\Rightarrow \boldsymbol{f}(\boldsymbol{t}) \searrow(\mathbf{0} ; \mathbf{1}) \Rightarrow \boldsymbol{f}(\boldsymbol{t})>\boldsymbol{f}(\mathbf{1})=\mathbf{0} \Rightarrow \mathbf{(}^{*}\right) \text { true. }
\end{aligned}
$$

Hence: $\int_{a}^{b} e^{\sin ^{2} x+\frac{\sin ^{4} x}{2 \cos ^{2} x}} d x \geq \int_{a}^{b} \frac{1}{\cos ^{2} x} d x=\tan b-\tan a$. Proved.
Solution 2 by Soumitra Mandal-Chandar Nagore-India

$$
\begin{gathered}
e^{x} \geq 1+x \text { for all } x \geq 0 \text { then: } \\
\int_{a}^{b} e^{\sin ^{2} x+\frac{\sin ^{4} x}{2 \cos ^{2} x}} d x=\int_{a}^{b} e^{\sin ^{2} x\left(1+\frac{\tan ^{2} x}{2}\right)} d x=\int_{a}^{b} e^{\sin ^{2} x\left(\frac{1+\sec ^{2} x}{2}\right)} d x \\
\stackrel{A M \geq G M}{\geq} \int_{a}^{b} e^{\sec x \cdot \sin ^{2} x} d x=\int_{a}^{b} e^{\sec x-\cos x} d x=\int_{a}^{b} e^{\frac{\sec ^{2} x-1}{\cos x}} d x \\
\geq \int_{a}^{b} e^{\sec ^{2} x-1} d x[\text { since }, 1 \geq \cos x \geq-1] \geq \int_{a}^{b} \sec ^{2} x d x=\tan b-\tan a \\
\text { (proved) }
\end{gathered}
$$

UP.182. Find:

$$
\int_{0}^{1} x^{2} \ln ^{2}(x)\left\{\frac{1}{x}\right\} d x
$$

where $\{\cdot\}$ denotes the Fractional Part.
Proposed by Shivam Sharma - New Delhi - India

Solution 1 by Zaharia Burghelea-Romania

Denote: $\Omega=\int_{0}^{1} x^{2} \ln ^{2} x\left\{\frac{1}{x}\right\} d x$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro
Consider: $I(a)=\int_{0}^{1} x^{a}\left\{\frac{1}{x}\right\} d x \stackrel{x=\frac{1}{t}}{=} \int_{1}^{\infty} \frac{(t)}{t^{a+2}} d t=$

$$
=\sum_{n=1}^{\infty} \int_{n}^{n+1} \frac{(t-n)}{t^{a+2}} d t \stackrel{t-n=y}{=} \sum_{n=1}^{\infty} \int_{0}^{1} \frac{y}{(y+n)^{a+2}} d y
$$

$$
=\sum_{n=1}^{\infty} \int_{0}^{1}\left(\frac{1}{(y+n)^{a+1}}-\frac{n}{(y+n)^{a+2}}\right) d y=\left.\sum_{n=1}^{\infty}\left(-\frac{1}{a} \cdot \frac{1}{(y+n)^{a}}+\frac{n}{a+1} \cdot \frac{1}{(y+n)^{a+1}}\right)\right|_{0} ^{1}
$$

$$
=\frac{1}{a} \sum_{n=1}^{\infty}\left(\frac{1}{n^{a}}-\frac{1}{(n+1)^{a}}\right)-\frac{1}{a+1} \sum_{n=1}^{\infty}\left(\frac{n}{n^{a+1}}-\frac{n}{(n+1)^{a+1}}\right)=\frac{1}{a}-\frac{\zeta(a+1)}{a+1}
$$

$$
\Omega=\int_{0}^{1} x^{2} \ln ^{2} x\left\{\frac{1}{x}\right\} d x=\left.\frac{d^{2}}{d a^{2}}(I(a))\right|_{a=2}
$$

$$
\text { Using: } \frac{d}{d s} \zeta(s)=\sum_{n=1}^{\infty} \frac{d}{d s}\left(n^{-s}\right)=-\sum_{n=2}^{\infty} \frac{\ln n}{n^{s}}=-\zeta^{\prime}(s)
$$

$$
\Rightarrow \frac{d^{2}}{d a^{2}}(I(a))=\frac{2}{a^{3}}-\frac{2 \zeta(a+1)}{(a+1)^{3}}+\frac{2 \zeta^{\prime}(a+1)}{(a+1)^{2}}-\frac{\zeta^{\prime \prime}(a+1)}{a+1}
$$

$$
\Rightarrow \Omega=\left.\frac{d^{2}}{d a^{2}}(I(a))\right|_{a=2}=\int_{0}^{1} x^{2} \ln ^{2} x\left\{\frac{1}{x}\right\} d x=\frac{1}{4}-\frac{2}{27} \zeta(3)+\frac{2}{9} \zeta^{\prime}(3)-\frac{1}{3} \zeta^{\prime \prime}(3)
$$

Solution 2 by Tobi Joshua-Nigeria

$$
\begin{gathered}
I=\int_{0}^{1} x^{2} \ln ^{2} x\left\{\frac{1}{x}\right\} d x, t=\frac{1}{x} ; I=\int_{1}^{\infty} \frac{\ln ^{2} t}{t^{4}}\{t\} d t=\int_{1}^{\infty} \frac{\ln ^{2} t}{t^{4}}(t-[t]) d t \\
I=\int_{1}^{\infty} \frac{t \cdot \ln ^{2} t d t}{t^{4}}-\int_{1}^{\infty} \frac{\ln ^{2} t[t] d t}{t^{4}} ; I=\frac{1}{4}-\int_{1}^{\infty}[t] \frac{\ln ^{2} t}{t^{4}} d t \\
I=\frac{1}{4}-\sum_{k=1}^{\infty} k \int_{k}^{k+1} \frac{\ln ^{2} t}{t^{4}} d t ; I=\frac{1}{4}-\sum_{k=1}^{\infty} k\left[-\frac{2}{27 t^{3}}-\frac{\ln ^{2} t}{3 t^{3}}-\frac{2 \ln t}{9 t^{3}}\right]_{k}^{k+1} \\
I=\frac{1}{4}+\sum_{k=1}^{\infty} k\left[\frac{+2}{27 t^{3}}+\frac{\ln ^{2} t}{3 t^{3}}+\frac{2 \ln t}{a t^{3}}\right]_{k}^{k+1} \\
I \sum_{k=1}^{\infty} k\left(\frac{0}{27(k+1)^{3}}-\frac{2}{27 k^{3}}\right)+\frac{1}{3} \sum_{k=1}^{\infty} k\left(\frac{\ln ^{2}(k+1)}{(k+1)^{3}}+\frac{\ln ^{2} k}{k^{3}}\right)+\frac{2}{9}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\begin{align*}
& \sum_{k=1}^{\infty} k\left(\frac{\ln (k+1)}{(k+1)^{3}}-\frac{\ln k}{k^{3}}\right) \\
& I=\frac{1}{4}-\frac{2}{27} I(3)+\frac{1}{3} \sum_{k=1}^{\infty}\left(\frac{k \ln ^{2}(k+1)}{(k+1)^{3}}-\frac{\ln k}{k^{2}}\right)+\frac{2}{4} \\
& \sum_{k=1}^{\infty}\left(\frac{k \ln (k+1)}{(k+1)^{3}}-\frac{\ln k}{k^{2}}\right) \\
& A=\sum_{k=1}^{\infty}\left(\frac{k \ln ^{2}(k+1)}{(k+1)^{3}}-\frac{\ln ^{2} k}{k^{2}}\right) \\
& A=\left.\sum_{k=1}^{\infty} \frac{\partial^{2}}{\partial a^{2}}\right|_{a=3} \frac{k}{(k+1)^{9}}-\left.\sum_{k=1}^{\infty} \frac{\partial^{2}}{\partial a^{2}}\right|_{a=2} \frac{1}{k^{9}} \\
& A=\left.\frac{\partial^{2}}{\partial a^{2}}\right|_{a=3}(\zeta(a-1)-\zeta(a))-\left.\frac{\partial^{2}}{\partial a^{2}}\right|_{a=2} \zeta(a) \\
& A=\zeta^{\prime \prime}(2)-\zeta^{\prime \prime}(3)-\zeta^{\prime \prime}(2)=-\zeta^{\prime \prime}(3) \tag{1}\\
& B=\sum_{k=1}^{\infty}\left(\frac{k \ln (k+1)}{(k+1)^{3}}-\frac{\ln k}{k^{2}}\right) \\
& B=\sum_{k=1}^{\infty}-\frac{\partial}{\partial a}\left|a=3 \frac{k}{(k+1)^{a}}+\sum_{k}^{\infty}+\frac{\partial}{\partial a}\right| a=2 \frac{1}{k^{a}} \\
& B=-\left.\frac{\partial}{\partial a}\right|_{a=3}(\zeta(a-1)-\zeta(a))+\left.\frac{\partial}{\partial a}\right|_{a=2} \zeta(a) \\
& B=-\zeta^{\prime}(2)+\zeta^{\prime}(3)+\zeta^{\prime}(2)=+\zeta^{\prime}(3) \text { (2) } \tag{2}\\
& I=\frac{1}{4}-\frac{2}{27} \zeta(3)-\frac{\zeta^{\prime \prime}(3)}{3}+\frac{27 \zeta^{\prime}(3)}{9} \\
& I=\frac{1}{4}-\frac{2}{27} \zeta(3)-\frac{\zeta^{\prime \prime}(3)}{3}+\frac{2}{9} \zeta^{\prime}(3)
\end{align*}
$$

Solution 3 by Kartick Chandra Betal-India

$$
\int_{0}^{1} x^{2} \ln ^{2} x\left\{\frac{1}{x}\right\} d x=\int_{1}^{\infty} \frac{\ln ^{2} x}{x^{4}}\{x\} d x
$$

ROMANIAN MATHEMATICAL MAGAZINE

$$
\left.\begin{array}{l}
=\lim _{n \rightarrow \infty} \sum_{k=1}^{n-1} \int_{k}^{k+1} \frac{(x-k)}{x^{4}} \cdot \ln ^{2} x d x=\lim _{n \rightarrow \infty} \sum_{k=1}^{n-1} \int_{k}^{k+1}\left(\frac{\ln ^{2} x}{x^{3}}-\frac{k \ln ^{2} x}{x^{4}}\right) d x \\
=\lim _{n \rightarrow \infty} \sum_{k=1}^{n-1}\left[-\frac{\ln ^{2} x}{2 x^{2}}-\frac{\ln x}{2 x^{2}}-\frac{1}{4 x^{2}}+k\left(\frac{\ln ^{2} x}{3 x^{3}}+\frac{2 \ln x}{9 x^{3}}+\frac{2}{27 x^{3}}\right)\right]_{k}^{k+1} \\
=\lim _{n \rightarrow \infty}\left[\left\{-\frac{\ln ^{2} n}{2 n^{2}}-\frac{\ln x}{2 n^{2}}-\frac{1}{4}\left(\frac{1}{n^{2}}-1\right)\right\}+\left\{\frac{\ln ^{2} n}{3 n^{2}}+\frac{2 \ln n}{9 n^{2}}+\frac{2}{27}\left(\frac{1}{n^{2}}-1\right)\right\}-\right] \\
\quad-\sum_{k=1}^{n-1}\left\{\frac{\ln ^{2}(1+k)}{3(1+k)^{3}}+\frac{2 \ln (1+k)}{9(1+k)^{3}}+\frac{2}{27(1+k)^{3}}\right\}
\end{array}\right] \quad\left[\begin{array}{l}
\lim _{n \rightarrow \infty}\left[\left\{-\frac{\ln ^{2} n}{6 n^{2}}-\frac{5 \ln n}{18 n^{2}}-\frac{19}{108 n^{2}}+\frac{19}{108}\right\}-\sum_{k=1}^{n}\left\{\frac{\ln ^{2} k}{3 k^{3}}+\frac{2 \ln k}{9 k^{3}}+\frac{2}{27}\left(\frac{1}{k^{3}}-1\right)\right\}\right] \\
=\frac{19}{108}+\frac{2}{27}-\frac{\zeta^{\prime \prime}(3)}{3}+\frac{2 \zeta^{\prime}(3)}{9}-\frac{2}{27} \zeta(3)=\frac{1}{4}-\frac{\zeta^{\prime \prime}(3)}{3}+\frac{2 \zeta^{\prime}(3)}{9}-\frac{2}{27} \zeta(3)
\end{array}\right.
$$

UP.183. Let x_{n}, y_{n}, z_{n} be three sequences of real numbers such that:

$$
\lim _{n \rightarrow \infty} \frac{x_{n}}{n^{p}}=a, \lim _{n \rightarrow \infty} \frac{y_{n}}{n^{p+1}}=b, \lim _{n \rightarrow \infty} \frac{z_{n}}{n^{p+2}}=c, a, b, c \in \mathbb{R}^{*}, p \in \mathbb{N}^{*}
$$

Find:

$$
\lim _{n \rightarrow \infty} \frac{\left(x_{1}^{3}+\cdots+x_{n}^{3}\right)\left(y_{1}^{3}+\cdots+y_{n}^{3}\right)\left(z_{1}^{3}+\cdots+z_{n}^{3}\right)}{\left(x_{1} y_{1} z_{1}+\cdots+x_{n} y_{n} z_{n}\right)^{3}}
$$

Proposed by Marian Ursărescu - Romania

Solution 1 by Soumitra Mandal-Chandar Nagore-India

$$
\lim _{u \rightarrow 0} \frac{(1+u)^{r}-1}{u}=r \in \mathbb{R}, \text { then } \lim _{n \rightarrow \infty} \frac{\sum_{k=1}^{n} x_{k}^{3}}{n^{3 p+1}} \stackrel{\text { CESARO }}{S T O L Z} \lim _{n \rightarrow \infty} \frac{x_{n+1}^{3}}{(n+1)^{3 p+1}-n^{3 p+1}}
$$

$$
=\lim _{n \rightarrow \infty}\left(\frac{x_{n+1}}{n^{p}}\right)^{3} \cdot \lim _{n \rightarrow \infty} \frac{1}{\frac{\left(1+\frac{1}{n}\right)^{3 p+1}-1}{\frac{1}{n}}}=\frac{a^{3}}{3 p+1}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{\sum_{k=1}^{n} y_{k}^{3}}{n^{3 p+4}} \stackrel{\text { CESARO }}{\text { STOLZ }}=\lim _{n \rightarrow \infty} \frac{y_{n+1}^{3}}{(n+1)^{3 p+4}-n^{3 p+4}}=\lim _{n \rightarrow \infty}\left(\frac{y_{n}}{n^{p+1}}\right)^{3} \cdot \frac{1}{\frac{\left(1+\frac{1}{n}\right)^{3 p+4}-1}{\frac{1}{n}}} \\
& =\frac{b^{3}}{3 p+4} \lim _{n \rightarrow \infty} \frac{\sum_{k=1}^{n} z_{k}^{3}}{n^{3 p+7}} \stackrel{\text { SESARO }}{=} \stackrel{z_{n+1}^{3}}{=} \lim _{n \rightarrow \infty} \frac{(n+1)^{3 p+7}-n^{3 p+7}}{(n+1)} \\
& =\lim _{n \rightarrow \infty}\left(\frac{z_{n}}{n^{p+2}}\right)^{3} \cdot \lim _{n \rightarrow \infty} \frac{1}{\frac{\left(1+\frac{1}{n}\right)^{3 p+7}-1}{\frac{1}{n}}}=\frac{c^{3}}{3 p+7} \\
& \lim _{n \rightarrow \infty} \frac{\sum_{k=1}^{n} x_{k} y_{k} z_{k}}{n^{3 p+4}} \stackrel{\text { CESARO }}{\stackrel{\text { SOLZ }}{=}} \lim _{n \rightarrow \infty} \frac{x_{n+1} y_{n+1} z_{n+1}}{(n+1)^{3 p+4}-n^{3 p+4}}=\frac{a b c}{3 p+4} \\
& \lim _{n \rightarrow \infty}\left(\frac{\left(x_{1}^{3}+\cdots+x_{n}^{3}\right)\left(y_{1}^{3}+\cdots+y_{n}^{3}\right)\left(z_{1}^{3}+\cdots+z_{n}^{3}\right)}{\left(x_{1} y_{1} z_{1}+\cdots+x_{n} y_{n} z_{n}\right)^{3}}\right)= \\
& =\lim _{n \rightarrow \infty} \frac{\left(\frac{\sum_{k=1}^{n} x_{k}^{3}}{n^{3 p+1}}\right)\left(\frac{\sum_{k=1}^{n} y_{k}^{3}}{n^{3 p+4}}\right)\left(\frac{\sum_{k=1}^{n} z_{k}^{3}}{\boldsymbol{n}^{3 p+7}}\right)}{\frac{\left(\sum_{k=1}^{n} x_{k} y_{k} z_{k}\right)^{3}}{n^{9 p+12}}} \\
& =\frac{\frac{a^{3}}{3 p+1} \cdot \frac{b^{3}}{3 p+4} \cdot \frac{c^{3}}{3 p+7}}{\left(\frac{a b c}{3 p+4}\right)^{3}}=\frac{(3 p+4)^{2}}{(3 p+1)(3 p+7)} \text { (Answer) }
\end{aligned}
$$

