

ROMANIAN MATHEMATICAL MAGAZINE

SOLUTIONS

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

SOLUTIONS

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro Proposed by

Daniel Sitaru - Romania
Nguyen Viet Hung - Hanoi - Vietnam
Marin Chirciu - Romania

George Apostolopoulos - Messolonghi - Greece
Hoang Le Nhat Tung - Hanoi - Vietnam
Marian Ursărescu - Romania
Vasile Mircea Popa - Romania
D.M. Bătinețu - Giurgiu - Romania

Neculai Stanciu - Romania

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

 Solutions byAndrew Okukura-Romania,Bedri Hajrizi-Mitrovica-Kosovo Orlando Irahola Ortega-Bolivia,Soumava Chakraborty-Kolkata-India Mustafa Tarek-Cairo-Egypt, Tran Hong-Dong Thap-Vietnam Khaled Abd Imouti-Damascus-Syria, Ravi Prakash-New Delhi-India Marian Ursărescu-Romania,Sanong Huayrerai-Nakon Pathom-Thailand Amit Dutta-Jamshedpur-India, Bogdan Fustei-Romania Anant Bansal-India, M ichael Sterghiou-Greece

Samir HajAli-Damascus-Syria, M arin Chirciu - Romania
Adrian Popa - Romania, Ivan M astev-M aribor-Slovenia
M okhtar Khassani-M ostaganem-Algerie, Abdul Hafeez Ayinde-Nigeria Nelson Javier Villaherrera Lopez-El Salvador
Remus Florin Stanca - Romania, Naren Bhandari-Bajura-Nepal Avishek Mitra-West Bengal-India, Jovica Mikic-Sarajevo-Bosnia Rovsen Pirguliyev-Sumgait-Azerbaijan,Soumitra Mandal-India

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
JP.211. Prove that there are infinitely many triples ($a, \boldsymbol{b}, \boldsymbol{c}$) of positive integers satisfying:

$$
\frac{a^{3}+b^{3}+c^{3}}{3}-a b c=a+b+c
$$

Proposed by Nguyen Viet Hung - Hanoi - Vietnam
Solution 1 by Andrew Okukura-Romania
We will assume at least one of a, b or \boldsymbol{c} is a non-zero integer

$$
\begin{gathered}
a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right) \\
\text { That means: } \frac{a^{3}+b^{3}+c^{3}}{3}-a b c=a+b+c \Leftrightarrow \\
\Leftrightarrow \frac{1}{3}(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)=a+b+c \Leftrightarrow \\
\Leftrightarrow a^{2}+b^{2}+c^{2}-a b-b c-c a=3 \mid \cdot 2 \Leftrightarrow(a-b)^{2}+(b-c)^{2}+(c-a)^{2}=6
\end{gathered}
$$

For $a=x+2, b=x+1$ and $c=x$, where $x \in \mathbb{N}$
As such any triplet $(x+2, x+1, x)$ satisfies the equation, meaning that we have infinitely many triplets which satisfy the equation.
Solution 2 by Bedri Hajrizi-M itrovica-Kosovo

$$
\begin{gathered}
a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right) \\
a^{2}+b^{2}+c^{2}-a b-b c-c a=3 \\
a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c a=3(a b+b c+c a+1) \\
(a+b+c)^{2}=3(a b+b c+c a+1)
\end{gathered}
$$

Let $a=k-l, b=k, c=k+l ; 9 k^{2}=3\left(k^{2}-4 l+k^{2}+4 l+k^{2}-l^{2}+1\right)$

$$
\begin{gathered}
9 k^{2}=3\left(3 k^{2}-l^{2}+1\right) . \text { For } l=1.9 k^{2}=3 \cdot 3 k^{2} .9 k^{2}=9 k^{2} . \\
\text { So, }(k-1, k, k+1), k>1 .
\end{gathered}
$$

JP.212. Find all real roots of the following equation:

$$
\left(x^{3}-2\right)^{3}+\left(x^{2}-2\right)^{2}=0
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
Solution by Orlando Irahola Ortega-Bolivia

$$
\begin{gather*}
\left(2-x^{3}\right)^{3}=\left(x^{2}-2\right)^{2} \\
a=2-x^{3} \Rightarrow a-2=-x^{3} \ldots()^{2} \Rightarrow(a-2)^{2}=x^{6} \tag{2}\\
b=x^{2}-2 \Rightarrow b+2=x^{2} \ldots()^{3} \Rightarrow(b+2)^{3}=x^{6} \tag{3}\\
a^{3}=b^{2}(1) \tag{1}\\
(2)=(3) \Rightarrow\left\{\begin{array}{c}
(b+2)^{3}=(a-2)^{2} \ldots(4) \\
a^{3}=b^{2} \ldots(1) \\
(4)-(1):
\end{array}\right. \tag{4}\\
\Rightarrow(b+2)^{3}-a^{3}=(a-2)^{2}-b^{2} \Rightarrow(b+2-a)\left(a^{2}+b^{2}+a b+4 b+2 a+4\right)= \tag{1}\\
=(b+2-a)(2-a-b)
\end{gather*} \underbrace{(b+2-a=0}_{(A)} \wedge \underbrace{\left.a^{2}+a b+b^{2}+3 a+5 b+2=0\right)}_{(B)} .
$$

(A) $b+2=a \Rightarrow x^{3}+x^{2}-2=0 \rightarrow(x-1)\left(x^{2}+2 x+2\right)=0 \Rightarrow x-1=0 \Rightarrow x_{1}=1$

$$
\begin{gathered}
x^{2}+2 x+2=0 \\
x_{2,3}=-1 \pm i
\end{gathered}
$$

(B) $a^{2}+a b+b^{2}+3 a+5 b+2=0 \Rightarrow x^{6}-\underbrace{x^{5}+x^{4}-\underbrace{3 x^{3}}_{+}}_{(\forall) x \in \mathbb{R}}+3 x^{2}+2=0$

$$
x^{6}-x^{5}+x^{4}-3 x^{3}+3 x^{2}+2>0 \Rightarrow x \notin \mathbb{R}
$$

$$
\text { C.S. }=\{\mathbf{1}\}
$$

JP.213. Prove that in any $A B C$ triangle the following inequality holds:

$$
\frac{r}{4 R}\left(7 R^{2}-4 r^{2}\right) \leq \sum m_{a}^{2} \tan ^{2} \frac{B}{2} \tan ^{2} \frac{C}{2} \leq 4 R^{2}-13 r^{2}
$$

