Number 14

ROMANIAN MATHEMATICAL MAGAZINE

SOLUTIONS

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

SOLUTIONS

ROMANIAN MATHEMATICAL MAGAZINE Proposed by

Daniel Sitaru - Romania
Hoang Le Nhat Tung - Hanoi - Vietnam Marian Ursărescu - Romania
D.M. Bătinețu-Giurgiu - Romania Neculai Stanciu - Romania George Apostolopoulos - Messolonghi - Greece
Marin Chirciu - Romania
Nguyen Viet Hung - Hanoi - Vietnam
Vasile Mircea Popa - Romania

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro Solutions by

Daniel Sitaru - Romania,Srinivasa Raghava-AIRMC-India Tran Hong-Dong Thap-Vietnam,Soumava Chakraborty-Kolkata-India Amit Dutta-Jamshedpur-India, Minh Tam Le-Vietnam Marian Ursărescu - Romania,Le Ngo Duc-Vietnam Sanong Huayrerai-Nakon Pathom-Thailand,M ichael Sterghiou-Greece

Soumitra Mandal-Chandar Nagore-India,Bogdan Fustei-Romania Mustafa Tarek-Cairo-Egypt,Ravi Prakash-New Delhi-India Abdul Hafeez Ayinde-Nigeria,Pedro Nagasava-Brazil Dawid Bialek-Poland,Remus Florin Stanca-Romania

Tobi Joshua-Nigeria,D.M. Bătinețu-Giurgiu - Romania
Neculai Stanciu - Romania,Serban George Florin-Romania Sudhir Jha-Kolkata-India

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
JP.196. Let a, b, c be the sides in a triangle such that $a b c=1$. Find the minimum value of:

$$
T=\frac{a^{3}}{\sqrt[3]{b^{3}+c^{3}-1}}+\frac{b^{3}}{\sqrt[3]{c^{3}+a^{3}-1}}+\frac{c^{3}}{\sqrt[3]{a^{3}+b^{3}-1}}+\frac{3(a b+b c+c a)}{a^{2}+b^{2}+c^{2}}
$$

Proposed by Hoang Le Nhat Tung - Hanoi - Vietnam
Solution 1 by Tran Hong-Dong Thap-Vietnam

$$
\begin{gathered}
\because(a, b, c-\text { the sides of a triangle }) \Rightarrow \\
\Rightarrow \Omega=\frac{a^{3}}{1 \cdot 1 \cdot\left(b^{3}+c^{3}-1\right)} \stackrel{A M-G M}{\leq} \frac{b^{3}+c^{3}-1+1+1}{3}=\frac{b^{3}+c^{3}+1}{3}(\text { etc }) \\
\\
\geq 3 \sum \frac{a^{3}}{b^{3}+c^{3}+1}=3 \sum \frac{a^{4}}{a b^{3}+a c^{3}+a} \stackrel{\text { Schwarz }}{\geq} \\
=3 \cdot \frac{\left(a^{2}+b^{2}+c^{2}\right)^{2}}{a b\left(a^{2}+b^{2}\right)+a c\left(b^{3}\right)+\left(a c^{3}+c a^{3}\right)+\left(b c^{3}+c b^{3}\right)+a+b+c} \\
=
\end{gathered}
$$

We need to prove: $\Upsilon=3 \cdot \frac{a^{2}+b^{2}+c^{2}}{a b+b c+c a} \quad(\therefore a b c=1)$

$$
\begin{gathered}
\Leftrightarrow(a b+b c+c a)\left(a^{2}+b^{2}+c^{2}\right)=\left[a b\left(a^{2}+b^{2}\right)+a c\left(a^{2}+c^{2}\right)+b c\left(b^{2}+c^{2}\right)+a+b+c\right] \\
\Leftrightarrow a b\left(a^{2}+b^{2}\right)+b c\left(b^{2}+c^{2}\right)+c a\left(a^{2}+c^{2}\right)+a b c(a+b+c)= \\
{\left[a b\left(a^{2}+b^{2}\right)+a c\left(a^{2}+c^{2}\right)+b c\left(b^{2}+c^{2}\right)+a+b+c\right] \Leftrightarrow} \\
\Leftrightarrow a b c(a+b+c)=a+b+c \stackrel{a b c=1}{\Leftrightarrow} a+b+c=a+b+c \text { (true) } \\
\Rightarrow \Omega \geq \Upsilon=3 \cdot \frac{a^{2}+b^{2}+c^{2}}{a b+b c+c a} \\
\Rightarrow T \geq 3 \cdot \frac{a^{2}+b^{2}+c^{2}}{a b+b c+c a}+3 \cdot \frac{a b+b c+c a}{a^{2}+b^{2}+c^{2}} \stackrel{A M-G M}{\geq} 2 \sqrt{3 \cdot 3}=6 \\
\Rightarrow T_{\text {min }}=6 \Leftrightarrow\left\{\begin{array}{l}
a b c=1 \\
a=b=c>0
\end{array} \Leftrightarrow a=b=c=1\right.
\end{gathered}
$$

Solution 2 by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
T=\sum \frac{a^{3}}{\sqrt[3]{b^{3}+c^{3}-a b c}}+\frac{3 \sum a b}{\sum a^{2}}(\because 1=a b c) \\
b^{3}+c^{3}-a b c \geq b c(b+c)-a b c=b c(b+c-a)>0 \Rightarrow b^{3}+c^{3}-a b c>0
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Similarly, $c^{3}+a^{3}-a b c>0, a^{3}+b^{3}-a b c>0$

$$
\begin{gathered}
\sum \frac{a^{3}}{\sqrt[3]{b^{3}+c^{3}-a b c}}=\sum \frac{a^{3}}{\sqrt[3]{a b c \cdot a b c\left(b^{3}+c^{3}-a b c\right)}} \stackrel{G \leq A}{\leq} \sum \frac{3 a^{3}}{b^{3}+c^{3}+a b c} \\
=3 \sum \frac{a^{4}}{a b^{3}+a c^{3}+a^{2} b c} \stackrel{\text { Bergström }}{\geq} 3 \frac{\left(\sum a^{2}\right)^{2}}{\sum\left(a b^{3}+a c^{3}+a^{2} b c\right)}=3 \frac{\left(\sum a^{2}\right)^{2}}{\sum a b\left(a^{2}+b^{2}\right)+\sum a^{2} b c} \\
=3 \frac{\left(\sum a^{2}\right)^{2}}{\sum a b\left(\sum a^{2}-c^{2}\right)+\sum a^{2} b c}=\frac{3\left(\sum a^{2}\right)^{2}}{\left(\sum a b\right)\left(\sum a^{2}\right)-\sum a b c^{2}+\sum a^{2} b c}=\frac{3 \sum a^{2}}{\sum a b} \\
\Rightarrow T=\sum \frac{a^{3}}{\sqrt[3]{b^{3}+c^{3}-a b c}}+\frac{3 \sum a b}{\sum a^{2}} \geq \frac{3 \sum a^{2}}{\sum a b}+\frac{3 \sum a b}{\sum a^{2}} \geq 6 \\
\therefore T_{\min }=6(\text { equality at } a=b=c=1)
\end{gathered}
$$

JP.197. Solve for real numbers:

$$
\begin{aligned}
& 6 \sqrt[3]{2 x^{2}-2 x+1}+4 \sqrt[4]{3 x^{3}-2 x^{4}}=2 x^{5}-5 x+13 \\
& \text { Proposed by Hoang Le Nhat Tung - Hanoi - Vietnam }
\end{aligned}
$$

Solution 1 by Amit Dutta-Jamshedpur-India

$$
\begin{gather*}
2 x^{2}-2 x+1>0\{\because \Delta<0\} \\
3 x^{3}-2 x^{4} \geq 0\{\text { Domain }\} \\
2 x^{4}-3 x^{3} \leq \mathbf{0} ; x^{3}(2 x-3) \leq \mathbf{0} ; \boldsymbol{x}(2 x-3) \leq \mathbf{0} ; \\
x \in\left[0, \frac{3}{2}\right] \tag{1}
\end{gather*}
$$

Now, using GM $\leq A M: \sqrt[3]{\left(2 x^{2}-2 x+1\right) \cdot 1 \cdot 1} \leq \frac{\left(2 x^{2}-2 x+1\right)+1+1}{3}$

$$
\begin{equation*}
6 \sqrt[3]{\left(2 x^{2}-2 x+1\right)} \leq 4 x^{2}-4 x+6 \tag{2}
\end{equation*}
$$

Equality holds when $\left(2 x^{2}-2 x+1\right)=1$ (a)
Again, using GM $\leq \mathrm{AM}: \sqrt[4]{\left(3 x^{3}-2 x^{4}\right) \cdot \mathbf{1} \cdot \mathbf{1} \cdot 1} \leq\left(\frac{3 x^{3}-2 x^{4}+3}{4}\right)$

$$
\begin{equation*}
\Rightarrow 4 \sqrt[4]{\left(3 x^{3}-2 x^{4}\right)} \leq\left(3 x^{3}-2 x^{4}+3\right) \tag{3}
\end{equation*}
$$

Equality holds when $3 x^{3}-2 x^{4}=1 \quad$ (b)
Now, adding (2) and (3):

$$
6 \sqrt[3]{2 x^{2}-2 x+1}+4 \sqrt[4]{3 x^{3}-2 x^{4}} \leq 4 x^{2}-4 x+3 x^{3}-2 x^{4}+9
$$

$$
\begin{aligned}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
& \text { www.ssmrmh.ro } \\
& 2 x^{5}-\mathbf{5 x}+\mathbf{1 3} \leq \mathbf{4} \boldsymbol{x}^{2}-\mathbf{4 x}+\mathbf{3} \boldsymbol{x}^{\mathbf{3}}-\mathbf{2} \boldsymbol{x}^{4}+\mathbf{9} \\
& \mathbf{2 x ^ { 5 } + \mathbf { 2 } x ^ { 4 } - \mathbf { 3 } x ^ { 3 } - \mathbf { 4 } x ^ { 2 } - \mathbf { 4 x } \boldsymbol { x } \mathbf { 4 } \leq \mathbf { 0 } ; (\boldsymbol { x } - \mathbf { 1 }) ^ { 2 } (\mathbf { 2 } x ^ { 3 } + \mathbf { 6 } x ^ { 2 } + \mathbf { 7 x } + \mathbf { 4 }) \leq \mathbf { 0 }}
\end{aligned}
$$

From (1), $x \in\left[0, \frac{3}{2}\right] \Rightarrow\left(2 x^{3}+6 x^{2}+7 x+4\right)>0 \Rightarrow(x-1)^{2} \leq 0 \Rightarrow(x-1)^{2}=0$

$$
x=1 \text { (c). From (a), (b), (c): we have only one real solution i.e. } x=1 .
$$

Solution 2 by Minh Tam Le-Vietnam

$$
\begin{aligned}
& \text { Let } \begin{array}{l}
\sqrt{x}=a \\
\sqrt{y}=b
\end{array}(a, b \geq 0) . \\
& \text { We have } a^{6}+b^{6}=a b\left(a^{4}+b^{4}\right) \\
& \left.\begin{array}{c}
\text { We have } a^{6}+b^{6}=a b\left(a^{4}+b^{4}\right) \\
\text { But }\left\{\begin{array}{c}
5 a^{6}+b^{6} \stackrel{A M-G M}{\geq} 6 a^{5} b \\
5 b^{6}+a^{5} \stackrel{A M-G M}{\geq} 6 a b^{5}
\end{array} \Rightarrow a^{6}+b^{6} \geq a b\left(a^{4}+b^{4}\right)\right.
\end{array}\right\} \Rightarrow a=b \text { or } x=y \\
& \text { If } x=y, 6 \sqrt[3]{2 x^{2}-2 y+1}+4 \sqrt[4]{3 x^{2} y-2 x^{4}}=2 y^{5}-5 \sqrt{x y}+13 \\
& \Leftrightarrow 6 \sqrt[3]{2 x^{2}-2 x+1}+4 \sqrt[4]{3 x^{2}-2 x^{4}}=2 x^{5}-5 x+13 \\
& \text { LHS }=2 \cdot 3 \sqrt[3]{2 x^{2}-2 x+1}+4 \sqrt[4]{x^{2} \cdot x(3-2 x)} \stackrel{A M-G M}{\leq} 2\left(2 x^{2}-2 x+1+1+1\right)+ \\
& =x^{2}+x+1+3-2 x=5 x^{2}-5 x+10 \\
& \text { RHS }=x^{5}+x^{5}+1+1+1-5 x+10 \stackrel{A M-G M}{\geq} 5 x^{2}-4 x+10 \\
& \text { So, the equality holds if } x=1 \Rightarrow y=1 \text {. Hence, } x=1 \text { and } y=1 \text {. }
\end{aligned}
$$

JP.198. Prove that in any $\triangle A B C$ the following inequality holds:

$$
\min \left(a^{2}, b^{2}, c^{2}\right) \leq 4 r(R+r) \leq \max \left(a^{2}, b^{2}, c^{2}\right)
$$

Proposed by Marian Ursărescu - Romania
Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\min \left(a^{2}, b^{2}, c^{2}\right) \stackrel{(1)}{\leq} 4 r(R+r) \stackrel{(2)}{\leq} \max \left(a^{2}, b^{2}, c^{2}\right) \\
\max \left(a^{2}, b^{2}, c^{2}\right) \geq \frac{\sum a^{2}}{3} \stackrel{?}{\geq} 4 r(R+r) \Leftrightarrow s^{2}-4 R r-r^{2} \geq 6 r(R+r) \\
\Leftrightarrow s^{2} \geq 10 R r+7 r^{2} \Leftrightarrow\left(s^{2}-16 R r+5 r^{2}\right)+6 r(R-2 r) \geq 0 \rightarrow \text { true } \\
\because s^{2}-16 R r+5 r^{2} \stackrel{\text { Gerretsen }}{\geq} \text { and } R-2 r \stackrel{\text { Euler }}{\geq} 0 \therefore \max \left(a^{2}, b^{2}, c^{2}\right) \geq 4 r(R+r)
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\text { Now, } 4 r(R+r)=4 \frac{a b c}{4 \Delta}\left(\frac{\Delta}{s}\right)+4 \frac{\Delta^{2}}{s^{2}}=\frac{a b c}{s}+\frac{4(s-a)(s-b)(s-c)}{s} \stackrel{(i)}{=} \frac{(x+y)(y+z)(z+x)+4 x y z}{x+y+z}
$$

Letting $s-a=x, s-b=y, s-c=z \therefore s=\sum x$ and $\therefore a=y+z, b=z+x, c=x+y$.

$$
\begin{gathered}
\text { Case 1: } \min \left(a^{2}, b^{2}, c^{2}\right)=a^{2} \therefore(1) \Leftrightarrow(y+z)^{2} \leq \frac{4 x y z+\Pi(x+y)}{\sum x} \text { (by (i)) } \\
\Leftrightarrow x^{2} y+x^{2} z+4 x y z \geq y^{(1 a)} \geq z^{3}+2 y^{2} z+2 y z^{2} \\
\because a^{2} \leq b^{2} \therefore y+z \leq z+x \Rightarrow x \geq y \text { and } \because a^{2} \leq c^{2} \therefore y+z \leq x+y \Rightarrow x \geq z \\
\therefore x^{2} y \geq y^{3}(\because x \geq y), x^{2} z \geq z^{3}(\because x \geq z) \\
2 x y z \geq 2 y^{2} z(\because x \geq y) \text { and } 2 y z x \geq 2 y z^{2}(\because x \geq z) \\
\text { Adding the last } 4 \text { inequalities, (1a) } \Rightarrow(1) \text { is true. } \\
\text { Case 2: } \min \left(a^{2}, b^{2}, c^{2}\right)=b^{2} \therefore \text { (1) } \Leftrightarrow(z+x)^{2} \leq \frac{4 x y z+\Pi(x+y)}{\sum x} \\
\Leftrightarrow y^{2} x+y^{2} z+4 x y z \geq 2 x^{2} z+2 x z^{2}+x^{3}+z^{3} \\
\because b^{2} \leq a^{2} \therefore z+x \leq y+z \Rightarrow y \geq x \text { and } \because b^{2} \leq c^{2} \therefore z+x \leq x+y \Rightarrow y \geq z \\
\therefore y^{2} x \geq x^{3}(\because y \geq x), y^{2} z \geq z^{3}(\because y \geq x) \\
2 x y z \geq 2 x^{2} z(\because y \geq x), 2 x y z \geq 2 x z^{2}(\because y \geq z) \\
\text { Adding the last } 4 \text { inequalities, (1b) } \Rightarrow(1) \text { is true. }
\end{gathered}
$$

Case 3: $\min \left(a^{2}, b^{2}, c^{2}\right)=c^{2} \therefore(1) \Leftrightarrow(x+y)^{2} \leq \frac{4 x y z+\Pi(x+y)}{\sum x}$

$$
\Leftrightarrow x z^{2}+y z^{2}+4 x y z \stackrel{(1 c)}{\geq} 2 x^{2} y+2 x y^{2}+x^{3}+y^{3}
$$

$$
\because c^{2} \leq a^{2} \therefore x+y \leq y+z \Rightarrow z \geq x \text { and } \because c^{2} \leq b^{2} \therefore x+y \leq z+x \Rightarrow z \geq y
$$

$$
\therefore x z^{2} \geq x^{3}(\because z \geq x), y z^{2} \geq y^{3}(\because z \geq y)
$$

$$
2 x y z \geq 2 x^{2} y(\because z \geq x) \text { and } 2 x y z \geq 2 x y^{2}(\because z \geq y)
$$

Adding the last 4 inequalities, $(1 \mathrm{c}) \Rightarrow(1)$ is true.
Combining the 3 cases, $\min \left(a^{2}, b^{2}, c^{2}\right) \leq 4 r(R+r)$ (Proved)

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

JP.199. Let SABCD be a pyramid with the base $A B C D$ parallelogram and E any point which belongs to the side $S C$ such that: $\frac{S E}{S C}=k$. Through the vertex A and the point E we consider a variable plane which intersects the segment $S B$ in M and the segment $S D$ in N. Prove that:

$$
\frac{V_{\text {SAEMN }}}{V_{S A B C D}} \geq \frac{2 k^{2}}{k+1}
$$

Proposed by Marian Ursărescu - Romania

Solution by Marian Ursărescu - Romania

$$
\begin{gathered}
V_{S A B C D}=V \\
V_{S A B C D}=V_{S B D C}=V_{S A C D}=V_{S A B C}=\frac{V}{2}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

$$
\begin{align*}
& \frac{V_{S A N E}}{\frac{V}{2}}=k \cdot \frac{S N}{S D} \Rightarrow \frac{V_{S A N E}}{V}=\frac{k}{2} \cdot \frac{S N}{S D} \tag{1}\\
& \frac{V_{S A M E}}{\frac{V}{2}}=k \cdot \frac{S M}{S B} \Rightarrow \frac{V_{S A M E}}{V}=\frac{k}{2} \cdot \frac{S M}{S B} \tag{2}
\end{align*}
$$

$$
\begin{equation*}
\text { From (1)+(2) } \Rightarrow \frac{V_{S A E M N}}{V}=\frac{k}{2}\left(\frac{S M}{S B}+\frac{S N}{S D}\right) \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\frac{V_{S A N M}}{\frac{V}{2}}=\frac{S M}{S B} \cdot \frac{S N}{S D} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\frac{S_{S E N M}}{\frac{V}{2}}=\mathrm{k} \cdot \frac{S M}{S B} \cdot \frac{S N}{S D} \tag{5}
\end{equation*}
$$

From (4)+(5) $\Rightarrow \frac{V_{S A E M N}}{V}=\frac{k+1}{2} \cdot \frac{S M}{S B} \cdot \frac{S N}{S D}$
From (3)+(6) $\Rightarrow \frac{V_{S A E M N}}{V}=\frac{k}{2}\left(\frac{S M}{S B}+\frac{S N}{S D}\right) \geq \frac{k}{2} \cdot 2 \sqrt{\frac{S M}{S B} \cdot \frac{S N}{S D}}=k \sqrt{\frac{V_{S A E M N}}{V} \cdot \frac{2}{k+1}} \Rightarrow \frac{V_{S A E M N}}{V} \geq \frac{2 k^{2}}{k+1}$

JP.200. Let be $f: \mathbb{R} \rightarrow \mathbb{R}$ such that:

$$
f(x)+f(y) \geq 2 f\left(\sqrt{\frac{x^{2}+y^{2}}{2}}\right) ;(\forall) x, y \in \mathbb{R}
$$

Prove that:

$$
\begin{gathered}
f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n}\right) \geq n f\left(\sqrt{\frac{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}{n}}\right) ;(\forall) n \geq 2 \\
(\forall) x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}
\end{gathered}
$$

Proposed by D.M. Bătinețu-Giurgiu, Daniel Sitaru - Romania
Solution by Marian Ursărescu - Romania
We prove by induction: I. $P(2): f\left(x_{1}\right)+f\left(x_{2}\right) \geq 2 f\left(\sqrt{\frac{x_{1}^{2}+x_{2}^{2}}{2}}\right) ;(\forall) x_{1}, x_{2} \in \mathbb{R}$ (true)

$$
\text { II. Let } P(2), P(3), \ldots, P(n-1) \text { true. }
$$

$$
P(n): f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n}\right) \geq n f\left(\sqrt{\frac{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}{n}}\right)
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
Case I. If $\boldsymbol{n}=\mathbf{2 k}$

$$
\begin{gather*}
f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{k}\right) \geq k f\left(\sqrt{\frac{x_{1}^{2}+x_{2}^{2}+\cdots+x_{k}^{2}}{k}}\right)\left(P\left(\frac{n}{2}\right)=P(k) \text { true }\right) \\
f\left(x_{k+1}\right)+\cdots+f\left(x_{2 k}\right) \geq k f\left(\sqrt{\frac{x_{k+1}^{2}+\cdots+x_{2 k}^{2}}{k}}\right)\left(P\left(\frac{n}{2}\right)=P(k) \text { true }\right) \\
\Rightarrow f\left(x_{1}\right)+\cdots+f\left(x_{2 k}\right) \geq k\left[f\left(\sqrt{\frac{x_{1}^{2}+\cdots+x_{k}^{2}}{k}}\right)+f\left(\sqrt{\frac{x_{k+1}^{2}+\cdots+x_{2 k}^{2}}{k}}\right)\right] \tag{1}
\end{gather*}
$$

From $P(2) \Rightarrow f\left(\sqrt{\frac{x_{1}^{2}+\cdots+x_{k}^{2}}{2}}\right)+f\left(\sqrt{\frac{x_{k+1}^{2}+\cdots+x_{2 k}^{2}}{2}}\right) \geq 2 f\left(\sqrt{\frac{x_{1}^{2}+\cdots+x_{2 k}^{2}}{2 k}}\right)$
From (1)+(2) $\Rightarrow f\left(x_{1}\right)+\cdots+f\left(x_{2 k}\right) \geq 2 k f\left(\sqrt{\frac{x_{1}^{2}+x_{2}^{2}+\cdots+x_{2 k}^{2}}{2 k}}\right)$
Case II. If $n=2 k-1 \Rightarrow$ we prove the relation for $n=2 k \Rightarrow$

$$
f\left(x_{1}\right)+\cdots+f\left(x_{2 k-1}\right)+f\left(\sqrt{\frac{x_{1}^{2}+\cdots+x_{2 k-1}^{2}}{2 k-1}}\right) \geq 2 k f\left(\sqrt{\frac{x_{1}^{2}+\cdots+x_{2 k-1}^{2}}{2 k-1}}\right) \Rightarrow
$$

$$
f\left(x_{1}\right)+\cdots+f\left(x_{2 k-1}\right) \geq(2 k-1) f\left(\sqrt{\frac{x_{1}^{2}+x_{2}^{2}+\cdots+x_{2 k-1}^{2}}{2 k-1}}\right)
$$

$$
\begin{aligned}
& \left.\begin{array}{c}
f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{2 k-1}\right)+f\left(x_{2 k}\right) \geq 2 k f\left(\sqrt{\frac{x_{1}^{2}+x_{2}^{2}+\cdots+x_{2 k}^{2}}{2 k}}\right) \\
\text { Let } x_{2 k}=\sqrt{\frac{x_{1}^{2}+x_{2}^{2}+\cdots+x_{2 k-1}^{2}}{2 k-1}} \text { in relation (3) }
\end{array}\right\} \Rightarrow \\
& f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{2 k-1}\right)+f\left(\sqrt{\frac{x_{1}^{2}+\cdots+x_{2 k-1}^{2}}{2 k-1}}\right) \geq \\
& \geq 2 k f\left(\sqrt{\frac{x_{1}^{2}+x_{2}^{2}+\cdots+x_{2 k-1}^{2}+\frac{x_{1}^{2}+x_{2}^{2}+\cdots+x_{2 k-1}^{2}}{2 k-1}}{2 k}}\right) \Rightarrow
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

JP.201. If $x, y, z>0$ then:

$$
\frac{(x+y)^{3}}{x+y+2 z}+\frac{(y+z)^{3}}{y+z+2 x}+\frac{(z+x)^{3}}{z+x+2 y} \geq 2 \sqrt{3 x y z(x+y+z)}
$$

Proposed by D.M. Bătinețu-Giurgiu, Neculai Stanciu - Romania
Solution 1 by Amit Dutta-Jamshedpur-India
Let $P=\sum_{c y c(x, y, z)} \frac{(x+y)^{3}}{(x+z)+(y+z)}$. Now, let $(x+y)=p,(y+z)=q,(x+z)=r$

$$
\begin{gathered}
p=\sum_{c y c(p, q, r)} \frac{p^{3}}{q+r}=\sum_{c y c(p, q, r)} \frac{p^{4}}{p q+p r} ; p \stackrel{B e r g s t r o m}{\geq} \frac{\left(p^{2}+q^{2}+r^{2}\right)^{2}}{2(p q+q r+p r)} \\
p \geq\left(\frac{p^{2}+q^{2}+r^{2}}{2}\right)\left\{\because p^{2}+q^{2}+r^{2} \geq p q+q r+p r, \forall p, q, r \in \mathbb{R}\right\} \\
p \geq \\
\frac{1}{2}\left\{(x+y)^{2}+(y+z)^{2}+(x+z)^{2}\right\} ; p \geq\left(x^{2}+y^{2}+z^{2}+x y+y z+x z\right) \\
p \geq 2(x y+y z+x z) \quad\left\{\because x^{2}+y^{2}+z^{2} \geq x y+y z+x z, \forall x, y, z \in \mathbb{R}\right\}
\end{gathered}
$$

Now, since we know that: $a^{2}+b^{2}+c^{2} \geq a b+b c+a c, \forall a, b, c \in \mathbb{R}$

$$
\begin{gather*}
(a+b+c)^{2} \geq 3(a b+b c+a c) . \text { Put } a=x y, b=y z, c=x z \\
(x y+y z+x z)^{2} \geq 3 x y z(x+y+z) \\
(x y+y z+x z) \geq \sqrt{3 x y z(x+y+z)} \text { (1) } \tag{1}\\
\because p \geq 2(x y+y z+x z) . \text { Using (i): } p \geq 2 \sqrt{3 x y z(x+y+z)} \text { (Proved) }
\end{gather*}
$$

Solution 2 by Le Ngo Duc-Vietnam

$$
\begin{aligned}
& \sum_{c y c} \frac{(x+y)^{3}}{x+y+2 z} \stackrel{\text { Holder }}{\geq} \frac{8(x+y+z)^{3}}{3 \cdot 4(x+y+z)}=\frac{2}{3}(x+y+z)^{2} \\
& \text { We need to prove } \frac{2}{3}(x+y+z)^{2} \geq 2 \sqrt{3 x y z(x+y+z)} \\
\Leftrightarrow & \frac{(x+y+z)^{4}}{9} \geq 3 x y z(x+y+z) \Leftrightarrow(x+y+z)^{3} \geq 27 x y z
\end{aligned}
$$

Which is correct by AM-GM. Inequality holds when $x=y=z$.
Solution 3 by Soumava Chakraborty-Kolkata-India
Let $\boldsymbol{x}+\boldsymbol{y}=\boldsymbol{a}, \boldsymbol{y}+\boldsymbol{z}=\boldsymbol{b}, \boldsymbol{z}+\boldsymbol{x}=\boldsymbol{c} \therefore \boldsymbol{a}+\boldsymbol{b}>c, b+c>a, c+a>b \Rightarrow a, b, c$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
are sides of a triangle with semi - perimeter, circumradius, inradius $=s, R, r$ respectively (say). Now, $2 \sum x=\sum a=2 s \Rightarrow \sum x=s \Rightarrow z=s-a, x=s-b, y=s-c$ Using this substitution, the given inequality becomes: $\sum \frac{a^{3}}{b+c} \stackrel{(1)}{\geq} 2 \sqrt{3 r^{2} s(s)}=2 \sqrt{3} \Delta$

WLOG, we may assume $a \geq b \geq c$. Then, $a^{2} \geq b^{2} \geq c^{2}$ and $\frac{a}{b+c} \geq \frac{b}{c+a} \geq \frac{c}{a+b}$

$$
\begin{gathered}
\therefore \sum \frac{a^{3}}{b+c} \stackrel{\text { Chebyshev }}{\geq} \frac{1}{3}\left(\sum a^{2}\right)\left(\sum \frac{a}{b+c}\right) \\
\stackrel{\text { Nesbitt }}{\geq} \frac{1}{3} \cdot \frac{3}{2} \sum a^{2}=\frac{\sum a^{2}}{2} \stackrel{\text { Ionescu }}{2} \stackrel{y}{2} \geq \frac{4 \sqrt{3} \Delta}{2}=2 \sqrt{3} \Delta \Rightarrow \text { (1) is true (Proved) }
\end{gathered}
$$

Solution 4 by Sanong Huayrerai-Nakon Pathom-Thailand
For $x, y, z>0$, we get as follows: $\frac{(x+y)^{3}}{(x+y+2 z)}+\frac{(y+z)^{3}}{(y+z+2 x)}+\frac{(z+x)^{3}}{(z+x+2 y)}=$

$$
\begin{aligned}
& \begin{array}{l}
=\frac{(x+y)^{4}}{(x+y)(x+y+2 z)}+\frac{(y+z)^{4}}{(y+z)(y+z+2 x)}+\frac{(z+x)^{4}}{(z+x)(z+x+2 y)} \\
\geq \frac{\left[(x+y)^{2}+(y+z)^{2}+(z+x)^{2}\right]^{2}}{(x+y)(x+y+2 z)+(y+z)(y+z+x)+(z+x)(z+x+2 y)}= \\
=\frac{\left[(x+y+z)^{2}+x^{2}+y^{2}+z^{2}\right]^{2}}{2\left[(x+y+z)^{2}+(x y+y z+z x)\right]} \\
\geq \frac{(x+y+z)^{2}+\left(x^{2}+y^{2}+z^{2}\right)}{2} \geq \frac{2(x+y+z)^{2}}{3} \geq 2 \sqrt{3 x y z(x+y+z)} \\
\text { If } \frac{4}{9}(x+y+z)^{4} \geq 4(3 x y z(x+y+z)) . \text { If } \frac{(x+y+z)^{3}}{9} \geq 3 x y z . \text { If } \frac{27 x y z}{9}=3 x y z \text { ok. }
\end{array} \\
& =
\end{aligned}
$$

Therefore, it is true.

Solution 5 by Tran Hong-Dong Thap-Vietnam

By Holder's inequality: $\frac{(x+y)^{3}}{x+y+2 z}+\frac{(y+z)^{3}}{y+z+2 x}+\frac{(x+z)^{3}}{x+z+2 y} \geq \frac{1}{3}\left[\frac{(2 x+2 y+2 z)^{3}}{4(x+y+z)}\right]$

$$
\begin{gathered}
=\frac{2(x+y+z)^{3}}{3(x+y+z)}=\frac{2}{3}(x+y+z)^{2} . \text { We must show that: } \frac{2}{3}(x+y+z)^{2} \geq 2 \sqrt{3 x y z(x+y+z)} \\
\Leftrightarrow(x+y+z)^{2} \geq 3 \sqrt{3 x y z(x+y+z)} \Leftrightarrow(x+y+z)^{4} \geq 27 x y z(x+y+z) \\
\Leftrightarrow(x+y+z)^{3} \geq 27 x y z \text { (true by AM-GM) }
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
Solution 6 by M ichael Sterghiou-Greece

$$
\begin{equation*}
x, y, z>0 \rightarrow \sum_{c y c} \frac{(x+y)^{3}}{x+y+2 z} \geq 2 \sqrt{3 x y z(x+y+z)} \tag{1}
\end{equation*}
$$

(1) homogeneous so, WLOG, let $\boldsymbol{x}+\boldsymbol{y}+\boldsymbol{z}=\mathbf{3}$. Consider $\boldsymbol{f}(\boldsymbol{t})=\frac{(3-t)^{3}}{3+\boldsymbol{t}}, \mathbf{0}<t<3$

$$
f^{\prime \prime}(t)=\frac{2(3-t)\left(t^{2}+12 t+63\right)}{(t+3)^{2}}>0 \text { for } 0<t<3 \text {. By Jensen: }
$$

LHS (1) $\geq 3 \cdot \frac{(3-1)^{3}}{3+1}=6 \geq 2 \sqrt{9 x y z} \rightarrow x y z \leq 1$ which is true by AM-GM as long as

$$
x+y+z=3
$$

JP.202. Let a, b, c be positive real numbers such that
$a^{2}+b^{2}+c^{2}+2 a b c=1$. Prove that:

$$
\frac{a^{3}}{\sqrt{2 b^{2}+16 b c+7 c^{2}}}+\frac{b^{3}}{\sqrt{2 c^{2}+16 c a+7 a^{2}}}+\frac{c^{3}}{\sqrt{2 a^{2}+16 a b+7 b^{2}}} \geq \frac{3}{20}
$$

Proposed by Hoang Le Nhat Tung - Hanoi - Vietnam
Solution by Tran Hong-Dong Thap-Vietnam

$$
\begin{aligned}
& \sqrt{25 a^{2}} \cdot \sqrt{2 b^{2}+16 b c+7 c^{2}} \stackrel{A M-G M}{\leq} \frac{25 a^{2}+2 b^{2}+16 b c+7 c^{2}}{2} \\
& \Leftrightarrow \sqrt{a^{2}} \cdot \sqrt{2 b^{2}+16 b c+7 c^{2}} \leq \frac{25 a^{2}+2 b^{2}+16 b c+7 c^{2}}{10} \\
& \Rightarrow \frac{a^{3}}{\sqrt{2 b^{2}+16 b c+7 c^{2}}}=\frac{a^{4}}{\sqrt{a^{2}} \sqrt{2 b^{2}+16 b c+7 c^{2}}} \geq \frac{10 a^{4}}{25 a^{2}+2 b^{2}+7 c^{2}+16 b c} \quad \text { (etc) } \\
& \Rightarrow L H S=\sum \frac{a^{3}}{\sqrt{2 b^{2}+16 b c+7 c^{2}}} \geq 10 \sum \frac{a^{4}}{25 a^{2}+2 b^{2}+7 c^{2}+16 b c} \stackrel{\text { Schwarz }}{\geq} \\
& 10 \cdot \frac{\left(a^{2}+b^{2}+c^{2}\right)^{2}}{34\left(a^{2}+b^{2}+c^{2}\right)+16(a b+b c+c a)}=\frac{5\left(a^{2}+b^{2}+c^{2}\right)^{2}}{17\left(a^{2}+b^{2}+c^{2}\right)+8(a b+b c+c a)} \geq \\
& \stackrel{\left(\Sigma a b \leq \Sigma a^{2}\right)}{\geq} \frac{5\left(a^{2}+b^{2}+c^{2}\right)^{2}}{17\left(a^{2}+b^{2}+c^{2}\right)+8\left(a^{2}+b^{2}+c^{2}\right)}=\frac{5\left(a^{2}+b^{2}+c^{2}\right)^{2}}{25\left(a^{2}+b^{2}+c^{2}\right)}=\frac{a^{2}+b^{2}+c^{2}}{5}=\Omega \\
& \because \text { Because: } a^{2}+b^{2}+c^{2}+2 a b c=1 \\
& \Rightarrow \exists \Delta X Y Z \text { such that: } a=\cos X ; b=\cos Y ; c=\cos Z \\
& \Rightarrow a^{2}+b^{2}+c^{2}=\cos ^{2} X+\cos ^{2} Y+\cos ^{2} Z
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$=3-\left(\sin ^{2} X+\sin ^{2} Y+\sin ^{2} Z\right) \geq 3-\frac{9}{4}=\frac{3}{4}\left(\because \sum \sin ^{2} X \leq \frac{9}{4}\right) \Rightarrow L H S \geq \Omega \geq \frac{3}{4 \cdot 5}=\frac{3}{20}$.
Proved. Equality $\Leftrightarrow a=b=c=\frac{1}{2}$.