Solution 2 by Remus Florin Stanca-Romania

$$
\text { Let } x_{n}, y_{n}, z_{n} \text { be three sequences of real numbers such that: }
$$

$$
\lim _{n \rightarrow \infty} \frac{x_{n}}{n^{p}}=a, \lim _{n \rightarrow \infty} \frac{y_{n+1}}{n^{p+1}}=\boldsymbol{b}, \lim _{n \rightarrow \infty} \frac{z_{n}}{n^{p+2}}=c, a, b, c \in \mathbb{R}^{*}, \boldsymbol{p} \in \mathbb{N}^{*} . \text { Find: }
$$

$$
\begin{gathered}
\Omega=\lim _{n \rightarrow \infty} \frac{\left(x_{1}^{3}+\cdots+x_{n}^{3}\right)\left(y_{1}^{3}+\cdots+y_{n}^{3}\right)\left(z_{1}^{3}+\cdots+z_{n}^{3}\right)}{\left(x_{1} y_{1} z_{1}+\cdots+x_{n} y_{n} z_{n}\right)^{3}} \\
\Omega=\lim _{n \rightarrow \infty} \frac{x_{1}^{3}+\cdots+x_{n}^{3}}{(n+1)^{3 p+1}} \cdot \frac{y_{1}^{3}+\cdots+y_{n}^{3}}{(n+1)^{3 p+4}} \cdot \frac{z_{1}^{3}+\cdots+z_{n}^{3}}{(n+1)^{3 p+1}} \cdot \frac{(n+1)^{9 p+12}}{\left(x_{1} y_{1} z_{1}+\cdots+x_{n} y_{n} z_{n}\right)^{3}} \\
\lim _{n \rightarrow \infty} \frac{x_{1}^{3}+\cdots+x_{n}^{3}}{(n+1)^{3 p+1}} \stackrel{\text { Stolz Cesaro }}{=} \lim _{n \rightarrow \infty} \frac{x_{n+1}^{3}}{(n+2)^{3 p+1}-(n+1)^{3 p+1}}=
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
=\lim _{n \rightarrow \infty} \frac{x_{n+1}^{3}}{(n+1)^{3 p+1}\left(\left(\frac{n+2}{n+1}\right)^{3 p+1}-1\right)}=
$$

$$
=\lim _{n \rightarrow \infty} \frac{x_{n+1}^{3}}{(n+1)^{3 p+1}\left(\frac{n+2}{n+1}-1\right)\left(\left(\frac{n+2}{n+1}\right)^{0}+\cdots+\left(\frac{n+2}{n+1}\right)^{3 p}\right)}
$$

$$
\begin{equation*}
=\lim _{n \rightarrow \infty}\left(\frac{x_{n+1}}{(n+1)^{p}}\right)^{3} \cdot \frac{1}{3 p+1}=\frac{a^{3}}{3 p+1} \tag{1}
\end{equation*}
$$

$\lim _{n \rightarrow \infty} \frac{y_{1}^{3}+\cdots+y_{n}^{3}}{(n+1)^{3 p+4}} \stackrel{y_{n+1}^{3}}{=}=$
$=\lim _{n \rightarrow \infty} \frac{y_{n+1}^{3}}{(n+1)^{3 p+4} \cdot \frac{1}{n+1}\left(\left(\frac{n+2}{n+1}\right)^{0}+\cdots+\left(\frac{n+2}{n+1}\right)^{3 p+3}\right)}$ $=\lim _{n \rightarrow \infty}\left(\frac{y_{n+1}}{(n+1)^{p+1}}\right)^{3} \cdot \frac{1}{3 p+4}=\frac{b^{3}}{3 p+4}$
$\lim _{n \rightarrow \infty} \frac{z_{1}^{3}+\cdots+z_{n}^{3}}{(n+1)^{3 p+7}} \stackrel{\text { Stolz Cesaro }}{=} \lim _{n \rightarrow \infty} \frac{z_{n+1}^{3}}{(n+2)^{3 p+7}-(n+1)^{3 p+7}}=$

$$
\begin{equation*}
=\lim _{n \rightarrow \infty} \frac{z_{n+1}^{3}}{(n+1)^{3 p+7} \cdot \frac{1}{n+1}\left(\left(\frac{n+2}{n+1}\right)^{0}+\cdots+\left(\frac{n+2}{n+1}\right)^{3 p+6}\right)}=\frac{c^{3}}{3 p+7} \tag{3}
\end{equation*}
$$

$$
\lim _{n \rightarrow \infty} \frac{(n+1)^{9 p+12}}{\left(x_{1} y_{1} z_{1}+\cdots+x_{n} y_{n} z_{n}\right)^{3}}=\lim _{n \rightarrow \infty}\left(\frac{(n+1)^{3 p+4}}{x_{1} y_{1} z_{1}+\cdots+x_{n} y_{n} z_{n}}\right)^{3} \text { Stolz Cesaro }=
$$

$$
=\lim _{n \rightarrow \infty}\left(\frac{(n+2)^{3 p+4}-(n+1)^{3 p+4}}{x_{n+1} y_{n+1} z_{n+1}}\right)^{3}=
$$

$$
=\lim _{n \rightarrow \infty}\left(\frac{(n+1)^{3 p+4} \cdot \frac{1}{n+1}\left(\left(\frac{n+2}{n+1}\right)^{0}+\cdots+\left(\frac{n+2}{n+1}\right)^{3 p+3}\right)}{x_{n+1} y_{n+1} z_{n+1}}\right)^{3}=
$$

$$
=(3 p+4)^{3} \cdot \lim _{n \rightarrow \infty}\left(\frac{(n+1)^{p}}{x_{n+1}} \cdot \frac{(n+1)^{p+1}}{y_{n+1}} \cdot \frac{(n+1)^{p+2}}{z_{n+1}}\right)^{3}=
$$

$$
\begin{equation*}
=(3 p+4)^{3} \cdot \frac{1}{a^{3} b^{3} c^{3}} \tag{4}
\end{equation*}
$$

$$
\stackrel{(a) ;(1) ;(2) ;(3)}{\Rightarrow} \Omega=\frac{a^{3} b^{3} c^{3}}{(3 p+1)(3 p+4)(3 p+7)} \cdot \frac{(3 p+4)^{3}}{a^{3} b^{3} c^{3}} \Rightarrow \Omega=\frac{(3 p+4)^{2}}{(3 p+1)(3 p+7)}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

UP.184. If $0<a \leq b<\frac{\pi}{2}$ then:
$4 \int_{a}^{b}\left(\left(\sin ^{2} x+\csc ^{2} x\right)^{3}+\left(\cos ^{2} x+\sec ^{2} x\right)^{3}\right) d x \geq 125(b-a)$

Proposed by Daniel Sitaru - Romania

Solution 1 by Tran Hong-Dong Thap-Vietnam

We prove that: $4\left[\left(\sin ^{2} x+\csc ^{2} x\right)^{3}+\left(\cos ^{2} x+\sec ^{2} x\right)^{3}\right] \geq 125$

$$
\begin{gathered}
\Leftrightarrow\left[\left(\sin ^{2} x+\csc ^{2} x\right)^{3}+\left(\cos ^{2} x+\sec ^{2} x\right)^{3}\right] \geq \frac{125}{4} \quad(\text {) } \\
\because L H S_{(*)} \geq \frac{\left[\left(\sin ^{2} x+\csc ^{2} x\right)+\left(\cos ^{2} x+\sec ^{2} x\right)\right]^{3}}{2^{2}} \\
=\frac{\left[1+\frac{1}{\sin ^{2} x}+\frac{1}{\cos ^{2} x}\right]^{3}}{2^{2}}=\frac{\left[1+\frac{4}{\sin ^{2} 2 x}\right]^{3}}{2^{2}} \geq \frac{[1+4]^{3}}{2^{2}}=\frac{125}{4} \\
=4 \int_{a}^{b}\left[\left(\sin ^{2} x+\csc ^{2} x\right)^{3}+\left(\cos ^{2} x+\sec ^{2} x\right)\right] d x \geq 125 \int_{a}^{b} d x=125(b-a)
\end{gathered}
$$

(Proved)
Solution 2 by Avishek Mitra-West Bengal-India

$$
\begin{gathered}
S=\left(\sin ^{2} x+\csc ^{2} x\right)^{3}+\left(\cos ^{2} x+\sec ^{2} x\right)^{3} \\
=\left(\sin ^{6} x+\csc ^{6} x\right)+3\left(\sin ^{2} x+\cos ^{2} x\right)+3\left(\sec ^{2} x+\csc ^{2} x\right)+\left(\sec ^{6} x+\csc ^{6} x\right) \\
\Rightarrow \sin ^{6} x+\cos ^{6} x=1-\frac{1}{3}(\sin 2 x)^{2} \Leftrightarrow(\sin 2 x)^{2} \leq 1 \Rightarrow \sin ^{6} x+\cos ^{6} x \geq \frac{1}{4} \\
\Rightarrow \sec ^{2} x+\csc ^{2} x=\frac{1}{\sin ^{2} x \cdot \cos ^{2} x}=\frac{4}{(\sin 2 x)^{2}} \Rightarrow\left(\sec ^{2} x+\csc ^{2} x\right) \geq 4 \\
\Rightarrow \frac{\sec ^{2} x+\csc ^{6} x}{2} \stackrel{A M-G M}{\geq} \frac{1}{\sin ^{3} x \cdot \cos ^{3} x} \Rightarrow p \geq \frac{2}{\frac{1}{8}(\sin 2 x)^{2}} \Leftrightarrow(\sin 2 x)^{2} \leq 1 \Rightarrow p \geq 16 \\
\Leftrightarrow S \geq \frac{1}{4}+3+(3 \times 4)+16 \Rightarrow S \geq \frac{125}{4} \Rightarrow \int_{a}^{b} S d x=\frac{125}{4} \int_{a}^{b} d x
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro
$\Leftrightarrow 4 \int_{a}^{b}\left(\left(\sin ^{2} x+\csc ^{2} x\right)^{3}+\left(\cos ^{2} x+\sec ^{2} x\right)^{3}\right) d x \geq 125(b-a)$

(Proved)

UP.185. Calculate the integral:

$$
\int_{0}^{\infty} \frac{x^{2} \arctan x}{x^{4}+x^{2}+1} d x
$$

Proposed by Vasile Mircea Popa - Romania

Solution 1 by Zaharia Burghelea-Romania

$$
\begin{gathered}
\text { Denote: } I=\int_{0}^{\infty} \frac{x^{2} \arctan x}{x^{4}+x^{2}+1} d x \\
I=\int_{0}^{x=\frac{1}{t}} \frac{\arctan \left(\frac{1}{t}\right)}{t^{4}+t^{2}+1} d t \Rightarrow 2 I=\int_{0}^{\infty} \frac{x^{2} \arctan x+\frac{\pi}{2}-\arctan x}{x^{4}+x^{2}+1} d x \\
I=\frac{\pi}{4} \int_{0}^{\infty} \frac{d x}{x^{2}+x^{2}+1}+\frac{1}{2} \int_{0}^{\infty} \frac{\left(x^{2}-1\right) \arctan x}{x^{4}+x^{2}+1} d x \\
I_{1}=\int_{0}^{\infty} \frac{d x}{x^{4}+x^{2}+1}=\int_{0}^{x=\frac{1}{t}} \frac{t^{2}}{t^{4}+t^{2}+1} d t \Rightarrow 2 I_{1}=\int_{0}^{\infty} \frac{x^{2}+1}{x^{4}+x^{2}+1} d x \\
I_{1}=\frac{1}{2} \int_{-\infty}^{\infty} \frac{d\left(x-\frac{1}{x}\right)}{\left(x-\frac{1}{x}\right)^{2}+3}=\left.\frac{1}{2 \sqrt{3}} \arctan \left(\frac{x^{2}-1}{\sqrt{3} x}\right)\right|_{-\infty} ^{\infty}=\frac{\pi}{2 \sqrt{3}} \\
\quad \Rightarrow I=\frac{\pi^{2}}{8 \sqrt{3}}+\frac{1}{2} \int_{0}^{\infty} \frac{\left(x^{2}-1\right) \arctan x}{x^{4}+x^{2}+1} d x=\frac{\pi^{2}}{8 \sqrt{3}}+\frac{1}{2} I_{2} \\
\int_{0}^{\infty} \frac{1-\frac{1}{x^{2}}}{\left(x+\frac{1}{x}\right)^{2}-1} \arctan x d x=\int_{0}^{\infty}\left(\frac{1}{2} \ln \left(\frac{x+\frac{1}{x}-1}{x+\frac{1}{x}+1}\right)\right)^{\prime} \arctan x d x \\
=\left.\frac{1}{2} \ln \left(\frac{x^{2}-x+1}{x^{2}+x+1}\right) \arctan x\right|_{0} ^{\infty}-\frac{1}{2} \int_{0}^{\infty} \ln \left(\frac{x^{2}-x+1}{x^{2}+x+1}\right) \frac{d x}{1+x^{2}}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro
$=\frac{1}{2} \int_{0}^{\infty} \ln \left(\frac{x^{2}+x+1}{x^{2}-x+1}\right) \stackrel{x=\tan t}{=} \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \ln \left(\frac{\sec ^{2}+\tan t}{\sec ^{2} t-\tan t}\right) d t$
$=\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \ln \left(\frac{1+\sin t \cos t}{1-\sin t \cos t}\right) d t \stackrel{2 t=x}{=} \frac{1}{4} \int_{0}^{\pi} \ln \left(\frac{1+\frac{1}{2} \sin x}{1-\frac{1}{2} \sin x}\right) d x=\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \ln \left(\frac{1+\frac{1}{2} \sin x}{1-\frac{1}{2} \sin x}\right) d x$
Consider the following integral: $I(a)=\int_{0}^{\frac{\pi}{2}} \ln \left(\frac{1+a \sin x}{1-a \sin x}\right) d t$
$I^{\prime}(a)=\int_{0}^{\frac{\pi}{2}}\left(\frac{\sin x}{1+a \sin x}+\frac{\sin x}{1-a \sin x}\right) d x=2 \int_{0}^{\frac{\pi}{2}} \frac{\sin x}{1-a^{2} \sin ^{2} x} d x=$
$=2 \int_{0}^{\pi} \frac{\sin x}{a^{2} \cos ^{2} x+\left(\sqrt{1-a^{2}}\right)^{2}} d x=\frac{2}{a^{2}} \int_{0}^{1} \frac{d(\cos x)}{\cos ^{2} x+\left(\frac{\sqrt{1-a^{2}}}{a}\right)^{2}} d x$
$=\left.\frac{2 a}{a^{2} \sqrt{1-a^{2}}} \arctan \left(\frac{a x}{\sqrt{1-a^{2}}}\right)\right|_{0} ^{1}=\frac{2}{a \sqrt{1-a^{2}}} \arctan \left(\frac{a}{\sqrt{1-a^{2}}}\right)$

$$
\begin{aligned}
I(0)=0 & \Rightarrow I_{2}=\frac{1}{2} I\left(\frac{1}{2}\right)=\int_{0}^{\frac{1}{2}} \frac{1}{a \sqrt{1-a^{2}}} \arctan \left(\frac{a}{\sqrt{1-a^{2}}}\right) d a \stackrel{a=\sin x}{=} \int_{0}^{\frac{\pi}{6}} \frac{x}{\sin x} d x= \\
& =\int_{0}^{\frac{\pi}{6}} x\left(\ln \left(\tan \frac{x}{2}\right)\right)^{\prime} d x=\left.x \ln \left(\tan \frac{x}{2}\right)\right|_{0} ^{\frac{\pi}{6}}-\int_{0}^{\frac{\pi}{6}} \ln \left(\tan \frac{x}{2}\right) d x \\
& \stackrel{\frac{x}{2}=t}{=} \frac{\pi}{6} \ln (2-\sqrt{3})-2 \int_{0}^{\frac{\pi}{12}} \ln (\tan t) d t=-\frac{\pi}{6} \ln (2+\sqrt{3})-2 I_{3}
\end{aligned}
$$