Proposed by Marin Chirciu - Romania
Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
& \sum m_{a}^{2} \tan ^{2} \frac{B}{2} \tan ^{2} \frac{C}{2}=\left(\frac{\Pi \sin \frac{A}{2}}{\Pi \cos \frac{A}{2}}\right)^{2} \sum m_{a}^{2} \cot ^{2} \frac{A}{2}=\left(\frac{\frac{r}{4 R}}{\frac{S}{4 R}}\right)^{2} \sum m_{a}^{2}\left(\csc ^{2} \frac{A}{2}-1\right) \\
& \quad=\frac{r^{2}}{s^{2}}\left(\sum m_{a}^{2} \frac{b c(s-a)}{r^{2} s}-\sum m_{a}^{2}\right)=\frac{r^{2} \cdot 4 R r s}{s^{2} \cdot r^{2} s} \sum \frac{m_{a}^{2}(s-a)}{a}-\frac{r^{2}}{s^{2}} \cdot \frac{3}{4} \sum a^{2}
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

$$
\begin{aligned}
& =\frac{r^{2} \cdot 4 R r s^{2}}{s^{2} r^{2} s} \sum \frac{m_{a}^{2}}{a}-\frac{4 R r}{s^{2}} \cdot \frac{3}{4} \sum a^{2}-\frac{3 r^{2}}{4 s^{2}} \sum a^{2} \\
& =\frac{R r}{s} \sum \frac{2 b^{2}+2 c^{2}+2 a^{2}-3 a^{2}}{a}-\frac{3 \sum a^{2}}{4 s^{2}}\left(4 R r+r^{2}\right) \\
& =\frac{2 R r}{s} \sum a^{2} \cdot \frac{\sum a b}{4 R r s}-\frac{3 R r}{s}(2 s)-\frac{3 \sum a^{2}}{4 s^{2}}\left(4 R r+r^{2}\right) \\
& =\frac{\left(s^{2}-4 R r-r^{2}\right)\left(s^{2}+4 R r+r^{2}\right)}{s^{2}}-6 R r-\frac{3\left(4 R r+r^{2}\right)\left(s^{2}-4 R r-r^{2}\right)}{2 s^{2}} \\
& =\frac{2\left(s^{2}-4 R r-r^{2}\right)\left(s^{2}+4 R r+r^{2}\right)-3\left(4 R r+r^{2}\right)\left(s^{2}-4 R r-r^{2}\right)-12 R r s^{2}}{2 s^{2}} \\
& \stackrel{(1)}{=} \frac{2 s^{4}-s^{2}\left(24 R r+3 r^{2}\right)+r^{2}(4 R+r)^{2}}{2 s^{2}} \geq \frac{r}{4 R}\left(7 R^{2}-4 r^{2}\right) \\
& \Leftrightarrow 4 R s^{4}-s^{2}\left(55 R^{2} r+6 R r^{2}-4 r^{3}\right)+32 R^{3} r^{2}+16 R^{2} r^{3}+2 R r^{4} \stackrel{(a)}{=} 0 \\
& \text { Now, LHS of (a) } \stackrel{\text { Gerretsen }}{\geq} 4 R s^{2}\left(16 R r-5 r^{2}\right)- \\
& -s^{2}\left(55 R^{2} r+6 R r^{2}-4 r^{3}\right)+32 R^{3} r^{2}+16 R^{2} r^{3}+2 R r^{4} \\
& =s^{2}\left(9 R^{2} r-26 R r^{2}+4 r^{3}\right)+2 R r^{2}(4 R+r)^{2} \stackrel{?}{\geq} 0 \\
& \Leftrightarrow s^{2}(R-2 r)(9 R-8 r)+2 R r(4 R+r)^{2} \underset{(\bar{b})}{?} 12 r^{2} s^{2}
\end{aligned}
$$

Now, LHS of (b) $\underset{(i)}{\substack{\text { Gerretsen }}}\left(16 R r-5 r^{2}\right)(R-2 r)(9 R-8 r)+$

$$
+2 R(4 R+r)^{2} \text { and RHS of (b) } \underset{(i i)}{\text { Gerretsen }} 12 r^{2}\left(4 R^{2}+4 R r+3 r^{2}\right)
$$

(i), (ii) \Rightarrow in order to prove (b), it suffices to prove:
$(16 R-5 r)(R-2 r)(9 R-8 r)+2 R(4 R+r)^{2} \geq 12 r\left(4 R^{2}+4 R r+3 r^{2}\right)$

$$
\Leftrightarrow 176 t^{3}-493 t^{2}+340 t-116 \geq 0 \quad\left(t=\frac{R}{r}\right)
$$

$\Leftrightarrow(t-2)\{176(t-2)+211 t+58\} \geq 0 \rightarrow$ true $\because t \stackrel{\text { Euler }}{\geq} 2 \Rightarrow(b) \Rightarrow(a)$ is true.

$$
\begin{gathered}
\therefore \sum m_{a}^{2} \tan ^{2} \frac{B}{2} \tan ^{2} \frac{C}{2} \geq \frac{r}{4 R}\left(7 R^{2}-4 r^{2}\right) \\
\text { Again }(1) \Rightarrow \sum m_{a}^{2} \tan ^{2} \frac{B}{2} \tan ^{2} \frac{C}{2} \leq 4 R^{2}-13 r^{2} \\
\Leftrightarrow \frac{2 s^{4}-s^{2}\left(24 R r+3 r^{2}\right)+r^{2}(4 R+r)^{2}}{2 s^{2}} \leq 4 R^{2}-13 r^{2}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

 www.ssmrmh.ro$$
\Leftrightarrow 2 s^{4}-s^{2}\left(8 R^{2}+24 R r-23 r^{2}\right)+r^{2}(4 R+r)^{2} \stackrel{(c)}{\leq} 0
$$