JP.203. If $a, b, c>0 ; \boldsymbol{a}^{b^{2}} \cdot \boldsymbol{b}^{c^{2}} \cdot \boldsymbol{c}^{a^{2}}=\mathbf{1}$ then:

$$
b^{2}\left(\sqrt[3]{a^{a+b+c}}-a^{\sqrt[3]{a b c}}\right)+c^{2}\left(\sqrt[3]{b^{a+b+c}}-b^{\sqrt[3]{a b c}}\right)+a^{2}\left(\sqrt[3]{c^{a+b+c}}-c^{\sqrt[3]{a b c}}\right) \geq 0
$$

Proposed by Daniel Sitaru-Romania

Solution by proposer

$$
\begin{aligned}
& \sum\left(\frac{b^{2}}{a^{2}+b^{2}+\boldsymbol{c}^{2}} \cdot a^{\frac{a+b+c}{3}}\right)=\sum\left(\frac{b^{2}}{a^{2}+b^{2}+\boldsymbol{c}^{2}} \cdot a^{\frac{a+b+c}{3}-\sqrt[3]{a b c}+\sqrt[3]{a b c}}\right) \geq \\
& \stackrel{\text { CEBYSHEV }}{\geq} \frac{1}{\left(a^{2}+\boldsymbol{b}^{2}+\boldsymbol{c}^{2}\right)^{2}}\left(\sum \boldsymbol{b}^{2} \cdot \boldsymbol{a}^{\sqrt[3]{a b c}}\right)\left(\sum \boldsymbol{b}^{2} \cdot \boldsymbol{a}^{\frac{a+b+c}{3}-\sqrt[3]{a b c}}\right) \\
& \sum\left(b^{2} \cdot a^{\frac{a+b+c}{3}}\right) \geq \frac{1}{a^{2}+b^{2}+c^{2}}\left(\sum b^{2} \cdot a^{\sqrt[3]{a b c}}\right)\left(\sum b^{2} a^{\frac{a+b+c}{3}-\sqrt[3]{a b c}}\right) \geq \\
& \stackrel{A M-G M}{\geq}\left(\sum \boldsymbol{b}^{2} \cdot \boldsymbol{a}^{\sqrt[3]{a b c}}\right) \cdot \sqrt[a^{2}+b^{2}+c^{2}]{\left(\boldsymbol{a}^{b^{2}} \cdot \boldsymbol{b}^{c^{2}} \cdot \boldsymbol{c}^{a^{2}}\right)^{\frac{a+b+c}{3}-\sqrt[3]{a b c}}}= \\
& =\left(\sum b^{2} \cdot a^{\sqrt[3]{a b c}}\right) \cdot \sqrt[a^{2}+b^{2}+c^{2}]{\mathbf{1}^{\frac{a+b+c}{3}-\sqrt[3]{a b c}}}=\sum\left(b^{2} \cdot a^{\sqrt[3]{a b c}}\right) \\
& \sum\left(b^{2} \cdot a^{\frac{a+b+c}{3}}\right) \geq \sum\left(b^{2} \cdot a^{\sqrt[3]{a b c}}\right) \\
& \sum b^{2}\left(a^{\frac{a+b+c}{3}}-a^{\sqrt[3]{a b c}}\right) \geq 0 \\
& b^{2}\left(\sqrt[3]{a^{a+b+c}}-a^{\sqrt[3]{a b c}}\right)+c^{2}\left(\sqrt[3]{b^{a+b+c}}-b^{\sqrt[3]{a b c}}\right)+a^{2}\left(\sqrt[3]{c^{a+b+c}}-c^{\sqrt[3]{a b c}}\right) \geq 0
\end{aligned}
$$

JP.204. In $\triangle A B C$ the following relationship holds:

$$
\frac{\cos \frac{A}{2} \cos \frac{B}{2}}{\tan \frac{C}{2}}+\frac{\cos \frac{B}{2} \cos \frac{C}{2}}{\tan \frac{A}{2}}+\frac{\cos \frac{C}{2} \cos \frac{A}{2}}{\tan \frac{B}{2}}>\pi
$$

Proposed by Hoang Le Nhat Tung - Hanoi - Vietnam

ROMANIAN MATHEMATICAL MAGAZINE

 www.ssmrmh.roSolution by Soumava Chakraborty-Kolkata-India

$$
\text { LHS }=\sum \sqrt{\frac{s(s-a)}{b c}} \sqrt{\frac{s(s-b)}{c a}} \sqrt{\frac{a b}{(s-a)(s-b)}}=\sum \frac{s}{c}=s \sum \frac{1}{a} \stackrel{\text { Bergström }}{\geq} \frac{9 s}{\sum a}=\frac{9}{2}>\pi
$$

(Proved)

JP.205. Let $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ be positive real numbers. Prove that:

$$
\left(\frac{a^{4}+b^{4}}{c^{4}}+\frac{2}{3}\right)\left(\frac{b^{4}+c^{4}}{a^{4}}+\frac{2}{3}\right)\left(\frac{c^{4}+a^{4}}{b^{4}}+\frac{2}{3}\right) \geq\left(\frac{8}{3}\right)^{3}
$$

Proposed by George Apostolopoulos - Messolonghi - Greece
Solution 1 by Marian Ursărescu-Romania

$$
\begin{aligned}
& \text { We must show: } \frac{\left(3 a^{4}+3 b^{4}+2 c^{4}\right)\left(3 b^{4}+3 c^{4}+2 a^{4}\right)\left(3 c^{4}+3 a^{4}+2 b^{4}\right)}{3^{3} a^{4} b^{4} c^{4}} \geq\left(\frac{8}{3}\right)^{3} \Leftrightarrow \\
& \left(3 a^{4}+3 b^{4}+2 c^{4}\right)\left(3 a^{4}+3 c^{4}+2 b^{4}\right)\left(3 b^{4}+3 c^{4}+3 a^{4}\right) \geq 2^{9} a^{4} b^{4} c^{4} \\
& 3 a^{4}+3 b^{4}+2 c^{4}=a^{4}+b^{4}+2\left(a^{4}+b^{4}+c^{4}\right) \geq 2 a^{2} b^{2}+2\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right) \geq \\
& \geq 2 a^{2} b^{2}+2 a b c(a+b+c)=2 a b\left(a b+a c+b c+c^{2}\right)(2) \\
& \text { From (1)+ (2) we must show: } \\
& 2^{3} a^{2} b^{2} c^{2}\left(a b+a c+b c+a^{2}\right)\left(a b+a c+b c+b^{2}\right)\left(a b+a c+b c+c^{2}\right) \geq 2^{9} a^{4} b^{4} c^{4} \\
& \Leftrightarrow\left(a b+a c+b c+a^{2}\right)\left(a b+a c+b c+b^{2}\right)\left(a b+a c+b c+c^{2}\right) \geq 2^{6} a^{2} b^{2} c^{2} \text { (3) } \\
& \left.a b+a c+b c+a^{2} \geq 4 \sqrt[4]{a^{2} b^{2} c^{2}}\right\} \\
& \text { But } \left.a b+a c+b c+b^{2} \geq 4 \sqrt[4]{a^{2} b^{4} c^{2}}\right\} \Rightarrow \\
& a b+a c+b c+c^{2} \geq 4 \sqrt[4]{a^{2} b^{2} c^{4}} \\
& \Rightarrow\left(a b+a c+b c+a^{2}\right)\left(a b+a c+b c+b^{2}\right)\left(a b+a c+b c+c^{2}\right) \geq 2^{6} a^{2} b^{2} c^{2} \Rightarrow(3) \text { it } \\
& \text { is true. }
\end{aligned}
$$

Solution 2 by Amit Dutta-Jamshedpur-India

$$
\begin{gathered}
\because a, b, c>0 . \mathrm{Using} A M \geq G M, \frac{a^{4}+b^{4}}{c^{4}} \geq \frac{2 a^{2} b^{2}}{c^{4}} \\
\left(\frac{a^{4}+b^{4}}{c^{4}}+\frac{2}{3}\right) \geq\left(\frac{2 a^{2} b^{2}}{c^{4}}+\frac{2}{3}\right) \\
\left(\frac{a^{4}+b^{4}}{c^{4}}+\frac{2}{3}\right) \geq\left(\frac{2 a^{2} b^{2}}{c^{4}}+\frac{2}{3}\right) \geq \frac{2}{3} \cdot \frac{a^{2} b^{2}}{c^{4}}+\frac{2 a^{2} b^{2}}{3 c^{4}}+\frac{2 a^{2} b^{2}}{3 c^{4}}+\frac{2}{3}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\begin{gather*}
\geq \frac{2}{3}\left\{\frac{a^{2} b^{2}}{c^{4}}+\frac{a^{2} b^{2}}{c^{4}}+\frac{a^{2} b^{2}}{c^{4}}+1\right\} \stackrel{A M-G M}{\geq} \frac{2}{3} \times 4\left\{\frac{(a b)^{\frac{3}{2}}}{c^{3}}\right\} \\
\left(\frac{a^{4}+b^{4}}{c^{4}}+\frac{2}{3}\right) \geq \frac{8}{3} \cdot \frac{(a b)^{\frac{3}{2}}}{c^{3}} \tag{1}
\end{gather*}
$$

Similarly, $\left(\frac{b^{4}+c^{4}}{a^{4}}+\frac{2}{3}\right) \geq \frac{8}{3} \cdot \frac{(b c)^{\frac{3}{2}}}{a^{3}}$

$$
\begin{equation*}
\left(\frac{c^{4}+a^{4}}{b^{4}}+\frac{2}{3}\right) \geq \frac{8}{3} \cdot \frac{(a c)^{\frac{3}{2}}}{b^{3}} \tag{2}
\end{equation*}
$$

Multiplying (1), (2), (3): $\left(\frac{a^{4}+b^{4}}{c^{4}}+\frac{2}{3}\right)\left(\frac{b^{4}+c^{4}}{a^{4}}+\frac{2}{3}\right)\left(\frac{c^{4}+a^{4}}{b^{4}}+\frac{2}{3}\right) \geq\left(\frac{8}{3}\right)^{3}\left\{\frac{(a b c)^{3}}{(a b c)^{3}}\right\} \geq\left(\frac{8}{3}\right)^{3}$
Proved. Equality when $a=b=c$.
Solution 3 by Soumitra M andal-Chandar Nagore-India

$$
\prod_{c y c}\left(\frac{a^{4}+b^{4}}{c^{4}}+\frac{2}{3}\right)^{\substack{\text { HOLDER'S } \\ \text { INEQUALITY }}}\left(\sqrt[3]{\prod_{c y c}\left(\frac{a^{4}+b^{4}}{c^{4}}\right)}+\frac{2}{3}\right)^{3} \geq\left(\sqrt[3]{8}+\frac{2}{3}\right)^{3}=\left(\frac{8}{3}\right)^{3}
$$

Proved.
Solution 4 by Tran Hong-Dong Thap-Vietnam

$$
\begin{aligned}
& \text { Inequality } \Leftrightarrow \frac{\left[3\left(a^{4}+b^{4}\right)+2 c^{4}\right]\left[3\left(b^{4}+c^{4}\right)+2 a^{4}\right]\left[3\left(a^{4}+c^{4}\right)+b^{4}\right]}{3^{3}(a b c)^{4}} \geq \frac{8^{3}}{3^{3}} \\
& \\
& \qquad \prod_{c y c}\left[3\left(a^{4}+b^{4}\right)+2 c^{4}\right] \geq 8^{3}(a b c)^{4}
\end{aligned}
$$

$$
\begin{gathered}
\because 3\left(a^{4}+b^{4}\right)+2 c^{4}=3 a^{4}+3 b^{4}+2 c^{4}=a^{4}+a^{4}+a^{4}+b^{4}+b^{4}+b^{4}+c^{4}+c^{4} \\
\underset{A M-G M}{\geq} 8 \sqrt[8]{\left(a^{4}\right)^{3}\left(b^{4}\right)^{3}\left(c^{4}\right)^{2}} \quad(\text { etc }) \\
\Rightarrow \prod_{c y c}\left[3\left(a^{4}+b^{4}\right)+2 c^{4}\right] \geq 8 \cdot 8 \cdot 8 \sqrt[8]{\left(a^{4}\right)^{8}\left(b^{4}\right)^{8}\left(c^{4}\right)^{8}}=8^{3}(a b c)^{4}
\end{gathered}
$$

Proved. Equality $\Leftrightarrow \boldsymbol{a}=\boldsymbol{b}=\boldsymbol{c}$.
Solution 5 by Soumava Chakraborty-Kolkata-India
Let $\boldsymbol{a}^{4}+\boldsymbol{b}^{4}=\boldsymbol{x}, \boldsymbol{b}^{4}+\boldsymbol{c}^{4}=\boldsymbol{y}, \boldsymbol{c}^{4}+\boldsymbol{a}^{4}=z$. Then, $\boldsymbol{x}+\boldsymbol{y}>z, y+z>x, z+x>y \Rightarrow$
$\Rightarrow \boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$ are sides of a triangle with semi-perimeter, circumradius, inradius $=\boldsymbol{s}, \boldsymbol{R}, \boldsymbol{r}$ respectively (say). Now, $2 \sum a^{4}=\sum x=2 s \Rightarrow \sum a^{4}=s \Rightarrow c^{4}=s-x, a^{4}=s-y$,

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro
$b^{4}=s-z$. Using this substitution, given inequality becomes:

$$
\begin{gathered}
\prod\left(\frac{x}{s-x}+\frac{2}{3}\right) \geq\left(\frac{8}{3}\right)^{3} \Leftrightarrow \prod\left[\frac{3 x+2(s-x)}{3(s-x)}\right] \geq\left(\frac{8}{3}\right)^{3} \Leftrightarrow \prod\left(\frac{2 s+x}{s-x}\right) \geq 512 \\
\Leftrightarrow(2 s+x)(2 s+y)(2 s+z) \geq 512 r^{2} s \Leftrightarrow \\
\Leftrightarrow 8 s^{3}+4 s^{2}\left(\sum x\right)+2 s\left(\sum x y\right)+x y z \geq 512 r^{2} s \\
\Leftrightarrow 8 s^{3}+4 s^{2}(2 s)+2 s\left(s^{2}+4 R r+r^{2}\right)+4 R r s \geq 512 r^{2} s \Leftrightarrow 18 s^{3}+12 R r s \geq 510 r^{2} s \\
\Leftrightarrow 3 s^{2}+2 R r \stackrel{(1)}{\geq} 85 r^{2} . \text { But, LHS of (1) } \stackrel{\text { Gerretsen }}{\geq} 3\left(16 R r-5 r^{2}\right)+2 R r \geq 85 r^{2} \\
\Leftrightarrow 50 R r \geq 100 r^{2} \Leftrightarrow R \xrightarrow[2]{\geq} 2 r \rightarrow \text { true (Euler) } \Rightarrow(1) \Rightarrow \text { given inequality is true (Proved) }
\end{gathered}
$$

Solution 6 by Sanong Huayrerai-Nakon Pathom-Thailand
For $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}>0$, we have: $\left(\frac{a^{4}+b^{4}}{c^{4}}+\frac{2}{3}\right)\left(\frac{b^{4}+c^{4}}{a^{4}}+\frac{2}{3}\right)\left(\frac{c^{4}+a^{4}}{b^{4}}+\frac{2}{3}\right)=$

$$
=\left(\frac{a^{4}}{c^{4}}+\frac{b^{4}}{c^{4}}+\frac{2}{3}\right)\left(\frac{b^{4}}{a^{4}}+\frac{c^{4}}{a^{4}}+\frac{2}{3}\right)\left(\frac{c^{4}}{b^{4}}+\frac{a^{4}}{b^{4}}+\frac{2}{3}\right) \geq\left(1+1+\frac{2}{3}\right)^{3}=\left(2+\frac{2}{3}\right)^{3}=\left(\frac{8}{3}\right)^{3}
$$

Because: $\left(\frac{a^{4}}{c^{4}}\right)\left(\frac{c^{4}}{b^{4}}\right)\left(\frac{b^{4}}{a^{4}}\right)=\mathbf{1},\left(\frac{b^{4}}{c^{4}}\right)\left(\frac{c^{4}}{a^{4}}\right)\left(\frac{a^{4}}{b^{4}}\right)=\mathbf{1}$. Therefore, it is true.
Solution 7 by Michael Sterghiou-Greece

$$
\begin{equation*}
\Pi_{c y c}\left(\frac{a^{4}+b^{4}}{c^{4}}+\frac{2}{3}\right) \geq\left(\frac{8}{3}\right)^{3} \tag{1}
\end{equation*}
$$

Let $x=a^{4}, y=b^{4}, z=c^{4}, x, y, z>0$

$$
\begin{equation*}
\text { (1) } \rightarrow \prod_{c y c}\left(\frac{x+y}{z}+\frac{2}{3}\right) \geq\left(\frac{8}{3}\right)^{3} \tag{2}
\end{equation*}
$$

(2) is homogeneous so, we can assume $x+y+z=3$

The function $f(t)=\ln \left(\frac{3-t}{t}+\frac{2}{3}\right)$ with $f^{\prime \prime}(t)=\frac{9(9-2 t)}{(t-9)^{2} t^{2}}>0$ is convex on (0,3)

$$
\text { (2) } \rightarrow \ln \prod_{c y c}\left(\frac{3-z}{z}+\frac{2}{3}\right)=\sum_{c y c} \ln \left(\frac{3-z}{z}+\frac{2}{3}\right) \geq \mathbf{3} \cdot \ln \left(\frac{\left.\frac{3}{\frac{x+y+z}{x}}-1+\frac{2}{3}\right)=\ln \left(\frac{8}{3}\right)^{3} .4 .}{}\right.
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
JP.206. Let $A B C$ be a triangle with inradius r and circumradius R. Let $\boldsymbol{h}_{a}, \boldsymbol{h}_{\boldsymbol{b}}, \boldsymbol{h}_{\boldsymbol{c}}$ the altitudes to sides $B C, C A, A B$ respectively and let $\boldsymbol{r}_{a}, \boldsymbol{r}_{b}, \boldsymbol{r}_{c}$ the exradii to A, B, C respectively. Prove that:

$$
\frac{4 r}{R^{2}} \leq \frac{h_{a}}{r_{b} \cdot r_{c}}+\frac{h_{b}}{r_{c} \cdot r_{a}}+\frac{h_{c}}{r_{a} \cdot r_{b}} \leq \frac{R}{2 r^{2}}
$$

Proposed by George Apostolopoulos - Messolonghi - Greece

Solution 1 by Marian Ursărescu-Romania

$$
\begin{gather*}
\sum \frac{h_{a}}{r_{b} r_{c}}=\sum \frac{\frac{2 s}{a}}{\frac{s}{s-b} \cdot \frac{s}{s-c}}=\frac{2}{s} \cdot \sum \frac{(s-b)(s-c)}{a}=\frac{2}{s r} \sum \frac{(s-b)(s-c)}{a} \\
\text { But, } \sum \frac{(s-b)(s-c)}{a}=\frac{r\left[s^{2}+(4 R+r)^{2}\right]}{4 s R} \text { (2) } \tag{2}
\end{gather*}
$$

From (1)+ (2) we must show: $\frac{2}{s r} \cdot \frac{r\left[s^{2}+(4 R+r)^{2}\right]}{4 s R} \geq \frac{4 r}{R^{2}} \Leftrightarrow s^{2}+(4 R+r)^{2} \geq \frac{8 s^{2} r}{R}$

$$
\begin{equation*}
\text { But } R \geq 2 r \Rightarrow \frac{1}{R} \leq \frac{1}{2 r} \tag{4}
\end{equation*}
$$

From (3)+ (4) we must show:
$s^{2}+(4 R+r)^{2} \geq 4 s^{2} \Leftrightarrow(4 R+r)^{2} \geq 3 s^{2}$, true because it is Doucet's inequality.
Now, $\sqrt{(s-b)(s-c)} \leq \frac{s-b+s-c}{2} \Rightarrow(s-b)(s-c) \leq \frac{a^{2}}{4} \Rightarrow$

$$
\Rightarrow \frac{2}{s r} \sum \frac{(s-b)(s-c)}{a} \leq \frac{2}{s r} \sum \frac{9}{4}=\frac{2}{s r} \cdot \frac{2 s}{4}=\frac{1}{r} \Rightarrow
$$

we must show: $\frac{1}{r} \leq \frac{R}{2 r^{2}} \Leftrightarrow 2 r \leq R$ true Euler's inequality.
Solution 2 by Tran Hong-Dong Thap-Vietnam

$$
\frac{h_{a}}{r_{b} r_{c}}+\frac{h_{b}}{r_{c} r_{a}}+\frac{h_{c}}{r_{a} r_{b}} \stackrel{A M-G M}{\geq} 3 \sqrt[3]{\frac{h_{a} h_{b} h_{c}}{\left(r_{a} r_{b} r_{c}\right)^{2}}}=3 \sqrt[3]{\frac{2 s^{2} r^{2}}{R} \cdot \frac{1}{\left(s^{2} r\right)^{2}}}=3 \sqrt[3]{\frac{2}{s^{2} R}}
$$

We must show that: $3 \sqrt[3]{\frac{2}{s^{2} R}} \geq \frac{4 r}{R^{2}} \Leftrightarrow 27 \cdot \frac{2}{s^{2} R} \geq \frac{4^{3} r^{3}}{\left(R^{2}\right)^{3}} \Leftrightarrow \frac{27}{s^{2}} \geq \frac{32 r^{3}}{R^{5}} \Leftrightarrow 27 R^{5} \geq 32 r^{3} s^{2}$
It is true because: $\left\{\begin{array}{c}s^{2} \leq \frac{27}{4} R^{2} \\ r^{3} \leq 8 R^{3}\end{array} \Rightarrow s^{2} r^{3} \leq \frac{27}{32} R^{5} \Rightarrow 32 r^{3} s^{2} \leq 27 R^{5}\right.$

$$
\frac{h_{a}}{r_{b} r_{c}}+\frac{h_{b}}{r_{c} r_{a}}+\frac{h_{c}}{r_{a} r_{b}}=\sum \frac{h_{a}}{r_{b} r_{c}} \stackrel{h_{a}^{2} \leq r_{b} r_{c}}{\leq} \sum \frac{h_{a}}{h_{a}^{2}}=\sum \frac{1}{h_{a}}=\frac{1}{r} \stackrel{(2)}{\leq} \frac{R}{2 r^{2}}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\text { (2) } \Leftrightarrow \frac{1}{r} \leq \frac{R}{2 r^{2}} \Leftrightarrow R \geq 2 r \text { (Euler) (proved) }
$$

Solution 3 by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
& \sum \frac{h_{a}}{r_{b} r_{c}}=\sum \frac{h_{a} r_{a}}{r s^{2}}=\frac{1}{r s^{2}} \sum\left(\frac{2 r s}{4 R \sin \frac{A}{2} \cos \frac{A}{2}}\right)\left(\frac{s \sin \frac{A}{2}}{\cos \frac{A}{2}}\right)=\frac{1}{2 R} \sum \frac{b c}{s(s-a)} \\
& =\left(\frac{1}{2 R r^{2} s^{2}}\right)\left\{\sum b c(s-b)(s-c)\right\}=\left(\frac{1}{2 R r^{2} s^{2}}\right)\left\{\sum\left(b c\left(s^{2}-s(2 s-a)+b c\right)\right\}\right. \\
& =\left(\frac{1}{2 R r^{2} s^{2}}\right)\left\{s^{2}\left(\sum a b\right)-2 s^{2}\left(\sum a b\right)+3 s a b c+\left(\sum a b\right)^{2}-2 a b c(2 s)\right\} \\
& =\left(\frac{1}{2 R r^{2} s^{2}}\right)\left\{\left(4 R r+r^{2}\right)\left(s^{2}+4 R r+r^{2}\right)-4 R r s^{2}\right\} \\
& =\left(\frac{1}{2 R r^{2} s^{2}}\right)\left(s^{2} r^{2}+r^{2}(4 R+r)^{2}\right)=\frac{s^{2}+(4 R+r)^{2}}{2 R s^{2}} \therefore \sum \frac{h_{a}}{r_{b} r_{c}} \stackrel{(1)}{=} \frac{s^{2}+(4 R+r)^{2}}{2 R s^{2}} \\
& \therefore \sum \frac{\boldsymbol{h}_{a}}{r_{b} r_{c}} \leq \frac{R}{2 r^{2}} \stackrel{b y(1)}{\Leftrightarrow} \frac{\boldsymbol{s}^{2}+(4 R r+r)^{2}}{2 R s^{2}} \leq \frac{R}{2 r^{2}} \Leftrightarrow\left(R^{2}-r^{2}\right) s^{2} \stackrel{(a)}{\geq} r^{2}(4 R+r)^{2} \\
& \text { Now, } \because s^{2} \geq \mathbf{2 7} r^{2} \therefore \text { LHS of (a) } \geq 27 r^{2}\left(R^{2}-r^{2}\right) \stackrel{?}{\geq} r^{2}(4 R+r)^{2} \\
& \Leftrightarrow 11 R^{2}-8 R r-28 r^{2} \stackrel{?}{\geq} 0 \Leftrightarrow(R-2 r)(11 R+14 r) \stackrel{?}{\geq} 0 \rightarrow \text { true } \because R \stackrel{\text { Euler }}{\geq} 2 r \\
& \Rightarrow \text { (a) is true } \Rightarrow \sum \frac{h_{a}}{r_{b} r_{c}} \leq \frac{R}{2 r^{2}} \\
& \text { Again, } \frac{4 r}{R^{2}} \leq \sum \frac{h_{a}}{r_{b} r_{c}} \stackrel{b y(1)}{\Leftrightarrow} \frac{s^{2}+(4 R+r)^{2}}{2 R r s^{2}} \geq \frac{4 r}{R^{2}} \Leftrightarrow R s^{2}+R(4 R+r)^{2} \geq 8 r s^{2} \\
& \Leftrightarrow(R-2 r) s^{2}+R(4 R+r)^{2} \stackrel{(b)}{\geq} 6 r s^{2} \\
& \text { Now, LHS of (b) } \underset{(i)}{\underset{\text { Gerretsen }}{\geq}}(R-2 r)\left(16 R r-5 r^{2}\right)+R(4 R+r)^{2} \\
& \text { and, RHS of (b) } \stackrel{(i i)}{\stackrel{2}{\geq}} 6 r\left(4 R^{2}+4 R r+3 r^{2}\right) \\
& \text { (i), (ii) } \Rightarrow \text { in order to prove (b), it suffices to prove: } \\
& (R-2 r)\left(16 R r-5 r^{2}\right)+R(4 R+r)^{2} \geq 6 r\left(4 R^{2}+4 R r+3 r^{2}\right) \\
& \Leftrightarrow 4 t^{3}-15 t-2 \geq 0\left(t=\frac{R}{r}\right) \Leftrightarrow(t-2)\left(4 t^{2}+8 t+1\right) \geq 0 \rightarrow \text { true } \because t \stackrel{\text { Euler }}{\geq} 2 \\
& \Rightarrow \text { (b) is true } \Rightarrow \frac{4 r}{R^{2}} \leq \sum \frac{h_{a}}{r_{b} r_{c}} \text { (Proved) }
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
JP.207. Let a, b, c be the lengths of the sides of a triangle $A B C$ with inradius r and circumradius R, and let r_{a}, r_{b}, r_{c} the exradii to A, B, C respectively. Prove that:

$$
6 r \leq \frac{a^{2}}{r_{b}+r_{c}}+\frac{b^{2}}{r_{c}+r_{a}}+\frac{c^{2}}{r_{a}+r_{b}} \leq \frac{2 R^{2}-R r}{r}
$$

Proposed by George Apostolopulos-M essolonghi-Greece
Solution 1 by Marian Ursărescu-Romania

$$
\begin{align*}
& \frac{a^{2}}{r_{b}+r_{c}}=\frac{a^{2}}{\frac{S}{s-b}+\frac{S}{s-c}}=\frac{a^{2}}{S\left(\frac{s-c+s-b}{(s-b)(s-c)}\right)}=\frac{a^{2}(s-b)(s-c)}{s a}=\frac{a(s-b)(s-c)}{s} \\
& \Rightarrow \sum \frac{a^{2}}{r_{b}+r_{c}}=\frac{1}{s} \sum a(s-b)(s-c)(1) \tag{1}\\
& \text { But } \sum a(s-b)(s-c)=2 S(2 R-r)(2) \\
& \text { From (1)+(2) } \Rightarrow \sum \frac{a^{2}}{r_{b}+r_{c}}=2(2 R-r) \text { (3) } \tag{3}
\end{align*}
$$

First, we must show: $6 r \leq 2(2 R-r) \Leftrightarrow 3 r \leq 2 R-r \Leftrightarrow 4 r \leq 2 R \Leftrightarrow 2 r \leq R$ (true)
Second, we must show: $2(2 R-r) \leq \frac{R(2 R-r)}{r} \Leftrightarrow 2 r \leq R$ true.
Solution 2 by Tran Hong-Dong Thap-Vietnam

$$
\frac{a^{2}}{r_{b}+r_{c}}+\frac{b^{2}}{r_{c}+r_{a}}+\frac{c^{2}}{r_{a}+r_{b}} \stackrel{\text { Chebyshev }}{\geq} \frac{(a+b+c)^{2}}{2\left(r_{a}+r_{b}+r_{c}\right)}=\frac{4 s^{2}}{2(4 R+r)}=\frac{2 s^{2}}{4 R+r}
$$

We must show that: $\frac{2 s^{2}}{4 R+r} \geq 6 r \Leftrightarrow s^{2} \geq 3 r(4 R+r) \Leftrightarrow s^{2} \geq 12 R r+3 r^{2}$

$$
\begin{gathered}
s^{2} \geq 16 R r-5 r^{2} \geq 12 R r+3 r^{2} \Leftrightarrow 4 R r \geq 8 r^{2} \Leftrightarrow R \geq 2 r \text { (Euler) } \\
\frac{a^{2}}{r_{b}+r_{c}}+\frac{b^{2}}{r_{c}+r_{a}}+\frac{c^{2}}{r_{a}+r_{b}}=\sum \frac{a^{2}}{r_{b}+r_{c}}= \\
=\sum \frac{(2 R \sin A)^{2}}{4 R \cos ^{2} \frac{A}{2}}=R \sum \frac{\sin ^{2} A}{\cos ^{2} \frac{A}{2}}=4 R \sum \frac{\sin ^{2} \frac{A}{2} \cos ^{2} \frac{A}{2}}{\cos ^{2} \frac{A}{2}} \\
=4 R \sum \sin ^{2} \frac{A}{2}=4 R\left(\frac{2 R-r}{2 R}\right)=2(2 R+r) \stackrel{(2)}{\leq} \frac{2 R^{2}-R r}{r} \\
(2) \Leftrightarrow 2 r(2 R-r) \leq 2 R^{2}-R r
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
 $\Leftrightarrow 2 R^{2}-5 R r+2 r^{2} \geq 0 \Leftrightarrow(R-2 r)(2 R-r) \geq 0$ (True: $\left.R \geq 2 r\right)$ (Proved)

Solution 3 by Soumava Chakraborty-Kolkata-India
Firstly, $\sum a r_{a}=\sum\left(4 R \sin \frac{A}{2} \cos \frac{A}{2}\right) s \tan \frac{A}{2}=2 R s \sum(1-\cos A) \stackrel{(1)}{=} 2 s(2 R-r)$

$$
\begin{gathered}
\sum \frac{a^{2}}{r_{b}+r_{c}}=\sum \frac{a^{3}}{a\left(r_{b}+r_{c}\right)} \stackrel{\text { Holder }}{\geq} \frac{8 s^{3}}{3 \sum a\left(r_{b}+r_{c}\right)}=\frac{8 s^{3}}{3 \sum a\left(\sum r_{a}-r_{a}\right)} \\
\stackrel{8 s^{3}(1)}{=} \frac{2 s^{2}}{3\{(4 R+r)(2 s)-2 s(2 R-r)\}} \stackrel{?}{3(R+r)} \mathbf{~} 6 r \Leftrightarrow s^{2} \xrightarrow[\geq]{\geq} 9 r(R+r) \\
\Leftrightarrow\left(s^{2}-16 R r+5 r^{2}\right)+7 r(R-2 r) \stackrel{?}{\geq} 0 \rightarrow \text { true } \because s^{2}-16 R r+5 r^{2} \stackrel{\text { Gerretsen }}{\geq} 0 \\
\text { and, } R-2 r \stackrel{\text { Euler }}{\geq} 0 \therefore 6 r \leq \sum \frac{a^{2}}{r_{b}+r_{c}}
\end{gathered}
$$

Now, Bogdan Fustei $\Rightarrow \frac{b+c}{2} \leq \sqrt{R\left(r_{b}+r_{c}\right)} \Rightarrow r_{b}+r_{c} \geq \frac{(b+c)^{2}}{4 R}$, etc

$$
\begin{gathered}
\therefore \sum \frac{a^{2}}{r_{b}+r_{c}} \leq 4 R \sum \frac{a^{2}}{(b+c)^{2}} \stackrel{A-G}{\leq} 4 R \sum \frac{a^{2}}{4 b c}=\frac{R}{4 R r s} \sum a^{3}=\frac{2 s\left(s^{2}-6 R r-3 r^{2}\right)}{4 r s} \\
=\frac{s^{2}-6 R r-3 r^{2}}{2 r} \stackrel{?}{\leq} \frac{2 R^{2}-R r}{r} \Leftrightarrow s^{2} \stackrel{?}{\leq} 4 R^{2}+4 R r+3 r^{2} \rightarrow \text { true (Gerretsen) } \\
\Rightarrow \sum \frac{a^{2}}{r_{b}+r_{c}} \leq \frac{2 R^{2}-R r}{r} \text { (proved) }
\end{gathered}
$$

Solution 4 by Bogdan Fustei-Romania

$$
\begin{gathered}
\text { We know that: } r_{a}+r_{b}+r_{c}=4 R+r \\
a^{2}=\left(r_{a}-r\right)\left(r_{b}+r_{c}\right) \text { (and analogs) } \\
\frac{a^{2}}{r_{b}+r_{c}}=r_{a}-r \text { (and analogs) } \Rightarrow \sum \frac{a^{2}}{r_{b}+r_{c}}=r_{a}-r+r_{b}-r+r_{c}-r= \\
=4 R+r-3 r=4 R-2 r=2(2 R-r)
\end{gathered}
$$

We will prove that: $6 r \leq 2(2 R-r) \leq \frac{2 R^{2}-R r}{r}$
$6 r \leq 2(2 R-r) \Rightarrow 3 r \leq 2 R-r \Rightarrow 4 R \leq 2 R \Rightarrow 2 r \leq R$ (Euler's inequality)

$$
2(2 R-r) \leq \frac{2 R^{2}-R r}{r}=\frac{R}{r}(2 R-r)(2 R-r \Rightarrow 2 R-r>0) \Rightarrow
$$

$\Rightarrow 2 \leq \frac{R}{r} \Rightarrow 2 r \leq R$ (Euler's inequality). So, the inequality from enunciation is proved.