Consider: $I_{4}=\int_{0}^{\frac{\pi}{12}} \ln (\tan (3 t)) d t$ and use the following identity:

$$
\tan (3 x)=\tan (3 x) \tan \left(\frac{\pi}{3}-x\right) \tan \left(\frac{\pi}{3}+x\right)
$$

$$
I_{4}=\int_{0}^{\frac{\pi}{12}} \ln (\tan t) d t+\int_{0}^{\frac{\pi}{12}} \ln \left(\tan \left(\frac{\pi}{3}-t\right)\right) d t+\int_{0}^{\frac{\pi}{12}} \ln \left(\tan \left(\frac{\pi}{3}+t\right)\right) d t=
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro
$=\int_{0}^{\frac{\pi}{12}} \ln (\tan x) d x+\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \ln (\tan x) d x+\int_{\frac{\pi}{3}}^{\frac{5 \pi}{12}} \ln (\tan x) d x=$
$=\int_{0}^{\frac{\pi}{12}} \ln (\tan x) d x+\int_{\frac{\pi}{4}}^{\frac{5 \pi}{12}} \ln (\tan x) d x=\int_{0}^{\frac{\pi}{12}} \ln (\tan x) d x+\int_{\frac{\pi}{4}}^{\frac{\pi}{12}} \ln (\tan x) d x=$

$$
=2 \int_{0}^{\frac{\pi}{12}} \ln (\tan x) d x-3 \int_{0}^{\frac{\pi}{12}} \ln (\tan (3 x)) d x \Rightarrow I_{4}=2 I_{3}-3 I_{4}
$$

$$
\Rightarrow I_{3}=2 I_{4}=2 \int_{0}^{\frac{\pi}{12}} \ln (\tan (3 x)) d x=\frac{2}{3} \int_{0}^{\frac{\pi}{4}} \ln (\tan x) d x=\frac{2}{3} \int_{0}^{1} \frac{\ln t}{1+t^{2}} d t=
$$

$$
=\frac{2}{3} \sum_{n=0}^{\infty}(-1)^{n} \int_{0}^{1} t^{2 n} \ln t d t=\frac{2}{3}-\frac{2}{3} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{2}}=-\frac{2}{3} G
$$

$$
\Rightarrow I_{2}=\int_{0}^{\frac{\pi}{6}} \frac{x}{\sin x} d x=\frac{4}{3} G-\frac{\pi}{6} \ln (2+\sqrt{3})
$$

$$
\Rightarrow I=\int_{0}^{\infty} \frac{x^{2} \arctan x}{x^{4}+x^{2}+1} d x=\frac{\pi^{2}}{8 \sqrt{3}}-\frac{\pi}{12} \ln (2+\sqrt{3})+\frac{2}{3} G
$$

Solution 2 by Kartick Chandra Betal-India

$$
\begin{gathered}
I=\int_{0}^{\infty} \frac{x^{2} \tan ^{-1} x}{x^{4}+x^{2}+1} d x=\int_{0}^{\infty} \frac{\cot ^{-1} x}{x^{4}+x^{2}+1} d x=\int_{0}^{\infty} \frac{\frac{\pi}{2}-\tan ^{-1} x}{x^{4}+x^{2}+1} d x \\
2 I=\int_{0}^{\infty} \frac{\pi}{\frac{\pi}{2}+\left(x^{2}-1\right) \tan ^{-1} x} \\
x^{4}+x^{2}+1
\end{gathered} x=\frac{\pi}{2} \int_{0}^{\infty} \frac{d x}{x^{4}+x^{2}+1}+\int_{0}^{\infty} \frac{\left(1-\frac{1}{x^{2}}\right) \cdot \tan ^{-1} x}{x^{4}+x^{2}+1} d x .
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
=\frac{\pi}{4}\left[\frac{1}{\sqrt{3}} \cdot \tan ^{-1}\left(\frac{x-\frac{1}{x}}{\sqrt{3}}\right)-\frac{1}{2} \ln \left|\frac{x^{2}-x+1}{x^{2}+x+1}\right|\right]_{0}^{\infty}+0-\frac{1}{2} \int_{0}^{\infty} \frac{1}{1+x^{2}} \cdot \ln \left|\frac{x^{2}-x+1}{x^{2}+x+1}\right| d x
$$

$$
=\frac{\pi^{2}}{4 \sqrt{3}}-\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \ln \left(\frac{1-\sin x \cos x}{1+\sin x \cos x}\right) d x
$$

$$
=\frac{\pi^{2}}{4 \sqrt{3}}-\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \ln \left(\frac{2-\sin 2 x}{2+\sin 2 x}\right) d x=\frac{\pi^{2}}{4 \sqrt{3}}-\frac{1}{4} \int_{0}^{\pi} \ln \left(\frac{2-\sin x}{2+\sin x}\right) d x
$$

$$
=\frac{\pi^{2}}{4 \sqrt{3}}-\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \ln \left(\frac{2-\sin x}{2+\sin x}\right) d x=\frac{\pi^{2}}{4 \sqrt{3}}+\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \ln \left(\frac{2+\cos x}{2-\cos x}\right) d x
$$

$$
I=\frac{\pi^{2}}{8 \sqrt{3}}+\frac{1}{4}\left[\frac{8 G}{3}-\frac{\pi}{3} \ln (2+\sqrt{3})\right]
$$

$$
=\frac{\pi^{2}}{8 \sqrt{3}}+\frac{2 G}{3}-\frac{\pi}{12} \ln (2+\sqrt{3})=0.978142302
$$

$$
\int_{0}^{\frac{\pi}{2}} \ln \left(\frac{2+\cos x}{2-\cos x}\right) d x=\int_{0}^{\frac{\pi}{2}} \ln \left(\frac{1+\frac{1}{2} \cos x}{1-\frac{1}{2} \cos x}\right) d x
$$

$$
=2 \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{1}{2}} \frac{\cos x}{1-y^{2} \cos ^{2} x} d y d x=2 \int_{0}^{\frac{1}{2}} \frac{1}{y} \int_{0}^{\frac{\pi}{2}} \frac{d(y \sin x)}{\left(\sqrt{1-y^{2}}\right)^{2}+(y \sin x)^{2}} d y
$$

$$
=2 \int_{0}^{\frac{1}{2}} \frac{1}{y \sqrt{1-y^{2}}} \cdot \tan ^{-1}\left(\frac{y}{\sqrt{1-y^{2}}}\right) d y=2 \int_{0}^{\frac{\pi}{6}} \frac{y}{\sin y \cos y} \cos y d y=2 \int_{0}^{\frac{\pi}{6}} y \csc y d y
$$

$$
=2\left[y \ln \tan \frac{y}{2}\right]_{0}^{\frac{\pi}{6}}-2 \int_{0}^{\frac{\pi}{6}} \ln \tan \frac{y}{2} d y=2 \frac{\pi}{6} \cdot \ln \left(\tan \frac{\pi}{12}\right)-4 \int_{0}^{\frac{\pi}{12}} \ln (\tan y) d y
$$

$$
=\frac{\pi}{6} \ln \left(\frac{1-\frac{\sqrt{3}}{2}}{1+\frac{\sqrt{3}}{2}}\right)-4\left(-\frac{2 G}{3}\right)=\frac{8 G}{3}+\frac{\pi}{6} \ln \left[\frac{2-\sqrt{3}}{2+\sqrt{3}}\right]=\frac{8 G}{3}-\frac{\pi}{3} \ln (2+\sqrt{3})
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Note:

$$
\int_{0}^{\frac{\pi}{12}} \ln (\tan x) d x=-\frac{2 G}{3}
$$

UP.186. If $x_{1}=2 ; x_{2}=4 ; x_{3}=10$;

$$
x_{n+3}-5 x_{n+2}+7 x_{n+1}-3 x_{n}=0 ; n \in \mathbb{N} ; n \geq 1
$$

then find:

$$
\Omega=\lim _{n \rightarrow \infty}\left(x_{n}^{2}\left(3^{\frac{1}{x_{n}}}-1\right)-x_{n} \log 3\right)
$$

Proposed by Daniel Sitaru - Romania

Solution 1 by Marian Ursărescu-Romania

Because the equation $x^{3}-5 x^{2}+7 x-3=0$ has $r_{1}=r_{2}=1$ and $r_{3}=3$ roots \Rightarrow

$$
\begin{gathered}
\lim _{n \rightarrow \infty} x_{n}=\infty . \operatorname{Let} \frac{1}{x_{n}}=x, x \rightarrow 0 \Rightarrow \\
\Omega=\lim _{x \rightarrow 0} \frac{3^{x}-1}{x^{2}}-\frac{1}{x} \ln 3=\lim _{x \rightarrow 0} \frac{3^{x}-1-x \ln 3}{x^{2}} \stackrel{L^{\prime} H}{=} \\
=\lim _{x \rightarrow 0} \frac{3^{x} \ln 3-\ln 3}{2 x}=\lim _{x \rightarrow 0} \frac{\ln 3\left(3^{x}-1\right)}{2 x}=\frac{\ln ^{2} 3}{2}
\end{gathered}
$$

Solution 2 by Tran Hong-Dong Thap-Vietnam

$$
\begin{gathered}
x_{1}=2, x_{2}=4, x_{3}=10, x_{n+3}-5 x_{n+2}+7 x_{n+1}-3 x_{n}=0 \\
\left(^{*}\right) \Rightarrow \lambda^{3}-5 \lambda^{2}+7 \lambda-3=0 \Leftrightarrow\left[\begin{array}{c}
\lambda_{1,2}=1 \\
\lambda_{3}=3
\end{array}\right. \\
\Rightarrow x_{n}=\alpha+\beta n+\gamma \cdot 3^{n}(n \in \mathbb{N}, n \geq 1, \alpha, \beta, \gamma \in \mathbb{R})
\end{gathered}
$$

\therefore Find: α, β, γ

$$
\begin{equation*}
x_{1}=2 \Rightarrow \alpha+\beta+3 \gamma=2 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
x_{2}=4 \Rightarrow \alpha+2 \beta+9 \gamma=4 \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
x_{3}=10 \Rightarrow \alpha+3 \beta+27 \gamma=10 \tag{3}
\end{equation*}
$$

From (1), (2), (3) we have: $\alpha=1, \beta=0, \gamma=\frac{1}{3}$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\begin{gathered}
\Rightarrow x_{n}=1+\frac{3^{n}}{3}=1+3^{n-1} \Rightarrow \lim _{n \rightarrow \infty} x_{n}=+\infty \\
\Omega_{n}=\left[x_{n}^{2}\left(3^{\frac{1}{x_{n}}}-1\right)-x_{n} \log 3\right]=\frac{\left(3^{\frac{1}{x_{n}}}-1\right)-\frac{1}{x_{n}} \log 3}{\left(\frac{1}{x_{n}}\right)^{2}} \\
\therefore \operatorname{Let} t=\frac{1}{x_{n}}\left(x_{n} \rightarrow+\infty \Rightarrow t \rightarrow 0\right) \\
=\frac{\lim _{t \rightarrow 0} \frac{3^{t}-1-t \log 3}{t^{2}} \stackrel{\left(L^{\prime}\right)}{=} \lim _{t \rightarrow 0} \frac{3^{t} \log 3-\log 3}{2 t}}{t \rightarrow 0} \frac{3^{t}-1}{t}=\frac{\log 3}{2} \cdot \log 3=\frac{\log ^{2} 3}{2} \Rightarrow \Omega=\lim _{n \rightarrow \infty} \Omega_{n}=\frac{\log ^{2} 3}{2}
\end{gathered}
$$