Now, Rouche $\Rightarrow s^{2} \geq m-n \Rightarrow s^{2}-m+n \stackrel{(\text { iii) }}{\geq} 0$ and $s^{2} \leq m+n \Rightarrow s^{2}-m-n \stackrel{\text { (iv) }}{\leq} 0$, where $m=2 R^{2}+10 R r-r^{2}$ and $n=2(R-2 r) \sqrt{R^{2}-2 R r}$

$$
\text { (iii), (iv) } \Rightarrow s^{4}-s^{2}(2 m)+m^{2}-n^{2} \leq 0
$$

$$
\Rightarrow s^{4}-s^{2}\left(4 R^{2}+20 R r-2 r^{2}\right)+\left(2 R^{2}+10 R r-r^{2}\right)^{2}-4(R-2 r)^{2}\left(R^{2}-2 R r\right) \leq 0
$$

$$
\Rightarrow 2 s^{4}-s^{2}\left(8 R^{2}+40 R r-4 r^{2}\right)+128 R^{3} r+96 R^{2} r^{2}+24 R r^{3}+2 r^{4} \stackrel{(d)}{\leq} 0
$$

$(d) \Rightarrow$ in order to prove (c), it suffices to prove:

$$
\begin{gathered}
2 s^{4}-s^{2}\left(8 R^{2}+24 R r-23 r^{2}\right)+r^{2}(4 R r+r)^{2} \leq \\
\leq 2 s^{4}-s^{2}\left(8 R^{2}+40 R r-4 r^{2}\right)+128 R^{3} r+96 R^{2} r^{2}+24 R r^{3}+2 r^{4} \\
\Leftrightarrow s^{2}\left(16 R r+19 r^{2}\right)+r^{2}(4 R r+r)^{2}-2 r(4 R+r)^{3} \stackrel{(e)}{\leq} 0
\end{gathered}
$$

Now, LHS of (e) $\stackrel{\text { Gerretsen }}{\leq}\left(4 R^{2}+4 R r+3 r^{2}\right)\left(16 R r+19 r^{2}\right)+$
$+r^{2}(4 R r+r)^{2}-2 r(4 R r+r)^{3} \stackrel{?}{\leq} 0 \Leftrightarrow 16 t^{3}-15 t^{2}-27 t-14 \stackrel{?}{\geq} 0 \quad\left(t=\frac{R}{r}\right)$
$\Leftrightarrow(t-2)\left(16 t^{2}+17 t+7\right) \stackrel{?}{\geq} 0 \rightarrow$ true $\because t \stackrel{\text { Euler }}{\geq} 2$
$\Rightarrow(\mathrm{e}) \Rightarrow(\mathrm{c})$ is true $\therefore \sum m_{a}^{2} \tan ^{2} \frac{B}{2} \tan ^{2} \frac{C}{2} \leq 4 R^{2}-13 r^{2}$ (proved)

JP.214. Prove that in any $A B C$ triangle the following inequality holds:

$$
\frac{27 r^{3}}{2 R} \leq \sum m_{a}^{2} \sin ^{2} \frac{A}{2} \leq \frac{27 R^{2}}{16}
$$

Proposed by Marin Chirciu - Romania
Solution 1 by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\sum m_{a}^{2} \sin ^{2} \frac{A}{2}=\sum \frac{2 b^{2}+2 c^{2}+2 a^{2}-3 a^{2}}{4} \sin ^{2} \frac{A}{2} \\
=\frac{\sum a^{2}}{4} \sum(1-\cos A)-\frac{3}{4} \sum \frac{a^{2}(s-b)(s-c)}{b c} \\
=\frac{\sum a^{2}}{4} \sum\left(3-1-\frac{r}{R}\right)-\frac{3}{16 R r s} \sum a^{3}\left(s^{2}-s(b+c)+b c\right)
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

$$
\text { Now, LHS of (a) } \stackrel{\text { Gerretsen }}{\leq}\left(4 R^{2}+4 R r+3 r^{2}\right)(4 R+10 r)-
$$

$$
-64 R^{2} r-8 R r^{2}+2 r^{3} \stackrel{?}{\leq} 27 R^{3} \Leftrightarrow 11 t^{3}+8 t^{2}-44 t-32 \stackrel{?}{\geq} 0\left(t=\frac{R}{r}\right)
$$

$$
\Leftrightarrow(t-2)\left(11 t^{2}+30 t+16\right) \stackrel{?}{\geq} 0 \rightarrow \text { true } \because t \stackrel{\text { Euler }}{\geq} 2
$$

$$
\therefore \sum m_{a}^{2} \sin ^{2} \frac{A}{2} \leq \frac{27 R^{2}}{16} \text {. Again, (1) } \Rightarrow \sum m_{a}^{2} \sin ^{2} \frac{A}{2} \geq \frac{27 r^{3}}{2 R}
$$

$$
\Leftrightarrow \frac{s^{2}(2 R+5 r)-32 R^{2} r-4 R r^{2}+r^{3}}{8 R} \geq \frac{27 r^{3}}{2 R}
$$

$$
\Leftrightarrow s^{2}(2 R+5 r)-32 R^{2} r-4 R r^{2}-107 r^{3} \stackrel{(b)}{\geq} 0
$$

Now, LHS of (b) $\stackrel{\text { Gerretsen }}{\geq}\left(16 R r-5 r^{2}\right)(2 R+5 r)-32 R^{2} r-4 R r^{2}-107 r^{3} \xrightarrow[?]{\geq} 0$

$$
\begin{gathered}
\Leftrightarrow 66 R r-132 r^{2} \stackrel{?}{\geq} 0 \Leftrightarrow R-2 r \geq \stackrel{?}{\geq} 0 \rightarrow \text { true (Euler) } \\
\quad \Rightarrow \text { (b) is true } \therefore \sum m_{a}^{2} \sin ^{2} \frac{A}{2} \geq \frac{27 r^{3}}{2 R} \text { (Proved) }
\end{gathered}
$$