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

JP.208. Prove that in any $A B C$ triangle the following inequality holds:

$$
\sum \frac{\tan \frac{B}{2}+\tan \frac{C}{2}}{m_{a}^{2}} \leq \frac{R}{S r}
$$

Proposed by Marin Chirciu - Romania
Solution 1 by Marian Ursărescu-Romania

$$
\begin{gather*}
\text { We have in any } \Delta A B C: m_{a} \geq \sqrt{s(s-a)} \Rightarrow m a^{2} \geq s(s-a) \Rightarrow \\
\Rightarrow \sum \frac{\tan \frac{B}{2}+\tan \frac{C}{2}}{m_{a}^{2}} \leq \sum \frac{\tan \frac{B}{2}+\tan \frac{C}{2}}{s(s-a)} \Rightarrow \text { we must show: } \sum \frac{\tan \frac{B}{2}+\tan \frac{C}{2}}{s(s-a)} \leq \frac{R}{s r^{2}} \Leftrightarrow \sum \frac{\tan \frac{B}{2}+\tan \frac{C}{2}}{s-a} \leq \frac{R}{r^{2}} \Leftrightarrow \\
\sum \frac{\tan \frac{B}{2}}{s-a}+\sum \frac{\tan \frac{C}{2}}{s-a} \leq \frac{R}{r^{2}}(1) \\
\sum \frac{\tan \frac{B}{2}}{s-a}=\sum \frac{\sqrt{\frac{(s-a)(s-c)}{s(s-b)}}}{s-a}=\sum \sqrt{\frac{s-c}{s(s-a)(s-c)}}=\sum \frac{s-c}{r}= \\
(2) \tag{2}\\
\sum \frac{\tan \frac{C}{2}}{s-a}=\sum \frac{\sqrt{\frac{(s-a)(s-b)}{s(s-c)}}}{s-a}=\sum \sqrt{\frac{(s-b)}{s(s-a)(s-c)}}=\sum \frac{s-b}{S}= \\
=\frac{s}{s}=\frac{1}{r}(3)
\end{gather*}
$$

From (1)+ (2)+ (3) we must show: $\frac{2}{r} \leq \frac{R}{r^{2}} \Leftrightarrow 2 r \leq R$ true.
Solution 2 by Soumava Chakraborty-Kolkata-India

$$
\sum \frac{\tan \frac{B}{2}+\tan \frac{C}{2}}{m_{a}^{2}} \leq \frac{R}{S r} \Leftrightarrow \sum \frac{s \tan \frac{B}{2}+s \tan \frac{C}{2}}{m_{a}^{2}} \leq \frac{R}{r^{2}} \Leftrightarrow \sum \frac{r_{b}+r_{c}}{m_{a}^{2}} \stackrel{(1)}{\leq} \frac{R}{r^{2}}
$$

WLOG, we may assume $a \geq b \geq c \therefore r_{b}+r_{c} \leq r_{c}+r_{a} \leq r_{a}+r_{b}$, and,

$$
\begin{gathered}
\frac{1}{m_{a}^{2}} \geq \frac{1}{m_{b}^{2}} \geq \frac{1}{m_{c}^{2}} \\
\therefore \sum \frac{r_{b}+r_{c}}{m_{a}^{2}} \stackrel{\text { Chebyshev }}{\leq} \frac{\sum\left(r_{b}+r_{c}\right)}{3} \sum \frac{1}{m_{a}^{2}} \stackrel{m_{a}^{2} \geq s(s-a)}{\leq} \frac{2(4 R+r)}{3} \sum \frac{1}{s(s-a)}
\end{gathered}
$$

$$
\begin{aligned}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
& \begin{array}{c}
\text { www.ssmrmh.ro } \\
\left.\begin{array}{c}
2(4 r+r) \\
3 s
\end{array} \frac{\sum(s-b)(s-c)}{r^{2} s}\right\}=\frac{2(4 R+r)}{3 r^{2} s^{2}} \sum\left(s^{2}-s(b+c)+b c\right) \\
=\frac{2(4 R+r)}{3 r^{2} s^{2}}\left(3 s^{2}-4 s^{2}+s^{2}+4 R r+r^{2}\right)=\frac{2(4 R+r)^{2}}{3 r s^{2}} \leq \frac{R}{r^{2}} \\
\Leftrightarrow 3 R s^{2} \sum_{(2)}^{?} 2 r\left(16 R^{2}+8 R r+r^{2}\right)
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
\text { Now, LHS of (2) } \stackrel{\text { Gerretsen }}{\geq} 3 R\left(16 R r-5 r^{2}\right) \stackrel{?}{\geq} 2 r\left(16 R^{2}+8 R r+r^{2}\right) \\
\Leftrightarrow 16 R^{2}-31 R r-2 r^{2} \stackrel{?}{\geq} 0 \Leftrightarrow(R-2 r)(16 R+r) \stackrel{?}{\geq} 0 \rightarrow \text { true } \because R \stackrel{\text { Euler }}{\geq} 2 r \\
\Rightarrow(2) \Rightarrow(1) \Rightarrow \text { given inequality is true (Proved) }
\end{gathered}
$$

Solution 3 by Tran Hong-Dong Thap-Vietnam

$$
\begin{gathered}
\sum \frac{\tan \frac{B}{2}+\tan \frac{C}{2}}{m_{a}^{2}} \leq \frac{R}{S r} \text { (1) } \\
(1) \Leftrightarrow \sum \frac{\tan _{2}^{B}+\tan \frac{c}{2}}{m_{a}^{2}} \leq \frac{R}{s r^{2}} \\
\Leftrightarrow \sum \frac{\frac{r_{b}}{s}+\frac{r_{c}}{S}}{m_{a}^{2}} \leq \frac{R}{s r^{2}} \Leftrightarrow \sum \frac{r_{b}+r_{c}}{m_{a}^{2}} \leq \frac{R}{r^{2}} \\
\left(r_{b}+r_{c}=4 R \cos ^{2} \frac{A}{2}\right) ; m_{a} \geq \frac{b+c}{2} \cos \frac{A}{2} ; \text { etc } \\
\Rightarrow \sum \frac{r_{b}+r_{c}}{m_{a}^{2}}=\sum \frac{4 R \cos ^{2} \frac{A}{2}}{m_{a}^{2}} \leq \sum \frac{4 R \cos ^{2} \frac{A}{2}}{\left(\frac{b+c}{2} \cos \frac{A}{2}\right)^{2}}= \\
=16 R \sum \frac{1}{(b+c)^{2}} \stackrel{A M-G M}{\leq} 16 R \sum \frac{1}{4 b c}=4 R \sum \frac{1}{b c}=4 R\left(\frac{a+b+c}{a b c}\right)=4 R \cdot \frac{2 s}{4 R r s}=\frac{2}{r}
\end{gathered}
$$

We must show that: $\frac{2}{r} \leq \frac{R}{r^{2}} \Leftrightarrow R \geq 2 r$ (Euler) (Proved)
Solution 4 by Bogdan Fustei-Romania

$$
\sum \frac{\tan \frac{B}{2}+\tan \frac{C}{2}}{m_{a}^{2}} \leq \frac{R}{S r}
$$

$r_{a}=s \tan \frac{A}{2}\left(\right.$ and the analogs); $s(s-a)=r_{b} r_{c}$ (and analogs); $s=s r$

$$
\sum \frac{s \tan \frac{B}{2}+s \tan \frac{C}{2}}{m_{a}^{2}} \leq \frac{R}{r^{2}} \Leftrightarrow \sum \frac{r_{b}+r_{c}}{m_{a}^{2}} \leq \frac{R}{r^{2}}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
m_{a}^{2} \geq r_{b} r_{c}=s(s-a) \text { (and analogs) } \Rightarrow \sum \frac{r_{b}+r_{c}}{m_{a}^{2}} \leq \sum \frac{r_{b}+r_{c}}{r_{b} r_{c}}= \\
=\sum\left(\frac{1}{r_{c}}+\frac{1}{r_{b}}\right)=2 \sum \frac{1}{r_{a}} ; \frac{1}{r_{a}}+\frac{1}{r_{b}}+\frac{1}{r_{c}}=\frac{1}{r}
\end{gathered}
$$

$\Rightarrow \sum \frac{r_{b}+r_{c}}{m_{a}^{2}} \leq \frac{2}{r}$. We will prove that: $\frac{2}{r} \leq \frac{R}{r^{2}} \Rightarrow 2 \leq \frac{R}{r} \Rightarrow 2 r \leq R$ (Euler's inequality)
So, the inequality from the enunciation is proved.
Solution 5 by Mustafa Tarek-Cairo-Egypt

$$
\begin{gathered}
\tan \frac{A}{2}=\frac{\sin \frac{A}{2}}{\cos \frac{A}{2}}=\sqrt{\frac{(s-b)(s-c)}{b c}} \cdot \sqrt{\frac{b c}{s(s-a)}} \\
=\sqrt{\frac{(s-b)(s-c)}{s(s-a)}}=\frac{(s-b)(s-c)}{\sqrt{s(s-a)(s-b)(s-c)}}=\frac{(s-b)(s-c)}{\Delta}=\frac{\left(a^{2}-(b-c)^{2}\right)}{4 \Delta} \leq \frac{a^{2}}{4 \Delta}
\end{gathered}
$$

$$
\text { Similarly, } \tan \frac{B}{2} \leq \frac{b^{2}}{4 \Delta}, \tan \frac{C}{2} \leq \frac{C^{2}}{4 \Delta} \text {. Now, } \sum \frac{\tan \frac{B}{2}+\tan \frac{C}{2}}{m_{a}^{2}} \leq \sum \frac{b^{2}+c^{2}}{4 \Delta m_{a}^{2}} \stackrel{\text { Tereshin }}{\leq} \sum \frac{4 R \cdot m_{a}}{4 \Delta \cdot m_{a}^{2}}
$$

$$
\begin{equation*}
=\frac{R}{\Delta} \sum \frac{1}{m_{a}} \stackrel{? ?}{\leq} \frac{R}{\Delta r} \Leftrightarrow \sum \frac{1}{m_{a}} \leq \frac{1}{r} \tag{1}
\end{equation*}
$$

But $m_{a} \geq h_{a}$, etc, $\therefore \frac{1}{m_{a}} \leq \frac{1}{h_{a}}$, etc. $\therefore \sum \frac{1}{m_{a}} \leq \sum \frac{1}{h_{a}}=\frac{1}{r} \therefore$ (1) true (Proved)

JP.209. If $a, b, c, d \in \mathbb{R}$ then:

$$
a c+b d+|a d-b c| \leq \sqrt{2\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)}
$$

Proposed by Daniel Sitaru - Romania

Solution 1 by Tran Hong-Dong Thap-Vietnam

$$
\text { We have: } a c+b d+|a d-b c| \leq|a c+b d|+|a d-b c|
$$

We must show that: $|a c+b d|+|a d-b c| \leq \sqrt{2\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)}$

$$
\begin{gathered}
\Leftrightarrow\{|a c+b d|+|(a d-b c)|\}^{2} \leq 2\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)\left(^{*}\right) \\
\because\{|a c+b d|+|a d-b c|\}^{2}{ }^{B c S} \leq 2\left\{(a c+b d)^{2}+(a d-b c)^{2}\right\}
\end{gathered}
$$

$$
=2\left\{(a c)^{2}+(b d)^{2}+(a d)^{2}+(b c)^{2}\right\}=2\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right) \Rightarrow(*) \text { true. Proved. }
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Solution 2 by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
(a c+b d)^{2}+(a d-b c)^{2} \stackrel{(1)}{=}\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right) \\
L H S \stackrel{(2)}{\leq}|a c+b d|+|a d-b c|
\end{gathered}
$$

Case 1: $a d-b c=0$. Then, we have to prove:

$$
\begin{gathered}
(a c+b d)^{2} \leq 2(a c+b d)^{2}+2(a d-b c)^{2}(b y(1)) \\
\Leftrightarrow(a c+b d)^{2}+2(a d-b c)^{2} \geq 0
\end{gathered}
$$

$$
\Leftrightarrow(a c+b d)^{2} \geq 0 \rightarrow \text { true } \Rightarrow \text { the given inequality is true. }
$$

Case 2: $a c+b d=0$. Then we have to prove:

$$
(a d-b c)^{2} \leq 2(a c+b d)^{2}+2(a d-b c)^{2}(b y(1))
$$

$$
\Leftrightarrow(a d-b c)^{2} \geq 0 \rightarrow \text { true } \Rightarrow \text { the given inequality is true. }
$$

Case 3: $\boldsymbol{a d}-\boldsymbol{b c}=\boldsymbol{a c}+\boldsymbol{b d}=\mathbf{0}$.
Then, RHS $\sqrt{2\left[(a c+b d)^{2}+(a d-b c)^{2}\right]}=0$ and of course, $L H S=0 \Rightarrow L H S=R H S \Rightarrow$ the given inequality is true.

Case 4:

$$
\begin{gathered}
|a d-b c| \\
a d-b c, a c+b d \neq 0 \Rightarrow|a d-b c|,|a c+b d|>0 \\
\because(a d-b c)^{2},(a c+b d)^{2}>0 \\
\therefore(a d-b c)^{2}+(a c+b d)^{2}>0 \Rightarrow\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)>0(b y(1)) \\
\text { Let }, \sqrt{\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)}=p>0 \\
\therefore|a d-b c|=p \sin \theta \text { and }|a c+b d|=p \cos \theta \\
\therefore L H S \stackrel{b y(2)}{\leq} p(\cos \theta+\sin \theta) \leq R H S=\sqrt{2} p \\
\Leftrightarrow p^{2}(1+\sin 2 \theta) \leq 2 p^{2} \Leftrightarrow \sin 2 \theta \leq 1 \rightarrow \operatorname{true} \Rightarrow \text { the given inequality is true. }
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Solution 3 by Ravi Prakash-New Delhi-India
Let $a=r \cos \theta, b=r \sin \theta$ where $r=\sqrt{a^{2}+b^{2}}$. Now, LHS $=a c+b d+|a d-b c|=$

$$
=r(c \cos \theta+d \sin \theta)=r|d \cos \theta-c \sin \theta|
$$

If $\boldsymbol{d} \boldsymbol{\operatorname { c o s }} \boldsymbol{\theta}-\boldsymbol{c} \boldsymbol{\operatorname { s i n }} \boldsymbol{\theta} \geq \mathbf{0}$
LHS $=r[(c+d) \cos \theta+(d-c) \sin \theta] \leq r \sqrt{(c+d)^{2}+(d-c)^{2}}$

$$
\begin{gathered}
{\left[\because|a \cos \theta+b \sin \theta| \leq \sqrt{a^{2}+b^{2}}\right]} \\
\Rightarrow L H S \leq r \sqrt{2\left(c^{2}+d^{2}\right)}=\sqrt{2\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)}=R H S
\end{gathered}
$$

If $\boldsymbol{d} \cos \theta-\boldsymbol{c} \sin \theta<0$,

$$
\begin{gathered}
\text { LHS }=r(c \cos \theta+d \sin \theta)+r(c \sin \theta-d \cos \theta) \\
=r[(c-d) \cos \theta+(c+d) \sin \theta] \leq r \sqrt{(c-d)^{2}+(c+d)^{2}} \\
=r \sqrt{2\left(c^{2}+d^{2}\right)}=\sqrt{\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)}
\end{gathered}
$$

JP.210. Let a, b, c be positive real numbers such that $a^{2}+b^{2}+c^{2}=3$. Prove that:

$$
\frac{a+b+c}{9} \leq \frac{1}{a^{3}+(b+c)^{3}}+\frac{1}{b^{3}+(c+a)^{3}}+\frac{1}{c^{3}+(a+b)^{3}} \leq \frac{1}{3 a b c}
$$

Proposed by George Apostolopoulos-Messolonghi-Greece
Solution by Sanong Huayrerai-Nakon Pathom-Thailand
For $a, b, c>0$ and $a^{2}+b^{2}+c^{3}=3$, we have: $a+b+c \leq 3$. Hence:

$$
\begin{aligned}
& \left(a^{2}+b^{2}+c^{2}\right)(a+b+c)=a^{3}+b^{3}+c^{3}+a^{2} b+a^{2} c+b^{2} a+b^{2} c+c^{2} a+c^{2} b \leq 9 \\
& \left(a^{2}+b^{2}+c^{2}\right)(a+b+c)=a^{3}+b^{3}+c^{3}+a^{2} b+a^{2} c+b^{2} a+b^{2} c+c^{2} a+c^{2} b \leq 9 \\
& \left(a^{2}+b^{2}+c^{2}\right)(a+b+c)=a^{3}+b^{3}+c^{3}+a^{2} b+a^{2} c+b^{2} a+b^{2} c+c^{2} a+c^{2} b \leq 9
\end{aligned}
$$

Find then:

$$
\begin{aligned}
& a^{3}+b^{3}+c^{3}+3\left(a^{2} b+b^{2} a\right)+a^{3}+b^{3}+c^{3}+3\left(b^{2} c+c^{2} b\right)+a^{3}+b^{3}+ \\
& +c^{3}+3\left(a^{2} c+c^{2} a\right)=c^{3}+(a+b)^{3}+a^{3}+(b+c)^{3}+b^{3}+(c+a)^{3} \leq 27 \\
\Rightarrow & \frac{1}{a^{3}+(b+c)^{3}}+\frac{1}{b^{3}+(c+a)^{3}}+\frac{1}{c^{3}+(a+b)^{3}} \geq \frac{1}{3} \geq \frac{a+b+c}{9}: a+b+c \leq 3
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
Next, from this fact $\frac{1}{a b}+\frac{1}{b c}+\frac{1}{c a}=\frac{a+b+c}{a b c} \Rightarrow \frac{1}{a b(a+b+c)}+\frac{1}{b c(a+b+c)}+\frac{1}{c a(a+b+c)}=\frac{1}{a b c}$

$$
\begin{gathered}
\Rightarrow \frac{1}{3 a b(a+b+c)}+\frac{1}{3 b c(a+b+c)}+\frac{1}{3 c a(a+b+c)}=\frac{1}{3 a b c} \\
\Rightarrow \frac{1}{3 a b c+3\left(a^{2} b+a b^{2}\right)}+\frac{1}{3 a b c+3\left(b^{2} c+b c^{2}\right)}+\frac{1}{3 a b c+3\left(c^{2} a+c a^{2}\right)}=\frac{1}{3 a b c} \\
\Rightarrow \frac{1}{a^{3}+b^{3}+c^{3}+3\left(a^{2} b+a b^{2}\right)}+\frac{1}{a^{2}+b^{3}+c^{3}+3\left(b^{2} c+b c^{2}\right)}+ \\
+\frac{1}{a^{3}+b^{3}+c^{3}+3\left(c^{2} a+c a^{2}\right)} \leq \frac{1}{3 a b c} \Rightarrow \frac{1}{c^{3}+(a+b)^{3}}+\frac{1}{a^{3}+(b+c)^{3}}+\frac{1}{b^{3}+(c+a)^{3}} \leq \frac{1}{3 a b c} \text { ok }
\end{gathered}
$$

Therefore, it is true.

SP.196. Find:

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{3}} \sum_{1 \leq i<j<k \leq n} \sqrt[p]{\frac{n^{3}}{i j k}}, p \in \mathbb{N}^{*}, p \geq 2
$$

Proposed by Marian Ursărescu - Romania

Solution by Ravi Prakash-New Delhi-India
Next, $\sum_{i=1}^{n} a_{i}^{3}$ contains n terms and $n \leq \sum_{i=1}^{n} a_{i}^{3} \leq(n)\left(n^{\frac{1}{\Phi}}\right) \Rightarrow \frac{1}{n^{2}} \leq \frac{1}{n^{3}} \sum_{i=1}^{n} a_{i}^{3} \leq \frac{1}{n^{\frac{2-1}{p}}}$
Taking limit as $n \rightarrow \infty$, we get: $\frac{1}{n^{3}} \sum_{i=1}^{n} a_{i}^{3}=\mathbf{0}$. Also,

$$
\begin{gathered}
\frac{1}{n} \sum_{i=1}^{n} a_{i}=\frac{1}{n} \sum_{i=1}^{n} \frac{1}{\left(\frac{i}{n}\right)^{\frac{1}{p}}} \\
\left.\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} a_{i}=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{\left(\frac{i}{n}\right)^{\frac{1}{p}}}=\int_{0}^{1} \frac{d x}{x^{\frac{1}{p}}}=\frac{x^{1-\frac{1}{p}}}{1-\frac{1}{p}}\right]_{0}^{1}=\frac{p}{p-1}(p \geq 2) \\
\text { Now, } \\
\left(\frac{1}{n} \sum_{i=1}^{n} a_{i}\right)^{3}=\frac{1}{n^{3}} \sum_{i=1}^{n} a_{i}^{3}+6 \frac{1}{n^{3}} \sum_{1 \leq i<j} a_{i}^{2} a_{j}+6 \frac{1}{n^{3}} \sum_{1 \leq i<j<k \leq n} a_{i} a_{j} a_{k}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Taking limit as $n \rightarrow \infty$, we get: $\left(\frac{p}{p-1}\right)^{3}=0+0+6 \lim _{n \rightarrow \infty} \frac{1}{n^{3}} \sum_{1 \leq i<j \leq k \leq n} a_{i} a_{j} a_{k}$
Thus, $\lim _{n \rightarrow \infty} \frac{1}{n^{3}} \sum_{1 \leq i<j<k \leq n} a_{i} a_{j} a_{k}=\frac{1}{6}\left(\frac{p}{p-1}\right)^{3}$. Let $a_{i}=\left(\frac{n}{i}\right)^{\frac{1}{p}}, 1 \leq i \leq n, p \geq 2$

$$
\sum_{1 \leq i<j \leq n} a_{i}^{2} a_{j} \text { contains } \frac{n(n-1)}{2} \text { terms. Also, } 1 \leq a_{i} \leq n^{\frac{1}{p}} \forall i
$$

$$
\therefore \frac{n(n-1)}{2 n^{3}} \leq \frac{1}{n^{3}} \sum_{1 \leq i<j \leq n} a_{i}^{2} a_{j} \leq \frac{n(n-1)}{2 n^{3}} n^{\frac{1}{p}}
$$

$$
\Rightarrow \frac{1}{2 n}\left(1-\frac{1}{n}\right) \leq \frac{1}{n^{3}} \sum_{1 \leq i<j \leq n} a_{i}^{2} a_{j} \leq \frac{1}{2 n^{1-p}}\left(1-\frac{1}{2 n}\right)
$$

Taking limit, we get: $\lim _{n \rightarrow \infty} \frac{1}{n^{3}} \Sigma_{1 \leq i<j \leq n} a_{i}^{2} a_{j}=0$

SP.197. If $x, y, z \geq 0$ then:

$$
\begin{gathered}
\frac{7 \sqrt{x y}}{5^{\sqrt{x y}}+3^{\sqrt{x y}}}+\frac{7^{\sqrt{y z}}}{5^{\sqrt{y z}}+3^{\sqrt{y z}}}+\frac{7^{\sqrt{z x}}}{5^{\sqrt{z x}}+3^{\sqrt{z x}}} \leq \\
\leq \frac{\sqrt{7^{x+y}}}{\sqrt{5^{x+y}}+\sqrt{3^{x+y}}}+\frac{\sqrt{7^{y+z}}}{{\sqrt{5^{y+z}}+\sqrt{3^{y+z}}}^{5} \frac{\sqrt{7^{z+x}}}{\sqrt{5^{z+x}}+\sqrt{3^{z+x}}}}
\end{gathered}
$$

Solution 1 by Sanong Huayrerai-Nakon Pathom-Thailand
For $a, b \geq 0$, we have: $\left(\frac{7}{5}\right)^{(a b)^{\frac{1}{2}}} \leq\left(\frac{7}{5}\right)^{\frac{a+b}{2}} \leftrightarrow 7^{(a b)^{\frac{1}{2}}} 5^{\frac{(a+b)}{2}} \leq 7^{(a+b)} \cdot 5^{(a b)^{\frac{1}{2}}}$

$$
\begin{gathered}
\left(\frac{7}{3}\right)^{(a b)^{\frac{1}{2}}} \leq\left(\frac{7}{3}\right)^{\frac{a+b}{2}} \leftrightarrow 7^{(a b)^{\frac{1}{2}}} \cdot 3^{\frac{a+b}{2}} \leq 7^{\frac{a+b}{2}} \cdot 3^{(a b)^{\frac{1}{2}}} \\
\Rightarrow 7^{(a b)^{\frac{1}{2}}} \cdot 5^{\frac{a+b}{2}}+7^{(a b)^{\frac{1}{2}}} \cdot 3^{\frac{a+b}{2}} \leq 7^{\frac{a+b}{2}} \cdot 5^{(a b)^{\frac{1}{2}}}+7^{\frac{a+b}{2}} \cdot 3^{(a b)^{\frac{1}{2}}} \\
\Rightarrow 7^{(a b)^{\frac{1}{2}}}\left(5^{\frac{a+b}{2}}+3^{\frac{a+b}{2}}\right) \leq 7^{\frac{a+b}{2}}\left(5^{(a b)^{\frac{1}{2}}}+3^{(a b)^{\frac{1}{2}}}\right) \Rightarrow \frac{7^{(a b)^{\frac{1}{2}}}}{5^{(a b)^{\frac{1}{2}}}+3^{(a b)^{\frac{1}{2}}}} \leq \frac{7^{\frac{a+b}{2}}}{5^{\frac{a+b}{2}}+3^{\frac{a+b}{2}}}
\end{gathered}
$$

Hence for $x, y, z \geq 0$, we get that:

$$
\begin{gathered}
\text { ROMANIAN MATHEMATICAL MAGAZINE } \\
\text { www.ssmrmh.ro } \\
\frac{7^{\sqrt{x y}}}{5^{\sqrt{x y}}+3^{\sqrt{x y}}}+\frac{7^{\sqrt{y z}}}{5^{\sqrt{y z}}+3^{\sqrt{y z}}}+\frac{7^{\sqrt{z x}}}{5^{\sqrt{z x}}+3^{\sqrt{z x}}} \leq \frac{7^{\frac{x+y}{2}}}{5^{\frac{x+y}{2}}+3^{\frac{x+y}{2}}}+\frac{7^{\frac{y+z}{2}}}{5^{\frac{y+x}{2}}+3^{\frac{y+z}{2}}}+\frac{7^{\frac{z+x}{2}}}{5^{\frac{z+x}{2}}+3^{\frac{z+x}{2}}}
\end{gathered}
$$

Therefore, it is true.
Solution 2 by Marian Ursărescu-Romania

$$
\begin{aligned}
& \text { Inequality } \Leftrightarrow \frac{1}{\left(\frac{5}{7}\right)^{\sqrt{x y}}+\left(\frac{3}{7}\right)^{\sqrt{x y}}}+\frac{1}{\left(\frac{5}{7}\right)^{\sqrt{y z}}+\left(\frac{3}{7}\right)^{\sqrt{x z}}}+\frac{1}{\left(\frac{5}{7}\right)^{\sqrt{x z}}+\left(\frac{3}{7}\right)^{\sqrt{x z}}} \leq \\
& \leq \frac{1}{\sqrt{\left(\frac{5}{7}\right)^{x+y}}+\sqrt{\left(\frac{3}{7}\right)^{x+y}}}+\frac{1}{\sqrt{\left(\frac{5}{7}\right)^{y+z}}+\sqrt{\left(\frac{3}{7}\right)^{y+z}}}+\frac{1}{\sqrt{\left(\frac{5}{7}\right)^{z+x}}+\sqrt{\left(\frac{3}{7}\right)^{z+x}}} \\
& \sqrt{x y} \leq \frac{x+y}{2} \text { and } \frac{5}{7} \text { and } \frac{3}{7} \in(0,1) \Rightarrow \\
& \left.\begin{array}{l}
\left(\frac{5}{7}\right)^{\sqrt{x y}} \geq\left(\frac{5}{7}\right)^{\frac{x+y}{2}} \\
\left(\frac{3}{7}\right)^{\sqrt{x y}} \geq\left(\frac{3}{7}\right)^{\frac{x+y}{2}}
\end{array}\right\} \Rightarrow\left(\frac{5}{7}\right)^{\sqrt{x y}}+\left(\frac{3}{7}\right)^{\sqrt{x y}} \geq \sqrt{\left(\frac{5}{7}\right)^{x+y}}+\sqrt{\left(\frac{3}{7}\right)^{x+y}} \Rightarrow \\
& \frac{1}{\left(\frac{5}{7}\right)^{\sqrt{x y}}+\left(\frac{3}{7}\right)^{\sqrt{x y}}} \leq \frac{1}{\sqrt{\left(\frac{5}{7}\right)^{x+y}}+\sqrt{\left(\frac{3}{7}\right)^{x+y}}} \text { and two similar relationship, and by summing } \Rightarrow(1) \text { is }
\end{aligned}
$$ true.