Solution 3 by Dimitris Kastriotis-Athens-Greece

$$
\begin{aligned}
& x_{n+3}-5 x_{n+2}+7 x_{n+1}-3 x_{n}=0 \\
& x_{1}=2, x_{2}=4, x_{3}=10 \text {. Let } x_{n}=p^{n}, p \neq 0 \\
& (\mathrm{E}) \Leftrightarrow \boldsymbol{p}^{n+3}-5 p^{n+2}+7 p^{n+1}-3 p^{n}=0 \Leftrightarrow \boldsymbol{p}^{n}\left(\boldsymbol{p}^{3}-5 p^{2}+7 p-3\right)=0 \\
& \stackrel{p \neq 0}{\Leftrightarrow} p^{3}-5 p^{2}+7 p-3=0 \Leftrightarrow(p-3)(p-1)^{2}=0\left\{\begin{array}{l}
p=3 \\
p=1
\end{array}\right. \\
& x_{n}=c_{1}+c_{2} \cdot n+c_{3} \cdot 3^{n}, c_{1}, c_{2}, c_{3} \in \mathbb{R}, n \geq 1, n \in \mathbb{N} \\
& \text { For } n=1: c_{1}+c_{2}+3 c_{3}=2 \\
& n=2: c_{1}+9 c_{2}+9 c_{3}=4 ; n=3: c_{1}+3 c_{2}+27 c_{3}=10 \\
& \Rightarrow\left(\begin{array}{ccc}
1 & 1 & 3 \\
1 & 2 & 9 \\
1 & 3 & 27
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{c}
2 \\
4 \\
10
\end{array}\right) \\
& \left(\begin{array}{ccccc}
1 & 1 & 3 & \vdots & 2 \\
1 & 2 & 9 & \vdots & 4 \\
1 & 3 & 27 & \vdots & 10
\end{array}\right) \stackrel{\substack{r_{2} \leftarrow r_{2}-r_{1} \\
r_{3} \leftarrow r_{3}-r_{1}}}{\sim}\left(\begin{array}{ccccc}
1 & 1 & 3 & \vdots & 2 \\
0 & 1 & 6 & \vdots & 2 \\
0 & 2 & 24 & \vdots & 8
\end{array}\right) \\
& \underset{\sim}{r_{3} \leftarrow r_{3}-2 r_{2}}\left(\begin{array}{ccccc}
1 & 1 & 3 & \vdots & 2 \\
0 & 1 & 6 & \vdots & 2 \\
0 & 0 & 12 & \vdots & 4
\end{array}\right) \\
& 12 c_{3}=4 \Rightarrow c_{3}=\frac{1}{3} \\
& c_{q}+6 c_{3}=q \Rightarrow c_{q}+6 \cdot \frac{1}{3}=q \Rightarrow c_{q}=0 \\
& c_{1}+c_{q}+3 c_{3}=q \Rightarrow c_{1}+0+1=q \Rightarrow c_{1}=1
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

$$
\begin{gathered}
x_{n}=1+\frac{1}{3} \cdot 3^{n}=1+3^{n-1}, n=1, q, \ldots \\
\Omega=\lim _{n \rightarrow \infty}\left[x_{n}^{2}\left(3^{\frac{1}{x_{n}}}-1\right)-x_{n} \cdot \log 3\right] \\
=\lim _{n \rightarrow \infty}\left[\left(1+3^{n-1}\right)^{2} \cdot\left(3^{\frac{1}{1+3^{n-1}}}-1\right)-\left(1+3^{n-1}\right) \log 3\right] \\
\stackrel{k=1+3^{n-1}}{=} \lim _{k \rightarrow \infty}\left[k^{2}\left(3^{\frac{1}{k}}-1\right)-k \cdot \log 3\right]=\lim _{k \rightarrow \infty} \frac{3^{\frac{1}{k}}-1-\frac{\log 3}{k}}{\frac{1}{k^{2}}} \\
\begin{array}{c}
x=\frac{1}{k} \\
= \\
\lim _{x \rightarrow 0^{+}}
\end{array} \frac{3^{x}-1-x \log 3}{x^{2}} \stackrel{\left(\frac{0}{0}\right)}{=} \lim _{(*)}^{=} \frac{3^{x} \cdot \log 3-\log 3}{2 x} \underset{(*)}{\left(\frac{0}{0}\right)} \lim _{x \rightarrow 0^{+}} \frac{3^{x} \cdot \log ^{2}(3)}{2}=\frac{\log ^{2} 3}{2}
\end{gathered}
$$

(*): L'Hôspital's Rule

Solution 4 by Remus Florin Stanca-Romania

$$
\begin{aligned}
& \text { If } x_{1}=2 ; x_{2}=4 ; x_{3}=10 ; x_{n+3}-5 x_{n+2}+7 x_{n+1}-3 x_{n}=0 ; n \in \mathbb{N} ; n \geq 1 \text { then find: } \\
& \qquad=\lim _{n \rightarrow \infty}\left(x_{n}^{2}\left(3^{\frac{1}{x_{n}}}-1\right)-x_{n} \ln 3\right) \\
& x_{n+3}-5 x_{n+2}+7 x_{n+1}-3 x_{n}=0>x_{n+3}-x_{n+2}-4 x_{n+2}+4 x_{n+1}+3 x_{n+1}-3 x_{n}=0> \\
& >\left(x_{n+3}-x_{n+2}\right)-4\left(x_{n+2}-x_{n+1}\right)+3\left(x_{n+1}-x_{n}\right)=0 \quad \text { (1); }
\end{aligned}
$$

$$
\text { Let } a_{n}=x_{n}-x_{n-1} \text { (2); } n \geq 2
$$

$$
\stackrel{(1):(2)}{\succ} a_{n+3}-4 a_{n+2}+3 a_{n+1}=0 \succ a_{n+3}=4 a_{n+2}-3 a_{n+1}
$$

$$
t^{2}-4 t+3=0 \Rightarrow t_{1,2}=\left\{\begin{array}{l}
t_{1}=3 \\
t_{2}=1
\end{array}\right\} \Rightarrow a_{n}=\alpha \cdot 3^{n}+\beta
$$

$$
a_{2}=2 ; a_{3}=6
$$

$$
a_{2}=9 \alpha+\beta=2
$$

$$
a_{3}=27 \alpha+\beta
$$

...................... "_"

$$
\Rightarrow 18 \alpha=4 \Rightarrow \alpha=\frac{2}{9} \Rightarrow \beta=0 \Rightarrow a_{n}=2 \cdot 3^{n-2} \Rightarrow x_{n}-x_{n-1}=2 \cdot 3^{n-2}
$$

$$
x_{2}-x_{1}=2 \cdot 3^{0}
$$

$$
x_{3}-x_{2}=2 \cdot 3^{1}
$$

$$
\begin{gathered}
\text { ROMANIAN MATHEMATICAL MAGAZINE } \\
\text { www.ssmrmh.ro } \\
x_{n}-x_{n-1}=2 \cdot 3^{n+2} \\
\cdots \cdots \cdots \cdots \cdots \cdots \cdots{ }^{\prime \prime} \\
\Rightarrow x_{n}-x_{1}=2 \cdot \frac{3^{n-1}-1}{2} \Rightarrow x_{n}=3^{n-1}+1 \\
\Rightarrow \Omega=\lim _{n \rightarrow \infty}\left(3^{n-1}+1\right)^{2}\left(3^{\frac{1}{3^{n-1}+1}}-1\right)-\left(3^{n-1}+1\right) \ln 3 \\
=\lim _{n \rightarrow \infty} \frac{\left(3^{x-1}+1\right)\left(3^{\frac{1}{3^{x-1}+1}}-1\right)-\ln 3}{\left.\lim _{n \rightarrow \infty}^{x-1}+1\right)^{2}\left(3^{\frac{1}{3^{x-1}+1}}-1\right)-\left(3^{x-1}+1\right) \ln 3=} \\
\frac{1}{3^{x-1}+1}
\end{gathered}
$$

Let $y=\frac{1}{3^{x-1}+1} \Rightarrow \Omega=\lim _{y \rightarrow 0} \frac{3^{y} \ln 3+1-3^{y}}{y^{2}} \frac{L^{\prime} H}{\overline{0}} \lim _{y \rightarrow 0} \frac{3^{y} \ln ^{2} 3 y}{2 y}=\frac{\ln ^{2} 3}{2} \Rightarrow \Omega=\frac{\ln ^{2} 3}{2}$

Solution 5 by Srinivasa Raghava-AIRMC-India

$$
7 x(n+1)-x(n+2)+x(n+3)=3 x(n) \text {. This can be written as }
$$

$3 x(n-1)-2=4 x(n-1)-3 x(n-2)$. Comparing to the Lucas Sequence

$$
x(n)=P x(n-1)-Q x(n-2)
$$

And by the Inverse binomial transforms yields the generating function $\frac{1}{3}\left(\frac{1}{1-3 x}+\frac{3}{1-x}\right)$ from this we can see that $x(n)=\frac{1}{3}\left(3+3^{n}\right)=1+3^{-1+n}$ and

$$
\begin{gathered}
\lim _{n \rightarrow \infty}\left(x(n)^{2}\left(3^{\frac{1}{x(n)}}-1\right)-\log (3) x(n)\right)= \\
=\lim _{n \rightarrow \infty}\left(-3^{n-1} \log (3)-\log (3)+3^{\frac{3}{3+3^{n}}}-2 \times 3^{n-1}+2 \times 3^{n+\frac{3}{3+3^{n-1}}}-3^{2 n-2}+3^{2 n+\frac{3}{3+3^{n}-2}}-1\right)
\end{gathered}
$$

collecting $\log (3)$ terms and cancellation we have

$$
\lim _{n \rightarrow \infty}\left(x(n)^{2}\left(3^{\frac{1}{x(n)}}-1\right)-x(n) \log (3)\right)=\frac{\log ^{2}(3)}{2}
$$

Solution 6 by Tobi Joshua-Nigeria
Given $x_{n+3}-5 x_{n+2}+7 x_{n+1}-3 x_{n}=0$
Forming a cubical equation with $x_{n}=a+b n+c 3^{n}$

$$
\begin{equation*}
(a, b, c \in \mathbb{R}) \text { and }(n \in \mathbb{N}) \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
& \text { www.ssmrmh.ro } \\
& u^{3}-5 u^{2}+7 u-3=0, u=1,1,3 \\
& x_{0}=\frac{4}{3}, x_{2}=2, \ldots \\
& \text { From (1) } x_{n}=a+b n+c 3^{n} \text { then } x_{0}=a+c=\frac{4}{3} \\
& a+c=\frac{4}{3} \tag{1}\\
& x_{1}=2, a+b+3 c=2 \\
& \text { (2); } x_{2}=4, a+2 b+9 c=4 \\
& a_{3}=10, a+3 b+27 c=10 \tag{4}
\end{align*}
$$

Solving (1) - (4), $a=1, b=0, c=\frac{1}{3}$

$$
\begin{gathered}
u_{n}=x_{n}=1+\frac{3^{n}}{3}=1+3^{n-1} \quad \text { (2) } \\
\Omega=\lim _{n \rightarrow \infty} x_{n}^{2}\left(3^{\frac{1}{x_{n}}}-1\right)-x_{n} \ln 3 \\
\Omega=\lim _{n \rightarrow \infty} \frac{\left(3^{\frac{1}{x_{n}}}-1\right)-\frac{\ln 3}{x_{n}}}{\left(\frac{1}{x_{n}}\right)^{2}} \Rightarrow \lim _{n \rightarrow \infty} \frac{\left(3^{\frac{1}{1+3^{n-1}}}\right)-\frac{\ln 9}{1+3^{n-1}}}{\left(\frac{1}{3^{n+1}+1}\right)^{2}} \\
\Omega \Rightarrow \lim _{n \rightarrow 0} \frac{3^{n}-1-n \ln 3}{n^{2}} . \text { Using L'Hospital's Rule: } \\
\Omega=\frac{\ln 3}{2} \lim _{n \rightarrow 0} \frac{3^{n}-1}{n}=\frac{\ln 3}{2}(\ln 3)=\frac{\ln ^{2} 3}{2} ; \Omega=\frac{\ln ^{2} 3}{2}
\end{gathered}
$$

UP.187. Find:

$$
\Omega=\lim _{n \rightarrow \infty} \frac{(\sqrt[n+1]{(n+1)!})^{4}-(\sqrt[n]{n!})^{4}}{n^{2}\left((\sqrt[n+1]{(2 n+1)!!})^{2}-(\sqrt[n]{(2 n-1)!!})^{2}\right)}
$$

Proposed by D.M. Bătinețu - Giurgiu; Neculai Stanciu - Romania
Solution 1 by Marian Ursărescu-Romania

$$
\begin{equation*}
\Omega=\lim _{n \rightarrow \infty} \frac{\sqrt[n]{n!^{4}}\left(\frac{\sqrt[n+1]{\sqrt[n]{(n+1) 4^{4}}}}{\sqrt[n]{n!!^{4}}} 1\right)}{n^{4} \cdot \frac{\sqrt[n]{(2 n-1)!!^{2}}}{n^{2}}\left(\frac{n+\sqrt{(2 n+1)!!^{2}}}{\sqrt[n]{(2 n-1)!!^{2}}} 1\right)} \tag{1}
\end{equation*}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \frac{\sqrt[n]{n!^{4}}}{n^{4}}=\left(\lim _{n \rightarrow \infty} \sqrt[n]{\frac{n!}{n^{4}}}\right)^{4}=\left(\lim _{n \rightarrow \infty} \frac{(n+1)!}{(n+1)^{n+1}} \cdot \frac{n^{n}}{n!}\right)^{4}= \\
& =\left(\lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)^{n}\right)^{4}=\frac{1}{e^{4}} \tag{2}\\
& \lim _{n \rightarrow \infty} \frac{\sqrt[n]{(2 n-1)!!^{2}}}{n^{2}}=\left(\lim _{n \rightarrow \infty} \sqrt[n]{\frac{(2 n-1)!!}{n^{n}}}\right)^{2}=\lim _{n \rightarrow \infty}\left(\frac{(2 n+1)!!}{(n+1)^{n+1}} \cdot \frac{n^{n}}{(2 n-1)!!}\right)^{2} \\
& =\left(\lim _{n \rightarrow \infty} \frac{2 n+1}{n+1} \cdot\left(\frac{n}{n+1}\right)^{n}\right)^{2}=\frac{4}{e^{2}} \tag{3}\\
& \text { Let } x_{n}=\frac{\sqrt[n+1]{(n+1)!^{4}}}{\sqrt[n]{n!^{4}}} \text { and } y_{n}=\frac{\sqrt[n+1]{(2 n+1)!!^{2}}}{\sqrt[n]{(2 n-1)!!^{2}}} \\
& \lim _{n \rightarrow \infty} \frac{x_{n}-1}{y_{n}-1}=\lim _{n \rightarrow \infty} \frac{n\left(x_{n}-1\right)}{n\left(y_{n}-1\right)} \tag{3}\\
& \lim _{n \rightarrow \infty} n\left(x_{n}-1\right)=\lim _{n \rightarrow \infty} \frac{n\left(e^{\ln x_{n}}-1\right)}{\ln x_{n}} x_{n}=\lim _{n \rightarrow \infty} n \ln x_{n}= \\
& =\lim _{n \rightarrow \infty} \ln x_{n}^{n}=\ln \lim _{n \rightarrow \infty} x_{n}^{n}=\ln \lim _{n \rightarrow \infty}\left(\frac{\sqrt[n+1]{(n+1)!^{4}}}{\sqrt[n]{n!^{4}}}\right)^{n}= \\
& =4 \ln \lim _{n \rightarrow \infty} \frac{\sqrt[n+1]{(n+1)!^{n}}}{n!}=4 \ln \lim _{n \rightarrow \infty} \frac{(n+1)!}{\sqrt[n+1]{(n+1)!} n!}=4 \ln \lim _{n \rightarrow \infty} \frac{n+1}{\sqrt[n+1]{(n+1)!}} \\
& =4 \ln \lim _{n \rightarrow \infty} \frac{n}{\sqrt[n]{n!}}=4 \ln \lim _{n \rightarrow \infty} \sqrt[n]{\frac{n^{4}}{n!}}=4 \ln \lim _{n \rightarrow \infty} \frac{(n+1)^{n+1}}{(n+1)!} \cdot \frac{n!}{n^{n}}=4 \ln e=4 \tag{4}\\
& \lim _{n \rightarrow \infty} n\left(y_{n}-1\right)=\lim _{n \rightarrow \infty} \frac{n\left(e^{\ln y_{n}}-1\right)}{\ln y_{n}} \cdot \ln y_{n}=\lim _{n \rightarrow \infty} n \ln y_{n}= \\
& =\lim _{n \rightarrow \infty} y_{n}^{n}=\ln \lim _{n \rightarrow \infty} y_{n}^{n}=\ln \lim _{n \rightarrow \infty}\left(\frac{\sqrt[n+1]{(2 n+1)!!^{2}}}{\sqrt[n]{(2 n-1)!!^{2}}}\right)^{n}= \\
& =2 \ln \lim _{n \rightarrow \infty} \frac{\sqrt[n+1]{(2 n+1)^{4}!!}}{(2 n-1)!!}=2 \ln \lim _{n \rightarrow \infty} \frac{(2 n+1)!!}{(2 n-1)!!\cdot \sqrt[n+1]{(2 n+1)!!}}=2 \ln \lim _{n \rightarrow \infty} \frac{2 n+1}{\sqrt[n+1]{(2 n+1)!!}} \\
& =2 \ln \lim _{n \rightarrow \infty} \frac{2 n-1}{\sqrt[n]{(2 n-1)!!}}=2 \ln \lim _{n \rightarrow \infty} \sqrt[n]{\frac{(2 n-1)^{n}}{(2 n-1)!!}}=2 \ln \lim _{n \rightarrow \infty} \frac{(2 n+1)^{n+1}}{(2 n+1)!!} \cdot \frac{(2 n-1)!!}{(2 n-1)^{n}} \\
& =2 \ln e=2 \text { (5) }
\end{align*}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\text { From }(1)+(2)+(3)+(4)+(5) \Rightarrow \Omega=\frac{1}{2 e^{2}}
$$