Solution 2 by Mustafa Tarek-Cairo-Egypt

$$
\frac{27 r^{3}}{2 R} \stackrel{(a)}{\leq} \sum m_{a}^{2} \sin ^{2} \frac{A}{2} \stackrel{(b)}{\leq} \frac{27 R^{2}}{16}
$$

$$
\begin{aligned}
& \text { www.ssmrmh.ro } \\
& =\left(\frac{2 R-r}{4 R}\right) \sum a^{2}-\frac{3}{16 R r s}\left(s^{2} \sum a^{3}-s \sum\left(a^{3} b+a b^{3}\right)+4 r s \cdot \sum a^{2}\right) \\
& =\left(\frac{2 R-r}{4 R}\right) \sum a^{2}-\frac{3}{16 R r s}\left(s^{2} \sum a^{3}-s \sum a b\left(\sum a^{2}-c^{2}\right)+4 R r s \cdot \sum a^{2}\right) \\
& =\left(\frac{2 R-r}{4 R}\right) \sum a^{2}-\frac{3}{16 R r s}\left[\left(-s \sum a b+4 R r s\right) \cdot \sum a^{2}+s^{2} \sum a^{3}+8 R r s^{3}\right] \\
& =\left(\frac{2 R-r}{4 R}\right) \sum a^{2}-\frac{3}{16 R r s}\left[-2 s\left(s^{2}+r^{2}\right)\left(s^{2}-4 R r-r^{2}\right)+2 s^{2}\left(s^{2}-6 R r-3 r^{2}\right)+8 R r s^{3}\right] \\
& =\frac{(2 R-r)\left(s^{2}-4 R r-r^{2}\right)}{2 R}-\frac{3}{8 R}\left(2 R s^{2}-3 r s^{2}+4 R r^{2}+r^{3}\right) \\
& =\frac{4(2 R-r)\left(s^{2}-4 R r-r^{2}\right)-3\left[(2 R-3 r) s^{2}+4 R r^{2}+r^{3}\right]}{8 R} \\
& \stackrel{(1)}{=} \frac{S^{2}(2 R+5 r)-32 R^{2} r-4 R r^{2}+r^{3}}{8 R} \leq \frac{27 R^{2}}{16} \\
& \Leftrightarrow s^{2}(4 R+10 r)-64 R^{2} r-8 R r^{2}+2 r^{3} \stackrel{(a)}{\leq} 27 R^{3}
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 \section*{www.ssmrmh.ro}

First, we will prove (a): $\sum m_{a}^{2} \sin ^{2} \frac{A}{2} \stackrel{m_{a} \geq \sqrt{s(s-a)}}{\geq} \sum s(s-a) \sin ^{2} \frac{A}{2}=\sum b c \cos ^{2} \frac{A}{2} \sin ^{2} \frac{A}{2}$

$$
=\sum \frac{b c \sin ^{2} \frac{A}{2}}{4}=\sum \frac{2 \Delta \sin A}{4}=\frac{r s}{2}=\frac{\sum a}{2 R}=\frac{s^{2} r}{2 R} \stackrel{\text { Mitrinovic }}{\geq} \frac{27 r^{3}}{2 R}, \text { so (a) is true. }
$$

Now, we will prove (b): $\sum m_{a}^{2} \sin ^{2} \frac{A}{2} \stackrel{m_{a} \leq h_{a} \cdot \frac{R}{2 r}}{\leq} \sum \frac{h_{a}^{2} R^{2}}{4 r^{2}} \sin ^{2} \frac{A}{2}=\sum \frac{b^{2} c^{2} R^{2}}{4 r^{2} \cdot 4 R^{2}} \sin ^{2} \frac{A}{2}$

$$
=\sum \frac{4 \Delta^{2}}{4 \sin ^{2} \frac{A}{2} \cos ^{2} \frac{A}{2}} \cdot \frac{\sin ^{2} \frac{A}{2}}{\frac{2}{16 r^{2}}}=\sum \frac{r^{2} s^{2}}{16 r^{2} \cos ^{2} \frac{A}{2}}=\sum \frac{s^{2}}{16 \cos ^{2} \frac{A}{2}}=\sum \frac{s^{2}}{16 \frac{s^{2}}{A I_{a}^{2}}}=\frac{\sum A I_{a}^{2}}{16}
$$

[where I_{a}, I_{b}, I_{c} are the excenters of $\triangle A B C$]. So, we must prove that $\sum A I_{a}^{2} \leq 27 R^{2}$ But: $A I_{a}, B I_{b}, C I_{c}$ are the altitudes of the excentral triangle $\Delta I_{a} I_{b} I_{c}$ of $\Delta A B C$ (1) and $m_{a}^{\prime}, m_{b}^{\prime}, m_{c}^{\prime}$ are the medians of $\Delta I_{a} I_{b} I_{c}$ and also, $a^{\prime}, b^{\prime}, c^{\prime}$ are the sides of $\Delta I_{a} I_{b} I_{c}$ (2) and $\because R^{\prime}$ (the circumradius of $\left.\Delta I_{a} I_{b} I_{c}\right)=2 R$

From (1)+(2)+(3) $\Rightarrow \sum A I_{a}^{2} \stackrel{\left(h_{a} \leq m_{a}\right)}{\leq} \sum \boldsymbol{m}_{a}^{\prime 2}=\frac{3}{4} \sum \boldsymbol{a}^{\prime 2} \stackrel{\text { Leibniz }}{\leq} \frac{3}{4} \cdot 9 \boldsymbol{R}^{\prime 2}$

$$
=\frac{3}{4} \cdot 9 \cdot 4 R^{2}=27 R^{2} \therefore \sum A I_{a}^{2} \leq 27 R^{2} \therefore(\mathrm{~b}) \text { is true (Proved) }
$$

Equality holds in each side (b) and (a) randomly if $\triangle A B C$ is equilateral.