Solution 3 by Amit Dutta-Jamshedpur-India

$$
\begin{align*}
& \text { Let } F(t)=\frac{7^{t}}{5^{t}+3^{t}} ; F^{\prime}(t)=\frac{\left(3^{t}+5^{t}\right) 7^{t} \ln 7-7^{t}\left(5^{t} \ln 5+3^{t} \ln 3\right)}{\left(5^{t}+3^{t}\right)^{2}} \\
& F^{\prime}(t)=\frac{1}{\left(5^{t}+3^{t}\right)^{2}}\left[(35)^{t} \ln 7+(21)^{t} \ln 7-(35)^{t} \ln 5-(21)^{t} \ln 3\right] \\
& \boldsymbol{F}^{\prime}(\boldsymbol{t})=\frac{1}{\left(5^{t}+3^{t}\right)^{2}}\left\{(35)^{t} \ln \left(\frac{7}{5}\right)+(21)^{t} \ln \left(\frac{7}{3}\right)\right\} \text {, clearly, } \boldsymbol{F}^{\prime}(\boldsymbol{t})>0 \\
& F(t) \text { is an increasing function. By } \mathbf{A M} \geq \mathbf{G M}, \frac{x+y}{2} \geq \sqrt{x y} \\
& F\left(\frac{x+y}{2}\right) \geq F(\sqrt{x y}) \\
& \frac{7^{\frac{x+y}{2}}}{5^{\frac{x+y}{2}}+3^{\frac{x+y}{2}}} \geq \frac{7 \sqrt{x y}}{5^{\sqrt{x y}}+3^{\sqrt{x y}}} \tag{1}\\
& \text { Again, } \frac{y+z}{2} \geq \sqrt{y z} \quad\{\mathrm{AM} \geq \mathrm{GM}\} ; F\left(\frac{y+z}{2}\right) \geq F(\sqrt{y z}) \\
& \frac{7^{\frac{y+z}{2}}}{5^{\frac{y+z}{2}}+3^{\frac{y+z}{2}}} \geq \frac{7^{\sqrt{y z}}}{5^{\sqrt{y z}}+3^{\sqrt{y z}}} \tag{2}
\end{align*}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Also, again, by $\mathbf{A M} \geq \mathbf{G M}: \frac{x+z}{2} \geq \sqrt{x z} ; F\left(\frac{x+z}{2}\right) \geq F(\sqrt{x z})$

$$
\begin{equation*}
\frac{\frac{x+z}{2}}{5^{\frac{x+2}{2}}+3^{\frac{x+z}{2}}} \geq \frac{7^{\sqrt{x z}}}{5^{\sqrt{x z}}+3 \sqrt{x z}} \tag{3}
\end{equation*}
$$

Adding (1), (2), (3), we have the desired inequality: $\frac{7 \sqrt{x y}}{5^{\sqrt{x y}}+3^{\sqrt{x y}}}+\frac{7 \sqrt{y z}}{5^{\sqrt{y z}}+3^{\sqrt{y z}}}+\frac{7^{\sqrt{x z}}}{5^{\sqrt{x z}}+3^{\sqrt{x z}}} \leq$

$$
\leq \frac{\sqrt{7^{x+y}}}{\sqrt{5^{x+y}}+\sqrt{3^{x+y}}}+\frac{\sqrt{7^{y+z}}}{\sqrt{5^{y+z}}+\sqrt{3^{y+z}}}+\frac{\sqrt{7^{x+z}}}{\sqrt{5^{x+z}}+\sqrt{3^{x+z}}} \text { (Proved) }
$$

Solution 4 by Michael Sterghiou-Greece

$$
\begin{gather*}
\sum_{c y c} \frac{7 \sqrt{x y}}{5^{x y}+3^{\sqrt{x y}}} \leq \sum_{c y c} \frac{\sqrt{7^{x+y}}}{\sqrt{5^{x+y}}+\sqrt{3^{x+y}}} \tag{1}\\
\text { RHS of (1) } \rightarrow \sum_{c y c} \frac{7^{\frac{x+y}{2}}}{5^{\frac{x+y}{2}}+3^{\frac{x+2}{2}}} \text {. Consider the function } \\
\frac{7^{t}}{5^{t}+3^{t}}=f(t), t \geq 0, f^{\prime}(t)=\frac{21 t \ln \frac{7}{3}+35^{t} \cdot \ln \frac{42}{30}}{\left(3^{t}+5^{t}\right)^{2}}>0
\end{gather*}
$$

So, $f(t) \uparrow$ on $[0,+\infty]$, But $\sqrt{x y} \leq \frac{x+y}{2}$ and same in a cyclical manner so,

$$
\sum_{c y c} f(\sqrt{x y}) \leq \sum_{c y c} f\left(\frac{x+y}{2}\right) \rightarrow(1) \text { is true. }
$$

SP.198. If $x, y, z, t \in \mathbb{R} ; x^{2}+y^{2}=z^{2}+t^{2}=10$ then:

$$
(10-x-3 y)(10-x z-y t)(10-z-3 t)<10125
$$

Proposed by Daniel Sitaru - Romania
Solution 1 by Tran Hong-Dong Thap-Vietnam

$$
\begin{gathered}
\text { LHS }=(10-x-3 y)(10-x z-y t)(10-z-3 t) \\
\leq|(10-x-3 y)(10-x z-y t)(10-z-3 t)| \\
=|(x+3 y-10)| \cdot|(x z+y t-\mathbf{1 0})| \cdot|(z+3 t-10)| \\
\leq(|x+3 y|+10) \cdot(|x z+y t|+10) \cdot(|z+3 t|+10) \\
\leq \begin{array}{c}
B C S \\
\leq\left(\sqrt{\mathbf{1}^{2}+3^{2}} \sqrt{x^{2}+y^{2}}+\mathbf{1 0}\right)\left(\sqrt{x^{2}+y^{2}} \sqrt{z^{2}+t^{2}}+\mathbf{1 0}\right)\left(\sqrt{\mathbf{1}^{2}+3^{2}} \sqrt{t^{2}+z^{2}}+10\right) \\
=(\sqrt{\mathbf{1 0}} \cdot \sqrt{\mathbf{1 0}}+\mathbf{1 0})(\sqrt{\mathbf{1 0}} \cdot \sqrt{\mathbf{1 0}}+\mathbf{1 0})(\sqrt{\mathbf{1 0}} \cdot \sqrt{\mathbf{1 0}}+\mathbf{1 0}) \\
=\mathbf{2 0} \cdot \mathbf{2 0} \cdot \mathbf{2 0}=\mathbf{8 0 0 0}<10125 . \text { Proved. }
\end{array}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Solution 2 by proposer
Let be $A(1,3) ; B(x, y) ; C(z, t)$

$$
\begin{gathered}
R=O A=\sqrt{1^{2}+3^{2}}=\sqrt{10}(1), A, B, C \in \mathcal{C}(O, R) ; \mathcal{C}: x^{2}+y^{2}=10 \\
A B=\sqrt{(x-1)^{2}+(y-3)^{2}}=\sqrt{x^{2}-2 x+1+y^{2}-6 y+9}= \\
=\sqrt{10-2 x-6 y+10}=\sqrt{20-2 x-6 y} \\
A C=\sqrt{(z-1)^{2}+(t-3)^{2}}=\sqrt{z^{2}-2 z+1+t^{2}-6 t+9}= \\
=\sqrt{10-2 z-6 t+10}=\sqrt{20-2 z-6 t} \\
B C=\sqrt{(x-z)^{2}+(y-t)^{2}}=\sqrt{x^{2}-2 x z+z^{2}+y^{2}-2 y t+t^{2}}= \\
=\sqrt{20-2 x z-2 y t}
\end{gathered}
$$

The maximum of area of $\triangle A B C$ is obtained when $\triangle A B C$ is an equilateral one.
The side $A B$ can be obtained by:

$$
\begin{gathered}
\frac{2}{3} \cdot \frac{A B \sqrt{3}}{2}=R \Rightarrow A B=\frac{3 R}{\sqrt{3}}=R \sqrt{3} \stackrel{(1)}{=} \sqrt{30} \\
S_{\max }[A B C]=\frac{(\sqrt{30})^{2} \cdot \sqrt{3}}{4}=\frac{30 \sqrt{3}}{4}=\frac{15 \sqrt{3}}{2} \rightarrow \frac{A B \cdot A C \cdot B C}{4 \cdot R}<\frac{15 \sqrt{3}}{2} \\
A B \cdot A C \cdot B C<\frac{15 \sqrt{3} \cdot 4 \cdot \sqrt{30}}{2}=30 \sqrt{90}=90 \sqrt{10} \\
\sqrt{20-2 x-6 y} \cdot \sqrt{20-2 z-6 t} \cdot \sqrt{20-2 x z-2 y t}<90 \sqrt{10} \\
\sqrt{(10-x-3 y)(10-x z-y t)(10-z-3 t)}<45 \sqrt{5} \\
(10-x-3 y)(10-x z-y t)(10-z-3 t)<(45 \sqrt{5})^{2}=10125
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

SP.199. If $\boldsymbol{n}>1$ then:

$$
\frac{1}{\log 2}\left(\frac{2^{n}-1}{n}\right)^{2 n+1}<\frac{1 \cdot 3 \cdot 7 \cdot \ldots \cdot\left(2^{2 n}-1\right)}{(2 n)!}
$$

Proposed by Daniel Sitaru - Romania
Solution by proposer

$$
\begin{gathered}
\text { Let be } I_{n}=\int_{0}^{1} 2^{n x} d x ; n \geq 1 \\
I_{n}^{2}=\left(\int_{0}^{1} 2^{n x} d x\right)^{2}=\left(\int_{0}^{1}\left(\sqrt{2^{(n-k) x}} \cdot \sqrt{2^{(n+k) x}}\right) d x\right)^{2} \leq \\
\leq\left(\int_{0}^{1} 2^{(n-k) x} d x\right)\left(\int_{0}^{1} 2^{(n+k) x} d x\right)=I_{n-k} \cdot I_{n+k} \\
I_{n}^{2} \leq I_{n-k} \cdot I_{n+k} ; 0 \leq k \leq n \\
I_{n}^{2} \leq I_{n-1} \cdot I_{n+1} ; I_{n}^{2} \leq I_{n-2} \cdot I_{n+2} ; \ldots ; I_{n}^{2} \leq I_{0} \cdot I_{2 n} \\
I_{n}^{2 n}<I_{0} \cdot I_{1} \cdot I_{2} \cdot \ldots \cdot I_{n-1} \cdot I_{n+1} \cdot \ldots \cdot I_{2 n} \\
\left(\left.\frac{2^{n x}}{n \log 2} \right\rvert\, \begin{array}{l}
1 \\
0
\end{array}\right)^{2 n+1}<\left(\frac{2^{x}}{\log 2} l_{0}^{1}\right) \cdot\left(\left.\frac{2^{2 x}}{2 \log 2} \right\rvert\, \begin{array}{l}
1 \\
0
\end{array}\right) \cdot\left(\left.\frac{2^{3 x}}{3 \log 2}\right|_{0} ^{1}\right) \cdot \ldots \cdot\left(\left.\frac{2^{2 n x}}{2 n \log 2}\right|_{0} ^{1}\right) \\
\left(\frac{2^{n}-1}{n \log 2}\right)^{2 n+1}<\frac{(2-1)\left(2^{2}-1\right)\left(2^{3}-1\right) \cdot \ldots \cdot\left(2^{2 n}-1\right)}{(2 n)!\cdot(\log 2)^{2 n}} \\
\frac{1}{\log 2}\left(\frac{2^{n}-1}{n}\right)^{2 n+1}<\frac{1 \cdot 3 \cdot 7 \cdot \ldots \cdot\left(2^{2 n}-1\right)}{(2 n)!}
\end{gathered}
$$

SP.200. If $a, b, c, d \in \mathbb{R}$ then:
$2|a d-b c|(a c+b d)+(a c+b d)^{2} \leq(a d-b c)^{2}+\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right) \sqrt{2}$

Proposed by Daniel Sitaru-Romania

Solution by proposer

$$
\text { Let be } \vec{u}=a \vec{\imath}+b \vec{\jmath} ; \vec{v}=c \vec{\imath}+d \vec{\jmath}
$$

$$
\sin 2(\widehat{\vec{u}, \vec{v}})=2 \sin (\widehat{\vec{u}, \vec{v}}) \cos (\widehat{\vec{u}, \vec{v}})=2 \cdot \frac{|a d-b c|(a c+b d)}{\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)}
$$

$$
\cos 2(\widehat{\vec{u}, \vec{v}})=2 \cos ^{2}(\widehat{\vec{u}, \vec{v}})-1=2 \cdot \frac{(a c+b d)^{2}}{\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)}-1=
$$

$$
=\frac{2\left(a^{2} c^{2}+b^{2} c^{2}+2 a b c d\right)-\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)}{\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)}=
$$

$$
=\frac{2 a^{2} c^{2}+2 b^{2} d^{2}+4 a b c d-a^{2} c^{2}-a^{2} d^{2}-b^{2} c^{2}-b^{2} d^{2}}{\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)}=
$$

$$
=\frac{a^{2} c^{2}+b^{2} d^{2}+4 a b c d-a^{2} d^{2}-b^{2} c^{2}}{\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)}=\frac{(a c+b d)^{2}-(a d-b c)^{2}}{\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)}
$$

$$
\sin 2 x+\cos 2 x=\sin 2 x+\frac{\sin \frac{\pi}{4}}{\cos \frac{\pi}{4}} \cos 2 x=
$$

$$
=\frac{\sin 2 x \cos \frac{\pi}{4}+\sin \frac{\pi}{4} \cos 2 x}{\frac{\sqrt{2}}{2}}=\frac{\sin \left(2 x+\frac{\pi}{4}\right)}{\frac{1}{\sqrt{2}}}=\sqrt{2} \sin \left(2 x+\frac{\pi}{4}\right) \leq \sqrt{2}
$$

$\sin 2 x+\cos 2 x \leq \sqrt{2}$
$\sin 2(\widehat{\vec{u}, \vec{v}})+\cos 2(\widehat{\vec{u}, \vec{v}}) \leq \sqrt{2}$

$$
\frac{2|a d-b c|(a c+b d)}{\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)}+\frac{(a c+b d)^{2}-(a d-b c)^{2}}{\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)} \leq \sqrt{2}
$$

$$
2(a d-b c)(a c+b d)+(a c+b d)^{2}-(a d+b c)^{2} \leq \sqrt{2}\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)
$$

$$
2(a d-b c)(a c+b d)+(a c+b d)^{2} \leq(a d-b c)^{2}+\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right) \sqrt{2}
$$

$$
\begin{aligned}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
& \text { www.ssmrmh.ro } \\
& \cos (\widehat{\boldsymbol{u}, \vec{v}})=\frac{a c+b d}{\sqrt{\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)}}=\frac{\overrightarrow{\boldsymbol{u}} \cdot \overrightarrow{\boldsymbol{v}}}{|\overrightarrow{\boldsymbol{u}}| \cdot|\overrightarrow{\boldsymbol{v}}|} \\
& \sin ^{2}(\widehat{\vec{u}, \vec{v}})=1-\cos ^{2}(\widehat{\vec{u}, \vec{v}})=1-\frac{(a c+b d)^{2}}{\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)}= \\
& =\frac{a^{2} c^{2}+a^{2} d^{2}+b^{2} c^{2}+b^{2} d^{2}-a^{2} c^{2}-b^{2} d^{2}-2 a b c d}{\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)}= \\
& =\frac{a^{2} d^{2}-2 a b c d+b^{2} c^{2}}{\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)}=\frac{(a d-b c)^{2}}{\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)} \\
& \sin (\widehat{\boldsymbol{u}, \vec{v}})=\frac{|a d-b c|}{\sqrt{\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)}}
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

SP.201. Find:

$$
\Omega=\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{n} \tan ^{-1}\left(\frac{1}{2(k+1)^{2}}\right) \tan ^{-1}\left(\frac{2 k^{2}+4 k+1}{2(k+1)}\right)\right)
$$

Proposed by Daniel Sitaru - Romania
Solution by proposer

$$
\begin{gathered}
\tan ^{-1}\left(\frac{k+2}{k+1}\right)-\tan ^{-1}\left(\frac{k+1}{k}\right)=\tan ^{-1}\left(\frac{\frac{k+2}{k+1}-\frac{k+1}{k}}{1+\frac{k+2}{k+1} \cdot \frac{k+1}{k}}\right)= \\
=\tan ^{-1}\left(\frac{k^{2}+2 k-k^{2}-2 k-1}{k(k+1)} \cdot \frac{k(k+1)}{k^{2}+k+k^{2}+3 k+2}\right)= \\
=\tan ^{-1}\left(-\frac{1}{2 k^{2}+4 k+1}\right)=-\tan ^{-1}\left(\frac{1}{2(k+1)^{2}}\right) \\
\tan ^{-1}\left(\frac{k+2}{k+1}\right)+\tan ^{-1}\left(\frac{k+1}{k}\right)=\tan ^{-1}\left(\frac{\frac{k+2}{k+1}+\frac{k+1}{k}}{1-\frac{k+2}{k+1} \cdot \frac{k+1}{k}}\right)= \\
=\tan ^{-1}\left(\frac{k^{2}+2 k+k^{2}+2 k+1}{k(k+1)} \cdot \frac{k(k+1)}{k^{2}+k-k^{2}-3 k-2}\right) \\
=\tan ^{-1}\left(\frac{2 k^{2}+4 k+1}{-2 k-2}\right)=-\tan ^{-1}\left(\frac{2 k^{2}+4 k+1}{2(k+1)}\right) \\
\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{n}\left(\tan ^{-1}\left(\frac{k+2}{k+1}\right)-\tan ^{-1}\left(\frac{k+1}{k}\right)\right) \cdot\left(\tan ^{-1}\left(\frac{k+2}{k+2}\right)+\tan ^{-1}\left(\frac{k+1}{k}\right)\right)\right)= \\
=\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{n}\left(\left(\tan ^{-1}\left(\frac{k+2}{k+1}\right)\right)^{2}-\left(\tan ^{-1}\left(\frac{k+1}{k}\right)\right)^{2}\right)\right)= \\
=\lim _{n \rightarrow \infty}\left(\left(\tan ^{-1}\left(\frac{n+2}{n+1}\right)\right)^{2}-\left(\tan ^{-1}\left(\frac{1+1}{1}\right)\right)^{2}\right)= \\
=\left(\tan ^{-1} 1\right)^{2}-\left(\tan ^{-1} 2\right)^{2}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

SP.202. Prove that in any triangle $A B C$, the following relationship holds:

$$
\frac{m_{a}}{l_{a}}+\frac{m_{b}}{l_{b}}+\frac{m_{c}}{l_{c}} \geq 3+\left(\frac{b-c}{b+c}\right)^{2}+\left(\frac{c-a}{c+a}\right)^{2}+\left(\frac{a-b}{a+b}\right)^{2}
$$

Proposed by Nguyen Viet Hung - Hanoi - Vietnam

Solution 1 by Mustafa Tarek-Cairo-Egypt

$$
\begin{aligned}
& \sum \frac{m_{a}}{w_{a}} \geq 3+\sum \frac{(b-c)^{2}}{(b+c)^{2}} \\
& \because m_{a} \geq \frac{b+c}{2} \cos \frac{A}{2}=\frac{2 b c}{b+c} \cos \frac{A}{2} \cdot \frac{(b+c)^{2}}{4 b c}=w_{a} \cdot \frac{(b+c)^{2}}{4 b c} \\
& \text { Similarly, } m_{b} \geq w_{b} \frac{(a+c)^{2}}{4 a c}, m_{c} \geq w_{c} \frac{(a+b)^{2}}{4 a b} \\
& \therefore \sum \frac{m_{a}}{w_{a}} \geq \sum \frac{(b+c)^{2}}{4 b c} \text {, RHS of } \mathbf{(1)}=\sum\left(\frac{(b+c)^{2}+(b-c)^{2}}{(b+c)^{2}}\right)=\sum \frac{2\left(b^{2}+c^{2}\right)}{(b+c)^{2}} \text {, so, we must prove that: } \\
& \frac{(b+c)^{2}}{4 b c} \geq \frac{2\left(b^{2}+c^{2}\right)}{(b+c)^{2}} \Leftrightarrow(b+c)^{4} \geq 8 b^{3} c+8 c^{3} b \\
& \Leftrightarrow\left(b^{2}+c^{2}+2 b c\right)^{2}=b^{4}+c^{4}+2 b^{2} c^{2}+4 b^{2} c^{2}+4 b^{3} c+4 c^{3} b \geq 8 b^{3} c+8 c^{3} b \\
& \Leftrightarrow b^{4}+c^{4}+8 b^{2} c^{2}-2 b^{2} c^{2}-4 b^{3} c-9 c^{3} b \geq 0 \\
& \Leftrightarrow\left(b^{2}-c^{2}\right)^{2}-4 b c\left(b^{2}-c^{2}-2 b c\right) \geq 0 \\
& \Leftrightarrow(b-c)^{2}\left((b+c)^{2}-\mathbf{4 b c}\right) \geq \mathbf{0} \Leftrightarrow(b-c)^{4} \geq 0 \Leftrightarrow \text { true, similarly, } \frac{(a+c)^{2}}{4 a c} \geq \frac{\left(a^{2}+c^{2}\right)}{(a+c)^{2}} \\
& \frac{(a+b)^{3}}{4 a b} \geq \frac{2\left(a^{2}+b^{2}\right)}{(a+b)^{2}} \therefore \sum \frac{(b+c)^{3}}{4 b c} \geq \sum \frac{2\left(b^{2}+c^{2}\right)}{(b+c)^{2}} \text { and } \sum \frac{m_{a}}{w_{a}} \geq \sum \frac{(b+c)^{2}}{4 b c} \therefore \sum \frac{m_{a}}{w_{b}} \geq \sum \frac{2\left(b^{2}+c^{2}\right)}{(b+c)^{2}}=R H S
\end{aligned}
$$

Proved

Solution 2 by Marian Ursărescu-Romania

In any $\triangle A B C$ we have: $m_{a} \geq \frac{b+c}{2} \cos \frac{A}{2}$ and $l_{a}=\frac{2 b c}{b+c} \cos \frac{A}{2} \Rightarrow \frac{m_{a}}{l_{a}} \geq \frac{(b+c)^{2}}{4 b c} \Rightarrow$ we must

$$
\begin{equation*}
\text { show: } \frac{1}{4} \sum \frac{(b+c)^{2}}{b c} \geq 3+\sum\left(\frac{b-c}{b+c}\right)^{2} \tag{1}
\end{equation*}
$$

But $(b+c)^{2} \geq 4 b c \Rightarrow \frac{1}{(b+c)^{2}} \leq \frac{1}{4 b c} \Rightarrow\left(\frac{b-c}{b+c}\right)^{2} \leq \frac{(b-c)^{2}}{4 b c}$
From (1)+ (2) we must show: $\frac{1}{4} \sum \frac{(b+c)^{2}}{b c} \geq 3+\frac{1}{4} \sum \frac{(b-c)^{2}}{b c} \Leftrightarrow \frac{1}{4} \sum \frac{(b+c)^{2}-(b-c)^{2}}{b c} \geq 3 \Leftrightarrow$

$$
\Leftrightarrow \frac{1}{4} \sum \frac{4 b c}{b c} \geq 3 \Leftrightarrow 3 \geq 3 \text { true. }
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
Solution 3 by Tran Hong-Dong Thap-Vietnam

$$
m_{a}^{2}=\frac{2\left(b^{2}+c^{2}\right)-a^{2}}{4} ; l_{a}^{2}=\frac{4 b c s(s-a)}{(b+c)^{2}}
$$

We must show that: $\because \frac{m_{a}}{l_{a}} \geq 1+\left(\frac{b-c}{b+c}\right)^{2}=\frac{2\left(b^{2}+c^{2}\right)}{(b+c)^{2}} \Leftrightarrow \frac{m_{a}^{2}}{l_{a}^{2}} \geq \frac{4\left(b^{2}+c^{2}\right)^{2}}{(b+c)^{4}}$

$$
\begin{gathered}
\Leftrightarrow\left[\frac{2\left(b^{2}+c^{2}\right)-a^{2}}{4}\right]\left[\frac{(b+c)^{2}}{4 b c s(s-a)}\right] \geq \frac{4\left(b^{2}+c^{2}\right)^{2}}{(b+c)^{4}} \\
\Leftrightarrow\left[2\left(b^{2}+c^{2}\right)-a^{2}\right][b+c]^{6} \geq 64 b c s(s-a)\left(b^{2}+c^{2}\right)^{2} \\
\Leftrightarrow\left[2\left(b^{2}+c^{2}\right)-a^{2}\right](b+c)^{6} \geq 16 b c(a+b+c)(b+c-a)\left(b^{2}+c^{2}\right)^{2} \\
\Leftrightarrow(b-c)^{2}\left[\frac{a^{2}}{2}\left(b^{4}+c^{4}\right)+\left\{b^{6}+c^{6}-b^{2} c^{2}\left(b^{2}+c^{2}\right)\right\}+4 a^{2} b c\left(b^{2}+b c+c^{2}\right)\right] \geq 0
\end{gathered}
$$

It is true because: $(b-c)^{2} \geq 0$

$$
b^{6}+c^{6}-b^{2} c^{2}\left(b^{2}+c^{2}\right) \geq 0 \Leftrightarrow\left(b^{2}-c^{2}\right)^{2}\left(b^{2}+c^{2}\right) \geq 0
$$

$$
4 a^{2} b c\left(b^{2}+b c+c^{2}\right)+\frac{\left(b^{4}+c^{4}\right) a^{2}}{2}>0(a, b, c>0)
$$

Similarly: $\frac{m_{b}}{l_{b}} \geq 1+\left(\frac{a-c}{a+c}\right)^{2} ; \frac{m_{c}}{l_{c}} \geq 1+\left(\frac{a-b}{a+b}\right)^{2} \Rightarrow \sum \frac{m_{a}}{l_{a}} \geq 3+\sum\left(\frac{b-c}{b+c}\right)^{2}$ Proved.

$$
\text { Equality } \Leftrightarrow a=b=c
$$

Solution 4 by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
m_{a}^{2}-w_{a}^{2}=\frac{2 b^{2}+2 c^{2}-a^{2}}{4}-\frac{4 b^{2} c^{2}}{(b+c)^{2}} \cdot \frac{s(s-a)}{b c} \\
=\frac{2 b^{2}+2 c^{2}-a^{2}}{4}-\frac{b c\left[(b+c)^{2}-a^{2}\right]}{(b+c)^{2}}=\left(\frac{2 b^{2}+2 c^{2}}{4}-b c\right)+a^{2}\left[\frac{b c}{(b+c)^{2}}-\frac{1}{4}\right] \\
=\frac{2(b-c)^{2}}{4}-\frac{a^{2}(b-c)^{2}}{4(b+c)^{2}}=\frac{(b-c)^{2}}{4}\left\{2-\frac{a^{2}}{(b+c)^{2}}\right\} \stackrel{(1)}{=} \frac{(b-c)^{2}}{4}\left[\frac{2(b+c)^{2}-a^{2}}{(b+c)^{2}}\right] \\
\text { Now, } \frac{m_{a}}{w_{a}} \geq 1+\frac{(b-c)^{2}}{(b+c)^{2}}=\frac{2\left(b^{2}+c^{2}\right)}{(b+c)^{2}} \Leftrightarrow \frac{m_{a}^{2}}{w_{a}^{2}} \geq \frac{4\left(b^{2}+c^{2}\right)^{2}}{(b+c)^{4}} \\
\Leftrightarrow \frac{m_{a}^{2}-w_{a}^{2}}{w_{a}^{2}} \geq \frac{\left\{2\left(b^{2}+c^{2}\right)+(b+c)^{2}\right\}\left\{2\left(b^{2}+c^{2}\right)-(b+c)^{2}\right\}}{(b+c)^{4}} \\
\Leftrightarrow \frac{(b-c)^{2}}{4}\left[\frac{2(b+c)^{2}-a^{2}}{(b+c)^{2}}\right] \frac{(b+c)^{2}}{b c\left\{(b+c)^{2}-a^{2}\right\}} \geq \frac{2\left(b^{2}+c^{2}\right)+(b+c)^{2}}{(b+c)^{4}}(b-c)^{2}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\Leftrightarrow \frac{(b-c)^{2}}{4}\left[\frac{2(b+c)^{2}-a^{2}}{\left\{(b+c)^{2}-a^{2}\right\} b c}\right] \geq(b-c)^{2}\left[\frac{2\left(b^{2}+c^{2}\right)+(b+c)^{2}}{(b+c)^{4}}\right]
$$

$\because(b-c)^{2} \geq \mathbf{0} \therefore$ it suffices to prove: (in order to prove: $\frac{m_{a}}{w_{a}} \geq 1+\frac{(b-c)^{2}}{(b+c)^{2}}$)

$$
\begin{gathered}
\frac{2(b+c)^{2}-a^{2}}{4 b c\left\{(b+c)^{2}-a^{2}\right\}}>\frac{2\left(b^{2}+c^{2}\right)+(b+c)^{2}}{(b+c)^{4}} \\
\Leftrightarrow \frac{\left\{(b+\boldsymbol{c})^{2}-a^{2}\right\}+(b+c)^{2}}{4 b c\left\{(b+c)^{2}-a^{2}\right\}}>\frac{1}{(b+c)^{2}}+\frac{2\left(b^{2}+c^{2}\right)}{(b+c)^{4}} \\
\Leftrightarrow \\
{\left[\frac{1}{4 b c}-\frac{1}{(b+c)^{2}}\right]+\frac{(b+c)^{2}}{4 b c\left\{(b+c)^{2}-a^{2}\right\}}>\frac{2\left(b^{2}+c^{2}\right)}{(b+c)^{4}}} \\
\Leftrightarrow \\
\frac{(b-c)^{2}}{4 b c(b+c)^{2}}+\frac{(b+c)^{2}}{4 b c\left\{(b+c)^{2}-a^{2}\right\}}>\frac{(b+c)^{2}}{(b+c)^{4}}+\frac{(b-c)^{2}}{(b+c)^{4}}
\end{gathered}
$$

$$
\Leftrightarrow(b-c)^{2}\left[\frac{1}{4 b c(b+c)^{2}}-\frac{1}{(b+c)^{4}}\right]+(b+c)^{2}\left[\frac{1}{4 b c\left\{(b+c)^{2}-a^{2}\right\}}-\frac{1}{(b+c)^{4}}\right]>0
$$

$$
\Leftrightarrow(\boldsymbol{b}-\boldsymbol{c})^{2} \frac{(\boldsymbol{b}-\boldsymbol{c})^{2}}{4 \boldsymbol{b} \boldsymbol{c}(\boldsymbol{b}+\boldsymbol{c})^{4}}+(\boldsymbol{b}+\boldsymbol{c})^{2}\left[\frac{(\boldsymbol{b}+\boldsymbol{c})^{4}-4 \boldsymbol{b} \boldsymbol{c}\left\{(\boldsymbol{b}+\boldsymbol{c})^{2}-\boldsymbol{a}^{2}\right\}}{4 \boldsymbol{b} \boldsymbol{c}(\boldsymbol{b}+\boldsymbol{c})^{4}\left\{(\boldsymbol{b}+\boldsymbol{c})^{2}-\boldsymbol{a}^{2}\right\}}\right]>0
$$

$$
\Leftrightarrow \frac{(b-c)^{4}}{4 b c(b+c)^{4}}+(b+c)^{2}\left[\frac{(b+c)^{2}(b-c)^{2}+4 a^{2} b c}{4 b c(b+c)^{4}\left\{(b+c)^{2}-a^{2}\right\}}\right]>0 \rightarrow \text { true } \therefore \frac{m_{a}}{w_{a}} \stackrel{(a)}{\geq} 1+\frac{(b-c)^{2}}{(b+c)^{2}}
$$

Similarly, $\frac{m_{b}}{w_{b}} \stackrel{(b)}{\geq} 1+\frac{(c-a)^{2}}{(c+a)^{2}}$ and $\frac{m_{c}}{w_{c}} \stackrel{(c)}{\geq} 1+\frac{(a-b)^{2}}{(a+b)^{2}}$
(a) + (b) + (c) $\Rightarrow \sum \frac{m_{a}}{w_{a}} \geq 3+\sum \frac{(b-c)^{2}}{(b+c)^{2}}$ (Proved)

SP.203. Let a, b, c be positive real numbers such that:
$(a+b)(b+c)(c+a)=8$. Prove that:

$$
\frac{1}{a+b+c}+\frac{1}{a b+b c+c a} \geq \frac{2}{3}
$$

Proposed by Nguyen Viet Hung - Hanoi - Vietnam

Solution 1 by Tran Hong-Dong Thap-Vietnam

$$
\begin{gathered}
\text { Let } p=a+b+c ; q=a b+b c+c a ; r=a b c \Rightarrow(a+b)(b+c)(c+a)=p q-r=8 \\
\Rightarrow p q=8+r ; p q \geq 9 r \Rightarrow 8+r \geq 9 r \Rightarrow 0<r \leq 1
\end{gathered}
$$

$$
\begin{aligned}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
& \frac{\mathbf{1}}{\boldsymbol{a}+\boldsymbol{b}+\boldsymbol{c}}+\frac{\mathbf{1}}{\boldsymbol{a} b+\boldsymbol{b} \boldsymbol{c}+\boldsymbol{c} \boldsymbol{a}} \geq \frac{\mathbf{2}}{\mathbf{3}} \Leftrightarrow \mathbf{3}(\boldsymbol{p}+\boldsymbol{q}) \geq \mathbf{2 p m} \boldsymbol{q} \Leftrightarrow \mathbf{3}(\boldsymbol{p}+\boldsymbol{q}) \geq \mathbf{2}(\mathbf{8}+\boldsymbol{r}) \\
& \Leftrightarrow \mathbf{3}(\boldsymbol{p}+\boldsymbol{q})-\mathbf{2 r}-\mathbf{1 6} \geq \mathbf{0} \because \text { But: } \mathbf{3}(\boldsymbol{p}+\boldsymbol{q}) \stackrel{\text { cauchy }}{\geq} \mathbf{6} \sqrt{\boldsymbol{p} \boldsymbol{q}}=\mathbf{6} \sqrt{\mathbf{8}+\boldsymbol{r}}
\end{aligned}
$$

We must show that: $6 \sqrt{8+r}-2 r-16 \geq 0 \Leftrightarrow 3 \sqrt{8+r} \geq r+8 \Leftrightarrow$

$$
\Leftrightarrow 9(8+r) \geq(r+8)^{2} \Leftrightarrow r+8 \leq 9 \Leftrightarrow r \leq 1 \text { (true) Proved. }
$$

Solution 2 by Sanong Huayrerai-Nakon Pathom-Thailand
For $a, b, c>0$ and $(a+b)(b+c)(c+a)=a^{2} b+a^{2} c+b^{2} a+b^{2} c+c^{2} a+c^{2} b+$

$$
\begin{gathered}
+2 a b c=8 \Rightarrow a^{2} b+a^{2} c+b^{2} a+b^{2} c+c^{2} a+c^{2} b+3 a b c \leq 9: a b c \leq 1 \\
\Rightarrow(a+b+c)(a b+b c+c a) \leq 9 \Rightarrow \frac{1}{(a b+b c+c a)(a+b+c)} \geq \frac{1}{9} \\
\Rightarrow \sqrt{\frac{1}{(a+b+c)(a b+b c+c a)}} \geq \frac{1}{3} \Rightarrow 2 \sqrt{\frac{1}{(a+b+c)(a b+b c+c a)}} \geq \frac{2}{3} \\
\Rightarrow \frac{1}{(a+b+c)}+\frac{1}{a b+b c+c a}
\end{gathered} \frac{2}{3} \text { ok. Therefore, it is true. }
$$

SP.204. Let x, y, z be positive real numbers such that $x+y+z=3$. Prove that:

$$
\frac{x}{y^{2}+2 z}+\frac{y}{z^{2}+2 x}+\frac{z}{x^{2}+2 y} \geq 1
$$

Proposed by Nguyen Viet Hung - Hanoi - Vietnam
Solution 1 by Marian Ursărescu-Romania

$$
\begin{aligned}
& \frac{x}{y^{2}+2 z}+\frac{y}{z^{2}+2 x}+\frac{z}{x^{2}+2 y}=\frac{x^{2}}{x y^{2}+2 z x}+\frac{y^{2}}{y z^{2}+2 x y}+\frac{z^{2}}{x^{2} z+2 y z} \stackrel{\text { Bergstrom }}{\geq} \\
& \geq \frac{9}{x y^{2}+y z^{2}+z x^{2}+2(x y+y z+x z)}=\frac{\left(x y^{2}+y z^{2}+z x^{2}+2(x y+y z+x z)\right.}{} \Rightarrow
\end{aligned}
$$

We must show: $\frac{9}{x y^{2}+y z^{2}+z x^{2}+2(x y+y z+y z)} \geq 1 \Leftrightarrow$

$$
\begin{equation*}
\Leftrightarrow x y^{2}+y z^{2}+z x^{2}+2(x y+y z+y z) \leq 9 \tag{1}
\end{equation*}
$$

Because $x+y+z=3(x, y, z>0) \Rightarrow \exists a, b, c>0$ such that:

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\begin{equation*}
x=\frac{3 a}{a+b+c}, y=\frac{3 b}{a+b+c}, z=\frac{3 c}{a+b+c} \tag{2}
\end{equation*}
$$