Solution 2 by Shafiqur Rahman-Bangladesh

$$
\begin{aligned}
& \Omega=\lim _{n \rightarrow \infty} \frac{(\sqrt[n+1]{(n+1)!})^{4}-(\sqrt[n]{n!})^{4}}{n^{2}\left((\sqrt[n+1]{(2 n+1)!!})^{2}-(\sqrt[n]{(2 n-1)!!})^{2}\right)}= \\
& =\frac{\lim _{n \rightarrow \infty}\left(n^{-3}\left((n+1)^{4}\left(\sqrt[n+1]{\frac{(n+1)!}{(n+1)^{n+1}}}\right)^{4}-n^{4}\left(\sqrt[n]{\frac{n!}{n^{n}}}\right)^{4}\right)\right)}{\lim _{n \rightarrow \infty}\left(n^{-1}\left((n+1)^{2}\left(\sqrt[n+1]{\left(\frac{(2 n+1)!!}{(n+1)^{n+1}}\right.}\right)^{2}-n^{2}\left(\sqrt[n]{\frac{(2 n-1)!!}{n^{n}}}\right)^{2}\right)\right)} \\
& =\frac{4 \times \lim _{n \rightarrow \infty}\left(\frac{\frac{(n+1)!}{(n+1)^{n+1}}}{\frac{n!}{n^{n}}}\right)^{4}}{2 \times \lim _{n \rightarrow \infty}\left(\frac{\frac{(2 n+1)!!}{(n+1)^{n+1}}}{\frac{(2 n-1)!!}{n^{2}}}\right)^{2}}=\frac{2 \times \lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{-4 n}}{\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{-2 n}\left(\frac{2 n+1}{n+1}\right)^{2}} \\
& \therefore \Omega=\lim _{n \rightarrow \infty} \frac{(\sqrt[n+1]{(n+1)!})^{4}-(\sqrt[n]{n!})^{4}}{n^{2}\left((\sqrt[n+1]{(2 n+1)!!})^{2}-(\sqrt[n]{(2 n-1)!!})^{2}\right)}=\frac{1}{2 e^{2}}
\end{aligned}
$$

UP.188. If $\boldsymbol{m}, \boldsymbol{p}>0 ; m \geq p ; m, n-$ fixed then find in terms of $\boldsymbol{m}, \boldsymbol{p}$:

$$
\Omega=\lim _{n \rightarrow \infty} \frac{(\sqrt[n+1]{(2 n+1)!!})^{m}-(\sqrt[n]{(2 n-1)!!})^{m}}{n^{m-p}\left((\sqrt[n+1]{(n+1)!})^{p}-(\sqrt[n]{n!})^{p}\right)}
$$

Proposed by D.M. Bătinețu - Giurgiu; Neculai Stanciu - Romania

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\begin{equation*}
\Omega=\lim _{n \rightarrow \infty} \frac{\sqrt[n]{(2 n-1)!!}\left[\left(\frac{n+1}{\sqrt[n]{(2 n+1)!!}}\right)^{m}-1\right]}{n^{m} \sqrt[n]{n!}{ }^{p}\left[\left(\frac{n+1}{\sqrt[n]{(n+1)!}}\right)^{p}-1\right]} \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \frac{\sqrt[n]{(2 n-1)!!}}{n^{m}}=\left(\lim _{n \rightarrow \infty} \sqrt[n]{\frac{(2 n-1)!!}{n^{n}}}\right)^{m} \stackrel{C . D .}{=}\left(\lim _{n \rightarrow \infty} \frac{(2 n+1)!!}{(n+1)^{n+1}} \cdot \frac{n^{n}}{(2 n-1)!!}\right)^{m}= \\
&=\left(\lim _{n \rightarrow \infty} \frac{2 n+1}{n+1} \cdot\left(\frac{n}{n+1}\right)^{n}\right)^{m}=\frac{2^{m}}{e^{m}}(2) \tag{2}\\
& \lim _{n \rightarrow \infty} \frac{\sqrt[n]{n!}}{n^{p}}=\left(\lim _{n \rightarrow \infty} \sqrt[n]{\left.\frac{n!}{n}\right)^{p} \stackrel{C . D .}{=}\left(\lim _{n \rightarrow \infty} \frac{(n+1)!}{(n+1)^{n+1}} \cdot \frac{n^{n}}{n!}\right)^{p}=}\right. \\
&=\left(\lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)^{n}\right)^{p}=\frac{1}{e^{p}}(3) \tag{3}\\
& \text { Let } x_{n}=\left(\frac{\sqrt[n+1]{(2 n+1)!!}}{\sqrt[n]{(2 n-1)!!}}\right)^{m} \text { and } y_{n}=\left(\frac{\sqrt[n+1]{(n+1)!}}{\sqrt[n]{n!}}\right)^{p}
\end{align*}
$$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{x_{n}-1}{y_{n}-1}=\lim _{n \rightarrow \infty} \frac{n\left(x_{n}-1\right)}{n\left(y_{n}-1\right)} \tag{4}
\end{equation*}
$$

$$
\lim _{n \rightarrow \infty} n\left(x_{n}-1\right)=\lim _{n \rightarrow \infty} \frac{n\left(e^{\ln x_{n}}-1\right)}{\ln x_{n}} \cdot \ln x_{n}=\lim _{n \rightarrow \infty} n \ln x_{n}
$$

$$
=\lim _{n \rightarrow \infty} \ln x_{n}^{n}=\ln \left(\lim _{n \rightarrow \infty} x_{n}^{n}\right)=\ln \left(\lim _{n \rightarrow \infty}\left(\frac{\sqrt[n+1]{(2 n+1)!!}}{\sqrt[n]{(2 n-1)!!}}\right)^{m}\right)^{n}=
$$

$$
=m \ln \left(\lim _{n \rightarrow \infty} \frac{\sqrt[n+1]{(2 n+1)!!^{n}}}{(2 n-1)!!}\right)=m \ln \left(\lim _{n \rightarrow \infty} \frac{(2 n+1)!!}{(2 n-1)!!\cdot \sqrt[n+1]{(2 n+1)!!}}\right)=
$$

$$
=m \ln \left(\lim _{n \rightarrow \infty} \frac{2 n+1}{\sqrt[n+1]{(2 n+1)!!}}\right)=m \ln \left(\lim _{n \rightarrow \infty} \frac{2 n-1}{\sqrt[n]{(2 n-1)!!}}\right)=m \ln \left(\lim _{n \rightarrow \infty} \sqrt[n]{\frac{(2 n-1)^{n}}{(2 n-1)!!}}\right)
$$

$$
=m \ln \left(\lim _{n \rightarrow \infty} \frac{(2 n+1)^{n+1}}{(2 n+1)!!} \cdot \frac{(2 n-1)!!}{(2 n-1)^{n}}\right)=m \ln e=m
$$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} n\left(y_{n}-1\right)=\lim _{n \rightarrow \infty} \frac{n\left(e^{\ln y_{n}}-1\right)}{\ln y_{n}} \cdot \ln y_{n}=\lim _{n \rightarrow \infty} n \ln y_{n}= \\
& =\lim _{n \rightarrow \infty} \ln y_{n}^{n}=\ln \left(\lim _{n \rightarrow \infty} y_{n}^{n}\right)=\ln \left(\lim _{n \rightarrow \infty}\left(\frac{\sqrt[n+1]{(n+1)!}}{\sqrt[n]{n!}}\right)^{p}\right)^{n}=
\end{aligned}
$$

$$
\begin{gather*}
\text { ROMANIAN MATHEMATICAL MAGAZINE } \\
=p \ln \left(\lim _{n \rightarrow \infty} \frac{\sqrt[n+1]{(n+1)!}}{n!}\right)=p \ln \left(\lim _{n \rightarrow \infty} \frac{(n+1)!}{\sqrt[n+1]{(n+1)!} \cdot n!}\right)=p \ln \left(\lim _{n \rightarrow \infty} \frac{n+1}{\sqrt[n+1]{(n+1)!}}\right) \\
=p \ln \left(\lim _{n \rightarrow \infty} \frac{n}{\sqrt[n]{n!}}\right)=p \ln \boldsymbol{e}=\boldsymbol{p} \text { (6) } \\
\text { From (1)+(2)+(3)+(4)+(5)+(6) } \Rightarrow \boldsymbol{\Omega}=\frac{\frac{2^{m}}{e^{m}}}{\frac{1}{e^{p}}} \cdot \frac{m}{p}=\frac{m}{p} \cdot 2^{m} \cdot e^{p-m} \tag{6}
\end{gather*}
$$

UP.189. Find:

$$
\Omega=\lim _{n \rightarrow \infty} \frac{(\sqrt[n+1]{(n+1)!})^{m+1}-(\sqrt[n]{n!})^{m+1}}{(\sqrt[n]{(2 n-1)!!})^{m}} ; m \in \mathbb{N}, m-\text { fixed. }
$$

Proposed by D.M. Bătinețu-Giurgiu, Neculai Stanciu - Romania

Solution by Marian Ursărescu - Romania

$$
\begin{align*}
& \Omega=\lim _{n \rightarrow \infty} \frac{\sqrt[n]{n!}{ }^{m+1} \cdot\left(\left(\frac{\sqrt[n+1]{(n+1)!}}{\sqrt[n]{n!}}\right)^{m+1}-1\right)}{\sqrt[n]{(2 n-1)!!}^{m}}= \\
& =\lim _{n \rightarrow \infty} \frac{\sqrt[n]{n!}{ }^{m}}{\sqrt[n]{(2 n-1)!}} \cdot \frac{\sqrt[n]{n!}}{n} \cdot n\left(\left(\frac{\sqrt[n]{(n+1)!}}{\sqrt[n]{n!}}\right)^{m+1}-1\right) \tag{1}\\
& \lim _{n \rightarrow \infty}\left(\sqrt[n]{\frac{n!}{(2 n-1)!!}}\right)^{m}=\left(\lim _{n \rightarrow \infty} \sqrt[n]{\frac{n!}{(2 n-1)!!}}\right)^{m} \stackrel{C D}{=}\left(\lim _{n \rightarrow \infty} \frac{(n+1)}{(2 n+1)!!} \cdot \frac{(2 n-1)!!}{n!}\right)^{m} \\
& =\left(\lim _{n \rightarrow \infty} \frac{n+1}{2 n+1}\right)^{m}=\frac{1}{2^{m}} \\
& \lim _{n \rightarrow \infty} \frac{\sqrt[n]{n!}}{n}=\lim _{n \rightarrow \infty} \sqrt[n]{\frac{n!}{n^{n}}} \stackrel{C D}{=} \lim _{n \rightarrow \infty} \frac{(n+1)!}{(n+1)^{n+1}} \cdot \frac{n^{n}}{n!}= \\
& =\lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)^{n}=\frac{1}{e} \\
& \text { Let } x_{n}=\left(\frac{\sqrt[n+1]{(n+1)!}}{\sqrt[n]{n!}}\right)^{m+1} \\
& \lim _{n \rightarrow \infty} n\left(x_{n}-1\right)=\lim _{n \rightarrow \infty} \frac{n\left(e^{\ln x_{n}}-1\right)}{\ln x_{n}} \cdot \ln x_{n}=
\end{align*}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

$$
\begin{gather*}
\lim _{n \rightarrow \infty} n \ln x_{n}=\lim _{n \rightarrow \infty} \ln x_{n}^{n}=\ln \left(\lim _{n \rightarrow \infty} x_{n}^{n}\right)= \\
=\ln \left(\lim _{n \rightarrow \infty}\left(\frac{\sqrt[n+1]{(n+1)!}}{\sqrt[n]{n!}}\right)^{m+1}\right)^{n}=(m+1) \ln \left(\lim _{n \rightarrow \infty} \frac{\sqrt[n]{(n+1)!}}{n!}\right)= \\
=(m+1) \ln \left(\lim _{n \rightarrow \infty} \frac{(n+1)!}{\sqrt[n+1]{(n+1)!n!}}\right)=(m+1) \ln \left(\lim _{n \rightarrow \infty} \frac{n+1}{\sqrt[n+1]{(n+1)!}}\right) \\
=(m+1) \ln \left(\lim _{n \rightarrow \infty} \frac{n}{\sqrt[n]{n!}}\right)=(m+1) \ln e=m+1 \text { (4) } \tag{4}\\
\text { From (1)+(2)+(3)+(4) } \Rightarrow \Omega=\frac{1}{2^{m}} \cdot \frac{1}{e}(m+1)=\frac{m+1}{e \cdot 2^{m}}
\end{gather*}
$$

UP.190. If $a_{n}, b_{n}>0 ; n \geq 1 ; \lim _{n \rightarrow \infty} \frac{a_{n+1}}{n a_{n}}=a ; \lim _{n \rightarrow \infty} \frac{b_{n+1}}{n^{3} b_{n}}=\boldsymbol{b} ; a, b>0$ then find:

$$
\Omega=\lim _{n \rightarrow \infty}\left(\frac{(n+1)^{3}}{\sqrt[2 n+2]{a_{n+1} \cdot b_{n+1}}}-\frac{n^{3}}{\sqrt[2 n]{a_{n} \cdot b_{n}}}\right)
$$