Solution 3 by Tran Hong-Dong Thap-Vietnam

Using inequality: $m_{a}^{2} \cdot m_{b}^{2} \cdot m_{c}^{2} \geq 3 \sqrt{3} S^{3}$ (1)
We have: $\sum m_{a}^{2} \sin ^{2} \frac{A}{2} \stackrel{A M-G M}{\geq} 3 \sqrt[3]{\Pi m_{a}^{2} \sin ^{2} \frac{A}{2}} \stackrel{(1)}{\geq} \sqrt[3]{3 \sqrt{3} \cdot S^{3}\left(\Pi \sin ^{2} \frac{A}{2}\right)}$

$$
=3 \sqrt[3]{3 \sqrt{3} \cdot S^{3} \cdot\left(\frac{r}{4 R}\right)^{2}}=3 \sqrt[3]{3 \sqrt{3} \cdot s^{3} r^{3} \cdot\left(\frac{r}{4 R}\right)^{2}}
$$

We must show that: $3 \sqrt[3]{3 \sqrt{3} \cdot \frac{s^{3} \cdot r^{5}}{16 R^{2}}} \geq \frac{27 r^{3}}{2 R} \leftrightarrow 3 \sqrt{3} \cdot \frac{s^{3} \cdot r^{5}}{16 R^{2}} \geq\left(\frac{9}{2}\right)^{3} \cdot \frac{r^{9}}{R^{3}} \leftrightarrow R s^{3} \geq 162 \sqrt{3} r^{4}$
It is true because: $\left\{\begin{array}{c}R \geq 2 r \\ s \geq 3 \sqrt{3} r\end{array} \rightarrow R s^{3} \geq 2 r(3 \sqrt{3} r)^{3}=162 \sqrt{3} r^{4}\right.$

$$
\text { Suppose: } A \leq B \leq C \rightarrow\left\{\begin{array}{c}
\sin ^{2} \frac{A}{2} \leq \sin ^{2} \frac{B}{2} \leq \sin ^{2} \frac{C}{2} \\
\boldsymbol{m}_{a}^{2} \geq \boldsymbol{m}_{b}^{2} \geq \boldsymbol{m}_{c}^{2}
\end{array}\right.
$$

We have: $\sum \boldsymbol{m}_{a}^{2} \sin ^{2} \frac{A}{2} \stackrel{\text { Chebyshev }}{\leq} \frac{1}{3} \cdot\left(\sum \boldsymbol{m}_{\boldsymbol{a}}^{2}\right)\left(\sum \sin ^{2} \frac{A}{2}\right)$

$$
\begin{aligned}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
& \begin{array}{c}
\text { Www.ssmrmh.ro } \\
\frac{1}{3} \cdot \frac{3}{4} \cdot\left(\sum a^{2}\right) \cdot\left(\sum \sin ^{2} \frac{A}{2}\right)^{\text {Leibniz }} \leq \\
\leq \\
3
\end{array} \frac{3}{4} \cdot 9 \cdot R^{2} \cdot\left(\sum \sin ^{2} \frac{A}{2}\right)^{\sum \sin ^{2} \frac{A}{2} \leq \frac{3}{4}} \leq \\
& \leq \frac{1}{3} \cdot \frac{3}{4} \cdot 9 \cdot R^{2} \cdot \frac{3}{4}=\frac{27}{16} R^{2} . \text { Proved. }
\end{aligned}
$$

JP.215. Prove that in any $A B C$ triangle the following inequality holds:

$$
\begin{array}{r}
(4 R+r)^{2} \cdot \frac{r}{2 R} \leq \sum m_{a}^{2} \cos ^{2} \frac{A}{2} \leq(4 R+r)^{2} \cdot \frac{1}{16}\left(5-\frac{2 r}{R}\right) \\
\text { Proposed by M arin Chirciu - Romania }
\end{array}
$$

Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\frac{r(4 R+r)^{2}}{2 R} \leq \sum m_{a}^{2} \cos ^{2} \frac{A}{2} \leq \frac{(4 R+r)^{2}}{16}\left(5-\frac{2 r}{R}\right) \\
\sum m_{a}^{2} \cos ^{2} \frac{A}{2}=\sum m_{a}^{2}\left(1-\sin ^{2} \frac{A}{2}\right)=\sum m_{a}^{2}-\sum\left[\left(\frac{2 \sum a^{2}-3 a^{2}}{4}\right) \sin ^{2} \frac{A}{2}\right] \\
=\frac{3 \sum a^{2}}{4}-\frac{\sum a^{2}}{4} \sum(1-\cos A)+\frac{3}{4} \sum\left[a^{2} \frac{(s-b)(s-c)(s-a)}{b c(s-a)}\right] \\
=\frac{3 \sum a^{2}}{4}-\frac{\sum a^{2}}{4}\left(3-1-\frac{r}{R}\right)+\frac{3 r^{2} s}{4} \sum \frac{a^{2}}{b c(s-a)} \\
\stackrel{(1)}{=} \frac{\sum a^{2}}{4}\left(\frac{R+r}{R}\right)+\frac{3 r^{2} s}{4} \sum \frac{a^{2}}{b c(s-a)} \\
N o w, \sum \frac{a^{2}}{b c(s-a)}=\sum \frac{a^{2}-s^{2}+s^{2}}{b c(s-a)}=-\sum \frac{(s-a)(s+a)}{b c(s-a)}+\frac{s^{2}}{4 R r s} \sum \frac{a}{s-a} \\
=-s \sum \frac{1}{b c}-\sum \frac{a^{2}}{4 R r s}+\frac{s^{2}}{4 R r s} \sum \frac{a-s+s}{s-a} \\
=-\frac{s(2 s)}{4 R r s}-\frac{2\left(s^{2}-4 R r-r^{2}\right)}{4 R r s}+\frac{s^{2}}{4 R r s} \sum\left(-1+\frac{s \sum(s-b)(s-c)}{r^{2} s}\right) \\
=\frac{-2 s^{2}+4 R r+r^{2}}{2 R r s}+\frac{s^{2}}{4 R r s}\left(-3+\frac{4 R+r}{r}\right)=\frac{-2 s^{2}+4 R r+r^{2}}{2 R r s}+\frac{s^{2}(2 R-r)}{2 R r^{2} s} \\
=\frac{(2)}{=} \frac{s^{2}(2 R-3 r)+r^{2}(4 R+r)}{2 R r^{2} s} \\
(1),(2) \Rightarrow \sum m_{a}^{2} \cos ^{2} \frac{A}{2}=\frac{\sum a^{2}}{4}\left(\frac{R+r}{R}\right)+\frac{3 r^{2} s}{4}\left[\frac{s^{2}(2 R-3 r)+r^{2}(4 R+r)}{2 R r^{2} s}\right]
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\begin{gathered}
=\frac{(R+r)\left(s^{2}-4 R r-r^{2}\right)}{2 R}+\frac{3 s^{2}(2 R-3 r)+3 r^{2}(4 R+r)}{8 R} \\
=\frac{4(R+r)\left(s^{2}-4 R r-r^{2}\right)+3(2 R-2 r) s^{2}+3 r^{2}(4 R+r)}{8 R} \\
=\frac{(10 R-5 r) s^{2}-4 r(R+r)(4 R+r)+3 r^{2}(4 R+r)}{8 R}
\end{gathered}
$$