From (1)+(2) \Rightarrow we must show: $\frac{27\left(a b^{2}+b c^{2}+c a^{2}\right)}{(a+b+c)^{3}}+\frac{2 \cdot 9(a b+b c+a c)}{(a+b+c)^{2}} \leq 9 \Leftrightarrow$

$$
\begin{gathered}
\Leftrightarrow(a+b+c)^{3} \geq 3\left(a b^{2}+b c^{2}+c a^{2}\right)+2(a+b+c)(a b+b c+a c) \Leftrightarrow \\
\left.\begin{array}{r}
\Leftrightarrow a^{3}+b^{3}+c^{3}+3 a^{2} b+3 a b^{2}+3 a^{2} c+3 a c^{2}+3 b^{2} c+3 b c^{2}+6 a b c \geq \\
\geq 3 a b^{2}+3 b c^{2}+3 c a^{2}+2 a^{2} b+2 a b c+2 a^{2} c+2 a b^{2}+2 b^{2} c+ \\
+2 a b c+2 a b c+2 b c^{2}+2 a c^{2} \Leftrightarrow \\
\Leftrightarrow a^{2}+b^{3}+c^{3}+a^{2} b+a c^{2}+b^{2} c \geq 2 a b^{2}+2 a^{2} c+2 b c^{2}(3) \\
a^{3}+a c^{2}=a\left(a^{2}+c^{2}\right) \geq 2 a^{2} c \\
B u t b^{3}+a^{2} b=b\left(b^{2}+a^{2}\right) \geq 2 a b^{2} \\
c^{3}+b^{2} c=c\left(c^{2}+b^{2}\right) \geq 2 b c^{2}
\end{array}\right\} \Rightarrow \\
\Rightarrow a^{3}+b^{3}+c^{3}+a c^{2}+a^{2} b+b^{2} c \geq 2\left(a^{2} c+a b^{2}+b c^{2}\right) \Rightarrow(3) \text { is true. }
\end{gathered}
$$

Solution 2 by Sanong Huayrerai-Nakon Pathom-Thailand

For $x+y+z=3, x, y, z>0$ we have: $x^{2}+y^{2}+z^{2} \geq x y^{2}+y z^{2}+z x^{2}$

$$
\begin{gathered}
\Rightarrow(x+y+z)^{2} \geq x y^{2}+y z^{2}+z x^{2}+2(x y+y z+z x) \\
\Rightarrow \frac{(x+y+z)^{2}}{\left(x y^{2}+2 x z\right)+\left(y z^{2}+2 x y\right)+\left(z x^{2}+2 y z\right)} \geq 1 \Rightarrow \frac{x}{y^{2}+2 z}+\frac{y}{z^{2}+2 x}+\frac{z}{x^{2}+2 y} \geq 1
\end{gathered}
$$

Therefore, it is true. Remark: Because $(x+y+z)(x-z x)+(y-x y)+(z-y z)=$

$$
=3[(x-z x)+(y-x y)+(z-y z)] \geq 0
$$

Hence $x(x-z x)+y(y-x y)+z(z-y z) \geq 0$. That is $x^{2}+y^{2}+z^{2} \geq x^{2} z+z^{2} y+y^{2} x$
Prove that: $x^{2}+y^{2}+z^{2} \geq x y^{2}+y z^{2}+z x^{2}, x+y+z=3, x, y, z>0$

$$
\begin{gathered}
\text { Proof: give } x=\frac{3 a}{a+b+c}, y=\frac{3 b}{a+b+c}, z=\frac{3 c}{a+b+c} \\
x^{2}+y^{2}+z^{2} \geq x y^{2}+y z^{2}+z x^{2} \leftrightarrow \frac{x}{y z}+\frac{y}{z x}+\frac{z}{x y} \geq \frac{x}{y}+\frac{y}{z}+\frac{z}{x} \\
\leftrightarrow \frac{a(a+b+c)}{3 b c}+\frac{b(a+b+c)}{3 c a}+\frac{c(a+b+c)}{3 a b} \geq \frac{a}{b}+\frac{b}{c}+\frac{c}{a} \\
\leftrightarrow \frac{1}{3}\left[\frac{a^{2}}{b c}+\frac{b^{2}}{c a}+\frac{c^{2}}{a b}+\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{a}{c}+\frac{c}{b}+\frac{b}{a}\right] \geq \frac{a}{b}+\frac{b}{c}+\frac{c}{a} \\
\leftrightarrow \frac{1}{3}\left[\left(\frac{a^{2}}{b c}+\frac{c}{b}\right)+\left(\frac{b^{2}}{c a}+\frac{a}{c}\right)+\left(\frac{c^{2}}{a b}+\frac{b}{a}\right)+\frac{a}{b}+\frac{b}{c}+\frac{c}{b}\right] \geq \frac{a}{b}+\frac{b}{c}+\frac{c}{a}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

 www.ssmrmh.ro$$
\leftrightarrow \frac{1}{3}\left[2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)+\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right] \geq \frac{a}{b}+\frac{b}{c}+\frac{c}{a} \leftrightarrow \frac{1}{3}\left[3\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\right]=\frac{a}{b}+\frac{b}{c}+\frac{c}{a} \mathbf{o k}
$$

Therefore, it is true.
SP.205. In $\Delta A B C, n_{a}, n_{b}, n_{c}$ are lenght's of Nagel's cevians. Prove that:

$$
\begin{gathered}
n_{a} n_{b} n_{c} \geq r_{a} r_{b} r_{c} \\
r_{a}, r_{b}, r_{c} \text { - exradii of triangle. }
\end{gathered}
$$

Proposed by Daniel Sitaru-Romania
Solution by proposer
Lemma 1 (Tarek's lemma)

$$
\begin{equation*}
\text { In } \triangle A B C: n_{a} \geq m_{a} \tag{1}
\end{equation*}
$$

Proof:

Let $A D$ be the Nagel's cevian of $A ; A D=n_{a}$ By Stewart's theorem in $\triangle A B C$:

$$
\begin{gathered}
a \cdot n_{a}^{2}=c^{2}(s-b)+b^{2}(s-c)-a(s-b)(s-c) \\
n_{a}^{2}=\frac{c^{2}(s-b)+b^{2}(s-c)}{a}-(s-b)(s-c) \\
n_{a} \geq m_{a} \Leftrightarrow n_{a}^{2} \geq m_{a}^{2} \\
\frac{c^{2}(s-b)+b^{2}(s-c)}{a}-(s-b)(s-c) \geq \frac{2\left(b^{2}+c^{2}\right)-a^{2}}{4} \\
\frac{c^{2}(a+c-b)+b^{2}(a+b-c)}{2 a} \geq \frac{(a+b-c)(a+c-b)+2\left(b^{2}+c^{2}\right)-a^{2}}{4} \\
\frac{c^{2}(a+c-b)+b^{2}(a+b-c)}{2 a} \geq \frac{b^{2}+c^{2}+2 b c}{4} \\
2\left(c^{2} a+c^{3}-b c^{2}+b^{2} a+b^{3}-b^{2} c\right) \geq a\left(b^{2}+c^{2}+2 b c\right) \\
2 c^{2} a+2 c^{3}-2 b c^{2}+2 b^{2} a+2 b^{3}-2 b^{2} c-a b^{2}-a c^{2}-2 a b c \geq 0
\end{gathered}
$$

$$
\begin{aligned}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
& \text { www.ssmrmh.ro } \\
& \boldsymbol{a} \boldsymbol{b}^{2}+\boldsymbol{a} \boldsymbol{c}^{2}+\mathbf{2} \boldsymbol{c}^{3}+\mathbf{2} \boldsymbol{b}^{3}-\mathbf{2} \boldsymbol{b} \boldsymbol{c}^{2}-\mathbf{2} \boldsymbol{b}^{2} \boldsymbol{c}-\mathbf{2 a b c} \geq \mathbf{0} \\
& \mathbf{2 \boldsymbol { c } ^ { 2 } (\boldsymbol { c } - \boldsymbol { b }) - \mathbf { 2 } \boldsymbol { b } ^ { 2 } (\boldsymbol { c } - \boldsymbol { b }) + \boldsymbol { a c } (\boldsymbol { c } - \boldsymbol { b }) - \boldsymbol { a b } (\boldsymbol { c } - \boldsymbol { b }) \geq \mathbf { 0 }} \\
& (\boldsymbol{c}-\boldsymbol{b})\left[\mathbf{2} \boldsymbol{c}^{2}-\mathbf{2} \boldsymbol{b}^{2}+\boldsymbol{a}(\boldsymbol{c}-\boldsymbol{b})\right] \geq \mathbf{0} \\
& (\boldsymbol{c}-\boldsymbol{b})^{2}(\mathbf{2} \boldsymbol{c}+\mathbf{2} \boldsymbol{b}+\boldsymbol{a}) \geq \mathbf{0} \text { which is true. }
\end{aligned}
$$

Lemma 2.

$$
\text { In } \triangle A B C: m_{a} \geq \sqrt{s(s-a)}
$$

Proof:

$$
\begin{gathered}
m_{a} \geq \sqrt{s(s-a)} \Leftrightarrow m_{a}^{2} \geq s(s-a) \\
\frac{2\left(b^{2}+c^{2}\right)-a^{2}}{4} \geq \frac{(a+b+c)(b+c-a)}{4} \\
2 b^{2}+2 c^{2}-a^{2} \geq(b+c)^{2}-a^{2} \\
b^{2}+c^{2}-2 b c \geq 0 \Leftrightarrow(b-c)^{2} \geq 0
\end{gathered}
$$

Back to the problem:

$$
\begin{gathered}
n_{a} n_{b} n_{c} \stackrel{\text { Lemma } 1}{\geq} m_{a} m_{b} m_{c} \stackrel{\text { Lemma } 2}{\geq} \sqrt{s(s-a)} \cdot \sqrt{s(s-b)} \cdot \sqrt{s(s-c)}= \\
=s \sqrt{s(s-b)(s-c)(s-a)}=s S=\frac{s S^{3}}{s^{2}}=\frac{s}{s(s-a)(s-b)(s-c)} \cdot S^{3}= \\
=\frac{S^{3}}{(s-a)(s-b)(s-c)}=\frac{S}{s-a} \cdot \frac{S}{s-b} \cdot \frac{S}{s-c}=r_{a} r_{b} r_{c}
\end{gathered}
$$

SP.206. Prove that in any $A B C$ triangle the following inequality holds:

$$
-2 R^{2}+17 r^{2} \leq \sum m_{a}^{2} \tan ^{2} \frac{A}{2} \leq \frac{6}{R}\left(R^{3}-5 r^{3}\right)
$$

Proposed by Marin Chirciu - Romania
Solution 1 by Marian Ursărescu-Romania
We have: $m_{a} \geq \sqrt{s(s-a)} \Rightarrow$
$\sum m_{a}^{2} \tan ^{2} \frac{A}{2} \geq \sum s(s-a) \cdot \frac{(s-b)(s-c)}{s(s-a)}=\sum(s-b)(s-c)=4 R r+r^{2} \Rightarrow$ we must show: $4 R r+r^{2} \geq-2 R^{2}+17 r^{2} \Leftrightarrow 2 R^{2}+4 R r \geq 16 r^{2} \Leftrightarrow R^{2}+2 R r \geq 8 r^{2}$, which is true, because: $R^{2} \geq 4 r^{2}$ and $2 R r \geq 4 r^{2} \Rightarrow R^{2}+2 R r \geq 8 r^{2}$. We have: $m_{a} \leq 2 R \cos ^{2} \frac{A}{2} \Rightarrow$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\begin{gather*}
\sum m_{a}^{2} \tan ^{2} \frac{A}{2} \leq \sum 4 R^{2} \cos ^{4} \frac{A}{2} \cdot \frac{\sin ^{2} \frac{A}{2}}{\cos ^{2} \frac{A}{2}}=\sum R^{2} \cdot 4 \sin ^{2} \frac{A}{2} \cdot \cos ^{2} \frac{A}{2}= \\
=R^{2} \cdot \sum \sin ^{2} A=R^{2} \sum \frac{a^{2}}{4 R^{2}}=\frac{1}{4}\left(a^{2}+b^{2}+c^{2}\right) \quad \text { (1) } \tag{1}\\
\text { But } a^{2}+b^{2}+c^{2} \leq 9 R^{2} \text { (2) } \tag{2}
\end{gather*}
$$

From (1)+(2) $\Rightarrow \sum m_{a}^{2} \tan ^{2} \frac{A}{2} \leq \frac{9}{4} R^{2} \Rightarrow$ we must show:
$\frac{9}{4} R^{2} \leq \frac{6}{R}\left(R^{3}-5 r^{3}\right) \Leftrightarrow 3 R^{3} \leq 8 R^{3}-40 r^{3} \Leftrightarrow 40 r^{3} \leq 5 R^{3} \Leftrightarrow 8 r^{3} \leq R^{3} \Leftrightarrow 2 r \leq R$ true

Solution 2 by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
& \text { Firstly, } \sum \sec ^{2} \frac{A}{2}=\sum \frac{b c(s-b)(s-c)}{s(s-a)(s-b)(s-c)}=\frac{\sum b c\left(s^{2}-s(b+c)+b c\right)}{r^{2} s^{2}}= \\
& =\frac{s^{2} \sum a b-s \sum a b(2 s-c)+\left(\sum a b\right)^{2}-2 a b c(2 s)}{r^{2} s^{2}} \\
& =\frac{-s^{2}\left(\sum a b\right)+\left(\sum a b\right)^{2}-4 R r s^{2}}{r^{2} s^{2}}=\frac{\left(s^{2}+4 R r+r^{2}\right)\left(4 R r+r^{2}\right)-4 R r s^{2}}{r^{2} s^{2}} \\
& =\frac{s^{2} r^{2}+r^{2}(4 R+r)^{2}}{r^{2} s^{2}} \stackrel{(i)}{=} 1+\frac{(4 R+r)^{2}}{s^{2}} \text {. Now, } \sum m_{a}^{2} \sec ^{2} \frac{A}{2}=\frac{1}{4} \sum\left(2 b^{2}+2 c^{2}+2 a^{2}-3 a^{2}\right) \sec ^{2} \frac{A}{2} \\
& =\left(\frac{2 \sum a^{2}}{4}\right)\left(\sum \sec ^{2} \frac{A}{2}\right)-\frac{3}{4} \sum a^{2} \frac{b c}{s(s-a)} \\
& \stackrel{b y(i)}{=}\left(s^{2}-4 R r-r^{2}\right)\left\{1+\frac{(4 R+r)^{2}}{s^{2}}\right\}-\frac{3}{4 s} \cdot 4 R r s \sum \frac{a}{s-a} \\
& =s^{2}-4 R r-r^{2}+\frac{\left(s^{2}-4 R r-r^{2}\right)(4 R+r)^{2}}{s^{2}}-3 R r \sum\left(\frac{a-s}{s-a}+\frac{s(s-b)(s-c)}{s r^{2}}\right) \\
& =s^{2}-4 R r-r^{2}+\frac{\left(s^{2}-4 R r-r^{2}\right)(4 R+r)^{2}}{s^{2}}-3 R r\left(-3+\frac{\sum\left(s^{2}-s(b+c)+b c\right)}{r^{2}}\right) \\
& =s^{2}-4 R r-r^{2}+\frac{\left(s^{2}-4 R r-r^{2}\right)(4 R+r)^{2}}{s^{2}}-3 R r\left(-3+\frac{3 s^{2}-4 s^{2}+s^{2}+4 R r+r^{2}}{r^{2}}\right) \\
& \stackrel{(i i)}{=} s^{2}-4 R r-r^{2}+\frac{\left(s^{2}-4 R r-r^{2}\right)(4 R+r)^{2}}{s^{2}}-3 R r\left(\frac{4 R-2 r}{r}\right)
\end{aligned}
$$

Now, $\sum m_{a}^{2} \tan ^{2} \frac{A}{2}=\sum m_{a}^{2} \sec ^{2} \frac{A}{2}-\sum m_{a}^{2}=s^{2}-4 R r-r^{2}+\frac{\left(s^{2}-4 R r-r^{2}\right)(4 R r+r)^{2}}{s^{2}}-$

$$
-3 R(4 R-2 r)-\frac{3}{4} \cdot 2\left(s^{2}-4 R r-r^{2}\right) \leq \frac{6}{R}\left(R^{3}-5 r^{3}\right) \Leftrightarrow
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\begin{gathered}
\Leftrightarrow \frac{s^{2}-4 R r-r^{2}}{2}+3 R(4 R-2 r)+\frac{6}{R}\left(R^{3}-5 r^{2}\right) \geq \frac{\left(s^{2}-4 R r-r^{2}\right)(4 R r+r)^{2}}{s^{2}} \Leftrightarrow \\
\Leftrightarrow R s^{4}-R s^{2}\left(4 R r+r^{2}\right)+s^{2}\left(12 R^{3}-60 r^{3}+6 R^{2}(4 R-2 r)-2 R(4 R+r)^{2}\right)+ \\
+2 R r(4 R+r)^{3} \stackrel{(1)}{\geq} 0 . \text { Now, LHS of (1) } \stackrel{\text { Gerretsen }}{\geq} R s^{2}\left(12 R r-6 r^{2}\right)+ \\
+s^{2}\left(12 R^{3}-60 r^{3}+6 R^{2}(4 R-2 r)-2 R(4 R+r)^{2}\right)+2 R r(4 R+r)^{3}= \\
=s^{2}\left(4 R^{3}-16 R^{2} r-8 R r^{2}-60 r^{3}\right)+2 R r(4 R+r)^{3} \geq 0 \\
\Leftrightarrow s^{2}(R-2 r)\left(4 R^{2}-8 R r\right)+2 R r(4 R+r)^{3} \underset{(2)}{\geq} s^{2}\left(24 R r^{2}+60 r^{3}\right)
\end{gathered}
$$

Now, LHS of (2) $\underset{(\bar{a})}{\substack{\text { Gerretsen }}}\left(16 R r-5 r^{2}\right)(R-2 r)\left(4 R^{2}-8 R r\right)+2 R r(4 R+r)^{3}$ and RHS of (2) $\underset{(\bar{b})}{\substack{\text { Gerretsen }}}\left(4 R^{2}+4 R r+3 r^{2}\right)\left(24 R r^{2}+60 r^{3}\right)$
(a), (b) \Rightarrow in order to prove (2), it suffices to prove:

$$
\begin{gathered}
(16 R-5 r)(R-2 r)\left(4 R^{2}-8 R r\right)+2 R(4 R+r)^{3} \geq\left(4 R^{2}+4 R r+3 r^{2}\right)\left(24 R r+60 r^{2}\right) \\
\Leftrightarrow 96 t^{4}-138 t^{3}+12 t^{2}-195 t-90 \geq 0\left(t=\frac{R}{r}\right) \\
\Leftrightarrow(t-2)\left(96 t^{3}+54 t^{2}+120 t+45\right) \geq 0 \rightarrow \text { true } \because t \stackrel{\text { Euler }}{\geq} 2 \\
\Rightarrow(2) \Rightarrow(1) \Rightarrow \sum m_{a}^{2} \tan ^{2} \frac{A}{2} \leq \frac{6}{R}\left(R^{3}-5 r^{3}\right) \text { is true. } \\
\text { Again, } \sum m_{a}^{2} \tan ^{2} \frac{A}{2} \stackrel{m_{a}^{2} \geq s(s-a), \text { etc }}{\geq} \sum s(s-a) \frac{(s-b)(s-c)}{s(s-a)} \\
=\sum\left\{s^{2}-s(b+c)+b c\right\}=3 s^{2}-4 s^{2}+s^{2}+4 R r+r^{2} \geq-2 R^{2}+17 r^{2} \\
\Leftrightarrow 2 R^{2}+4 R r-16 r^{2} \geq 0 \Leftrightarrow(R-2 r)(R+4 r) \geq 0 \rightarrow \text { true } \because t \stackrel{\text { Euler }}{\geq} 2 r \Rightarrow \\
\Rightarrow \sum m_{a}^{2} \tan ^{2} \frac{A}{2} \geq-2 R^{2}+17 r^{2} \text { (proved) }
\end{gathered}
$$

Solution 3 by Tran Hong-Dong Thap-Vietnam

$$
\begin{aligned}
m_{a} & \geq \frac{b+c}{2} \cos \frac{A}{2} \Rightarrow m_{a}^{2} \geq \frac{(b+c)^{2}}{4} \cdot \cos ^{2} \frac{A}{2} \geq b c \cos ^{2} \frac{A}{2} \\
& \Rightarrow m_{a}^{2} \tan ^{2} \frac{A}{2} \geq b c \cdot \frac{\sin ^{2} \frac{A}{2}}{\cos ^{2} \frac{A}{2}} \cdot \cos ^{2} \frac{A}{2}=b c \sin ^{2} \frac{A}{2} \text { (etc) }
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\begin{aligned}
& \Rightarrow \sum\left(m_{a}^{2} \tan ^{2} \frac{A}{2}\right)^{A M-G M} \geq \sqrt[3]{(a b c)^{2}\left(\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}\right)^{2}} \\
& =3 \sqrt[3]{(4 R r s)^{2}\left(\frac{r}{4 R}\right)^{2}}=3 \sqrt[3]{s^{2} r^{4}} \geq 3 \sqrt[3]{(3 \sqrt{3} r)^{2} r^{4}}=9 r^{2}
\end{aligned}
$$

We must show that: $9 r^{2} \geq-2 R^{2}+17 r^{2} \Leftrightarrow 2 R^{2} \geq 8 r^{2} \Leftrightarrow R \geq 2 r$ (true).

$$
\begin{gathered}
\text { Suppose: } A \leq B \leq C \Rightarrow a \leq b \leq c \Rightarrow\left\{\begin{array}{c}
m_{a} \geq m_{b} \geq m_{c} \\
\tan ^{2} \frac{A}{2} \leq \tan ^{2} \frac{B}{2} \leq \tan ^{2} \frac{C}{2}
\end{array}\right. \\
\Rightarrow \sum m_{a}^{2} \tan ^{2} \frac{A}{2} \leq \frac{1}{3}\left(m_{a}^{2}+m_{b}^{2}+m_{c}^{2}\right)\left(\tan ^{2} \frac{A}{2}+\tan ^{2} \frac{B}{2}+\tan ^{2} \frac{C}{2}\right) \\
=\frac{1}{3} \cdot \frac{3}{4} \cdot\left(a^{2}+b^{2}+c^{2}\right)\left(\tan ^{2} \frac{A}{2}+\tan ^{2} \frac{B}{2}+\tan ^{2} \frac{C}{2}\right) \leq \frac{9 R^{2}}{4} \cdot \frac{(4 R+r)^{2}-2 s^{2}}{s^{2}} \leq \frac{6}{R}\left(R^{3}-5 r^{3}\right) \\
(2) \Leftrightarrow \frac{3\left[(4+t)^{2}-2 s^{2}\right]}{4 s^{2}} \leq 2\left[1-5 t^{3}\right]\left(t=\frac{r}{R}, \frac{2}{5} \leq t \leq \frac{1}{2}\right) \Leftrightarrow 3(4+t)^{2} \leq \frac{s^{2}}{R^{2}}\left(14-40 t^{3}\right) \\
\because s^{2} \geq 16 R r-5 r^{2} \Rightarrow \frac{s^{2}}{R^{2}} \geq 16 \cdot \frac{r}{R}-5\left(\frac{r}{R}\right)^{2}=16 t-5 t^{2} . \text { So, we must show that: }
\end{gathered}
$$

$$
3(4+t)^{2} \leq\left(16 t-5 t^{2}\right)\left(14-40 t^{3}\right) \Leftrightarrow\left(t-\frac{1}{2}\right)\left(\frac{12}{25}+\frac{26}{25} x+\frac{27}{20} x^{2}+\frac{27}{10} x^{3}-x^{4}\right) \leq 0
$$

$$
\text { It is true because: } \frac{2}{5} \leq t \leq \frac{1}{2} \Rightarrow\left\{\begin{array}{c}
t-\frac{1}{2} \leq 0 \\
\frac{12}{25}+\frac{26}{25} x+\frac{27}{20} x^{2}+\frac{27}{10} x^{3}-x^{4} \geq \frac{803}{625}-\frac{1}{16}>1>0
\end{array}\right.
$$

$$
\Rightarrow(2) \text { true. Proved. }
$$

Solution 4 by Soumitra Mandal-Chandar Nagore-India

$$
\begin{gathered}
s^{2} \leq 4 R^{2}+4 R r+3 r^{2}, a b+b c+c a=s^{2}+r^{2}+4 R r \\
\text { and } 4 m_{a}^{2}=2 b^{2}+2 c^{2}-a^{2}=2 b c+b^{2}+c^{2} \text { where } \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c} \\
\therefore \frac{b^{2}+c^{2}}{2} \cos ^{2} \frac{A}{2} \geq m_{a}^{2} \geq b c \cos ^{2} \frac{A}{2} \Rightarrow \frac{b^{2}+c^{2}}{2} \sin ^{2} \frac{A}{2} \geq m_{a}^{2} \geq b c \sin ^{2} \frac{A}{2} \\
\Rightarrow \sum_{c y c} \frac{b^{2}+c^{2}}{2} \sin ^{2} \frac{A}{2} \geq \sum_{c y c} m_{a}^{2} \tan ^{2} \frac{A}{2} \geq \sum_{c y c} b c \sin ^{2} \frac{A}{2} \\
\Rightarrow \frac{1}{3}\left(\sum_{c y c} \frac{b^{2}+c^{2}}{2}\right)\left(\sum_{c y c} \sin ^{2} \frac{A}{2}\right) \frac{\substack{\text { CHEBYSHEV'S} \\
I N E Q U A L I T Y}}{\geq} \sum_{c y c} \frac{b^{2}+c^{2}}{2} \sin ^{2} \frac{A}{2} \geq \sum_{c y c} m_{a}^{2} \tan ^{2} \frac{A}{2} \geq \sum_{c y c} b c \sin ^{2} \frac{A}{2}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro
$\left[\right.$ let $b^{2}+c^{2} \geq c^{2}+a^{2} \geq a^{2}+b^{2}$ then $\left.\sin ^{2} \frac{A}{2} \leq \sin ^{2} \frac{B}{2} \leq \sin ^{2} \frac{C}{2}\right]$

$$
\Rightarrow \frac{2}{3}\left(s^{2}-r^{2}-4 R r\right)\left(\sum_{c y c} \frac{(s-b)(s-c)}{b c}\right) \geq \sum_{c y c} m_{a}^{2} \tan ^{2} \frac{A}{2} \geq \sum_{c y c}(s-a)(s-b)
$$

$$
\Rightarrow \frac{2}{3}\left(s^{2}-r^{2}-4 R r\right) \cdot \frac{1}{4 R r s} \cdot\left(\sum_{c y c} a(s-b)(s-c)\right) \geq \sum_{c y c} m_{a}^{2} \tan ^{2} \frac{A}{2} \geq r^{2}+4 R r
$$

$$
\Rightarrow \frac{2}{3}\left(4 R^{2}+2 r^{2}\right) \frac{1}{4 R r s}\left(4 R r s-2 s r^{2}\right) \geq \sum_{c y c} m_{a}^{2} \tan ^{2} \frac{A}{2} \geq r^{2}+4 R r
$$

$$
\Leftrightarrow \frac{\left(4 R^{2}+2 r^{2}\right)}{3 R}(2 R-r) \geq \sum_{c y c} m_{a}^{2} \tan ^{2} \frac{A}{2} \geq r^{2}+4 R r \text { we need to prove, }
$$

$$
\frac{6}{R}\left(R^{3}-5 r^{3}\right) \geq \frac{2}{3 R}\left(2 R^{2}+r^{2}\right)(2 R-r) \text { and } r^{2}+4 R r \geq 17 r^{2}-2 R^{2}
$$

$$
\Rightarrow 5 R^{3}+2 R^{2} r-2 R r^{2}-44 r^{3} \geq 0 \text { and } R^{2}+2 R r-8 r^{2} \geq 0
$$

$$
\Rightarrow 5 t^{3}+2 t^{2}-2 t-44 \geq 0, \text { where } t=\frac{R}{r} \geq 2 \text { and }(R-2 r)(R+4 r) \geq 0
$$

$\Rightarrow(t-2)\left(5 t^{2}+12 t+22\right) \geq 0$ and $(R-2 r)(R+4 r) \geq 0$, which are both true

$$
\therefore 17 r^{2}-2 R^{2} \leq \sum_{c y c} m_{a}^{2} \tan ^{2} \frac{A}{2} \leq \frac{6}{R}\left(R^{3}-5 r^{3}\right)(\text { proved })
$$

SP.207. Prove that in any $A B C$ triangle the following inequality holds:

$$
9\left(8 R^{2}-23 r^{2}\right) \leq \sum m_{a}^{2} \cot ^{2} \frac{A}{2} \leq \frac{81 R}{32 r^{2}}\left(13 R^{3}-88 r^{3}\right)
$$

Proposed by Marin Chirciu - Romania
Solution by Tran Hong-Dong Thap-Vietnam

$$
\begin{aligned}
& \sum m_{a}^{2} \csc ^{2} \frac{A}{2} \leq \frac{4}{r^{2}}\left(4 R^{4}-37 r^{4}\right) \Leftrightarrow \sum m_{a}^{2}\left(\csc ^{2} \frac{A}{2}-1\right) \leq \frac{4}{r^{2}}\left(4 R^{4}-37 r^{4}\right)-\sum m_{a}^{2} \\
& \sum m_{a}^{2} \cdot \cot ^{2} \frac{A}{2} \leq \frac{4}{r^{2}}\left(4 R^{4}-37 r^{4}\right)-\frac{3}{4} \sum a^{2} \\
& \Leftrightarrow \sum m_{a}^{2} \cot ^{2} \frac{A}{2} \leq \frac{4}{r^{2}}\left(4 R^{4}-37 r^{4}\right)-\frac{3}{4}\left(2 s^{2}-8 R r-2 r^{2}\right)= \\
&=\frac{16 R^{4}}{r^{2}}-\frac{3}{2} s^{2}+6 R r-\frac{293}{2} r^{2} \stackrel{(1)}{\leq} \frac{81 R}{32 r^{2}}\left(13 R^{3}-88 r^{3}\right)
\end{aligned}
$$

> ROMANIAN MATHEMATICAL MAGAZINE $\begin{gathered}\text { (1) } \Leftrightarrow \frac{915}{4} \boldsymbol{R} r-\frac{293}{2} r^{2} \leq \frac{541}{32} \cdot \frac{R^{4}}{r^{2}}+\frac{3}{2} s^{2} \Leftrightarrow \frac{915}{4} \cdot \frac{R}{r}-\frac{293}{2} \leq \frac{541}{32}\left(\frac{R}{r}\right)^{4}+\frac{3}{2} \cdot \frac{s^{2}}{r^{2}} \\ \because s^{2} \geq 16 R r-5 r^{2} \Rightarrow \frac{s^{2}}{r^{2}} \geq \mathbf{1 6} \cdot \frac{R}{r}-5 . \text { Let } t=\frac{R}{r}(t \geq 2)\end{gathered}$

We show that: $\frac{915}{4} t-\frac{293}{2} \leq \frac{541}{32} t^{4}+\frac{3}{2}(16 t-5)$
$\Leftrightarrow \frac{541}{32} t^{4}-\frac{819}{4} t+154 \geq 0 \Leftrightarrow \frac{1}{32}\left(541 t^{4}-6552 t+4928\right) \geq 0$
(It is true because: Let $f(t)=541 t^{4}-655 t+4928$

$$
\Rightarrow f^{\prime}(t)=4 \cdot 541 t^{3}-655=0 \Leftrightarrow t=\sqrt[3]{\frac{655}{4 \cdot 541}}
$$

$$
\Rightarrow \boldsymbol{f}^{\prime}(\boldsymbol{t})>0 \forall t>\sqrt[3]{\frac{655}{4 \cdot 541}} \Rightarrow \boldsymbol{f}(\boldsymbol{t}) \geq \boldsymbol{f}(2)=12274>0 . \text { Hence, (1) true. }
$$

$$
\Rightarrow \sum m_{a}^{2} \cot ^{2} \frac{A}{2}=\sum m_{a}^{2} \csc ^{2} \frac{A}{2}-\sum m_{a}^{2}=\Omega
$$

$$
\sum m_{a}^{2} \frac{b c(s-a)}{r^{2} s}=\sum \frac{b c m_{a}^{2}}{r^{2}}-\frac{4 R r s}{r^{2} s} \cdot \frac{3}{4} \cdot 2\left(s^{2}-4 R r-r^{2}\right)
$$

$$
=\frac{\sum b c\left(2 b^{2}+2 c^{2}+2 a^{2}-3 a^{2}\right)}{4 r^{2}}-\frac{6 R r\left(s^{2}-4 R r-r^{2}\right)}{r^{2}}
$$

$$
=\frac{2\left(\sum a^{2}\right)\left(\sum a b\right)-3 \cdot 4 R r s(2 s)}{4 r^{2}}-\frac{6 R r\left(s^{2}-4 R r-r^{2}\right)}{r^{2}}
$$

$$
=\frac{4\left(s^{2}+4 R r+r^{2}\right)\left(s^{2}-4 R r-r^{2}\right)-24 R r s^{2}}{4 r^{2}}-\frac{6 R r\left(s^{2}-4 R r-r^{2}\right)}{r^{2}}
$$

$$
=\frac{s^{4}-12 R r s^{2}+r^{2}(4 R+r)(2 R-r)}{r^{2}}
$$

$$
\sum m_{a}^{2}=\frac{3}{4} \sum a^{2}=\frac{3}{4} \cdot 2\left(s^{2}-4 R r-r^{2}\right)=\frac{3}{2}\left(s^{2}-4 R r-r^{2}\right)
$$

$$
\Rightarrow \Omega=\frac{s^{4}-12 R r s^{2}+r^{2}(4 R r+r)(2 R-r)}{r^{2}}-\frac{3}{2}\left(s^{2}-4 R r-r^{2}\right)
$$

$$
=\frac{2 s^{4}-24 R r s^{2}+2 r^{2}(4 R+r)(2 R-r)-3 r^{2} s^{2}+12 R r^{3}+3 r^{4}}{2 r^{2}}
$$

We must show that:

$$
\begin{gathered}
2 s^{4}-24 R r s^{2}+2 r^{2}(4 R+r)(2 R-r)-3 r^{2} s^{2}+12 R r^{3}+3 r^{4} \geq 2 r^{2}\left(72 R^{2}-207 r^{2}\right) \\
\Leftrightarrow s^{2}\left(2 s^{2}-24 R r-3 r^{2}\right)+2 r^{2}\left(8 R^{2}-2 R r-r^{2}\right)+12 R r^{3}+
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
$+3 r^{4} \geq 144 R^{2} r^{2}-414 r^{4} \Leftrightarrow s^{2}\left(2 s^{2}-24 R r-3 r^{2}\right)+8 R r^{3} \geq 128 R^{2} r^{2}-415 r^{4}$
$\therefore s^{2}\left(2 s^{2}-24 R r-3 r^{2}\right) \geq\left(16 R r-5 r^{2}\right)\left(8 R r-13 r^{2}\right)=r^{2}(16 R-5 r)(8 R-13 r)$
We need to prove: $128 R^{2}-415 r^{2} \geq 128 R^{2}-248 R r+65 r^{2} \Leftrightarrow 248 R r \geq 480 r^{2}$

$$
\Leftrightarrow R>\frac{60}{31} r \text {. (True because: } R \geq 2 r>\frac{60}{31} r \text {). Proved. }
$$