Proposed by D.M. Bătinețu-Giurgiu; Neculai Stanciu - Romania
Solution 1 by Marian Ursărescu-Romania

$$
\begin{align*}
& \Omega=\lim _{n \rightarrow \infty} \frac{n^{2}}{\sqrt[2 n]{a_{n} b_{n}}} \cdot n\left(\frac{(n+1)^{3}}{n^{3}} \cdot \frac{\sqrt[2 n]{a_{n} b_{n}}}{\sqrt[2 n+2]{a_{n+1} b_{n+1}}}-1\right) \tag{1}\\
& \lim _{n \rightarrow \infty} \frac{n^{2}}{\sqrt[2 n]{a_{n} b_{n}}}=\lim _{n \rightarrow \infty} \sqrt[2 n]{\frac{n^{4 n}}{a_{n} b_{n}}}=\sqrt{\lim _{n \rightarrow \infty} \sqrt[n]{\frac{n^{4 n}}{a_{n} b_{n}}}} \stackrel{C . D .}{=} \\
& =\sqrt{\lim _{n \rightarrow \infty} \frac{(n+1)^{4 n+4}}{a_{n+1} b_{n+1}} \cdot \frac{a_{n} b_{n}}{n^{4 n}}}=\sqrt{\lim _{n \rightarrow \infty}\left(\frac{n+1}{n}\right)^{4 n} \cdot \frac{n a_{n}}{a_{n+1}} \cdot \frac{n^{3} b_{n}}{b_{n}+1} \cdot \frac{(n+1)^{4}}{n^{3}}} \\
& =\sqrt{e^{4} \cdot \frac{1}{a} \cdot \frac{1}{b}}=\frac{e^{2}}{\sqrt{a b}} \tag{2}\\
& \lim _{n \rightarrow \infty} n\left(\left(\frac{n+1}{n}\right)^{3} \frac{\sqrt[2 n]{a_{n} b_{n}}}{\sqrt[2 n+2]{a_{n+1} b_{n+1}}}-1\right)=\lim _{n \rightarrow \infty} n\left[x_{n}-1\right]= \\
& \text { Let } x_{n}=\left(\frac{n+1}{n}\right)^{3} \frac{\sqrt[2 n]{a_{n} b_{n}}}{\sqrt[2 n+2]{a_{n+1} b_{n+1}}}
\end{align*}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro
$=\lim _{n \rightarrow \infty} \frac{n\left(e^{\ln x_{n}}-1\right)}{\ln x_{n}} \cdot \ln x_{n}=\lim _{n \rightarrow \infty} n \ln x_{n}=\lim _{n \rightarrow \infty} \ln x_{n}^{n}=$
$=\ln \left(\lim _{n \rightarrow \infty} x_{n}^{n}\right)=\ln \left(\lim _{n \rightarrow \infty}\left(\frac{n+1}{n}\right)^{3 n}\left(\frac{\sqrt[2 n]{a_{n} b_{n}}}{\sqrt[2 n+2]{a_{n+1} b_{n+1}}}\right)^{n}\right)=$
$\ln e^{3} \lim _{n \rightarrow \infty} \sqrt{\frac{\left(\sqrt[n]{a_{n} b_{n}}\right)^{n}}{\sqrt[n+1]{\left(a_{n+1} b_{n+1}\right)^{n}}}}=\ln e^{3} \sqrt{\lim _{n \rightarrow \infty} \frac{a_{n} b_{n} \cdot \sqrt[n+1]{a_{n+1} b_{n+1}}}{a_{n+1} b_{n+1}}}$
$=\ln e^{3} \sqrt{\lim _{n \rightarrow \infty} \frac{n a_{n} n^{3} b_{n}}{a_{n+1} b_{n+1}} \cdot \frac{\sqrt[n]{a_{n} b_{n}}}{n^{4}}}=$
$\ln e^{3} \sqrt{\frac{1}{a b} \lim _{n \rightarrow \infty} \sqrt[n]{\frac{a_{n} b_{n}}{n^{4 n}}}}=\ln e^{3} \sqrt{\frac{1}{a b} \lim _{n \rightarrow \infty} \frac{a_{n+1} b_{n+1}}{(n+1)^{4 n+4}} \cdot \frac{n^{4 n}}{a_{n} b_{n}}}$
$=\ln e^{3} \sqrt{\frac{1}{a b} \lim _{n \rightarrow \infty} \frac{a_{n+1}}{n a_{n}} \cdot \frac{b_{n+1}}{n^{3} b_{n}} \cdot \frac{n^{4}}{(n+1)^{4}}\left(\frac{n}{n+1}\right)^{4 n}}=$
$=\ln e^{3} \sqrt{\frac{1}{a b} \cdot a b \cdot \frac{1}{e^{2}}}=\ln \frac{e^{3}}{e}=\ln e^{2}=2$
From (1) $+(2)+(3) \Rightarrow \Omega=\frac{2 e^{2}}{\sqrt{a b}}$
Solution 2 by Remus Florin Stanca-Romania

$$
\begin{gather*}
\Omega=\lim _{n \rightarrow \infty} \frac{n^{3}}{\sqrt[2 n]{a_{n} b_{n}}}\left(\left(\frac{n+1}{n}\right)^{3} \cdot \frac{\sqrt[2 n]{a_{n} b_{n}}}{\sqrt[2 n+2]{a_{n+1} b_{n+1}}}-1\right) \text { (a) } \\
\lim _{n \rightarrow \infty} \frac{n^{2}}{\sqrt[2 n]{a_{n} b_{n}}}=\lim _{n \rightarrow \infty} e^{\ln \left(\frac{n^{2}}{\sqrt[2 n]{a_{n} b_{n}}}\right)}=\lim _{n \rightarrow \infty} e^{\frac{\ln \left(\frac{n^{4 n}}{a_{n} b_{n}}\right)}{2 n}} \text { Stolz }=\text { Cesaro } \\
=\lim _{n \rightarrow \infty} e^{\frac{\ln \left(\frac{(n+1)^{4 n+4}}{n^{4 n}} \cdot \frac{a_{n} b_{n}}{a_{n+1} b_{n+1}}\right)}{2}=\lim _{n \rightarrow \infty} \frac{(n+1)^{2 n+2}}{n^{2 n}} \cdot \sqrt{\frac{a_{n} b_{n}}{a_{n+1} b_{n+1}}}=} \\
=e^{2} \lim _{n \rightarrow \infty} \sqrt{\frac{(n+1)^{4} a_{n} b_{n}}{a_{n+1} b_{n+1}}}=e^{2} \lim _{n \rightarrow \infty} \sqrt{\frac{n^{4}}{(n+1)^{4}} \cdot(n+1)^{4} \cdot \frac{a_{n} b_{n}}{a_{n+1} b_{n+1}}}=e^{2} \\
\lim _{n \rightarrow \infty} \sqrt{\frac{n a_{n}}{a_{n+1}} \cdot \frac{n^{3} b_{n}}{b_{n+1}}}=\frac{e^{2}}{\sqrt{a b}} \Rightarrow \lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{\sqrt[2 n+2]{a_{n+1} b_{n+1}}}=\frac{e^{2}}{\sqrt{a b}} \quad \text { (1) } \tag{1}
\end{gather*}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{n^{2}}{\sqrt[2 n]{a_{n} b_{n}}}=\frac{e^{2}}{\sqrt{a b}} \tag{2}
\end{equation*}
$$

$----------\quad "!$

$$
\begin{gather*}
\stackrel{(1) ;(2)}{\Rightarrow} \lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)^{2} \cdot \frac{\sqrt[2 n+2]{a_{n+1} b_{n+1}}}{\sqrt[2 n]{a_{n} b_{n}}}=1 \\
\stackrel{(a)}{\Rightarrow} \Omega=\lim _{n \rightarrow \infty} \frac{e^{2}}{\sqrt{a b}} \cdot n \\
\cdot\left(\left(\frac{n+1}{n}\right)^{3} \cdot \frac{\sqrt[2 n]{a_{n} b_{n}}}{\sqrt[2 n+2]{a_{n+1} b_{n+1}}} \cdot\left(\frac{n}{n+1}\right)^{2} \cdot \frac{\sqrt[2 n+2]{a_{n+1} b_{n+1}}}{\sqrt[2 n]{a_{n} b_{n}}}-\left(\frac{n}{n+1}\right)^{\frac{2 n+2}{a_{n+1} b_{n+1}}} \frac{\sqrt[2 n]{a_{n} b_{n}}}{\sqrt[2]{ }}\right)= \\
=\frac{e^{2}}{\sqrt{a b}} \lim _{n \rightarrow \infty} n\left(\frac{n+1}{n}-\left(\frac{n}{n+1}\right)^{2} \cdot \frac{\sqrt[2 n+2]{a_{n+1} b_{n+1}}}{\sqrt[2 n]{a_{n} b_{n}}}\right) \tag{3}
\end{gather*}
$$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n\left(\frac{n+1}{n}-\left(\frac{n}{n+1}\right)^{2} \frac{\sqrt[2 n+2]{a_{n+1} b_{n+1}}}{\sqrt[2 n]{a_{n} b_{n}}}\right)=1-\lim _{n \rightarrow \infty} n\left(\left(\frac{n}{n+1}\right)^{2} \frac{\sqrt[2 n+2]{a_{n+1} b_{n+1}}}{\sqrt[2 n]{a_{n} b_{n}}}\right) \tag{4}
\end{equation*}
$$

$$
\begin{gathered}
\lim _{n \rightarrow \infty}\left(\left(\frac{n}{n+1}\right)^{2} \cdot \frac{\sqrt[2 n+2]{a_{n+1} b_{n+1}}}{\sqrt[2 n]{a_{n} b_{n}}}-1\right)=\lim _{n \rightarrow \infty} n\left(\frac{\sqrt[2 n+2]{a_{n+1} b_{n+1}}}{\sqrt[2 n]{a_{n} b_{n}}}-\left(\frac{n+1}{n}\right)^{2}\right)= \\
=\lim _{n \rightarrow \infty} n\left(\frac{\sqrt[2 n+2]{a_{n+1} b_{n+1}}}{\sqrt[2 n]{a_{n} b_{n}}}-1\right)-\lim _{n \rightarrow \infty} n\left(\left(\frac{n+1}{n}\right)^{2}-1\right) \\
l_{1}=\lim _{n \rightarrow \infty} n\left(\frac{\sqrt[2 n+2]{a_{n+1} b_{n+1}}}{\sqrt[2 n]{a_{n} b_{n}}}-1\right) \text { and } l_{2}=\lim _{n \rightarrow \infty}\left(\left(\frac{n+1}{n}\right)^{2}-1\right)
\end{gathered}
$$

$$
l_{1}=\lim _{n \rightarrow \infty} n \cdot \frac{\left(e^{\frac{\ln \frac{2 n+2}{a_{n+1} b_{n+1}}}{\sqrt[2 n]{a_{n} b_{n}}}-1}\right)}{\ln \left(\frac{\sqrt[2 n+2]{a_{n+1} b_{n+1}}}{\sqrt[2 n]{a_{n} b_{n}}}\right)} \cdot \ln \left(\frac{\sqrt[2 n+2]{a_{n+1} b_{n+1}}}{\sqrt[2 n]{a_{n} b_{n}}}\right)
$$

$$
=\lim _{n \rightarrow \infty} n \ln \left(\frac{\left(a_{n+1} b_{n+1}\right)^{\frac{1}{2 n+2}}}{\left(a_{n} b_{n}\right)^{\frac{1}{2 n}}}\right)=\lim _{n \rightarrow \infty}(n+1) \ln \left(\frac{\left(a_{n+1} b_{n+1}\right)^{\frac{1}{2 n+2}}}{\left(a_{n} b_{n}\right)^{\frac{1}{2 n}}}\right)=
$$

$$
=\lim _{n \rightarrow \infty} \frac{1}{2} \ln \left(\frac{a_{n+1} b_{n+1}}{a_{n} b_{n}} \cdot \frac{1}{\sqrt[n]{a_{n} b_{n}}}\right)=\frac{1}{2} \lim _{n \rightarrow \infty} \ln \left(\frac{a_{n+1}}{n a_{n}} \cdot \frac{b_{n+1}}{n^{3} b_{n}} \cdot \frac{n^{4}}{\sqrt[n]{a_{n} b_{n}}}\right)=
$$

$$
=\frac{1}{2}\left(\ln (a b)+\lim _{n \rightarrow \infty} \ln \left(\frac{n^{4}}{\sqrt[n]{a_{n} b_{n}}}\right)\right)=\ln (\sqrt{a b})+\ln \left(\frac{e^{2}}{\sqrt{a b}}\right)=\ln \left(e^{2}\right)=2
$$

$$
\Rightarrow l_{1}=2
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\begin{gathered}
l_{2}=\lim _{n \rightarrow \infty} n\left(\left(\frac{n+1}{n}\right)^{2}-1\right)=\lim _{n \rightarrow \infty} n\left(\frac{n+1}{n}-1\right)\left(\frac{n+1}{n}+1\right)= \\
=2 \stackrel{(5)}{\Rightarrow} \lim _{n \rightarrow \infty} n\left(\left(\frac{n}{n+1}\right)^{2} \cdot \frac{\sqrt[2 n+2]{a_{n+1} b_{n+1}}}{\sqrt[2 n]{a_{n} b_{n}}}-1\right)=l_{1}-l_{2}= \\
=0 \stackrel{(4)}{\Rightarrow} \lim _{n \rightarrow \infty} n\left(\frac{n+1}{n}-\left(\frac{n}{n+1}\right)^{2} \frac{\sqrt[2 n+2]{a_{n+1} b_{n+1}}}{\sqrt[2 n]{a_{n} b_{n}}}\right)= \\
=1-0=1 \stackrel{(3)}{\Rightarrow} \Omega=\frac{e^{2}}{\sqrt{a b}} \cdot 1 \Rightarrow \Omega=\frac{e^{2}}{\sqrt{a b}}
\end{gathered}
$$

Solution 3 by Soumitra Mandal-Chandar Nagore-India

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{a_{n+1}}{n a_{n}}=a \text { and } \lim _{n \rightarrow \infty} \frac{b_{n+1}}{n^{3} b_{n}}=b \text { then } \\
& \lim _{n \rightarrow \infty} \frac{\sqrt[2 n]{a_{n} \cdot b_{n}}}{n^{2}}=\sqrt{\lim _{n \rightarrow \infty} \sqrt[n]{\frac{a_{n} \cdot b_{n}}{n^{4 n}}} \stackrel{\text { CAESARO }}{\text { STOLZ }}=} \sqrt{\lim _{n \rightarrow \infty}\left(\frac{b_{n+1}}{n^{3} b_{n}} \cdot \frac{a_{n+1}}{n a_{n}} \cdot \frac{1}{\left(1+\frac{1}{n}\right)^{4}} \cdot \frac{1}{\left(1+\frac{1}{n}\right)^{4 n}}\right)} \\
& =\frac{\sqrt{a b}}{e^{2}} \text {, let } u_{n}=\frac{\sqrt[2 n]{a_{n} \cdot b_{n}}}{n^{3}} \cdot \frac{(n+1)^{3}}{\sqrt[2 n+2]{a_{n+1} \cdot b_{n+1}}} \text { for all } n \in \mathbb{N} \\
& \therefore \lim _{n \rightarrow \infty} u_{n}=\lim _{n \rightarrow \infty} \frac{\sqrt[2 n]{a_{n} b_{n}}}{n^{2}} \cdot \frac{(n+1)^{2}}{\sqrt[2 n+2]{a_{n+1} b_{n+1}}}\left(\frac{n}{1+n}\right)^{2}=1 \text { hence } \frac{u_{n}-1}{\ln u_{n}} \rightarrow 1 \\
& \lim _{n \rightarrow \infty} u_{n}^{n}=\sqrt{\lim _{n \rightarrow \infty} \frac{\sqrt[n+1]{a_{n+1} b_{n+1}}}{(n+1)^{4}} \cdot\left(1+\frac{1}{n}\right)^{6 n} \cdot \frac{1}{\frac{a_{n+1}}{n a_{n}}} \cdot \frac{1}{\frac{b_{n+1}}{n^{3} b_{n}}} \cdot\left(\frac{n}{n+1}\right)^{4}}=e \\
& \therefore \lim _{n \rightarrow \infty}\left(\frac{(n+1)^{3}}{\sqrt[2 n+2]{a_{n+1} b_{n+1}}}-\frac{n^{3}}{\sqrt[2 n]{a_{n} b_{n}}}\right)=\lim _{n \rightarrow \infty}\left(\frac{n^{2}}{\sqrt[2 n]{a_{n} b_{n}}} \cdot \frac{u_{n}-1}{\ln u_{n}} \cdot \ln u_{n}^{n}\right)=\frac{e^{2}}{\sqrt{a b}}
\end{aligned}
$$

(Answer)
UP.191. Let be: $\omega=\sum_{n=1}^{\infty} \frac{1}{\left[\sqrt[3]{\left(n^{3}+2 n+1\right)}\right]^{2}} ;[*]$ - great integer function. Find:

$$
\Omega=\lim _{n \rightarrow \infty} n\left(\omega-\sum_{k=1}^{n} \frac{1}{k^{2}}\right)
$$