$\stackrel{(3)}{=} \frac{(10 R-5 r) s^{2}-r(4 R+r)^{2}}{8 R}$
(3) $\Rightarrow \sum m_{a}^{2} \cos ^{2} \frac{A}{2} \leq \frac{(4 R+r)^{2}}{16}\left(5-\frac{2 r}{R}\right)$
$\Leftrightarrow \frac{(10 R-5 r) s^{2}-s(4 R+r)^{2}}{8 R} \leq \frac{(5 R-2 r)(4 R+r)^{2}}{16 R}$
$\Leftrightarrow(4 R-2 r) s^{2} \stackrel{(i)}{\leq} R(4 R+r)^{2}$. Now, Rouche \Rightarrow LHS of (i) \leq $(4 R-2 r)\left\{2 R^{2}+10 R r-r^{2}+2(R-2 r) \sqrt{R^{2}-2 R r}\right\} \stackrel{(?)}{\leq} R(4 R+r)^{2}$ $\Leftrightarrow\left(8 R^{3}-28 R^{2} r+25 R r^{2}-2 r^{3}\right) \stackrel{?}{\geq} 2(R-2 r)(4 R-2 r) \sqrt{R^{2}-2 R r}$
$\Leftrightarrow(R-2 r)\left(8 R^{2}-12 R r+r^{2}\right) \stackrel{?}{\geq} 2(R-2 r)(4 R-2 r) \sqrt{R^{2}-2 R r}$
$\Leftrightarrow 8 R^{2}-12 R r+r^{2} \gg 2(4 R-2 r) \sqrt{R^{2}-2 R r}(\because R-2 r \stackrel{\text { Euler }}{\geq} 0)$
$\Leftrightarrow\left(8 R^{2}-12 R r-r^{2}\right)^{2} \stackrel{?}{>} 4\left(R^{2}-2 R r\right)(4 R-2 r)^{2}\left(\because 8 R^{2}-12 R r+r^{2}>0\right)$
$\Leftrightarrow r^{2}(4 R+r)^{2} \stackrel{?}{>} 0 \rightarrow$ true $\Rightarrow(i)$ is true $\therefore \sum m_{a}^{2} \cos ^{2} \frac{A}{2} \leq \frac{(4 R+r)^{2}}{16}\left(5-\frac{2 r}{R}\right)$
Again, (3) $\Rightarrow \frac{r(4 R+r)^{2}}{2 R} \leq \sum m_{a}^{2} \cos ^{2} \frac{A}{2}$

$$
\Leftrightarrow \frac{(10 R-5 r) s^{2}-r(4 R+r)^{2}}{8 R} \geq \frac{r(4 R+r)^{2}}{2 R}
$$

$\Leftrightarrow(10 R-5 r) s^{2} \geq 5 r(4 R+r)^{2} \Leftrightarrow(2 R-r) s^{2} \stackrel{(i i)}{\geq} r(4 R+r)^{2}$
Now, LHS of (ii) $\stackrel{\text { Gerretsen }}{\geq}(2 R-r)\left(16 R r-5 r^{2}\right) \stackrel{?}{\geq} r(4 R+r)^{2}$
$\Leftrightarrow 8 R^{2}-17 R r+2 r^{2} \xrightarrow[\geq]{\geq} 0 \Leftrightarrow(R-2 r)(8 R-r) \stackrel{?}{\geq} 0 \rightarrow$ true $\because R \stackrel{\text { Euler }}{\geq} 2 r$
\Rightarrow (ii) is true $: \frac{r(4 R+r)^{2}}{2 R} \leq \sum m_{a}^{2} \cos ^{2} \frac{A}{2}$ (Proved)

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

JP.216. Prove that in any $A B C$ triangle the following inequality holds:

$$
\frac{(4 R+r)^{2}}{r(R+r)}\left(-2 R^{2}+17 r^{2}\right) \leq \sum m_{a}^{2} \cot ^{2} \frac{B}{2} \cot ^{2} \frac{C}{2} \leq \frac{3(4 R+r)^{2}}{r^{2}(2 R-r)}\left(R^{3}-5 r^{3}\right)
$$

Proposed by Marin Chirciu - Romania
Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
& \frac{(4 R+r)^{2}}{r(R+r)}\left(-2 R^{2}+17 r^{2}\right) \leq \sum m_{a}^{2} \cot ^{2} \frac{B}{2} \cot ^{2} \frac{C}{2} \leq \frac{3(4 R+r)^{2}}{r^{2}(2 R-r)}\left(R^{3}-5 r^{3}\right) \\
& \text { Firstly, } \sum \sec ^{2} \frac{A}{2}=\sum \frac{b c}{s(s-a)}=\frac{\sum b c(s-b)(s-c)}{r^{2} s^{2}} \\
&= \frac{\sum b c\left(s^{2}-s(b+c)+b c\right)}{r^{2} s^{2}}=\frac{s^{2} \sum a b-s \sum b c(2 s-a)+\left(\sum a b\right)^{2}-2 a b c(2 s)}{r^{2} s^{2}} \\
&= \frac{-s^{2} \sum a b+\left(\sum a b\right)^{2}-4 R s^{2}}{r^{2} s^{2}}=\frac{\left(4 R+r^{2}\right)\left(s^{2}+4 R r+r\right)-4 R r s^{2}}{r^{2} s^{2}} \stackrel{(1)}{=} \frac{s^{2}+(4 R+r)^{2}}{s^{2}}
\end{aligned}
$$