SP.208. Prove that in any $A B C$ triangle the following inequality holds:

$$
\begin{aligned}
& 36 r^{2} \leq \sum m_{a}^{2} \sec ^{2} \frac{A}{2} \leq 9 R^{2} \\
& \quad \text { Proposed by M arin Chirciu - Romania }
\end{aligned}
$$

Solution 1 by Tran Hong - Dong Thap - Vietnam

$$
\begin{gathered}
\text { Let } \Omega=\sum m_{a}^{2} \sec ^{2} \frac{A}{2}=\sum \frac{m_{a}^{2}}{\cos ^{2} \frac{A}{2}} \\
m_{a} \geq \frac{b+c}{2} \cdot \cos \frac{A}{2}(\mathrm{etc}) \Rightarrow \Omega \geq \sum \frac{(b+c)^{2}}{4} \stackrel{A M-G M}{\geq} \sum(b c)=\sum a b=s^{2}+4 R r+r^{2} \geq 36 r^{2} \\
\text { (1) } \Leftrightarrow s^{2} \geq 35 r^{2}-4 R r \\
\because s^{2} \geq 16 R r-5 r^{2} \geq 35 r^{2}-4 R r \Leftrightarrow 20 R r \geq 40 r^{2} \Leftrightarrow R \geq 2 r \text { (Euler) } \Rightarrow \text { (1) true. } \\
m_{a} \leq 2 R \cos ^{2} \frac{A}{2}\left(\text { etc } \Rightarrow \Omega \leq \sum\left\{\left(4 R^{2}\right) \cdot \cos ^{4} \frac{A}{2} \cdot \frac{1}{\cos ^{2} \frac{A}{2}}\right\}=\right. \\
=4 R^{2} \sum \cos ^{2} \frac{A}{2}=4 R^{2} \cdot \frac{4 R+r}{2 R}=8 R^{2}+2 R r \frac{(2)}{\leq} 9 R^{2} \\
\text { (2) } \Leftrightarrow 2 R r \leq R^{2} \Leftrightarrow 2 r \leq R \text { (Euler) Proved. }
\end{gathered}
$$

Solution 2 by Soumava Chakraborty - Kolkata - India

$$
\begin{gathered}
36 r^{2} \stackrel{(1)}{\leq} \sum m_{a}^{2} \sec ^{2} \frac{A}{2} \stackrel{(2)}{\leq} 9 R^{2} \\
\text { Firstly, } \sum \sec ^{2} \frac{A}{2}=\sum \frac{b c(s-b)(s-c)}{s(s-a)(s-b)(s-c)}=\frac{\sum b c\left(s^{2}-s(b+c)+b c\right)}{r^{2} s^{2}}= \\
=\frac{s^{2} \sum a b-s \sum a b(2 s-c)+\left(\sum a b\right)^{2}-2 a b c(2 s)}{r^{2} s^{2}}= \\
=\frac{-s^{2}\left(\sum a b\right)+\left(\sum a b\right)^{2}-4 R r s^{2}}{r^{2} s^{2}}=\frac{\left(s^{2}+4 R r+r^{2}\right)\left(4 R r+r^{2}\right)-4 R r s^{2}}{r^{2} s^{2}}=
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
=\frac{s^{2} r^{2}+r^{2}(4 R+r)^{2}}{r^{2} s^{2}} \stackrel{(i)}{=} 1+\frac{(4 R+r)^{2}}{s^{2}}
$$

Now, $\sum m_{a}^{2} \sec ^{2} \frac{A}{2}=\frac{1}{4} \sum\left(2 b^{2}+2 c^{2}+2 a^{2}-3 a^{2}\right) \sec ^{2} \frac{A}{2}=$

$$
=\left(\frac{2 \sum a^{2}}{4}\right)\left(\sum \sec ^{2} \frac{A}{2}\right)-\frac{3}{4} \sum a^{2} \frac{b c}{s(s-a)}=
$$

$$
\stackrel{b y(i)}{=}\left(s^{2}-4 R r-r^{2}\right)\left\{1+\frac{(4 R+r)^{2}}{s^{2}}\right\}-\frac{3}{4 s} \cdot 4 R r s \sum \frac{a}{s-a}=
$$

$$
=s^{2}-4 R r-r^{2}+\frac{\left(s^{2}-4 R r-r^{2}\right)(4 R+r)^{2}}{s^{2}}-3 R r \sum\left(\frac{a-s}{s-a}+\frac{s(s-b)(s-c)}{s r^{2}}\right)
$$

$$
=s^{2}-4 R r-r^{2}+\frac{\left(s^{2}-4 R r-r^{2}\right)(4 R r+r)^{2}}{s^{2}}-3 R r\left(-3+\frac{\sum\left(s^{2}-s(b c)+b c\right)}{r^{2}}\right)
$$

$$
=s^{2}-4 R r-r^{2}+\frac{\left(s^{2}-4 R r-r^{2}\right)(4 R r+r)^{2}}{s^{2}}-3 R r\left(-3+\frac{3 s^{2}-4 s^{2}+s^{2}+4 R r+r^{2}}{r^{2}}\right)
$$

$$
=s^{2}-4 R r-r^{2}+\frac{\left(s^{2}-4 R r-r^{2}\right)(4 R r+r)^{2}}{s^{2}}-3 R r\left(\frac{4 R-2 r}{r}\right) \leq 9 R^{2} \Leftrightarrow
$$

$$
\Leftrightarrow s^{2}+\frac{\left(s^{2}-4 R r-r^{2}\right)(4 R r+r)^{2}}{s^{2}} \leq 21 R^{2}-2 R r+r^{2} \Leftrightarrow
$$

$$
\Leftrightarrow s^{4}+s^{2}(4 R r+r)^{2}-r(4 R+r)^{3} \stackrel{(2 a)}{\leq} s^{2}\left(21 R^{2}-2 R r+r^{2}\right)
$$

Now, LHS of $(2 \mathrm{a}) \leq s^{2}\left(4 R^{2}+4 R r+3 r^{2}+(4 R+r)^{2}\right)-r(4 R+r)^{3} \stackrel{?}{\leq} s^{2}\left(21 R^{2}-2 R r+r^{2}\right)$

$$
\begin{gathered}
\Leftrightarrow s^{2}\left(R^{2}-14 R r-3 r^{2}\right)+r(4 R+r)^{3} \stackrel{?}{\geq} 0 \Leftrightarrow \\
\Leftrightarrow s^{2}(R-2 r)^{2}+r(4 R+r)^{3} \underset{(2 \overline{2 b})}{?} s^{2}\left(10 R r+7 r^{2}\right)
\end{gathered}
$$

Now, LHS of (2b) $\underset{(\underset{(m)}{\text { Gerretsen }}}{\geq}\left(16 R r-5 r^{2}\right)(R-2 r)^{2}+r(4 R+r)^{3} \&$ RHS of (2b)

$$
\stackrel{(n)}{\leq}\left(4 R^{2}+4 R r+3 r^{2}\right)\left(10 R r+7 r^{2}\right)
$$

$(\mathrm{m}),(\mathrm{n}) \Rightarrow$ in order to prove (2b), it suffices to prove:

$$
\begin{gathered}
(16 R-5 r)(R-2 r)^{2}+(4 R+r)^{3} \geq\left(4 R^{2}+4 R r+3 r^{2}\right)\left(10 R r+7 r^{2}\right) \Leftrightarrow \\
\Leftrightarrow 40 t^{3}-89 t^{2}+38 t-40 \geq 0 \Leftrightarrow(t-2)\{40 t(t-2)+71 t+20\} \geq 0 \rightarrow \text { true } \because t \stackrel{\text { Euler }}{\geq 2} 2 \\
\Rightarrow(2 b) \Rightarrow(2 a) \Rightarrow(2) \text { is true. }
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\text { Again, } \sum m_{a}^{2} \sec ^{2} \frac{A}{2} \geq \frac{1}{3}\left(\sum m_{a} \sec \frac{A}{2}\right)^{2} \stackrel{\operatorname{Ioscu}}{\geq} \frac{1}{3}\left(\sum \frac{b+c}{2}\right)^{2}=
$$

$$
=\frac{4 s^{2}}{3} \stackrel{s^{2} \geq 27 r^{2}}{\geq} \frac{108 r^{2}}{3}=36 r^{2} \Rightarrow(1) \text { is true. Proved. }
$$

Solution 3 by Soumitra Mandal-Chandar Nagore - India

$$
\begin{gathered}
a b+b c+c a=4 \sqrt{3} \Delta, s \geq 3 \sqrt{3} r, 4 m_{a}^{2}=2 b^{2}+2 c^{2}-a^{2}=2 b c \cos A+b^{2}+c^{2} \\
\quad\left(b^{2}+c^{2}\right)(1+\cos A) \stackrel{A M-G M}{\geq} 4 m_{a}^{2} \stackrel{A M-G M}{\geq} 2 b c(1+\cos A) \\
\Rightarrow \frac{b^{2}+c^{2}}{2} \cos ^{2} \frac{A}{2} \geq m_{a}^{2} \geq b c \cos ^{2} \frac{A}{2} \Rightarrow \frac{b^{2}+c^{2}}{2} \geq m_{a}^{2} \sec ^{2} \frac{A}{2} \geq b c \\
\Rightarrow \sum_{c y c} \frac{b^{2}+c^{2}}{2} \geq \sum_{c y c} m_{a}^{2} \sec ^{2} \frac{A}{2} \geq a b+b c+c a \Rightarrow \sum_{c y c} a^{2} \geq \sum_{c y c} m_{a}^{2} \geq \sum_{c y c} a b \\
\Rightarrow 9 R^{2} \geq \sum_{c y c} m_{a}^{2} \sec ^{2} \frac{A}{2} \geq 4 \sqrt{3} \Delta=4 \sqrt{3} s r \geq 4 \sqrt{3} r \cdot 3 \sqrt{3} r=36 r^{2} \text { Proved }
\end{gathered}
$$

SP.209. Prove that in any $A B C$ triangle the following inequality holds:

$$
\begin{aligned}
27 R^{2} \leq \sum m_{a}^{2} \csc ^{2} \frac{A}{2} & \leq \frac{4}{r^{2}}\left(4 R^{4}-37 r^{4}\right) \\
& \text { Proposed by Marin Chirciu - Romania }
\end{aligned}
$$

Solution 1 by Soumava Chakraborty-Kolkata-India
In any $\triangle A B C, 27 \boldsymbol{R}^{2} \stackrel{(1)}{\leq} \sum \boldsymbol{m}_{a}^{2} \csc ^{2} \frac{A_{2}^{(2)}}{\leq} \frac{4}{r^{2}}\left(4 R^{4}-37 r^{4}\right)$
$\sum m_{a}^{2} \csc ^{2} \frac{A}{2}=\sum m_{a}^{2} \frac{b c(s-a)}{r^{2} S}=\frac{\sum b c m_{a}^{2}}{r^{2}}-\frac{4 R r s}{r^{2} S} \cdot \frac{3}{4} \cdot 2\left(s^{2}-4 R r-r^{2}\right)$
$=\frac{\sum b c\left(2 b^{2}+2 c^{2}+2 a^{2}-3 a^{2}\right)}{4 r^{2}}-\frac{6 R r\left(s^{2}-4 R r-r^{2}\right)}{r^{2}}$
$=\frac{2\left(\sum a^{2}\right)\left(\sum a b\right)-3 \cdot 4 R r s(2 S)}{4 r^{2}}-\frac{6 R r\left(s^{2}-4 R r-r^{2}\right)}{r^{2}}$
$=\frac{4\left(s^{2}+4 R r+r^{2}\right)\left(s^{2}-4 R r-r^{2}\right)-24 R r s^{2}}{4 r^{2}}-\frac{6 R r\left(s^{2}-4 R r-r^{2}\right)}{r^{2}}$
$=\frac{S^{4}-\left(4 R r+r^{2}\right)^{2}-6 R r s^{2}-6 R r\left(s^{2}-4 R r-r^{2}\right)}{r^{2}}$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
=\frac{S^{4}-12 R r s^{2}+\left(4 R r+r^{2}\right)\left(6 R r-4 R r-r^{2}\right)}{r^{2}} \stackrel{(i)}{=} \frac{S^{4}-12 R r s^{2}+r^{2}(4 R r+r)(2 R-r)}{r^{2}} \\
(i) \Rightarrow(2) \Leftrightarrow S^{4}-12 R r s^{2}+r^{2}(4 R+r)(2 R-r) \stackrel{(2 a)}{\leq} 16 R^{4}-148 r^{4}
\end{gathered}
$$

$$
\text { Now, LHS of (2a) } \stackrel{\text { Gerretsen }}{\leq} s^{2}\left(4 R^{2}-8 R r+3 r^{2}\right)+r^{2}(4 R+r)(2 R-r)
$$

$$
\stackrel{\text { Gerretsen }}{\leq}\left(4 R^{2}+4 R r+3 r^{2}\right)\left(4 R^{2}-8 R r+3 r^{2}\right)+r^{2}(4 R+r)(2 R-r)
$$

$$
\left(\because 4 R^{2}-8 R r+3 r^{2}=4 R(R-2 r)+3 r^{2} \stackrel{\text { Euler }}{\geq} 3 r^{2}>0\right)
$$

$$
\stackrel{?}{\leq} 16 R^{4}-148 r^{4} \Leftrightarrow 8 t^{3}+7 t-78 \stackrel{?}{\geq} 0\left(t=\frac{R}{r}\right)
$$

$$
\Leftrightarrow 8(t-2)\left(t^{2}+2 t+4\right)+7(t-2) \stackrel{?}{\geq} 0
$$

Which is true $\because t \stackrel{\text { Euler }}{\geq} 2 \Rightarrow(2 a) \Rightarrow(2)$ is true. Again, $(i) \Rightarrow(1) \Leftrightarrow$

$$
S^{4}-12 R r s^{2}+r^{2}(4 R+r)(2 R-r) \stackrel{(1 a)}{\geq} 27 R^{2} r^{2}
$$

Now, LHS of (1a) $\stackrel{\text { Gerretsen }}{\geq} S^{2}\left(4 R r-5 r^{2}\right)+r^{2}(4 R+r)(2 R-r)$
$\stackrel{\text { Gerretsen }}{\geq} r^{2}(16 R-5 r)(4 R-5 r)+r^{2}(4 R+r)(2 R-r)$ $\left(\because 4 R r-5 r^{2}=4 r(R-2 r)+3 r^{2} \stackrel{\text { Euler }}{\geq} 3 r^{2}>0\right)$
$\stackrel{?}{\geq} 27 R^{2} r^{2} \Leftrightarrow 15 t^{2}-34 t+8 \stackrel{?}{\geq} 0\left(t=\frac{R}{r}\right) \Leftrightarrow(t-2)(15 t-4) \xrightarrow{\geq} 0 \rightarrow$ true $\because t \stackrel{\text { Euler }}{\geq} 2$ $\Rightarrow(1 a) \Rightarrow(1)$ is true (Proved)
Solution 2 by Tran Hong-Dong Thap-Vietnam

$$
\begin{gathered}
\text { Let } \Omega=\sum m_{a}^{2} \csc ^{2} \frac{A}{2}=\sum \frac{m_{a}^{2}}{\sin ^{2} \frac{A}{2}} \\
m_{a} \leq 2 R \cos ^{2} \frac{A}{2} \Rightarrow m_{a}^{2} \leq 4 R^{2}\left(\cos ^{2} \frac{A}{2}\right)^{2}= \\
=4 R^{2}\left(1-\sin ^{2} \frac{A}{2}\right)^{2}=4 R^{2}\left(1-2 \sin ^{2} \frac{A}{2}+\sin ^{4} \frac{A}{2}\right) \\
\Rightarrow \Omega=4 R^{2} \sum \frac{1-2 \sin ^{2} \frac{A}{2}+\sin ^{4} \frac{A}{2}}{\sin ^{2} \frac{A}{2}}=4 R^{2}\left\{\sum \frac{1}{\sin ^{2} \frac{A}{2}}-6+\sum \sin ^{2} \frac{A}{2}\right\}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\begin{aligned}
&=4 R^{2}\left\{\frac{s^{2}+r^{2}-8 R r}{r^{2}}-6+\frac{2 R-r}{2 R}\right\} \leq 4 R^{2}\left\{\frac{4 R^{2}+4 R r+3 r^{2}+r^{2}-8 R r}{r^{2}}-5-\frac{r}{2 R}\right\} \\
&=4 R^{2}\left\{4\left(\frac{R}{r}\right)^{2}-4\left(\frac{R}{r}\right)-1-\frac{1}{2}\left(\frac{r}{R}\right)\right\}
\end{aligned}
$$

We must show that: $4\left(\frac{R}{r}\right)^{2}-4\left(\frac{R}{r}\right)-\frac{1}{2}\left(\frac{r}{R}\right)-1 \leq 4\left(\frac{R}{r}\right)^{2}-37 \cdot\left(\frac{r}{R}\right)^{2}$

$$
\Leftrightarrow \mathbf{3 7} \boldsymbol{t}^{2}-\frac{\boldsymbol{t}}{\mathbf{2}}-\frac{\mathbf{4}}{\boldsymbol{t}}-\mathbf{1} \leq \mathbf{0}\left(\because \mathbf{0}<t \leq \frac{\mathbf{1}}{\mathbf{2}}\right)
$$

$$
\Leftrightarrow 74 t^{3}-t^{2}-2 t-8 \leq 0 \Leftrightarrow\left(t-\frac{1}{2}\right)\left(t^{2}+\frac{18 t}{37}+\frac{8}{37}\right) \leq 0\left(\text { true because } 0<t \leq \frac{1}{2}\right)
$$

$$
\Rightarrow \Omega \leq \frac{4}{r^{2}}\left(4 R^{2}-37 r^{4}\right)
$$

$$
m_{a} \geq \sqrt{s(s-a)} \Rightarrow m_{a}^{2} \geq s(s-a)(\text { etc }) \Rightarrow \Omega \geq \sum \frac{s(s-a)}{\sin ^{2} \frac{A}{2}}=s \sum \frac{s-a}{\sin ^{2} \frac{A}{2}}
$$

$$
s\left\{s \sum \frac{1}{\sin ^{2} \frac{A}{2}}-\sum \frac{a}{\sin ^{2} \frac{A}{2}}\right\}=s\left\{s \sum \frac{1}{\sin ^{2} \frac{A}{2}}-\sum \frac{4 R \sin \frac{A}{2} \cos \frac{A}{2}}{\sin ^{2} \frac{A}{2}}\right\}
$$

$$
=s\left\{s \cdot \frac{s^{2}+r^{2}-8 R r}{r^{2}}-4 R \cdot \frac{s}{r}\right\}=s^{2}\left(\frac{s^{2}+r^{2}-8 R r}{r^{2}}-\frac{4 R}{r}\right)
$$

$$
=s^{2}\left(\frac{s^{2}+r^{2}-12 R r}{r^{2}}\right) \stackrel{(2)}{\geq} 27 R^{2}
$$

$$
(2) \Leftrightarrow s^{2}\left(s^{2}+r^{2}-12 R r\right) \geq 27 R^{2} r^{2}
$$

$$
\because s^{2} \geq 16 R r-5 r^{2} \Rightarrow s^{2}+r^{2}-12 R r \geq 4 R r-4 r^{2}
$$

$$
\Rightarrow s^{2}\left(s^{2}+r^{2}-12 R r\right) \geq\left(16 R r-5 r^{2}\right)\left(4 R r-4 r^{2}\right)=64 R^{2} r^{2}-84 R r^{3}+20 r^{4}
$$

We must show: 64 $R^{2} r^{2}-84 R r^{3}+20 r^{4} \geq 27 R^{2} r^{2} \Leftrightarrow 37 R^{2} r^{2}-84 R r^{3}+20 r^{4} \geq 0$ $\Leftrightarrow 37 R^{2}-84 R r+20 r^{2} \geq 0 \Leftrightarrow(37 R-10 r)(R-2 r) \geq 0(\because$ true $R \geq 2 r)$ Proved.

SP.210. Let $A B C$ be an acute-angled triangle. If $a+b+c=\pi$ and $A \cos a+B \cos b+C \cos c=\frac{\pi}{2} ;(A, B, C$ - the measures in radians), then $\triangle A B C$ is equilateral.

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Solution 1 by Tran Hong-Dong Thap-Vietnam

$$
\begin{gathered}
\boldsymbol{a}+\boldsymbol{b}+\boldsymbol{c}=\boldsymbol{\pi} ;(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}>0) \\
\because \boldsymbol{a}+\boldsymbol{b}>c \Rightarrow a+b+c>2 \boldsymbol{c} \Rightarrow \mathbf{0}<c<\frac{\pi}{2} . \text { Similarly: } \mathbf{0}<a, b<\frac{\pi}{2} .
\end{gathered}
$$

Let $\boldsymbol{f}(\boldsymbol{x})=\cos \boldsymbol{x}\left(0<x<\frac{\pi}{2}\right) \Rightarrow \boldsymbol{f}^{\prime}(x)=-\sin x \Rightarrow \boldsymbol{f}^{\prime \prime}(x)=-\cos x<0\left(0<x<\frac{\pi}{2}\right)$
Suppose: $A \leq B \leq C \Rightarrow a \leq b \leq c \Rightarrow \cos a \geq \cos b \geq \cos c\left(\because f(x)=\cos x \searrow\left(0 ; \frac{\pi}{2}\right)\right)$

$$
\left.\begin{array}{c}
\Rightarrow L H S=A \cos a+B \cos b+C \cos c \leq \frac{1}{3}(A+B+C)(\cos a+\cos b+\cos c) \\
=\frac{\pi}{3} \cdot(\cos a+\cos b+\cos c) \stackrel{\text { Jensen }}{\leq} \frac{\pi}{3} \cdot 3 \cos \left(\frac{a+b+c}{3}\right)=\pi \cdot \cos \left(\frac{\pi}{3}\right)=\frac{\pi}{2}
\end{array}\right] \begin{aligned}
& \begin{array}{l}
A=B=C . \text { Proved. } \\
a=b=c
\end{array} \\
& \text { Hence, LHS }=\frac{\pi}{2} \Leftrightarrow
\end{aligned}
$$

Solution 2 by Soumava Chakraborty-Kolkata-India

$$
\text { If } a \geq \frac{\pi}{2}, \text { then } b+c \leq \frac{\pi}{2}\left(\therefore \sum a=\pi\right)
$$

$\Rightarrow \boldsymbol{b}+\boldsymbol{c} \leq \boldsymbol{a} \Rightarrow$ violation of triangle inequality $\Rightarrow \boldsymbol{a}<\frac{\pi}{2}$. Similar argument $\Rightarrow \boldsymbol{b}, \boldsymbol{c}<\frac{\pi}{2}$
Let $f(x)=\sin ^{2} \frac{x}{2}, \forall x \in\left(0, \frac{\pi}{2}\right)$. Then, $f^{\prime \prime}(x)=\frac{\cos x}{2}>0 \Rightarrow f(x)$ is strictly convex.

$$
\begin{gathered}
\sum A \cos a=\sum A\left(1-2 \sin ^{2} \frac{a}{2}\right)=\sum A-2 \pi \sum\left(\frac{A}{\pi} \sin ^{2} \frac{a}{2}\right)=\pi-2 \pi \sum\left(\frac{A}{\pi} \sin ^{2} \frac{a}{2}\right) \\
\text { Jensen } \\
\frac{\llcorner }{(1)} \pi-2 \pi \sin ^{2}\left(\frac{\sum\left(\frac{A}{\pi} a\right)}{2}\right)\left(\because \sum \frac{A}{\pi}=1 \text { and } \sin ^{2} \frac{x}{2} \forall x \in\left(0, \frac{\pi}{2}\right) \text { is strictly convex }\right)
\end{gathered}
$$

Now, WLOG we may assume $a \geq b \geq c$
$\therefore A \geq B \geq C \therefore \frac{1}{2} \sum\left(\frac{A}{\pi} a\right) \stackrel{\text { Chebyshev }}{\geq} \frac{1}{2 \pi} \cdot \frac{1}{3}\left(\sum A\right)\left(\sum a\right)=\frac{\pi^{2}}{6 \pi}=\frac{\pi}{6} \Rightarrow \frac{1}{2} \sum\left(\frac{A}{\pi} a\right) \stackrel{(i)}{\geq} \frac{\pi}{6}$
$\because A, B, C<\frac{\pi}{2} \& a, b, c$ also $<\frac{\pi}{2} \therefore \frac{1}{2} \sum\left(\frac{A}{2} a\right)<\frac{1}{2 \pi}\left(\frac{3 \pi^{2}}{4}\right)=\frac{3 \pi}{8} \Rightarrow \frac{1}{2}\left(\sum \frac{A}{\pi} a\right) \stackrel{(i i)}{<} \frac{3 \pi}{8}$

$$
\text { (i), (ii) } \Rightarrow \frac{\pi}{6} \leq \frac{1}{2} \sum\left(\frac{A}{\pi} a\right)<\frac{3 \pi}{8} \Rightarrow \sin \left(\frac{\sum\left(\frac{A}{\pi} a\right)}{2}\right) \stackrel{(2)}{\geq} \sin \frac{\pi}{6}=\frac{1}{2}
$$

(1), (2) $\Rightarrow \sum A \cos a \leq \pi-2 \pi\left(\frac{1}{2}\right)^{2}=\frac{\pi}{2}$, equality when $a=b=c$,
(\because the equality of Chebyshev's inequality holds at $\boldsymbol{A}=\boldsymbol{B}=\boldsymbol{C}(\& a=b=c)$ and the equality of Jensen's inequality holds at $a=b=c$, as $f(x)=\sin ^{2} \frac{x}{2} \forall x \in\left(0, \frac{\pi}{2}\right)$ is

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
strictly convex) and \therefore equality relation holds (as $\sum A \cos a=\frac{\pi}{2}$), $\therefore a=b=c \Rightarrow \triangle A B C$

is equilateral (proved)

UP.196. Let be $x_{n}, y_{n}>0, x_{n} \neq y_{n}$ such that:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} x_{n}= & \lim _{n \rightarrow \infty} y_{n}=p, p \in \mathbb{N}^{*} . \text { Find: } \\
& \lim _{n \rightarrow \infty} \frac{x_{n}^{y_{n}}-y_{n}^{x_{n}}}{\sqrt[p]{x_{n}}-\sqrt[p]{y_{n}}}
\end{aligned}
$$

Proposed by Marian Ursărescu - Romania
Solution by proposer

$$
\begin{gathered}
\Omega=\lim _{n \rightarrow \infty} \frac{x_{n}^{y_{n}}-y_{n}^{x_{n}}}{\sqrt[p]{x_{n}}-\sqrt[p]{x_{n}}}=\lim _{n \rightarrow \infty} \frac{\left(x_{n}^{y_{n}}-y_{n}^{x_{n}}\right)\left(\sqrt[p]{\left.x_{n}^{p-1}+\cdots+\sqrt[p]{y_{n}^{p-1}}\right)}\right.}{x_{n}-y_{n}} \\
=p^{p} \sqrt{p^{p-1}} \lim _{n \rightarrow \infty} \frac{x_{n}^{y_{n}}-y_{n}^{x_{n}}}{x_{n}-y_{n}}=p^{p} \sqrt{p^{p-1}} \lim _{n \rightarrow \infty} \frac{x_{n}^{y_{n}}-y_{n}^{y_{n}}+y_{n}^{y_{n}}-y_{n}^{x_{n}}}{x_{n}-y_{n}}= \\
=p^{p} \sqrt{p^{p-1}}\left(\lim _{n \rightarrow \infty} \frac{x_{n}^{y_{n}}-y_{n}^{y_{n}}}{x_{n}-y_{n}}+\lim _{n \rightarrow \infty} \frac{y_{n}^{y_{n}}-y_{n}^{x_{n}}}{x_{n}-y_{n}}\right) \\
=p^{p} \sqrt[p]{p^{p-1}}\left(\lim _{n \rightarrow \infty} \frac{e^{y_{n} \ln y_{n}}\left(e^{y_{n} \ln } \frac{x_{n}}{y_{n}-1}\right.}{x_{n}}\right) \\
\left.y_{n} \ln \frac{x_{n}}{y_{n}} \cdot \frac{y_{n} \ln \left(\frac{x_{n}}{y_{n}}\right)}{x_{n}-y_{n}}+\lim _{n \rightarrow \infty} \frac{e^{x_{n} \ln x_{n}}-e^{y_{n}-\ln y_{n}}}{\ln \left(y_{n}\left(x_{n}-y_{n}\right)\right.}+\lim _{n \rightarrow \infty} \frac{y_{n} \ln y_{n}-e^{x_{n} \ln y_{n}}}{x_{n}-y_{n}}\right) \\
\left.\left.=p_{n}-x_{n}\right)-1\right) \\
=p^{p} \sqrt{p^{p-1}}\left(p^{p} \lim _{n \rightarrow \infty} y_{n} \frac{\ln \left(1+\frac{x_{n}-y_{n}}{y_{n}}\right)}{x_{n}-y_{n}}-p^{p} \ln p\right)= \\
=p^{p} \sqrt{p^{p-1}}\left(p^{p}-p^{p} \ln p\right)=p^{p+1} \sqrt[p]{p^{p-1}}(1-\ln p)
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

UP.197. Let be $\boldsymbol{f}: \mathbb{R} \rightarrow(0, \infty)$ continuous such that for $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}>0$ fixed values:

$$
a^{3} f(x)+b^{3} f(y)+c^{3} f(z)=f(x) f(y) f(z), \forall x, y, z \in \mathbb{R}
$$

Prove that:

$$
\int_{\alpha}^{\beta} \boldsymbol{f}(x) d x \geq \frac{(\boldsymbol{\beta}-\alpha)(\boldsymbol{a}+\boldsymbol{b}+\boldsymbol{c}) \sqrt{\boldsymbol{a + b + \boldsymbol { b }}}}{3} ;(\forall) 0<\alpha \leq \beta
$$

Proposed by Daniel Sitaru - Romania
Solution 1 by Soumitra Mandal-Chandar Nagore-India

$$
\begin{gathered}
\sum_{c y c} a^{3} f(x)=f(x) f(y) f(z) \Rightarrow \sum_{c y c} \frac{a^{3}}{f(y) f(z)}=1 \\
\Rightarrow 1 \begin{array}{c}
\text { HOLDER'S INEQUALITY } \\
\geq(a+b+c)^{3} \\
\Rightarrow\left(\sum_{c y c} f(x)\right)_{c y c} f(x) f(y) \\
\geq \\
\sum_{c y c} \sum_{c y c} f(x) f(y) \geq(a+b+c)^{3} \\
\int_{\alpha} \int_{c y c}^{\beta} f(x) d x \geq(a+b+c)^{\frac{3}{2}} \int_{\alpha}^{\beta} d x=(\beta-\alpha)(a+b+c) \sqrt{a+b+c} \\
\Rightarrow 3 \int_{\alpha}^{\beta} f(x) d x \geq(\beta-\alpha)(a+b+c) \sqrt{a+b+c} \\
\therefore \int_{\alpha}^{\beta} f(x) d x \geq \frac{(\beta-\alpha)(a+b+c) \sqrt{a+b+c}}{3}(\text { Proved })
\end{array}
\end{gathered}
$$

Solution 2 by Srinivasa Raghava-AIRMC-India

$$
\int_{\alpha}^{\beta} f(x) d x=(\beta-\alpha) \sqrt{a^{3}+b^{3}+c^{3}}\left(\text { if } x=y=z \Rightarrow f(x)=\sqrt{a^{3}+b^{3}+c^{3}}, f(x)>0\right)
$$

We know that:

$$
\frac{1}{3}\left(a^{3}+b^{3}+c^{3}\right) \geq\left(\frac{1}{3}(a+b+c)\right)^{3} \Rightarrow \sqrt{a^{3}+b^{3}+c^{3}} \geq \frac{1}{3}(a+b+c) \sqrt{a+b+c}
$$

Hence from above, $\int_{\alpha}^{\beta} f(x) d x \geq \frac{(\beta-\alpha)}{3}(a+b+c) \sqrt{a+b+c}$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Solution 3 by Ravi Prakash-New Delhi-India
Taking $x=y=z$, we get: $\left(a^{3}+b^{3}+c^{3}\right) f(x)=f(x)^{3}$
As $f(x) \neq 0$, we get: $f(x)^{2}=a^{3}+b^{3}+c^{3} \Rightarrow f(x)=\sqrt{a^{3}+b^{3}+c^{3}}$ as $f(x)>0$
Now,

$$
\begin{align*}
& \int_{\alpha}^{\beta} f(x) d x= \sqrt{a^{3}+b^{3}+c^{3}} \int_{\alpha}^{\beta} d x=(\beta-\alpha) \sqrt{a^{3}+b^{3}+c^{3}} \\
& \text { But, } \frac{a^{3}+b^{3}+c^{3}}{3} \geq\left(\frac{a+b+c}{3}\right)^{3} \\
& \Rightarrow \sqrt{a^{3}+b^{3}+c^{3}} \geq \frac{(a+b+c) \sqrt{a+b+c}}{3} \tag{2}
\end{align*}
$$

From (1), (2), we get: $\int_{\alpha}^{\beta} f(x) d x \geq \frac{(\beta-\alpha)(a+b+c) \sqrt{a+b+c}}{3}$

UP.198. Let n be a positive integer. Evaluate:

$$
\lim _{x \rightarrow 0} \frac{1-(\cos x)^{n} \cos (n x)}{x^{2}}
$$

Proposed by Nguyen Viet Hung - Hanoi - Vietnam

Solution 1 by Marian Ursărescu-Romania

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{1-(\cos x)^{n} \cdot \cos n x}{x^{2}}=\lim _{x \rightarrow 0} \frac{1-(\cos x)^{n}+(\cos x)^{n}-(\cos x)^{n} \cdot \cos n x}{x^{2}} \\
&=\lim _{x \rightarrow 0} \frac{1-(\cos x)^{n}}{x^{2}}+\lim _{x \rightarrow 0} \frac{(\cos x)^{n}(1-\cos n x)}{x^{2}}= \\
&= \lim _{x \rightarrow 0} \frac{(1-\cos x)\left(1+\cos x+\cdots+(\cos x)^{n-1}\right)}{x^{2}}+\lim _{x \rightarrow 0} \frac{(\cos x)^{n}-2 \sin ^{2} \frac{n x}{2}}{x^{2}}= \\
&=\lim _{x \rightarrow 0} \frac{2 \sin ^{2} \frac{x}{2}\left(1+\cos x+\cdots+(\cos x)^{n-1}\right)}{x^{2}}+\lim _{x \rightarrow 0} \frac{(\cos x)^{n} \cdot 2 \sin ^{2} \frac{n x}{2}}{x^{2}} \\
&=2 \cdot \frac{1}{4} \cdot n+2 \cdot \frac{n^{2}}{4}=\frac{n}{2}+\frac{n^{2}}{2}=\frac{n(n+1)}{2}
\end{aligned}
$$