Proposed by Daniel Sitaru - Romania

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro
 Solution 1 by Zaharia Burghelea-Romania

We have that for $n \geq 1$:

$$
\begin{gathered}
n^{3}<n^{3}+2 n+1<n^{3}+2 n+1+3 n^{2}+n=(n+1)^{3} \\
\Rightarrow n<\sqrt[3]{n^{3}+2 n+1}<n+1 \Rightarrow\left[\sqrt[3]{n^{3}+2 n+1}\right]=n
\end{gathered}
$$

Using the above relation yields:

$$
\begin{gathered}
\omega=\sum_{n=1}^{\infty} \frac{1}{n^{2}} \Rightarrow \Omega=\lim _{n \rightarrow \infty} n\left(\sum_{n=1}^{\infty} \frac{1}{n^{2}}-\sum_{k=1}^{n} \frac{1}{k^{2}}\right)= \\
=\lim _{n \rightarrow \infty} n \sum_{j=n+1}^{\infty} \frac{1}{j^{2}}=\lim _{n \rightarrow \infty} n \sum_{j=0}^{\infty} \frac{1}{(j+n+1)^{2}}=\lim _{n \rightarrow \infty} n \cdot \psi_{1}(n+1)
\end{gathered}
$$

Where the trigamma function $\psi_{1}(x)$ can be asymptotically approximated as:

$$
\psi_{1}(x)=\frac{1}{x}+\frac{1}{2 x^{2}}+\frac{1}{6 x^{3}}-\frac{1}{30 x^{5}}+O\left(\frac{1}{x^{6}}\right)
$$

It follows that:

$$
\Omega=\lim _{n \rightarrow \infty} n\left(\frac{1}{n+1}+\frac{1}{2(n+1)^{2}}+\frac{1}{6(n+1)^{3}}+O\left(\frac{1}{n^{4}}\right)\right)=1
$$

Solution 2 by Marian Ursărescu-Romania

Another approach: Obvious: $\left[\sqrt[3]{n^{3}+2 n+1}\right]=n$, because

$$
\begin{gathered}
n<\sqrt[3]{n^{3}+2 n+1}<n+1 \Rightarrow \omega=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{k^{2}}=\frac{\pi^{2}}{6} \Rightarrow \\
\Omega=\lim _{n \rightarrow \infty} n\left(\frac{\pi^{2}}{6}-\sum_{k=1}^{n} \frac{1}{k^{2}}\right)=\lim _{n \rightarrow \infty} \frac{\frac{\pi^{2}}{6}-\sum_{k=1}^{n} \frac{1}{k^{2}}}{\frac{1}{n}}= \\
\text { and now, using Cesaró-Stolz lemma for } \frac{0}{0} \\
=\lim _{n \rightarrow \infty} \frac{\frac{\pi^{2}}{6}-\sum_{k=1}^{n+1} \frac{1}{k^{2}}-\frac{\pi^{2}}{6}+\sum_{k=1}^{n} \frac{1}{k^{2}}}{\frac{1}{n+1}-\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{-\frac{1}{n+11^{2}}}{\frac{n-n-1}{n(n+1)}}=\lim _{n \rightarrow \infty} \frac{n}{n+1}=1
\end{gathered}
$$

Solution 3 by Naren Bhandari-Bajura-Nepal

$$
\text { Observe that: } n^{3}+2 n+1=n^{3}\left(1+\frac{2}{n^{2}}+\frac{1}{n^{3}}\right)
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Therefore: $\left[\sqrt[3]{n^{3}+2 n+1}\right]=\left\{n\left(\sqrt[3]{1+\frac{2}{n^{2}}+\frac{1}{n^{3}}}\right)\right\rfloor$
For $n=1$ expression above is 1 and using Fractional Binomial Theorem we have:

$$
\begin{gathered}
n\left(1+\frac{1}{3}\left(1+\frac{2}{n^{2}}+\frac{1}{n^{3}}\right)+\cdots\right) \forall n \geq 2 \text { and the floor value we have } \\
\left\lfloor\sqrt[3]{n^{3}+2 n+1}\right\rfloor=n \text {. Thus } \\
\omega=\sum_{n=1}^{\infty} \frac{1}{\left[\sqrt[3]{n^{3}+2 n+1}\right]^{2}}=\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6} \\
\Omega=\lim _{n \rightarrow \infty} n\left(\frac{\pi^{2}}{6}-\sum_{k=1}^{n} \frac{1}{k^{2}}\right)=\frac{1}{\frac{1}{n}}\left(\frac{\pi^{2}}{6}-\sum_{k=1}^{n} \frac{1}{k^{2}}\right)
\end{gathered}
$$

we have the limit $\frac{\mathbf{0}}{\mathbf{0}}$ form so by Stolz - Cesaro Theorem

$$
\Omega=\lim _{n \rightarrow \infty} \frac{1}{\frac{1}{n+1}-\frac{1}{n}}\left(\sum_{k=1}^{n+1} \frac{1}{k^{2}}-\sum_{k=1}^{n} \frac{1}{k^{2}}\right)=\lim _{n \rightarrow \infty} \frac{n(n+1)}{(n+1)^{2}}=1
$$

UP.192. Find:

$$
\begin{gathered}
\Omega=\lim _{n \rightarrow \infty}\left(\sum_{p=1}^{n}\left(\frac{1}{\sum_{k=1}^{p}\left\{\frac{k p}{p+1}\right\}}\right)-2 \log (2 n+1)\right) \\
\{*\}=*-[*] ;[*]-\text { great integer function. } \\
\text { Proposed by Daniel Sitaru - Romania }
\end{gathered}
$$

Solution 1 by Yubian Andres Bedoya Henao-Colombia

$$
\begin{aligned}
& \Omega=\lim _{n \rightarrow \infty}\left[\sum_{p=1}^{n}\left(\frac{1}{\sum_{k=1}^{p}\left\{\frac{k p}{p+1}\right\}}\right)-2 \ln (2 n+1)\right] \\
& =\lim _{n \rightarrow \infty}\left[\sum_{p=1}^{n}\left(\frac{1}{\sum_{k=1}^{p}\left\{k-\frac{k}{p+1}\right\}}\right)-2 \ln (2 n+1)\right]
\end{aligned}
$$

$$
\begin{gathered}
\text { ROMANIAN MATHEMATICAL MAGAZINE } \\
=\lim _{n \rightarrow \infty}\left[\sum_{p=1}^{n}\left(\frac{1}{\sum_{k=1}^{p}\left\{1-\frac{k}{p+1}\right\}}\right)-2 \ln (2 n+1)\right] \\
=\lim _{n \rightarrow \infty}\left[\sum_{p=1}^{n}\left(\frac{1}{p-\frac{p(p+1)}{2(p+1)}}\right)-2 \ln (2 n+1)\right]=\lim _{n \rightarrow \infty}\left[2 \sum_{p=1}^{n} \frac{1}{p}-2 \ln (2 n+1)\right] \\
=2 \lim _{n \rightarrow \infty}\left[\sum_{p=1}^{n} \frac{1}{p}-\ln (n)-\ln \left(\frac{2 n+1}{n}\right)\right] \\
\Omega=2(\gamma-\ln (2))
\end{gathered}
$$

Solution 2 by Kamel Benaicha-Algeirs-Algerie

$$
\begin{gathered}
\Omega=\lim _{n \rightarrow \infty}\left(\sum_{p=1}^{n} \frac{1}{\sum_{k=1}^{p}\left\{\frac{k p}{p+1}\right\}}-2 \ln (2 n+1)\right) \\
S(p)=\sum_{k=1}^{p}\left\{\frac{k p}{p+1}\right\}=\sum_{s=0}^{p-1}\left\{\frac{(p-s)(p+1-1)}{p+1}\right\} \\
\therefore S(p)=\sum_{s=0}^{p-1}\left\{p-1-s+\frac{s+1}{p+1}\right\}=\frac{1}{p+1} \sum_{s=0}^{p-1}(s+1)=\frac{1}{p+1}\left(\frac{p(p-1)}{2}+p\right)= \\
=\frac{p(p+1)}{2(p+1)}=\frac{p}{2} \\
\begin{aligned}
\left.\Omega=2 \lim _{n \rightarrow \infty}\left(\sum_{p=1}^{n} \frac{1}{p}-\ln (2 n+1)\right)=2\left(\lim _{n \rightarrow \infty}\left(\sum_{p=1}^{n} \frac{1}{p}-\ln (n)\right)-\lim _{n \rightarrow \infty} \ln \left(\frac{2 n+1}{n}\right)\right)\right) \\
=2(\gamma-\ln (2)), \text { where } \gamma \text { is Euler - Mascheroni's constant. } \\
\therefore \lim _{n \rightarrow \infty}\left(\sum_{p=1}^{n} \frac{1}{\sum_{k=1}^{p}\left\{\frac{k p}{p+1}\right\}}-2 \ln (2 n+1)\right)=2(\gamma-\ln (2))
\end{aligned}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
UP. 193.

$$
\omega(n)=n \prod_{i=2}^{n}\left(\frac{i^{3}+1}{i^{3}-1}\right)
$$

Find:

$$
\Omega=\lim _{n \rightarrow \infty}\left(\omega^{2}(n)\left(1+\frac{1}{\omega(n)}\right)^{\frac{1}{\omega(n)}}-\omega^{2}(n) \cos \left(\frac{1}{\omega^{2}(n)}\right)\right)
$$

Proposed by Daniel Sitaru - Romania

Solution 1 by Marian Ursărescu-Romania

$$
\begin{aligned}
& \omega(n)=n \prod_{i=2}^{n}\left(\frac{i^{3}+1}{i^{3}-1}\right)=n \cdot \prod_{i=2}^{n} \frac{(i+1)\left(i^{2}-i+1\right)}{(i-1)\left(i^{2}+i+1\right)}= \\
& =u \cdot \frac{3}{1} \cdot \frac{3}{7} \cdot \frac{4}{2} \cdot \frac{7}{13} \cdot \ldots \cdot \frac{(n+1)}{(n-1)} \cdot \frac{n^{2}-n+1}{n^{2}+n+1}= \\
& =n \cdot \frac{(n+1)!}{(n-1)!} \cdot \frac{3}{n^{2}+n+1}=n(n+1) n \cdot \frac{3}{n^{2}+n+1}=\frac{3 n^{2}(n+1)}{n^{2}+n+1} \rightarrow \infty \\
& \Omega=\lim _{n \rightarrow \infty} \omega^{2}(n)\left[\left(1+\frac{1}{\omega(n)}\right)^{\frac{1}{\omega(n)}}-\cos \frac{1}{\omega^{2}(n)}\right]= \\
& \left.\begin{array}{c}
\lim _{n \rightarrow \infty} \frac{\left(1+\frac{1}{\omega(n)}\right)^{\frac{1}{\omega(n)}}-\cos \frac{1}{\omega^{2}(n)}}{\frac{1}{\omega^{2}(n)}} \\
\operatorname{Let} \frac{1}{\omega(n)}=x \rightarrow 0
\end{array}\right\} \Rightarrow \\
& \Omega=\lim _{x \rightarrow 0} \frac{(1+x)^{x}-\cos x^{2}}{x^{2}}=\lim _{x \rightarrow 0} \frac{(1+x)^{x}-1}{x^{2}}+\lim _{x \rightarrow 0} \frac{1-\cos x^{2}}{x^{2}} \stackrel{L^{\prime} H}{=} \\
& =\lim _{x \rightarrow 0} \frac{(1+x)^{x}\left[\ln (1+x)+\frac{x}{1+x}\right]}{2 x}+\lim _{x \rightarrow 0} \frac{\sin x^{2} \cdot 2 x}{2 x}= \\
& =\lim _{x \rightarrow 0}(1+x)^{x}\left[\frac{\ln (1+x)}{2 x}+\frac{1}{2(1+x)}\right]+\lim _{x \rightarrow 0} \sin x^{2}=\frac{1}{2}+\frac{1}{2}=1
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Solution 2 by Srinivasa Raghava-AIRMC-India

$$
\begin{gathered}
w(n)=n \prod_{i=2}^{n} \frac{i^{3}+1}{i^{3}-1}=n \prod_{i=2}^{n} \frac{(i+1)\left(i^{2}-i+1\right)}{(i-1)\left(i^{2}+i+1\right)}= \\
=n \prod_{i=2}^{n}\left(-\frac{2(i+2)}{3\left(i^{2}+i+1\right)}+\frac{2}{3(i-1)}+1\right)=\frac{3 n^{2}(n+1)}{2\left(n^{2}+n+1\right)} \text { (partial fraction decomposition) }
\end{gathered}
$$

Now, if we observe the limit

$$
\begin{gathered}
\lim _{n \rightarrow \infty}\left(w(n)^{2}\left(1+\frac{1}{w(n)}\right)^{\frac{1}{w(n)}}-w(n)^{2} \cos \left(\frac{1}{w(n)^{2}}\right)\right)= \\
=\lim _{n \rightarrow \infty}\left(\frac{9 n^{4}(n+1)^{2}\left(\frac{2}{3 n^{2}}+1+\frac{2}{3(n+1)}\right)^{\frac{2}{3}\left(\frac{1}{n^{2}+\frac{1}{n+1}}\right)}}{4\left(n^{2}+n+1\right)^{2}}-\frac{9 n^{4}(n+1)^{2} \cos \left(\frac{4\left(n^{2}+n+1\right)^{2}}{9 n^{4}(n+1)^{2}}\right)}{4\left(n^{2}+n+1\right)^{2}}\right)
\end{gathered}
$$

By convergence ratio test, we can see that:

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \cos \left(\frac{1}{w\left(n^{2}\right)}\right)=\lim _{n \rightarrow \infty} \cos \left(\frac{4\left(n^{2}+n+1\right)^{2}}{9 n^{4}(n+1)^{2}}\right)=1 \tag{A}\\
& \lim _{n \rightarrow \infty}\left(\frac{2}{3 n^{2}}+\frac{2}{3(n+1)}+1\right)^{\frac{2}{3}\left(\frac{1}{n^{2}+}+\frac{1}{n+1}\right)}=1 \tag{B}
\end{align*}
$$

By filtering the common terms and in the view of $A \& B$ we obtain:

$$
\lim _{n \rightarrow \infty}\left(w(n)^{2}\left(1+\frac{1}{w(n)}\right)^{\frac{1}{w(n)}}-w(n)^{2} \cos \left(\frac{1}{w(n)^{2}}\right)\right)=1
$$