Secondly, $\sum(s-b)(s-c)=\sum\left(s^{2}-s(b+c)+b c\right)=3 s^{2}-4 s^{2}+s^{2}+4 R r+r^{2} \stackrel{(2)}{=} 4 R r+r^{2}$

$$
\begin{gathered}
\text { Now, } \sum m_{a}^{2} \cot ^{2} \frac{B}{2} \cot ^{2} \frac{C}{2}=\left(\frac{\Pi \cos \frac{A}{2}}{\Pi \sin ^{\frac{A}{2}}}\right)^{2} \sum m_{a}^{2} \tan ^{2} \frac{A}{2} \\
=\left(\frac{\frac{s}{4 R}}{\frac{r}{4 R}}\right)^{2} \sum m_{a}^{2}\left(\sec ^{2} \frac{A}{2}-1\right)=\frac{s^{2}}{r^{2}}\left[\sum\left(\frac{2 \sum a^{2}-3 a^{2}}{4}\right) \sec ^{2} \frac{A}{2}-\frac{3}{4} \sum a^{2}\right] \\
=\frac{s^{2}}{r^{2}}\left[\left(\frac{\sum a^{2}}{2}\right) \sum \sec ^{2} \frac{A}{2}-\frac{3}{4} \sum a^{2}-\frac{3}{4} \sum \frac{a^{2} b c}{s(s-a)}\right] \\
\left.\left.\begin{array}{c}
b y(1) \\
=\frac{s^{2}}{r^{2}}\left[\left(\frac{\sum a^{2}}{2}\right)\left(\frac{s^{2}+(4 R+r)^{2}}{s^{2}}\right)-\frac{3}{4} \sum a^{2}-\left(\frac{3 \cdot 4 R r s}{4 s}\right) \sum \frac{a-s+s}{s-a}\right] \\
\left.=\left(\frac{s^{2}+(4 R+r)^{2}}{s^{2}}\right)-\frac{3}{4} \sum a^{2}-3 R r \sum\left(-1+\frac{s}{r^{2} s} \sum(s-b)(s-c)\right)\right] \\
= \\
=\frac{s^{2}}{r^{2}}\left[\left(\frac{\sum a^{2}}{2}\right)\left(\frac{s^{2}+(4 R+r)^{2}}{s^{2}}\right)-\frac{3}{4} \sum a^{2}-3 R r\left(-3+\frac{4 R+r}{r}\right)\right] \\
= \\
r^{2}
\end{array} s^{2}-4 R r-r^{2}\right)\left(\frac{s^{2}+\left(4 R+r a^{2}\right.}{2}\right)\left(\frac{s^{2}+(4 R+r)^{2}}{s^{2}}\right)-\frac{3}{4} \sum a^{2}-3 R(4 R-2 r)\right]
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
$=\frac{1}{2 r^{2}}\left[2\left(s^{2}-4 R r-r^{2}\right)\left(s^{2}+(4 R+r)^{2}-3 s^{2}\left(s^{2}-4 R r-r^{2}\right)-6 R s^{2}(4 R-2 r)\right]\right.$
$\stackrel{(3)}{=} \frac{-s^{4}+s^{2}\left(8 R^{2}+32 R r+3 r^{2}\right)-r\left(128 R^{3}+96 R^{2} r+24 R r^{2}+2 r^{3}\right)}{2 r^{2}}$
$\therefore \frac{(4 R+r)^{2}}{r(R+r)}\left(-2 R^{2}+17 r^{2}\right) \leq \sum m_{a}^{2} \cot ^{2} \frac{B}{2} \cot ^{2} \frac{C}{2}$
$\stackrel{b y(3)}{\Leftrightarrow} \frac{-s^{4}+s^{2}\left(8 R^{2}+32 R r+3 r^{2}\right)-r\left(128 R^{3}+96 R^{2} r+24 R r^{2}+2 r^{3}\right)}{2 r^{2}}+$
$+\frac{(4 R+r)^{2}}{r(R+r)}\left(2 R^{2}-17 r^{2}\right) \geq 0$
$\Leftrightarrow \frac{1}{2 r^{2}(R+r)}\left[\begin{array}{c}(R+r)\left\{-s^{4}+s^{2}\left(8 R^{2}+32 R r+3 r^{2}\right)-r\left(128 R^{3}+96 R^{2} r+24 R r^{2}+2 r^{3}\right)\right\} \\ +2 r\left(2 R^{2}-17 r^{2}\right)(4 R+r)^{2}\end{array}\right] \geq 0$
$\Leftrightarrow(R+r) s^{4}+r\left(64 R^{4}+192 R^{3} r+660 R^{2} r^{2}+298 R r^{3}+36 r^{4}\right)$

$$
\stackrel{(i)}{\leq} s^{2}\left(8 R^{3}+40 R^{2} r+35 R r^{2}+3 r^{3}\right)
$$

Now, LHS of (i) $\stackrel{\text { Gerretsen }}{\leq}(R+r)\left(4 R^{2}+4 R r+3 r^{2}\right) s^{2}+$ $+r\left(64 R^{4}+192 R^{3} r+660 R^{2} r^{2}+298 R r^{3}+36 r^{4}\right) \leq$

$$
\stackrel{(i)}{\leq} s^{2}\left(8 R^{3}+40 R^{2} r+35 R r^{2}+3 r^{3}\right)
$$

$$
\Leftrightarrow s^{2}\left(4 R^{3}+32 R^{2} r+28 R r^{2}\right) \underset{(i i)}{?} r\left(64 R^{4}+192 R^{3} r+660 R^{2} r^{2}+298 R r^{3}+36 r^{4}\right)
$$

Now, LHS of (ii) $\stackrel{\text { Gerretsen }}{\geq}\left(16 R r-5 r^{2}\right)\left(4 R^{3}+32 R^{2} r+28 R r^{2}\right) \geq$
$\stackrel{?}{\geq} r\left(64 R^{4}+192 R^{3} r+660 R^{2} r^{2}+298 R r^{3}+36 r^{4}\right)$
$\Leftrightarrow 50 t^{3}-62 t^{2}-73 t-6 \stackrel{?}{\geq} 0\left(t=\frac{R}{r}\right) \Leftrightarrow(t-2)\left(50 t^{2}+38 t+3\right) \stackrel{?}{\geq} 0 \rightarrow$ true