Solution 2 by Abdul Hafeez Ayinde-Nigeria

$$
\Omega=\lim _{x \rightarrow 0}\left(\frac{1-(\cos x)^{n} \cos (n x)}{x^{2}}\right)
$$

$$
\begin{aligned}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
& \text { www.ssmrmh.ro } \\
& \Omega=\frac{\mathbf{0}}{\mathbf{0}} \text {; indeterminate. Applying L'Hospital's rule. } \\
& \Omega=\lim _{x \rightarrow 0}\left(\frac{(\cos x)^{n}(n \sin n x)+n(\cos x)^{n-1} \sin x \cdot \cos (n x)}{2 x}\right) \\
& \Omega=\frac{\mathbf{0}}{\mathbf{0}} \text {. Applying L'Hospital's rule again. } \\
& \Omega=\lim _{x \rightarrow 0}\left(\begin{array}{c}
-n(\cos x)^{n-1} \sin x \cdot(n \sin n x)+n^{2}(\cos x)^{n}(\cos n x)+ \\
+n\left((\cos x)^{n-1} \cos x \cdot \cos (n x)\right)+ \\
\sin x\left(-\sin x(n-1) \cos (n x)(\cos x)^{n-2}\right)- \\
-n \sin (n x) \cdot(\cos x)^{n-1}
\end{array}\right) \\
& \Omega=\left(\frac{n^{2}+n(1+0)}{2}\right) ; \Omega=\frac{n^{2}+n}{2}
\end{aligned}
$$

UP.199. Given the triangle $A B C$. The internal angle bisectors from A, B, C meet sides $B C, C A, A B$ at A_{1}, B_{1}, C_{1} respectively. Prove that:

$$
\begin{aligned}
& \tan \frac{A}{2}+\tan \frac{B}{2}+\tan \frac{C}{2}+ \\
& +\frac{\cos \left(\overrightarrow{B B_{1}}, \overrightarrow{C C_{1}}\right)}{\cos \frac{A}{2}}+\frac{\cos \left(\overrightarrow{C C_{1}}, \overrightarrow{A A_{1}}\right)}{\cos \frac{B}{2}}+\frac{\cos \left(\overrightarrow{A A_{1}}, \overrightarrow{B B_{1}}\right)}{\cos \frac{C}{2}}=0 \\
& \text { Proposed by Nguyen Viet Hung - Hanoi - Vietnam }
\end{aligned}
$$

Solution by Marian Ursărescu - Romania

$$
\begin{gather*}
\text { We have } \tan \frac{A}{2}+\tan \frac{B}{2}+\tan \frac{C}{2}=\frac{4 R+r}{s} \text { (1) } \tag{1}\\
A A_{1}=\frac{2 b c}{4+c} \cdot \cos \frac{A}{2} \Rightarrow \cos \frac{A}{2}=\frac{(b+c) A A_{1}}{2 b c} \text { and similarly } \Rightarrow \\
\frac{\cos \left(\overrightarrow{A A_{1}}, \overrightarrow{B B_{1}}\right)}{\cos \frac{C}{2}}=\frac{\cos \left(\overrightarrow{A A_{1}}, \overrightarrow{B B_{1}}\right)}{\frac{(a+b) C C_{1}}{2 a b}}=\frac{2 a b \cos \left(\overrightarrow{A A_{1}} \cdot \overrightarrow{B B_{1}}\right)}{(a+b) C C_{1}}= \\
=\frac{2 a b}{(a+b) C C_{1}} \cdot \frac{\overrightarrow{A A_{1}} \cdot \overrightarrow{B B_{1}}}{A A_{1} \cdot B B_{1}}=\frac{2 a b}{A A_{1} \cdot B B_{1} \cdot C C_{1}(a+b)} \cdot \frac{(b \overrightarrow{A B}+c \overrightarrow{A C})}{b+c} \cdot \frac{(a \overrightarrow{B A}+c \overrightarrow{B C})}{a+c}
\end{gather*}
$$

$$
\begin{gather*}
\text { ROMANIAN MATHEMATICAL MAGAZINE } \\
=\frac{1}{(a+b)(a+c)(b+c) A A_{1} B B_{1} C C_{1}}\left(-2 a^{2} b^{2} c^{2}-2 a b^{2} c \overrightarrow{B A} \cdot \overrightarrow{B C}-2 a^{2} b c \overrightarrow{A C} \cdot \overrightarrow{A B}+2 a b c^{2} \overrightarrow{C A} \cdot \overrightarrow{C B}\right)= \\
=-2 a b c(a b c+a \overrightarrow{A C} \cdot \overrightarrow{A B}+b \overrightarrow{B A} \cdot \overrightarrow{B C}-c \overrightarrow{C A} \cdot \overrightarrow{C B}) \\
\text { From (2) } \Rightarrow \frac{\cos \left(\overrightarrow{B B_{1}}, \overrightarrow{C C_{1}}\right)}{\cos \frac{A}{2}}+\frac{\cos \left(\overrightarrow{\left.C C_{1}, \overrightarrow{A A_{1}}\right)}\right.}{\cos \frac{B}{2}}+\frac{\cos \left(\overrightarrow{A A_{1}, \vec{B} \cdot \overrightarrow{1}}\right)}{\cos \frac{C}{2}_{C}^{C}}= \tag{2}\\
=\frac{-2 a b c(3 a b c+a \overrightarrow{A B} \cdot \overrightarrow{A C}+b \overrightarrow{B A} \cdot \overrightarrow{B C}+c \overrightarrow{C B} \cdot \overrightarrow{C A})}{(a+b)(a+c)(b+c) A A_{1} B B_{1} C C_{1}}= \\
=\frac{-2 a b c\left(3 a b c+a\left(\frac{b^{2}+c^{2}-a^{2}}{2}\right)+b\left(\frac{a^{2}+c^{2}-b^{2}}{2}\right)+c\left(\frac{a^{2}+b^{2}+c^{2}}{2}\right)\right.}{(a+b)(b+c)(a+c) A A_{1} B B_{1} C C_{1}}= \\
=\frac{-2 a b c\left(6 a b c+\sum b c(b+c)-\sum a^{3}\right)}{(a+b)(a+c)(b+c) A A_{1} B B_{1} C C_{1}}
\end{gather*}
$$

But $a b c=4 s R r(4)$

$$
\begin{gather*}
\sum b c(b+c)=2 s\left(s^{2}+r^{2}-2 R r\right) \\
\sum a^{3}=2 s\left(s^{2}-3 r^{2}-6 R r\right) \\
\text { and }(a+b)(a+c)(b+c) A A_{1} B B_{1} C C_{1}= \\
=(a+b)(a+c)(b+c) \cdot \frac{2 b c}{b+c} \cdot \cos \frac{A}{2} \cdot \frac{2 a c}{a+c} \cdot \cos \frac{B}{2} \cdot \frac{2 a b}{a+b} \cdot \cos \frac{C}{2}= \\
=8 a^{2} b^{2} c^{2} \cdot \cos \frac{A}{2} \cdot \cos \frac{B}{2} \cdot \cos \frac{C}{2}=8 a^{2} b^{2} c^{2} \cdot \frac{s}{4 R}=2 a^{2} b^{2} c^{2} \cdot \frac{s}{R} \stackrel{(4)}{=} \\
=32 s^{2} R^{2} r^{2} \frac{s}{R}=32 s^{3} R r^{2} \tag{8}
\end{gather*}
$$

From (3) + (4) $+(5)+(6)+(7) \Rightarrow \frac{\cos \left(B B_{1}, C C_{1}\right)}{\cos \frac{A}{2}}+\frac{\cos \left(\overrightarrow{A A_{1}}, \overrightarrow{C C_{1}}\right)}{\cos \frac{B}{2}}+\frac{\cos \left(\overrightarrow{A A_{1}}, \overrightarrow{B B_{1}}\right)}{\cos \frac{C}{2}}=-\frac{4 R+r}{s}$

$$
\text { From }(1)+(8) \Rightarrow \text { the relationship is true. }
$$

UP.200. If $\mathbf{0}<a \leq b$ then:

$$
\int_{a}^{b} \int_{a}^{b} \int_{a}^{b} \int_{a}^{b} \frac{(x+y+z+t) d x d y d z d t}{\sqrt{x y}+\sqrt{y z}+\sqrt{z t}+\sqrt{t x}} \leq \frac{(b+a)^{2}(b-a)^{4}}{4 a b}
$$

Proposed by Daniel Sitaru-Romania

Solution by proposer
$x, y \in[a, b]$. By Schweitzer inequality:

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\begin{gather*}
(x+y)\left(\frac{1}{x}+\frac{1}{y}\right) \leq \frac{(a+b)^{2}}{a b} \\
\frac{(x+y)^{2}}{x y} \leq \frac{(a+b)^{2}}{a b} \\
a b(x+y)^{2} \leq x y(a+b)^{2} \\
\sqrt{a b}(x+y) \leq \sqrt{x y}(a+b) \tag{1}
\end{gather*}
$$

Analogous:

$$
\begin{equation*}
\sqrt{a b}(y+z) \leq \sqrt{y z}(a+b) \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\sqrt{a b}(z+t) \leq \sqrt{z t}(a+b) \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\sqrt{a b}(t+x) \leq \sqrt{t x}(a+b) \tag{4}
\end{equation*}
$$

By adding (1); (2); (3); (4):

UP.201. Calculate the integral: $\int_{0}^{\infty} \frac{\arctan x}{x^{4}-x^{2}+1} d x$. It is required to express the integral value with the usual mathematical constants and $\psi_{1}\left(\frac{1}{3}\right)$, where $\psi_{1}(x)$ is the trigamma function.

$$
\begin{aligned}
& 2 \sqrt{a b}(x+y+z+t) \leq(a+b)(\sqrt{x y}+\sqrt{y z}+\sqrt{z t}+\sqrt{t x}) \\
& \frac{x+y+z+t}{\sqrt{x y}+\sqrt{y z}+\sqrt{z t}+\sqrt{t x}} \leq \frac{a+b}{2 \sqrt{a b}}= \\
& =\frac{a+b}{2} \cdot \frac{1}{\sqrt{a b}} \stackrel{G M-H M}{\leq} \frac{a+b}{2} \cdot \frac{1}{\frac{2}{\frac{1}{a}+\frac{1}{b}}}=\frac{a+b}{2} \cdot \frac{1}{\frac{2 a b}{a+b}}=\frac{(a+b)^{2}}{4 a b} \\
& \frac{x+y+z+t}{\sqrt{x y}+\sqrt{y z}+\sqrt{z t}+\sqrt{t x}} \leq \frac{(a+b)^{2}}{4 a b} \\
& \int_{a}^{b} \int_{a}^{b} \int_{a}^{b} \int_{a}^{b} \frac{(x+y+z+t) d x d y d z d t}{\sqrt{x y}+\sqrt{y z}+\sqrt{z t}+\sqrt{t x}} \leq \\
& \leq \int_{a}^{b} \int_{a}^{b} \int_{a}^{b} \int_{a}^{b} \frac{(a+b)^{2}}{4 a b} d x d y d z d t=\frac{(b+a)^{2}(b-a)^{4}}{4 a b}
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
Solution by Pedro Nagasava-Brazil

$$
\int_{0}^{\infty} \frac{\arctan (x)}{x^{4}-x^{2}+1} d x \text {. Rewriting the integral: } I=\int_{0}^{\infty} \int_{0}^{1} \frac{x}{\left(x^{4}-x^{2}+1\right)\left(1+y^{2} x^{2}\right)} d y d x
$$

Using Fubini-Tonelli Theorem, it is possible to switch the order of integration:

$$
\begin{gathered}
I=\int_{0}^{1} \int_{0}^{\infty} \frac{x}{\left(x^{4}-x^{2}+1\right)\left(1+y^{2} x^{2}\right)} d x d y \\
\text { Let } x^{2}=z: I=\frac{1}{2} \int_{0}^{1} \int_{0}^{\infty} \frac{1}{\left(z^{2}-z+1\right)\left(1+z y^{2}\right)} d z d y= \\
=\frac{1}{2} \int_{0}^{1} \frac{1}{y^{4}+y^{2}+1} \int_{0}^{\infty}\left[\frac{-y^{2} z}{z^{2}-z+1}+\frac{y^{2}+1}{z^{2}-z+1}+\frac{y^{4}}{1+z y^{2}}\right] d z d y \\
I=\frac{1}{2} \int_{0}^{1} \frac{1}{y^{4}+y^{2}+1} \int_{0}^{\infty}\left[-\frac{y^{2}}{2}\left(\frac{2 z-1}{z^{2}-z+1}\right)+\frac{\frac{y^{2}}{2}+1}{z^{2}-z+1}+\frac{y^{4}}{1+z y^{2}}\right] d z d y \\
I=\int_{0}^{1} \frac{1}{y^{4}+y^{2}+1} \int_{0}^{\infty}\left[y^{2} \log \left(\frac{1+z y^{2}}{\sqrt{z^{2}-z+1}}\right)+\frac{2}{\sqrt{3}}\left(\frac{y^{2}}{2}+1\right) \arctan \left(\frac{2 z-1}{\sqrt{3}}\right)\right] d y \\
y^{2}+1 \\
\log (y) \\
I y+\frac{\pi}{3 \sqrt{3}} \int_{0}^{1} \frac{y^{2}+2}{y^{4}+y^{2}+1} d y
\end{gathered}
$$

Considering the following function to evaluate the first integral:

$$
\begin{gathered}
f(n)=\int_{0}^{1} \frac{y^{n}}{y^{4}+y^{2}+1} \cdot \frac{1-y^{2}}{1-y^{2}} d y=\int_{0}^{1} \frac{y^{n}-y^{n+2}}{1-y^{6}} d y=\sum_{k=0}^{\infty} \int_{0}^{1}\left(y^{n+6 k}-y^{n+6 k+2}\right) d y \\
f(n)=\sum_{k=0}^{\infty}\left(\frac{1}{n+6 k+1}-\frac{1}{n+6 k+3}\right) . \text { Therefore: } \\
f^{\prime}(2)=\int_{0}^{1} \frac{y^{2} \log (y)}{y^{4}+y^{2}+1} d y=\sum_{k=0}^{\infty}\left(-\frac{1}{(6 k+3)^{2}}+\frac{1}{(6 k+5)^{2}}\right)= \\
=-\frac{\left(1-\frac{1}{4}\right) \zeta(2)}{9}+\frac{\psi^{(1)}\left(\frac{5}{6}\right)}{36}
\end{gathered}
$$

For the second integral, notice that it can be rewritten as:

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\frac{\pi}{3 \sqrt{3}} \int_{0}^{1} \frac{y^{2}+2}{y^{4}+y^{2}+1} d y=\frac{\pi}{3 \sqrt{3}}\left[\int_{0}^{\infty} \frac{d y}{y^{4}+y^{2}+1}+\int_{0}^{1} \frac{d y}{y^{4}+y^{2}+1}\right]
$$

Evaluating the indefinite integral:

$$
\begin{aligned}
& \int \frac{d y}{y^{4}+y^{2}+1}=\frac{1}{2}\left[\int \frac{1+\frac{1}{y^{2}}}{\left(y-\frac{1}{y}\right)^{2}+3} d y-\int \frac{1-\frac{1}{y^{2}}}{\left(y+\frac{1}{y}\right)^{2}-1} d y\right] \\
& \int \frac{d y}{y^{4}+y^{2}+1}=\frac{1}{2}\left[\frac{1}{\sqrt{3}} \arctan \left[\frac{\left(y-\frac{1}{y}\right)}{\sqrt{3}}\right]+\frac{1}{2} \log \left|\frac{y^{2}+y+1}{y^{2}+y-1}\right|\right]
\end{aligned}
$$

Therefore: $\frac{\pi}{3 \sqrt{3}} \int_{0}^{1} \frac{y^{2}+2}{y^{4}+y^{2}+1} d y=\frac{\pi}{6 \sqrt{3}}\left[\frac{\pi \sqrt{3}}{2}+\frac{\log (3)}{2}\right]$
Gathering all results: $\int_{0}^{\infty} \frac{\arctan (x)}{x^{4}-x^{2}+1} d x=\frac{5 \pi^{2}}{72}+\frac{\pi}{12 \sqrt{3}} \log (3)+\frac{\psi^{(1)}\left(\frac{5}{6}\right)}{36}$

UP.202. Prove that:

$$
\begin{aligned}
& \Psi_{1}\left(\frac{5}{12}\right)=\frac{32-6 \sqrt{3}}{3} \pi^{2}+40 G-10 \Psi_{1}\left(\frac{1}{3}\right) \\
& \Psi_{1}\left(\frac{11}{12}\right)=\frac{32+6 \sqrt{3}}{3} \pi^{2}-40 G-10 \Psi_{1}\left(\frac{1}{3}\right)
\end{aligned}
$$

where $\Psi_{1}(x)$ is the trigamma function and G is the Catalan's constant.

Proposed by Vasile Mircea Popa - Romania

Solution by Dawid Bialek-Poland

$$
\begin{aligned}
& \Psi^{(1)}\left(\frac{11}{12}\right)=\frac{32}{3} \pi^{2}+2 \sqrt{3} \pi^{2}-40 G-10 \Psi^{(1)}\left(\frac{1}{3}\right) \\
& -\Psi^{(1)}\left(\frac{5}{12}\right)=\frac{32}{3} \pi^{2}-2 \sqrt{3} \pi^{2}+40 G-10 \Psi^{(1)}\left(\frac{1}{3}\right)
\end{aligned}
$$

$$
\begin{equation*}
\Psi^{(1)}\left(\frac{11}{12}\right)-\Psi^{(1)}\left(\frac{5}{12}\right)=4 \sqrt{3} \pi^{2}-80 G \tag{1}
\end{equation*}
$$

To prove (1), we consider the known values of trigamma:

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\begin{equation*}
\Psi^{(1)}\left(\frac{1}{4}\right)=\pi^{2}+8 G \quad \Psi^{(1)}\left(\frac{3}{4}\right)=\pi^{2}-8 G \tag{2}
\end{equation*}
$$

Let's apply the following triplication formula for trigamma function $\Psi^{(1)}\left(\frac{1}{4}\right)$:

$$
9 \Psi^{(1)}(3 x)=\Psi^{(1)}(x)+\Psi^{(1)}\left(x+\frac{1}{3}\right)+\Psi^{(1)}\left(x+\frac{2}{3}\right)
$$

Then, we get: $9 \Psi^{(1)}\left(\frac{1}{4}\right)=\Psi^{(1)}\left(\frac{1}{12}\right)+\Psi^{(1)}\left(\frac{5}{12}\right)+\Psi^{(1)}\left(\frac{9}{12}\right)$

$$
\begin{equation*}
\Psi^{(1)}\left(\frac{1}{12}\right)+\Psi^{(1)}\left(\frac{5}{12}\right)=9 \Psi^{(1)}\left(\frac{1}{4}\right)-\Psi^{(1)}\left(\frac{3}{4}\right) \tag{3}
\end{equation*}
$$

Using the reflection formula for $\Psi^{(1)}\left(\frac{1}{12}\right)$, we get:

$$
\begin{equation*}
\Psi^{(1)}\left(\frac{1}{12}\right)=\frac{\pi^{2}}{\sin ^{2}\left(\frac{\pi}{12}\right)}-\Psi^{(1)}\left(\frac{11}{12}\right)=8 \pi^{2}+4 \sqrt{3} \pi^{2}-\Psi^{(1)}\left(\frac{11}{12}\right) \tag{4}
\end{equation*}
$$

Rewriting (3) with (2), (4), we get:

$$
8 \pi^{2}+4 \sqrt{3} \pi^{2}-\Psi^{(1)}\left(\frac{11}{12}\right)+\Psi^{(1)}\left(\frac{5}{12}\right)=9\left[\pi^{2}+8 G\right]-\pi^{2}+8 G
$$

$$
\Psi^{(1)}\left(\frac{11}{12}\right)-\Psi^{(1)}\left(\frac{5}{12}\right)=-9 \pi^{2}-80 G+\pi^{2}+8 \pi^{2}+4 \sqrt{3} \pi^{2}=4 \sqrt{3} \pi^{2}-80 G
$$

> Where G - Catalan's constant.

UP.203. Given a triangle $A B C$ with incenter I. The lines $A I, B I, C I$ meet the sides $B C, C A, A B$ at $A^{\prime}, B^{\prime}, C^{\prime}$ and meet the circumcircle at the second points A_{1}, B_{1}, C_{1} respectively. Prove that:
(a) $\frac{A I}{A A^{\prime}}+\frac{B I}{B B^{\prime}}+\frac{C I}{C C^{\prime}}=2$,
(b) $\frac{A_{1} I}{A I}+\frac{B_{1} I}{B I}+\frac{C_{1} I}{C I}=\frac{2 R}{r}-1$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Solution 1 by Marian Ursărescu-Romania

a) In $\triangle A B C$ from bisector theorem $\Rightarrow \frac{B A^{\prime}}{A C}=\frac{c}{b} \Rightarrow \frac{B A^{\prime}}{a}=\frac{c}{b+c} \Rightarrow B A^{\prime}=\frac{a c}{b+c}$

In $\Delta B A A^{\prime} \Rightarrow \frac{A I}{I A^{\prime}}=\frac{c}{B A^{\prime}}=\frac{b+c}{a} \Rightarrow \frac{A I}{I A^{\prime}}=\frac{b+c}{a+b+c}$ and similarly \Rightarrow

$$
\Rightarrow \frac{A I}{A A^{\prime}}+\frac{B I}{B B^{\prime}}+\frac{C I}{C C^{\prime}}=\frac{b+c+a+c+a+b}{a+b+c}=2
$$

b) $\mu(I)=-A I \cdot A I=O I^{2}-R^{2} \Rightarrow A_{1} I=\frac{R^{2}-O I^{2}}{A I}=\frac{R^{2}-R^{2}+2 R r}{\frac{r}{\sin \frac{A}{2}}} \Rightarrow$
$\Rightarrow A_{1} I=2 R \sin \frac{A}{2}$ and similarly \Rightarrow

$$
\begin{equation*}
\Rightarrow \frac{A_{1} I}{A I}+\frac{B_{1} I}{B I}+\frac{C_{1} I}{C I}=\frac{2 R}{r}\left(\sin ^{2} \frac{A}{2}+\sin ^{2} \frac{B}{2}+\sin ^{2} \frac{C}{2}\right) \text { (1). But } \sum \sin ^{2} \frac{A}{2}=1-\frac{r}{2 R} \tag{2}
\end{equation*}
$$

From (1) $+(2) \Rightarrow \frac{A_{1} I}{A I}+\frac{B_{1} I}{B I}+\frac{C_{1} I}{C I}=\frac{2 R}{r}\left(1-\frac{r}{2 R}\right)=\frac{2 R}{r}-1$
Solution 2 by Tran Hong-Dong Thap-Vietnam

$$
\begin{gathered}
\text { a) } \frac{B A^{\prime}}{A^{\prime} C^{\prime}}=\frac{c}{b} ; B A^{\prime}+A^{\prime} C=a \\
B A^{\prime}=\frac{a c}{b+c} ; A^{\prime} C=\frac{b c}{b+c} \because \frac{B A^{\prime}}{A I}=\frac{B A^{\prime}}{B A}=\frac{a c}{c(b+c)}=\frac{a}{b+c} \\
\frac{A A^{\prime}}{A I}=\frac{A I+I A^{\prime}}{A I}=1+\frac{a}{b+c}=\frac{a+b+c}{b+c} \\
\Rightarrow \frac{A I}{A A^{\prime}}+\frac{B I}{B A^{\prime}}=\frac{b+c}{a+b+c}(\text { (etc }) \\
\text { b) } A C^{\prime} \\
\text { b) }=\frac{(b+c)+(a+c)+(a+b)}{a+b+c}=\frac{2(a+b+c)}{a+b+c}=2
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\begin{aligned}
& A_{1} I=A^{\prime} I+A^{\prime} A_{1}= \frac{a}{a+b+c} \cdot A A^{\prime}+\frac{b+c b+c}{A A^{\prime}}=\frac{a}{a+b+c} \cdot A A^{\prime}+\frac{b c a^{2}}{(b+c)^{2}} \cdot \frac{1}{A A^{\prime}} \\
& \Rightarrow \frac{A_{1} I}{A I}=\frac{a}{a+b+c} \cdot \frac{A A^{\prime}}{A I}+\frac{\left(b c a^{3}\right)}{(b+c)^{2}} \cdot \frac{1}{A A^{\prime} \cdot A I} \\
&=\frac{a}{a+b+c} \cdot \frac{a+b+c}{b+c}+\frac{\left(b c a^{2}\right)}{(b+c)^{2}} \cdot \frac{1}{\frac{b+c}{a+b+c} \cdot A B^{2}} \\
&=\frac{a}{b+c}+\frac{\left(b c a^{2}\right)(a+b+c)}{(b+c)^{3} A B^{2}}=\frac{a}{b+c}+\frac{\left(b c a^{2}\right)(a+b+c)}{(b+c)^{3}} \cdot \frac{(b+c)^{2}}{2 b c(a+b+c)(b-a)} \\
&= \frac{a}{b+c}+\frac{a^{2}}{2(b+c)(s-a)}=\frac{a}{b+c}+\frac{a}{2(s-a)}=\frac{a}{b+c} \cdot \frac{2 s-a}{2(s-a)} \\
&=\frac{a}{b+c} \cdot \frac{b+c}{2(s-a)}=\frac{a}{2(s-a)} \cdot \operatorname{Similarly}: \frac{B_{1} I}{B I}=\frac{b}{2(s-b)} ; \frac{c_{1} I}{c I}=\frac{c}{2(s-c)} \\
& \Rightarrow \frac{A_{1} I}{A I}+\frac{B_{1} I}{B I}+\frac{c_{1} I}{C I}=\frac{1}{2} \cdot\left[\frac{a}{s-a}+\frac{b}{s-b}+\frac{c}{s-c}\right]=\frac{1}{2}\left[\frac{4 R-2 r}{r}\right]=\frac{2 R}{r}-1 \text { Proved }
\end{aligned}
$$

UP.204. Let $\left(a_{n}\right)_{n \geq 1}$ be a positive real sequence such that
$\lim _{n \rightarrow \infty} \frac{a_{n+1}}{n^{t+1} a_{n}}=a \in \mathbb{R}_{+}^{*}$, where t is a positive integer. Compute:

$$
\lim _{n \rightarrow \infty} \frac{1}{\sqrt[n]{a_{n}}} \sum_{k=1}^{n}\left[k^{t} \cdot b\right]
$$

where $b \in \mathbb{R}$; we denote by $[x]$ the integer part of x.
Proposed by D.M. Bătinețu-Giurgiu, Neculai Stanciu - Romania
Solution 1 by Marian Ursărescu-Romania

$$
\begin{gathered}
L=\lim _{n \rightarrow \infty} \frac{1}{\sqrt[n]{a_{n}}} \cdot \sum_{k=1}^{n}\left[k^{t} b\right]=\lim _{n \rightarrow \infty} \frac{n^{t+1}}{\sqrt[n]{a_{n}}} \cdot \frac{1}{n^{t+1}} \cdot \sum_{k=1}^{n}\left[k^{t} b\right] \quad \text { (1) } \\
\lim _{n \rightarrow \infty} \frac{\sum_{k=1}^{n}\left[k^{t} b\right]}{n^{t+1}} \stackrel{c . S .}{=} \lim _{n \rightarrow \infty} \frac{\left[(n+1)^{t} b\right]}{(n+1)^{t+1}-n^{t+1}}=\lim _{n \rightarrow \infty} \frac{\left[(n+1)^{t} b\right]}{C_{t+1}^{1} n^{n+\cdots+C_{t+1}^{t+1}}}=\frac{b}{t+1} \text { (2), because } \\
(n+1)^{t} b-1<\left[(n+1)^{t} b\right] \leq(n+1)^{t} b \Rightarrow \frac{(n+1)^{t} b-1}{C_{t+1}^{b} n^{t}+\cdots}<\frac{\left[(n+1)^{t} b\right]}{C_{t+1}^{b} n^{t}+\cdots} \leq \frac{(n+1)^{t} b}{C_{t+1}^{b} n^{t}+\cdots} \\
\lim _{n \rightarrow \infty} \frac{n^{t+1}}{\sqrt[n]{a_{n}}}=\lim _{n \rightarrow \infty} \sqrt[n]{\frac{n^{n(t+1)}}{a_{n}}} \stackrel{c . D .}{=} \lim _{n \rightarrow \infty} \frac{(n+1)^{(n+1)(t+1)}}{a_{n+1}} \cdot \frac{a_{n}}{n^{n(t+1)}}=
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\begin{gather*}
=\lim _{n \rightarrow \infty} \frac{(n+1)^{n(t+1)}}{n^{n(t+1)}} \cdot \frac{(n+1)^{t+1} a_{n}}{a_{n+1}}=\lim _{n \rightarrow \infty}\left(\left(\frac{n+1}{n}\right)^{n}\right)^{t+1} \cdot \frac{(n+1)^{t+1}}{n^{t+1}} \cdot \frac{n^{t+1} a_{n}}{a_{n+1}}= \\
=e^{t+1} \cdot 1 \cdot \frac{1}{a}=\frac{e^{t+1}}{a} \tag{3}
\end{gather*}
$$

From (1) $+(2)+(3) \Rightarrow L=\frac{b}{a} \cdot \frac{e^{t+1}}{t+1}$
Solution 2 by Remus Florin Stanca-Romania

$$
\begin{gathered}
\Omega=\lim _{n \rightarrow \infty} \frac{n^{t+1}}{\sqrt[n]{a_{n}}} \cdot \frac{1}{n^{t+1}} \sum_{k=1}^{n}\left[k^{t} b\right]=\lim _{n \rightarrow \infty} \frac{n^{t+1}}{\sqrt[n]{a_{n}}} \cdot \lim _{n \rightarrow \infty} \frac{\sum_{k=1}^{n}\left[k^{t} b\right]}{n^{t+1}}= \\
=\lim _{n \rightarrow \infty}\left(\frac{n^{(t+1) n}}{a_{n}}\right)^{\frac{1}{n}} \cdot \lim _{n \rightarrow \infty} \frac{\sum_{k=1}^{n}\left[k^{t} b\right]}{n^{t+1}}=\lim _{n \rightarrow \infty} e^{\frac{\ln \left(\frac{n^{(t+1) n}}{a_{n}}\right)}{n} \lim _{n \rightarrow \infty} \frac{\sum_{k=1}^{n}\left[k^{t} b\right]}{n^{t+1}}=}
\end{gathered}
$$

$\stackrel{\text { Stolz }}{=} \stackrel{\text { Cesaro }}{=} \lim _{n \rightarrow \infty}\left(\left(\frac{n+1}{n}\right)^{n(t+1)} \cdot \frac{1}{\frac{a_{n+1}}{n^{t+1} a_{n}}}\right) \cdot \lim _{n \rightarrow \infty} \frac{\sum_{k=1}^{n}\left[k^{t} b\right]}{n^{t+1}}=e^{t+1} \cdot \frac{1}{a} \cdot \lim _{n \rightarrow \infty} \frac{\sum_{k=1}^{n}\left[k^{t} b\right]}{n^{t+1}}=$

$$
\stackrel{\text { Stolz }}{=} \frac{\text { Cesaro }}{} \frac{e^{t+1}}{a} \cdot \lim _{n \rightarrow \infty} \frac{\left[(n+1)^{t} b\right]}{(n+1)^{t+1}-n^{t+1}}=\frac{e^{t+1}}{a} \cdot \lim _{n \rightarrow \infty} \frac{\left[(n+1)^{t} b\right]}{n^{t+1}\left(\left(\frac{n+1}{n}\right)^{t+1}-1\right)}=
$$

$$
\begin{equation*}
=\frac{e^{t+1}}{a} \cdot \lim _{n \rightarrow \infty} \frac{\left[(n+1)^{t} b\right]}{n^{t}\left(\left(\frac{n+1}{n}\right)^{0}+\cdots+\left(\frac{n+1}{n}\right)^{t}\right)}=\frac{e^{t+1}}{a(t+1)} \cdot \lim _{n \rightarrow \infty} \frac{\left[(n+1)^{t} b\right]}{n^{t}} \tag{1}
\end{equation*}
$$

$$
\frac{(n+1)^{t} b-1}{n^{t}}<\frac{\left[(n+1)^{t} b\right]}{n^{t}}<\frac{(n+1)^{t} b}{n^{t}} ; \lim _{n \rightarrow \infty} \frac{(n+1)^{t} b-1}{n^{t}}=\lim _{n \rightarrow \infty}\left(\frac{n+1}{n}\right)^{t} b=b
$$

$$
\lim _{n \rightarrow \infty} \frac{(n+1)^{t} b}{n^{t}}=b \Rightarrow \lim _{n \rightarrow \infty} \frac{\left[(n+1)^{t} b\right]}{n^{t}}=b \stackrel{(1)}{\Rightarrow} \Omega=\frac{b}{a} \cdot \frac{e^{t+1}}{t+1}
$$

UP.205. Compute:

$$
\lim _{n \rightarrow \infty}\left(\lim _{n \rightarrow \infty}\left((\Gamma(x+2))^{\frac{F_{n}}{(x+1) F_{n+1}}}-(\Gamma(x+1))^{\frac{F_{n}}{x F_{n+1}}}\right) x^{\frac{F_{n-1}}{F_{n+1}}}\right)
$$

where $\left(F_{n}\right)_{n \geq 0}, F_{0}=\mathbf{0}, F_{1}=1, F_{n+2}=F_{n+1}+F_{n}, \forall n \in \mathbb{N}$ is the Fibonacci sequence.