Solution 3 by Naren Bhandari-Bajura-Nepal

Given

$$
\begin{gathered}
\omega(n)=n \prod_{i=2}^{n}\left(\frac{i^{3}+1}{i^{3}-1}\right) \\
=n \prod_{i=2}^{n}\left[\frac{(i+1)\left(i^{2}-i+1\right)}{(i-1)\left(i^{2}+i+1\right)}\right]=n \prod_{i=2}^{n}\left[\frac{i+1}{i-1}\right] \prod_{i=2}^{n}\left[\frac{i^{2}-i+1}{i^{2}+i+1}\right] \\
\therefore \omega(n)=n\left[\frac{n(n+1)}{2}\right]\left[\frac{3}{n^{2}+n+1}\right]=\frac{3 n^{2}(n+1)}{2\left(n^{2}+n+1\right)}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\begin{gathered}
\text { Let } \Omega_{1}=\lim _{n \rightarrow \infty}\left(\omega^{2}(n)\left(1+\frac{1}{\omega(n)}\right)^{\frac{1}{\omega(n)}}\right) \\
=\lim _{n \rightarrow \infty} \exp \left(\frac{2\left(n^{2}+n+1\right)}{n^{2}(n+1)} \ln \left(\frac{9\left(n^{4}\left(n^{2}+n+1\right)\right.}{4\left(n^{2}+n+1\right)^{2}}+\frac{3\left(n^{2}(n+1)\right)}{2\left(n^{2}+n+1\right)}\right)\right)=e^{0}=1 \\
\text { and } \Omega_{2}=\lim _{n \rightarrow \infty} \omega^{2}(n) \cos \left(\frac{1}{\omega^{2}(n)}\right) \\
=\frac{9 n^{4}(n+1)^{2}}{4\left(n^{2}+n+1\right)^{2}} \sum_{k=0}^{\infty}\left(\frac{(-1)^{k} 4\left(n^{2}+n+1\right)^{2}}{9 n^{4}(n+1)^{2}(2 k)!}\right)=\frac{9 n^{6}}{4 n^{6}}\left(\frac{1+\frac{1}{n}}{\frac{1}{n}+\frac{1}{n^{2}}+\frac{1}{n^{3}}}\right)^{2}(1-0)=0
\end{gathered}
$$

Therefore $\Omega=\Omega_{1}+\Omega_{2}=\mathbf{1}$

UP.194. Let $\boldsymbol{a}, \boldsymbol{b}$ be two real numbers with $\mathbf{0} \leq \boldsymbol{a}<b$. Calculate the next limit:

$$
\lim _{n \rightarrow \infty} \int_{a}^{b} \sqrt[n]{(-x+a+b)^{n}+\left(\frac{a+2 b}{3}\right)^{n}+x^{n}} d x
$$

Proposed by Vasile M ircea Popa - Romania

Solution by Kamel Benaicha-Algeirs-Algerie

$$
\Omega=\lim _{n \rightarrow+\infty} \int_{a}^{b} \sqrt{(a+b-x)^{n}+\left(\frac{(a+2 b)}{3}\right)^{n}+x^{n}} d x / 0<a \leq b
$$

Let be $(\alpha, \beta, \lambda) \in \mathbb{R}_{+}^{* 3}$ and let be $\boldsymbol{\theta}=\boldsymbol{\operatorname { m a x }}(\boldsymbol{\alpha}, \boldsymbol{\beta}, \lambda)$

$$
\begin{gathered}
\lim _{n \rightarrow \infty}\left(\alpha^{n}+\beta^{n}+\lambda^{n}\right)^{\frac{1}{n}}=\theta \lim _{n \rightarrow \infty}\left(\left(\frac{\alpha}{\theta}\right)^{n}+\left(\frac{\beta}{\theta}\right)^{n}+\left(\frac{\lambda}{\theta}\right)^{n}\right)^{\frac{1}{n}}=\theta \\
\left(\lim _{n \rightarrow \infty}\left(\left(\frac{\alpha}{\theta}\right)^{n}+\left(\frac{\beta}{\theta}\right)^{n}+\left(\frac{\lambda}{\theta}\right)^{n}\right)=1\right) . \text { Then: } \\
\text { On }\left[a ; \frac{2 a+b}{3}\left[: \max \left(a+b-x ; \frac{a+2 b}{3} ; x\right)=a+b-x,\right.\right. \\
\text { On }\left[\frac{2 a+b}{3} ; \frac{a+2 b}{3}\left[: \max \left(a+b-x ; \frac{a+2 b}{3} ; x\right)=\frac{a+2 b}{3},\right.\right. \\
\text { On }\left[\frac{a+2 b}{3} ; b\right]: \max \left(a+b-x ; \frac{a+2 b}{3} ; x\right)=x
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

$$
\begin{gathered}
\therefore \Omega=\int_{a}^{\frac{b+2 a}{3}}(a+b-x) d x+\frac{a+2 b}{3} \int_{\frac{b+2 a}{3}}^{\frac{a+2 b}{3}} d x+\int_{\frac{a+2 b}{3}}^{b} x d x \\
=\frac{b^{2}-a^{2}}{3}-\frac{1}{2}\left(\left(\frac{b+2 a}{3}\right)^{2}-a^{2}\right)+\frac{a+2 b}{3}\left(\frac{a+2 b}{3}-\frac{b+2 a}{3}\right)+\frac{1}{2}\left(b^{2}-\left(\frac{a+2 b}{3}\right)^{2}\right) \\
=\frac{b^{2}-a^{2}}{3}-\frac{(b-a)(5 a+b)}{18}+\frac{(b-a)(a+2 b)}{9}+\frac{(b-a)(a+5 b)}{18} \\
=\frac{(b-a)(2 a+7 b)}{9} \\
\therefore \lim _{n \rightarrow+\infty} \int_{a}^{b} \sqrt[n]{(a+b-x)^{n}+\left(\frac{(a+2 b)}{3}\right)^{n}+x^{n}} d x=\frac{(b-a)(2 a+7 b)}{9}
\end{gathered}
$$

UP.195. Calculate the integral:

$$
\int_{0}^{\infty} \frac{x^{2} \ln (x+1)}{x^{4}-x^{2}+1} d x
$$

It is required to express the integral value with the usual mathematical constants, without using values of special functions.

Proposed by Vasile Mircea Popa - Romania

Solution by Zaharia Burghelea-Romania

$$
\text { Denote: } I=\int_{0}^{\infty} \frac{x^{2} \ln (1+x)}{x^{4}-x^{2}+1} \boldsymbol{d} x
$$

We now split the integral from $[0,1]$ to $[1, \infty)$ and in the second integral we substitute $x=\frac{1}{x}$ in order to arrive at:

$$
I=\int_{0}^{1} \frac{x^{2} \ln (1+x)}{x^{4}-x^{2}+1} d x+\int_{0}^{1} \frac{\ln (1+x)-\ln x}{x^{4}-x^{2}+1} d x=
$$

$$
\begin{aligned}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
& \text { www.ssmrmh.ro } \\
& =\int_{0}^{1} \frac{\left(x^{2}+\mathbf{1}\right) \ln (\mathbf{1}+\boldsymbol{x})}{x^{4}-\boldsymbol{x}^{2}+\mathbf{1}} d \boldsymbol{d x}-\int_{0}^{1} \frac{\ln \boldsymbol{x}}{x^{4}-\boldsymbol{x}^{2}+\mathbf{1}} \boldsymbol{d x}=\boldsymbol{I}_{\mathbf{1}}-\boldsymbol{I}_{\mathbf{2}}
\end{aligned}
$$

In I_{1} substituting $x=\frac{1-t}{1+t} \Rightarrow d x=-\frac{2}{(1+t)^{2}} d t$ we get:
$I_{1}=\int_{0}^{1} \frac{\left(x^{2}+1\right) \ln (1+x)}{x^{4}-x^{2}+1} d x=4 \int_{0}^{1} \frac{\left(t^{2}+1\right)(\ln 2-\ln (1+t))}{t^{4}+14 t^{2}+1} d t$
$=\left.\ln 2 \arctan \left(\frac{4 t}{1-t^{2}}\right)\right|_{0} ^{1}-4 \int_{0}^{1} \frac{t^{2}+1}{t^{4}+14 t^{2}+1} \ln (1+t) d t$
$=\frac{\pi}{2} \ln 2-(2+\sqrt{3})\left(\int_{0}^{1} \frac{\ln (1+t)}{t^{2}+(2+\sqrt{3})^{2}} d t+\int_{0}^{1} \frac{\ln (1+t)}{(2+\sqrt{3})^{2} t^{2}+1} d t\right)$
$\int_{0}^{1} \frac{\ln (1+t)}{t^{2}+(2+\sqrt{3})^{2}} d t=\int_{0}^{\infty} \frac{\ln (1+t)}{t^{2}+(2+\sqrt{3})^{2}} d t+\int_{0}^{1} \frac{\ln t}{(2+\sqrt{3})^{2} t^{2}+1} d t$
$\Rightarrow I_{1}=\frac{\pi}{2} \ln 2-(2+\sqrt{3})\left(\int_{0}^{\infty} \frac{\ln (1+t)}{t^{2}+(2+\sqrt{3})^{2}} d t+\int_{0}^{1} \frac{\ln t}{(2+\sqrt{3})^{2} t^{2}+1} d t\right)$
Substituting $t=(2+\sqrt{3}) x$ respectively $(2+\sqrt{3}) t=x$ we get:

$$
=\frac{\pi}{2} \ln 2-\left(\int_{0}^{\infty} \frac{\ln (1+(2+\sqrt{3}) x)}{1+x^{2}} d x+\int_{0}^{2+\sqrt{3}} \frac{\ln \left(\frac{x}{2+\sqrt{3}}\right)}{1+x^{2}} d x\right)
$$

$$
\begin{gathered}
=\frac{\pi}{2} \ln 2+\ln (2+\sqrt{3}) \arctan (x) \left\lvert\, \begin{array}{c}
2+\sqrt{3}
\end{array} \int_{0}^{\infty} \frac{\ln (1+(2+\sqrt{3}) x)}{1+x^{2}} d x-\int_{0}^{2+\sqrt{3}} \frac{\ln (x)}{1+x^{2}} d x\right. \\
=\frac{\pi}{2} \ln 2+\frac{5 \pi}{12} \ln (2+\sqrt{3})-\left(J_{1}(2+\sqrt{3})+J_{2}(2+\sqrt{3})\right) \\
J_{1}(a)=\int_{0}^{\infty} \frac{\ln (1+a x)}{1+x^{2}} d x \Rightarrow J^{\prime}(a)=\int_{0}^{\infty} \frac{x}{\left(1+x^{2}\right)(1+a x)} d x= \\
=\frac{a}{1+a^{2}} \int_{0}^{\infty} \frac{1}{1+x^{2}} d x+\frac{1}{1+a^{2}} \int_{0}^{\infty}\left(\frac{x}{1+x^{2}}-\frac{a}{1+a x}\right) d x=
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\text { And using: } \psi_{1}\left(\frac{1}{4}\right)=\pi^{2}+8 G ; \psi_{1}\left(\frac{3}{4}\right)=\pi^{2}-8 G
$$

$$
\begin{aligned}
& =\frac{\pi}{2} \cdot \frac{a}{1+a^{2}}+\left.\frac{1}{1+a^{2}} \ln \left(\frac{\sqrt{1+x^{2}}}{1+a x}\right)\right|_{0} ^{\infty}=\frac{\pi}{2} \cdot \frac{a}{1+a^{2}}-\frac{\ln a}{1+a^{2}} \\
& J_{1}(0)=0 \Rightarrow J_{1}(2+\sqrt{3})=\int_{0}^{2+\sqrt{3}}\left(\frac{\pi}{2} \cdot \frac{a}{1+a^{2}}-\frac{\ln a}{1+a^{2}}\right) d a \\
& J_{1}(2+\sqrt{3})+J_{2}(2+\sqrt{3})=\int_{0}^{2+\sqrt{3}} \frac{a}{1+a^{2}} d a-\int_{0}^{2+\sqrt{3}} \frac{\ln a}{1+a^{2}} d a+\int_{0}^{2+\sqrt{3}} \frac{\ln a}{1+a^{2}} d a \\
& \Rightarrow I_{2}=\frac{\pi}{2} \ln 2+\frac{5 \pi}{12} \ln (2+\sqrt{3})+\frac{\pi}{2} \int_{0}^{2+\sqrt{3}} \frac{a}{1+a^{2}} d a= \\
& \left.=\frac{\pi}{2} \ln 2+\frac{5 \pi}{12} \ln (2+\sqrt{3})+\frac{\pi}{4} \ln \left(1+a^{2}\right) \right\rvert\, \begin{array}{c}
2+\sqrt{3} \\
0
\end{array}= \\
& =\frac{\pi}{2} \ln 2+\frac{5 \pi}{12} \ln (2+\sqrt{3})+\frac{\pi}{4} \ln (4(2+\sqrt{3})) \\
& \Rightarrow I_{1}=\int_{0}^{1} \frac{\left(x^{2}+1\right) \ln (1+x)}{x^{4}-x^{2}+1} d x=\frac{\pi}{6} \ln (2+\sqrt{3}) \\
& I_{2}=\int_{0}^{1} \frac{1+x^{2}}{1+x^{6}} \ln x d x=\sum_{n=0}^{\infty}(-1)^{n} \int_{0}^{1} x^{6 n}\left(1+x^{2}\right) \ln x d x \\
& \int_{0}^{1} x^{k} \ln x d x=-\frac{1}{(k+1)^{2}} \Rightarrow I_{2}=\sum_{n=0}^{\infty}(-1)^{n+1}\left(\frac{1}{(6 n+1)^{2}}+\frac{1}{(6 n+3)^{2}}\right) \\
& =-\frac{1}{36} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{\left(n+\frac{1}{6}\right)^{2}}-\frac{1}{9} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{2}}=-\frac{1}{144}\left(\psi_{1}\left(\frac{1}{12}\right)-\psi_{1}\left(\frac{7}{12}\right)\right)-\frac{G}{9} \\
& 9 \sum_{k=0}^{\infty} \frac{1}{(3 x+k)^{2}}=\sum_{k=0}^{\infty}\left(\frac{1}{\left(x+\frac{3 k}{3}\right)^{2}}+\frac{1}{\left(x+\frac{3 k+1}{3}\right)^{2}}+\frac{1}{\left(x+\frac{3 k+2}{3}\right)^{2}}\right) \\
& \Rightarrow 9 \psi_{1}(3 x)=\psi_{1}(x)+\psi_{1}\left(x+\frac{1}{3}\right)+\psi_{1}\left(x+\frac{2}{3}\right)
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
9 \psi_{1}\left(\frac{1}{4}\right)=\psi_{1}\left(\frac{1}{12}\right)+\psi_{1}\left(\frac{5}{12}\right)+\psi_{1}\left(\frac{3}{4}\right) \Rightarrow \psi_{1}\left(\frac{1}{12}\right)+\psi_{1}\left(\frac{5}{12}\right)=8 \pi^{2}+80 G
$$

With the reflection formula: $\psi_{1}(x)+\psi_{1}(1-x)=\frac{\pi^{2}}{\sin ^{2}(\pi x)}$ we have:

$$
\begin{gathered}
\psi_{1}\left(\frac{5}{12}\right)+\psi_{1}\left(\frac{7}{12}\right)=\frac{\pi^{2}}{\sin ^{2}\left(\frac{5 \pi}{12}\right)} \Rightarrow \psi_{1}\left(\frac{5}{12}\right)=4(2-\sqrt{3}) \pi^{2}-\psi_{1}\left(\frac{7}{12}\right) \\
\Rightarrow \psi_{1}\left(\frac{1}{12}\right)+4(2-\sqrt{3}) \pi^{2}-\psi_{1}\left(\frac{7}{12}\right)=8 \pi^{2}+80 G \Rightarrow \\
\Rightarrow \psi_{1}\left(\frac{1}{12}\right)-\psi_{1}\left(\frac{7}{12}\right)=4 \sqrt{3} \pi^{2}+80 G \\
I_{2}=-\frac{1}{144}\left(4 \sqrt{3} \pi^{2}+80 G\right)-\frac{G}{9}=-\frac{\pi^{2}}{12 \sqrt{3}}-\frac{2}{3} G \\
\Rightarrow I_{1}-I_{2}=I=\frac{\pi}{6} \ln (2+\sqrt{3})+\frac{\pi^{2}}{12 \sqrt{3}}+\frac{2}{3} G
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

It's nice to be important but more important it's to be nice. At this paper works a TEAM.

This is RMM TEAM.
To be continued!
Daniel Sitaru