Proposed by D.M. Bătinețu-Giurgiu, Neculai Stanciu - Romania

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Solution 1 by Srinivasa Raghava-AIRMC-India

$$
\begin{gathered}
\text { Let } a(n)=\left(\frac{\Gamma(n+2)^{\frac{1}{n+1}}}{\Gamma(n+1)^{\frac{1}{n}}}\right)^{\frac{F_{n}}{F_{n+1}}} \text { for } n=1,2,3 \ldots \text { then we see that } \lim _{n \rightarrow \infty} a(n)=1 \Rightarrow \\
\Rightarrow \lim _{n \rightarrow \infty} \frac{a(n)-1}{\log (a(n))}=1
\end{gathered}
$$

Ratio)

Hence, we have:

$$
\lim _{n \rightarrow \infty}\left(\lim _{x \rightarrow \infty} x^{\frac{F_{n-1}}{F_{n+1}}}\left(\Gamma(x+2)^{\frac{F_{n}}{(x+1) F_{n+1}}}-\Gamma(x+1)^{\frac{F_{n}}{\overline{F_{n+1}}}}\right)\right)=e^{\frac{1}{\phi}} \log \left(e^{\frac{1}{\phi}}\right)=\frac{e^{\frac{1}{\phi}}}{\phi}=1.14662 \ldots
$$

Solution 2 by Soumitra Mandal-Chandar Nagore-India

$\lim _{x \rightarrow \infty} \frac{\sqrt[x]{\Gamma(x+1)}}{x}=\lim _{\substack{n \rightarrow \infty \\ n \in \mathbb{N}}} \frac{\sqrt[n]{n!}}{n}=\lim _{n \rightarrow \infty} \frac{\sqrt[n]{n!}}{n}=\frac{1}{e}$. Let $u_{n}=\left(\frac{\sqrt[n+1]{\Gamma(n+2)}}{\sqrt[n]{\Gamma(n+1)}}\right)^{\frac{F_{n}}{F_{n+1}}}$ for all $n \in \mathbb{N}$ Now, $\lim _{n \rightarrow \infty} u_{n}=\lim _{n \rightarrow \infty}\left(\frac{\frac{n+1}{\sqrt{(n+2)}}}{\frac{\sqrt[n]{\Gamma+1}}{\sqrt[n]{\Gamma(n+1)}}}\left(1+\frac{1}{n}\right)\right)^{\frac{F_{n}}{F_{n+1}}}=1$, then $\frac{u_{n}-1}{\ln u_{n}} \rightarrow 1$ as $n \rightarrow \infty$
$\lim _{n \rightarrow \infty} u_{n}^{n}=\lim _{n \rightarrow \infty}\left(\frac{\Gamma(n+2)}{\Gamma(n+1)} \cdot \frac{1}{n+1} \cdot \frac{n+1}{\sqrt[n+1]{\Gamma(n+2)}}\right)^{\frac{F_{n}}{F_{n+1}}}=\lim _{n \rightarrow \infty}\left(\frac{n}{n+1} \cdot \frac{n+1}{\sqrt[n+1]{(n+1)!}}\right)^{\frac{F_{n}}{F_{n+1}}}$ $=e^{\frac{1}{\varphi}}$ where $\lim _{n \rightarrow \infty} \frac{F_{n+1}}{F_{n}}=\varphi$
$\therefore \lim _{n \rightarrow \infty}\left(\left(\lim _{x \rightarrow \infty}\left((\Gamma(x+2))^{\frac{F_{n}}{(x+1) F_{n+1}}}-(\Gamma(x+1))^{\frac{F_{n}}{x F_{n+1}}}\right) x^{\frac{F_{n-1}}{F_{n+1}}}\right)\right.$
$=\lim _{n \rightarrow \infty}\left(\frac{\Gamma(n+1)}{n}\right)^{\frac{F_{n}}{F_{n+1}}} \cdot \frac{u_{n}-1}{\ln u_{n}} \cdot \ln u_{n}^{n}=e^{\frac{1}{\varphi}} \cdot 1 \cdot \ln e^{\frac{1}{\varphi}}=\frac{e^{\frac{1}{\varphi}}}{\varphi}$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Solution 3 by Tobi Joshua-Nigeria

$$
I=\lim _{n \rightarrow \infty}\left(\lim _{x \rightarrow \infty}\left(\left((\Gamma(x+2))^{\frac{F_{n}}{(x+1) F_{n+1}}}\right)-\left((\Gamma(x+1))^{\frac{F_{n}}{(x) F_{n+1}}}\right)\right)\left(x^{\frac{F_{n-1}}{F_{n+1}}}\right)\right)
$$

Consider $\boldsymbol{F}_{n+2}-F_{n+1}-F_{n}=0 \Rightarrow F_{n}=A \lambda_{1}^{n}+B \lambda_{2}^{n}+\cdots \forall n \geq 0 \Rightarrow \lambda^{2}-\lambda-1=0$

$$
\begin{gathered}
\Rightarrow\left(\lambda-\frac{1+\sqrt{5}}{2}\right)\left(\lambda+\frac{1-\sqrt{5}}{2}\right)=0 \Rightarrow \lambda_{1}=\frac{\sqrt{5}-1}{2}, \lambda_{2}=\frac{\sqrt{5}+1}{2} \\
F_{n}=A\left(\frac{\sqrt{5}-1}{2}\right)^{n}+B\left(\frac{\sqrt{5}+1}{2}\right)^{n}, \text { using } F_{0}=0, F_{1}=1
\end{gathered}
$$

$$
A=-1, B=1 \Rightarrow F_{n}=-\left(\frac{\sqrt{5}-1}{2}\right)^{n}+\left(\frac{\sqrt{5}+1}{2}\right)^{n} \text { then } \Rightarrow F_{n+1}=-\left(\frac{\sqrt{5}-1}{2}\right)^{n+1}+\left(\frac{\sqrt{5}+1}{2}\right)^{n+1}
$$

$$
\text { and } \Rightarrow F_{n-1}=-\left(\frac{\sqrt{5}-1}{2}\right)^{n-1}+\left(\frac{\sqrt{5+1}}{2}\right)^{n-1} \cdot \text { Now, }
$$

$$
\lim _{n \rightarrow \infty} \frac{F_{n}}{F_{n+1}}=\frac{-\left(\frac{\sqrt{5}-1}{2}\right)^{n}+\left(\frac{\sqrt{5}+1}{2}\right)^{n}}{-\left(\frac{\sqrt{5}-1}{2}\right)^{n+1}+\left(\frac{\sqrt{5}+1}{2}\right)^{n+1}}=\left(\frac{\sqrt{5}+1}{2}\right)=\varphi
$$

Then

$$
\begin{aligned}
& I=\lim _{n \rightarrow \infty}\left(\lim _{x \rightarrow \infty}\left(\left((\Gamma(x+2))^{\frac{F_{n}}{(x+1) F_{n+1}}}\right)-\left((\Gamma(x+1))^{\frac{F_{n}}{(x) F_{n+1}}}\right)\right)\left(x^{\frac{F_{n-1}}{F_{n+1}}}\right)\right) \\
& \text { since } \boldsymbol{F}_{\boldsymbol{n}+\boldsymbol{1}}-\boldsymbol{F}_{\boldsymbol{n}}=\boldsymbol{F}_{\boldsymbol{n}-\mathbf{1}} \oplus \\
& I=\lim _{x \rightarrow \infty}\left(\lim _{n \rightarrow \infty}\left(\left(\frac{\sqrt[x+1]{\Gamma(x+2)}}{\sqrt[x]{\Gamma(x+1)}}\right)^{\frac{F_{n}}{F_{n+1}}}-\mathbf{1}\right)\right) \times \lim _{x \rightarrow \infty}\left(\lim _{n \rightarrow \infty}\left(\left(\frac{\sqrt[x+1]{\Gamma(x+1)}}{\boldsymbol{x}}\right)^{\frac{F_{n}}{F_{n+1}}}\right)\right) \times x \\
& I=\lim _{n \rightarrow \infty}\left(\lim _{x \rightarrow \infty}\left(\frac{\left(\frac{\sqrt[x+1]{\Gamma(x+2)}}{\sqrt[x]{\Gamma(x+1)}}\right)^{\frac{F_{n}}{F_{n+1}}}-1}{\log \left(\left(\frac{x+1}{\sqrt[x]{\Gamma(x+2)}}\right)^{\frac{F_{n}}{F_{n}}}\right)^{F_{n+1}}}\right)\right) \times \lim _{n \rightarrow \infty}\left(\lim _{x \rightarrow \infty}\left(\left(\frac{\sqrt[x+1]{\Gamma(x+1)}}{x}\right)^{\frac{F_{n}}{F_{n+1}}}\right)\right) \times
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\times \lim _{n \rightarrow \infty}\left(\lim _{x \rightarrow \infty}\left(\log \left(\left(\frac{\sqrt[x+1]{\Gamma(x+2)}}{\sqrt[x]{\Gamma(x+1)}}\right)^{\frac{F_{n}}{F_{n+1}}}\right)\right)^{x}\right)
$$

$$
I=1 \times \lim _{n \rightarrow \infty}\left(e^{\frac{F_{n}}{F_{n+1}}}\right) \times \log \lim _{n \rightarrow \infty}\left(\left(e^{\frac{F_{n}}{F_{n+1}}}\right)\right) ; I=\left(e^{\frac{1}{\varphi}}\right) \times \log \left(e^{\frac{1}{\varphi}}\right)=\frac{e^{\frac{1}{\varphi}}}{\varphi} ; I=\frac{2 e^{\frac{\sqrt{5}-1}{2}}}{\sqrt{5}+1}
$$

Compute:

$$
\lim _{n \rightarrow \infty}\left(\lim _{x \rightarrow \infty}\left((\Gamma(x+2))^{\frac{F_{n+1}^{2}}{(x+1) F_{2 n+1}}}-(\Gamma(x+1))^{\frac{F_{n+1}^{2}}{x F_{2 n+1}}}\right) x^{\frac{F_{n}^{2}}{F_{2 n+1}}}\right)
$$

where $\left(F_{n}\right)_{n \geq 0}, F_{0}=0, F_{1}=1, F_{n+2}=F_{n+1}+F_{n}, \forall n \in \mathbb{N}$ is the Fibonacci sequence.

Proposed by D.M. Bătinețu - Giurgiu, Neculai Stanciu - Romania

 Solution by proposersWe denote $u_{n}=\frac{F_{n+1}^{2}}{F_{2 n+1}}$, we have $\lim _{n \rightarrow \infty} u_{n}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{5}} \cdot \frac{\left(\alpha^{n+1}-\beta^{n+1}\right)^{2}}{\alpha^{2 n+1}-\beta^{n 2+1}}=\frac{1}{\alpha \sqrt{5}}$, where

$$
\begin{aligned}
& \alpha=\frac{\sqrt{5}+1}{2}, \beta=\frac{1-\sqrt{5}}{2}, F_{n}=\frac{1}{\sqrt{5}}\left(\alpha^{n}-\beta^{n}\right) . \text { Also, we have } \\
& \lim _{n \rightarrow \infty} \frac{(\Gamma(x+1))^{\frac{1}{x}}}{x}=\lim _{n \rightarrow \infty} \frac{(\Gamma(n+1))^{\frac{1}{n}}}{n}=\lim _{n \rightarrow \infty} \frac{\sqrt[n]{n!}}{n}=\frac{1}{e}
\end{aligned}
$$

We denote $v(x)=\left(\frac{(\Gamma(x+2))^{\frac{1}{x+1}}}{(\Gamma(x+1))^{\frac{1}{x}}}\right)^{u_{n}}$, we have $\lim _{n \rightarrow \infty} v(x)=1$, so $\lim _{n \rightarrow \infty} \frac{v(x)-1}{\ln v(x)}=1$ and

$$
\lim _{x \rightarrow \infty}(v(x))^{x}=\lim _{x \rightarrow \infty}\left(\frac{\Gamma(x+2)}{\Gamma(x+1)} \cdot \frac{1}{(\Gamma(x+2))^{\frac{1}{x+1}}}\right)^{u_{n}}=\lim _{x \rightarrow \infty}\left(\frac{x+1}{(\Gamma(x+2))^{\frac{1}{x+1}}}\right)^{u_{n}}=e^{u_{n}}
$$

therefore $\lim _{n \rightarrow \infty}\left(\lim _{x \rightarrow \infty}(v(x))^{x}\right)=e^{\frac{1}{\alpha \sqrt{5}}}$. Hence:

$$
\lim _{n \rightarrow \infty}\left(\lim _{x \rightarrow \infty}\left((\Gamma(x+2))^{\frac{F_{n+1}^{2}}{(x+1) F_{2 n+1}}}-(\Gamma(x+1))^{\frac{F_{n+1}^{2}}{x^{F_{2 n+1}}}}\right) x^{\frac{F_{n}^{2}}{F_{2 n+1}}}\right)
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty}\left(\left(\lim _{x \rightarrow \infty}(\Gamma(x+2))^{\frac{u_{n}}{x+1}}-(\Gamma(x+1))^{\frac{u_{n}}{x}}\right) x^{\frac{F_{n}^{2}}{F_{2 n+1}}}\right)= \\
& =\lim _{n \rightarrow \infty}\left(\lim _{x \rightarrow \infty}\left((\Gamma(x+2))^{\frac{u_{n}}{x+1}}-(\Gamma(x+1))^{\frac{u_{n}}{x}}\right) x^{\frac{F_{2 n+1}-F_{n+1}^{2}}{F_{2 n+1}}}\right)= \\
& =\lim _{n \rightarrow \infty}\left(\lim _{x \rightarrow \infty}\left((\Gamma(x+1))^{\frac{u_{n}}{x}}\right)(v(x)-1) x^{1-u_{n}}\right)= \\
& =\lim _{n \rightarrow \infty}\left(\lim _{x \rightarrow \infty}\left((\Gamma(x+1))^{\frac{u_{n}}{x}}\right) \frac{v(x)-1}{\ln v(x)} x^{1-u_{n}} \ln v(x)\right)= \\
& = \\
& \lim _{n \rightarrow \infty}\left(\lim _{x \rightarrow \infty}\left(\frac{(\Gamma(x+1))^{\frac{1}{x}}}{x}\right)^{\left.\frac{u_{n}}{n} \frac{v(x)-1}{\ln v(x)} \ln (v(x))^{x}\right)=}\right. \\
& \lim _{n \rightarrow \infty}\left(\left(\frac{1}{e}\right)^{u_{n}} \cdot 1 \cdot \ln e^{u_{n}}\right)=\left(\frac{1}{e}\right)^{\frac{1}{\alpha \sqrt{5}}} \ln e^{\frac{1}{\alpha \sqrt{5}}}=\frac{1}{\alpha \sqrt{5} e^{\frac{1}{\alpha \sqrt{5}}}}
\end{aligned}
$$

UP.207. Let be $A \in M_{3}(\mathbb{R})$ such that $\operatorname{det} A=-1$. Prove that:

$$
\left(\operatorname{Tr} A+\operatorname{Tr} A^{-1}+\mathbf{1}\right)^{2} \geq 3\left(\operatorname{Tr} A \cdot \operatorname{Tr} A^{-1}-1\right)
$$

Proposed by Marian Ursărescu - Romania

Solution by proposer

$$
\left.\begin{array}{c}
p_{A}(x)=x^{3}-\operatorname{Tr} A x^{2}+\operatorname{Tr} A^{*} x-\operatorname{det} A, \text { with } \lambda_{1}, \lambda_{2}, \lambda_{3} \in \mathbb{C} \\
\lambda_{2}+\lambda_{1} \lambda_{3}+\lambda_{2} \lambda_{3}=\lambda_{1} \lambda_{2} \lambda_{3}\left(\lambda_{1}^{-1}+\lambda_{2}^{-1}+\lambda_{3}^{-1}\right)=\operatorname{det} A \cdot \operatorname{Tr} A^{-1}=-\operatorname{Tr} A^{-1}
\end{array}\right\} \Rightarrow
$$

We have $\operatorname{det}\left(A^{2}+A+I_{3}\right) \geq 0$ (1). Let be $f(x)=x^{2}+x+1 \Rightarrow$

$$
\begin{equation*}
\operatorname{det}\left(A^{2}+A+I_{3}\right)=f\left(\lambda_{1}\right) \cdot f\left(\lambda_{2}\right) \cdot f\left(\lambda_{3}\right) \stackrel{(1)}{\geq} 0 \tag{2}
\end{equation*}
$$

$p_{A}(x)=\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right)\left(x-\lambda_{3}\right)$. Let ε be a root of $3^{\text {rd }}$ degree of the unit.
$\varepsilon^{2}+\varepsilon+\mathbf{1}=\mathbf{0}, \varepsilon^{3}=\mathbf{1}$

$$
\left.\begin{array}{c}
p_{A}(\varepsilon)=\left(\varepsilon-\lambda_{1}\right)\left(\varepsilon-\lambda_{2}\right)\left(\varepsilon-\lambda_{3}\right) \\
p_{A}\left(\varepsilon^{2}\right)=\left(\varepsilon^{2}-\lambda_{1}\right)\left(\varepsilon^{2}-\lambda_{2}\right)\left(\varepsilon^{2}-\lambda_{3}\right)
\end{array}\right\} \Rightarrow
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

$$
\begin{gather*}
p_{A}(\varepsilon) p_{A}\left(\varepsilon^{2}\right)=\left(\lambda_{1}^{2}+\lambda_{1}+1\right)\left(\lambda_{1}^{2}+\lambda_{2}+1\right)\left(\lambda_{3}^{2}+\lambda_{3}+1\right)=f\left(\lambda_{1}\right) f\left(\lambda_{2}\right) f\left(\lambda_{3}\right) \stackrel{(2)}{\geq} 0 \\
\text { But } \left.\begin{array}{c}
p_{A}(\varepsilon)=2-\operatorname{Tr} \varepsilon^{2}-\operatorname{Tr} A^{-1} \varepsilon \\
p_{A}\left(\varepsilon^{2}\right)=2 \operatorname{Tr} A \varepsilon-\operatorname{Tr} A^{-1} \varepsilon^{2}
\end{array}\right\} \Rightarrow \\
p_{A}(\varepsilon) \cdot p_{A}\left(\varepsilon^{2}\right)=4+(\operatorname{Tr} A)^{2}+\left(\operatorname{Tr} A^{-1}\right)^{2}+2 \operatorname{Tr} A+2 \operatorname{Tr} A^{-1}-\operatorname{Tr} A \operatorname{Tr} A^{-1}(4 \tag{4}
\end{gather*}
$$

From (3) $+(4) \Rightarrow(\operatorname{Tr} A)^{2}+\left(\operatorname{Tr} A^{-1}\right)^{2}+2 \operatorname{Tr} A+2 \operatorname{Tr} A^{-1}-\operatorname{Tr} A \operatorname{Tr} A^{-1}+3 \geq 0$

$$
\left(\operatorname{Tr} A+\operatorname{Tr} A^{-1}+1\right)^{2}-3 \operatorname{Tr} A \operatorname{Tr} A^{-1}+3 \geq 0 \Rightarrow
$$

$$
\left(\operatorname{Tr} A+\operatorname{Tr} A^{-1}+1\right)^{2} \geq 3\left(\operatorname{Tr} A \operatorname{Tr} A^{-1}-1\right)
$$

UP.208. Let $A B C$ be an acute-angled triangle and $A^{\prime}, B^{\prime}, C^{\prime}$, the points in which the heights of the triangle intersect the circumcircle of $\triangle A B C$. Prove that:

$$
\frac{S_{A^{\prime} B^{\prime} C^{\prime}}}{S_{A B C}} \leq\left(\frac{2 r}{R}\right)^{2}
$$

Proposed by Marian Ursărescu - Romania
Solution 1 by Tran Hong-Dong Thap-Vietnam

We have: $\angle C^{\prime} B^{\prime} B=\angle C^{\prime} C B=90^{\circ}-B ; \angle B B^{\prime} A^{\prime}=\angle B A A^{\prime}=\mathbf{9 0}^{\circ}-B$

$$
\Rightarrow B^{\prime}=\angle C^{\prime} B^{\prime} B+\angle B B^{\prime} A^{\prime}=180^{\circ}-\mathbf{2 B}
$$

Similarly: $A^{\prime}=180^{\circ}-2 A ; B^{\prime}=180^{\circ}-2 C$
$\because B^{\prime} C^{\prime 2}=O C^{\prime 2}+O B^{\prime 2}-2 \cdot O C^{\prime} \cdot O B^{\prime} \cdot \cos \left(C^{\prime} O B^{\prime}\right)$

> ROMANIAN MATHEMATICAL MAGAZINE $=R^{2}+R^{2}-2 \cdot R \cdot R \cdot \cos 2 A^{\prime}=2 R^{2}-2 R^{2} \cos \left(360^{\circ}-4 A\right)$ $=2 R^{2}(1-\cos 4 A)=4 R^{2} \sin ^{2} 2 A \Rightarrow B^{\prime} C^{\prime}=2 R \sin 2 A(\because A, B, C:$ acute $)$ Similarly: $A^{\prime} B^{\prime}=2 R \sin 2 C ; A^{\prime} C^{\prime}=2 R \sin 2 B$. Hence:
$S_{A^{\prime} B^{\prime} C^{\prime}}=\frac{A^{\prime} B^{\prime} \cdot B^{\prime} C^{\prime} \cdot A^{\prime} C^{\prime}}{4 R}=\frac{8 R^{2} \cdot \sin 2 A \cdot \sin 2 B \cdot \sin 2 C}{4 R}=2 R \cdot \sin 2 A \cdot \sin 2 B \cdot 2 C$
$S_{A B C}=\frac{A B \cdot B C \cdot C A}{4 R}=\frac{8 R^{2} \cdot \sin A \cdot \sin B \cdot \sin C}{4 R}=2 R \cdot \sin A \cdot \sin B \cdot \sin C$
$\Rightarrow \frac{S_{A^{\prime} B^{\prime} C^{\prime}}}{S_{A B C}}=\frac{2 R \prod \sin 2 A}{2 R \prod \sin A}=8 \cos A \cdot \cos B \cdot \cos C$
$=8 \cdot \frac{s^{2}-(2 R+r)^{2}}{4 R^{2}}=2 \cdot \frac{s^{2}-(2 R+r)^{2}}{R^{2}}$
We need to prove: $2 \cdot \frac{s^{2}-(2 R+r)^{2}}{R^{2}} \leq \frac{4 r^{2}}{R^{2}} \Leftrightarrow s^{2}-(2 R+r)^{2} \leq 2 r^{2}$

$$
\Leftrightarrow s^{2} \leq 4 R^{2}+4 R r+3 r^{2} \text { (true). Proved. }
$$

Solution 2 by Soumava Chakraborty-Kolkata-India

$$
\angle A^{\prime}=\angle A B Y+\angle A C Z=\left(90^{\circ}-A\right)+\left(90^{\circ}-A\right)=180^{\circ}-2 A
$$

Similarly, $\angle B^{\prime}=180^{\circ}-2 B$ and $\angle C^{\prime}=180^{\circ}-2 C$

$$
\therefore S_{A^{\prime} B^{\prime} C^{\prime}}=\frac{1}{2}\left(A^{\prime} C^{\prime}\right)\left(A^{\prime} B^{\prime}\right) \sin \left(180^{\circ}-2 A\right)
$$

$$
=\frac{1}{2} 2 R \sin \left(180^{\circ}-2 B\right) \cdot 2 R \sin \left(180^{\circ}-2 C\right) \cdot \sin 2 A
$$

$=2 R^{2} \sin 2 A \sin 2 B \sin 2 C$

$$
\begin{aligned}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
& \begin{array}{c}
\text { www.ssmrmh.ro } \\
\begin{array}{c}
\left(2 R^{2} \sin A \sin B \sin C\right) 8 \cos A \cos B \cos C=S_{A B C} \\
\Rightarrow \frac{\mathbf{2}\left\{s^{2}-(\mathbf{2 R}+\boldsymbol{r})^{2}\right\}}{R^{2}} \\
S_{A^{\prime} B^{\prime} C^{\prime}} \\
S_{A B C}
\end{array}=\frac{\mathbf{2}\left\{\boldsymbol{s}^{2}-\mathbf{4} R^{2}-4 R r-r^{2}\right\}}{R^{2}} \leq \frac{4 r^{2}}{R^{2}} \\
\Leftrightarrow s^{2} \leq 4 R^{2}+4 R r+r^{2}+2 r^{2}=4 R^{2}+4 R r+3 r^{2} \rightarrow \text { true (Gerretsen) }
\end{array}
\end{aligned}
$$

(Proved)

UP.209. Demonstrate the following inequality:

$$
\frac{x_{1}}{x_{1}+n}+\frac{x_{2}}{x_{2}+n}+\cdots+\frac{x_{n}}{x_{n}+n} \leq \frac{n}{n+1}
$$

where $x_{1}, x_{2}, \ldots, x_{n}$ are strictly positive real numbers which satisfy the relationship: $x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}=n$

Proposed by Vasile Mircea Popa - Romania

Solution 1 by Serban George Florin-Romania

$$
\begin{gathered}
\sum_{k=1}^{n} \frac{x_{k}}{x_{k+n}}=\sum_{k=1}^{n}\left(1-\frac{n}{x_{k}+n}\right)=n-n \sum_{k=1}^{n} \frac{1}{x_{k}+n} \leq \frac{n}{n+1} \Rightarrow 1-\sum_{k=1}^{n} \frac{1}{x_{k}+n} \leq \frac{1}{n+1} \\
\sum_{k=1}^{n} \frac{1}{x_{k}+n} \geq 1-\frac{1}{n+1}, \sum_{k=1}^{n} \frac{1}{x_{k}+n} \geq \frac{n}{n+1} \\
\sum_{k=1}^{n} \frac{1}{x_{k}+n} \stackrel{\text { Bergstrom }}{\geq} \frac{(1+1+\cdots+1)^{2}}{\sum_{k=1}^{n}\left(x_{k}+n\right)}=\frac{n^{2}}{\sum_{k=1}^{n} x_{k}+n^{2}} \geq \frac{n}{n+1} \\
\Rightarrow \sum_{k=1}^{n} x_{k}+n^{2} \leq \frac{n^{2}(n+1)}{n}, \sum_{k=1}^{n} x_{k} \leq n^{2}+n-n^{2} \\
\sum_{k=1}^{n} x_{k} \leq n,\left(\sum_{k=1}^{n} x_{k}\right)^{2} \stackrel{C B S}{\leq} n \sum_{k=1}^{n} x_{k}^{2} \Rightarrow\left(\sum_{k=1}^{n} x_{k}\right)^{2} \leq n \cdot n \Rightarrow\left(\sum_{k=1}^{n} x_{k}\right)^{2} \leq n^{2} \\
\Rightarrow \sum_{k=1}^{n} x_{k} \leq n \text { true. }
\end{gathered}
$$

Solution 2 by Tran Hong-Dong Thap-Vietnam

$$
x_{1}, x_{2}, \ldots, x_{n}>0
$$

$$
\begin{gather*}
\text { ROMANIAN MATHEMATICAL MAGAZINE } \\
\text { www.ssmrmh.ro } \\
\frac{x_{1}}{x_{1}+n}+\frac{x_{2}}{x_{2}+n}+\cdots+\frac{x_{n}}{x_{n}+n} \leq \frac{n}{n+1} \text { (*) } \\
\left(\sum_{i=1}^{n} x_{i}^{2}=n\right) \\
(*) \Leftrightarrow\left(\frac{x_{1}}{x_{1}+n}-1\right)+\left(\frac{x_{2}}{x_{2}+n}-1\right)+\cdots+\left(\frac{x_{n}}{x_{n}+n}-1\right) \leq \frac{n}{n+1}-n \\
\Leftrightarrow \frac{1}{x_{1}+n}+\frac{1}{x_{2}+n}+\cdots+\frac{1}{x_{n}+n} \geq \frac{n}{n+1}(1) \tag{1}\\
L_{H} S_{1} \stackrel{\text { Schwarz }}{\geq} \frac{(1+1+\cdots+1)^{2}}{\sum_{i=1}^{n} x_{i}+n^{2}}=\frac{n^{2}}{n^{2}+\sum_{i=1}^{n} x_{i}}=\Omega
\end{gather*}
$$

But $\sum_{i=1}^{n} x_{i} \stackrel{B C S}{\leq} \sqrt{\mathbf{1}^{2}+1^{2}+\cdots+1^{2}} \sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}=\sqrt{n} \cdot \sqrt{n}=n$

$$
\Rightarrow \Omega \geq \frac{n^{2}}{n^{2}+n}=\frac{n}{1+n} \text { (Proved) }
$$

Solution 3 by Sudhir Jha-Kolkata-India

$$
\begin{gathered}
\frac{x_{1}}{x_{1}+n}=1+\frac{x_{1}}{x_{1}+n}-1=1+\frac{x_{1}-x_{1}-n}{x_{1}+n}=1-\frac{n}{x_{1}+n} \\
\text { Similarly, } \frac{x_{2}}{x_{2}+n}=1-\frac{n}{x_{2}+n} \cdots
\end{gathered}
$$

$$
\cdots \frac{x_{n}}{x_{n}+n}=1-\frac{n}{x_{n}+n}
$$

Adding

$$
\begin{equation*}
\Rightarrow \frac{x_{1}}{x_{1}+n}+\frac{x_{2}}{x_{2}+n}+\cdots+\frac{x_{n}}{x_{n}+n}=n-n\left[\frac{1}{x_{1}+n}+\frac{1}{x_{2}+n}+\cdots+\frac{1}{x_{n}+n}\right] \tag{1}
\end{equation*}
$$

Considering $\left(x_{1}+n\right),\left(x_{2}+n\right), \ldots,\left(x_{n}+n\right)$ applying $m^{\text {th }}$ power theorem by taking

$$
\begin{gather*}
m=-1, \text { we get: } \frac{\left(x_{1}+n\right)^{-1}+\left(x_{2}+n\right)^{-1}+\cdots+\left(x_{n}+n\right)^{-1}}{n} \geq\left(\frac{x_{1}+x_{2}+\cdots+x_{n}+n \cdot n}{n}\right)^{-1} \\
\quad \Rightarrow \frac{1}{x_{1}+n}+\frac{1}{x_{2}+n}+\cdots+\frac{1}{x_{n}+n} \geq \frac{n^{2}}{x_{1}+x_{2}+\cdots+x_{n}+n^{2}} \text { (2) } \tag{2}
\end{gather*}
$$

Again, considering $x_{1}, x_{2}, \ldots, x_{n}$ and applying $m^{\text {th }}$ power theorem by taking $m=2$,

$$
\begin{gathered}
\text { we get: } \frac{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}{n} \geq\left(\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}\right)^{2} \\
\Rightarrow \frac{n}{n} \geq\left(\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}\right)^{2} \because\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}=n\right) \\
\Rightarrow\left(x_{1}+x_{2}+\cdots+x_{n}\right)^{2} \leq n^{2}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
 $$
\Rightarrow x_{1}+x_{2}+\cdots+x_{n} \leq n
$$

Now, from (2), we get: $\frac{1}{x_{1}+n}+\frac{1}{x_{2}+n}+\cdots+\frac{1}{x_{n}+n} \geq \frac{n^{2}}{n+n^{2}}=\frac{n}{n+1}$
Then, from (1), we get: $\frac{x_{1}}{x_{1}+n}+\frac{x_{2}}{x_{2}+n}+\cdots+\frac{x_{n}}{x_{n}+n} \leq n-n\left(\frac{n}{n+1}\right)=\frac{n^{2}+n-n^{2}}{n+1}$ $\Rightarrow \frac{x_{1}}{x_{1}+n}+\frac{x_{2}}{x_{2}+n}+\cdots+\frac{x_{n}}{x_{n}+n} \leq \frac{n}{n+1}$ (The equality holds for $x_{1}=x_{2}=\cdots=x_{n}=1$)
(proved)
Solution 4 by Michael Sterghiou-Greece

$$
\begin{equation*}
x_{i}>0, i=\overline{\mathbf{1}, n}: \sum_{1}^{n} x_{i}^{2}=n \tag{1}
\end{equation*}
$$

Prove that: $\sum_{1}^{n} \frac{x_{i}}{x_{i}+n} \leq \frac{n}{n+1}$
The function $f(t)=t^{2}$ is convex on $(0,+\infty)$ hence by Jensen

$$
n=\sum_{1}^{n} x_{i}^{2} \geq n\left(\frac{\sum x_{i}}{n}\right)^{2} \rightarrow \sum_{1}^{n} x_{i} \leq n
$$

The function $f(t)=\frac{t}{t+n}$ is concave (*) on $(0,+\infty)$ hence by Jensen

$$
\begin{gathered}
\sum_{1}^{n} \frac{x_{i}}{x_{i}+n} \leq n \cdot \frac{\sum_{1}^{n} \frac{x_{i}}{n}}{\frac{\sum x_{i}+n}{n}+n} \frac{n}{n+1} \rightarrow \sum_{1}^{n} x_{i} \leq n \text { which holds. } \\
{\mathbf{(*) ~} \boldsymbol{f}^{\prime \prime}(\boldsymbol{t})=-\frac{2 n}{(n+t)^{3}}<0}^{\text {. }}=\text {. }
\end{gathered}
$$

UP.210. Prove that for any acute triangle $A B C$ the following inequality holds:

$$
\cot A+\cot B+\cot C+\sqrt{3} \geq 2\left(\tan \frac{A}{2}+\tan \frac{B}{2}+\tan \frac{C}{2}\right)
$$

Proposed by Vasile Mircea Popa - Romania

Solution by Tran Hong-Dong Thap-Vietnam

$$
\begin{gathered}
\sum \cot A+\sqrt{3} \geq 2 \sum \tan \frac{A}{2} \\
\text { (1) } \Leftrightarrow \sum \cot A-2 \sum \tan \frac{A}{2} \geq-\sqrt{3} \\
\text { Let } f(x)=\cot x-2 \tan \frac{x}{2} \quad\left(0<x<\frac{\pi}{2}\right)
\end{gathered}
$$

$$
\begin{gathered}
\text { ROMANIAN MATHEMATICAL MAGAZINE } \\
\Rightarrow \boldsymbol{f}^{\prime}(\boldsymbol{x})=-\frac{1}{\boldsymbol{\operatorname { s i n }}^{2} x}-\frac{1}{\cos ^{2} \frac{x}{2}} \Rightarrow \boldsymbol{f}^{\prime \prime}(\boldsymbol{x})=\frac{\mathbf{2} \cos x}{\sin ^{3} x}+\frac{\sin \frac{x}{2}}{\cos ^{3} \frac{x}{2}}>0 \quad\left(0<x<\frac{\pi}{2}\right)
\end{gathered}
$$

Using Jensen's inequality: $\boldsymbol{f}(A)+\boldsymbol{f}(B)+\boldsymbol{f}(\boldsymbol{C}) \geq 3 \boldsymbol{f}\left(\frac{A+B+C}{3}\right)=3 \boldsymbol{f}\left(\frac{\pi}{3}\right)=3 \cdot \frac{-\sqrt{3}}{3}=-\sqrt{3}$

$$
\begin{gathered}
\Leftrightarrow \sum \cot A-2 \sum \tan \frac{A}{2} \geq-\sqrt{3} \Leftrightarrow \sum \cot A+\sqrt{3} \geq 2 \sum \tan \frac{A}{2} \\
\text { (proved). Equality } \Leftrightarrow A=B=C=\frac{\pi}{3} .
\end{gathered}
$$

ROMANIAN MATHEMEMATICAL MAGAZINE

It's nice to be important but more important it's to be nice. At this paper works a TEAM .

This is RMM TEAM. To be continued!

Daniel Sitaru