$$
\begin{gathered}
\because t \stackrel{\text { Euler }}{\geq} 2 \Rightarrow \text { (ii) } \Rightarrow \text { (i) is true } \\
\therefore \frac{(4 R+r)^{2}}{r(R+r)}\left(-2 R^{2}+17 r^{2}\right) \leq \sum m_{a}^{2} \cot ^{2} \frac{B}{2} \cot ^{2} \frac{C}{2} \\
\text { Again, } \sum m_{a}^{2} \cot ^{2} \frac{B}{2} \cot ^{2} \frac{C}{2} \leq \frac{3(4 R+r)^{2}}{r^{2}(2 R-r)}\left(R^{3}-5 r^{3}\right) \stackrel{b y(3)}{\Leftrightarrow} \\
\frac{-s^{4}+s^{2}\left(8 R^{2}+32 R r+3 r^{2}\right)-r\left(128 R^{3}+96 R^{2} r+24 R r^{2}+2 r^{3}\right)}{2 r^{2}}-
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
-\frac{3(4 R+r)^{2}}{r^{2}(2 R-r)}\left(R^{3}-5 r^{3}\right) \leq 0
$$

$$
\Leftrightarrow(2 R-r)\left(-s^{4}+s^{2}\left(8 R^{2}+32 R r+3 r^{2}\right)-r\left(128 R^{3}+96 R^{2} r+24 R r^{2}+2 r^{3}\right)\right)
$$

$$
-6\left(R^{3}-5 r^{3}\right)(4 R+r)^{2} \leq 0 \Leftrightarrow 6\left(R^{3}-5 r^{3}\right)(4 R+r)^{2}+(2 R-r) s^{4}
$$

$$
+r(2 R-r)\left(128 R^{3}+96 R^{2} r+24 R r^{2}+2 r^{3}\right) \stackrel{(i i i)}{\geq}(2 R-r)\left(8 R^{2}+32 R r+3 r^{2}\right) s^{2}
$$

$$
\text { Now, LHS of (iii) } \stackrel{\text { Gerretsen }}{\geq} 6\left(R^{3}-5 r^{3}\right)(4 R+r)^{2}+(2 R-r)\left(16 R r-5 r^{2}\right) s^{2}
$$

$$
+r(2 R-r)\left(128 R^{3}+96 R^{2} r+24 R r^{2}+2 r^{3}\right) \stackrel{?}{\geq}(2 R-r)\left(8 R^{2}+32 R r+3 r^{2}\right) s^{2}
$$

$$
\Leftrightarrow s^{2}(2 R-r)\left(8 R^{2}+16 R r+8 r^{2}\right) \underset{(i v)}{\stackrel{?}{<}} 6\left(R^{3}-5 r^{3}\right)(4 R+r)^{2}+
$$

$$
+r(2 R-r)\left(128 R^{3}+96 R^{2} r+24 R r^{2}+2 r^{3}\right)
$$

Now, LHS of (iv) $\underset{\leq}{\text { Gerretsen }}\left(4 R^{2}+4 R r+3 r^{2}\right)(2 R-r)\left(8 R^{2}+16 R r+8 r^{2}\right)$

$$
\stackrel{?}{\leq} 6\left(R^{3}-5 r^{3}\right)(4 R+r)^{2}+r(2 R-r)\left(128 R^{3}+96 R^{2} r+24 R r^{2}+2 r^{3}\right)
$$

$$
\Leftrightarrow 16 t^{5}+72 t^{4}-37 t^{3}-284 t^{2}-114 t-4 \stackrel{?}{2}_{\geq}^{0}
$$

$$
\Leftrightarrow(t-2)\left(16 t^{4}+104 t^{3}+171 t^{2}+58 t+2\right) \stackrel{?}{\geq} 0 \rightarrow \text { true } \because t \stackrel{\text { Euler }}{\geq} 2 \Rightarrow(\mathrm{iv}) \Rightarrow \text { (iii) }
$$ is true $\therefore \sum m_{a}^{2} \cot ^{2} \frac{B}{2} \cot ^{2} \frac{C}{2} \leq \frac{3(4 R+r)^{2}}{r^{2}(2 R-r)}\left(R^{3}-5 r^{3}\right)$ (Proved)

JP.217. Prove that in any $A B C$ triangle the following inequality holds:

$$
n \sum \sin ^{2} A-k \sum \cos ^{3} A \leq \frac{3}{8}(6 n-k), \text { where } n, k \geq 0
$$

Proposed by Marin Chirciu - Romania

Solution 1 by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
& n \sum \sin ^{2} A-k \sum \cos ^{3} A=(n-k) \sum \sin ^{2} A+k \sum \sin ^{2} A-k \sum \cos A\left(1-\sin ^{2} A\right) \\
&=(n-k) \sum \sin ^{2} A-k \sum \cos A+k \sum \sin ^{2} A(1+\cos A) \\
&= n \sum \sin ^{2} A-k \sum \sin ^{2} A-k \sum \cos A+2 k \sum \sin ^{2} A \cos ^{2} \frac{A}{2}
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\begin{aligned}
&=n\left(\frac{\sum a^{2}}{4 R^{2}}\right)-k \sum \sin ^{2} A-k \sum \cos A+2 k \sum \sin ^{2} A \cos ^{2} \frac{A}{2} \\
& \stackrel{\text { Leibnitz }}{\leq}\left(\frac{9 R^{2}}{4 R^{2}}\right) n-k \sum \sin ^{2} A-k \sum \cos A+2 k \sum \sin ^{2} A \cos ^{2} \frac{A}{2}(\because n \geq 0) \\
&=\frac{9 n}{4}-k \sum \sin ^{2} A-k \sum \cos A+2 k \sum \sin ^{2} A \cos ^{2} \frac{A}{2} \stackrel{?}{\leq} \frac{3}{8}(6 n-k)=\frac{9 n}{4}-\frac{3 k}{8} \\
& \Leftrightarrow k\left\{2 \sum \sin ^{2} A \cos ^{2} \frac{A}{2}-\left(\sum \sin ^{2} A+\sum \cos A-\frac{3}{8}\right)\right\} \stackrel{?}{\leq} 0 \\
& \Leftrightarrow 2 \sum \sin ^{2} A \cos ^{2} \frac{A}{2} \underset{(1)}{\frac{?}{1}} \sum \sin ^{2} A+\sum \cos A-\frac{3}{8}(\because k \geq 0)
\end{aligned}
$$

Now, $2 \sum \sin ^{2} A \cos ^{2} \frac{A}{2}=2 \sum \frac{a^{2}}{4 R^{2}} \cdot \frac{s(s-a)}{b c}=\frac{2 s}{4 R^{2} \cdot 4 R r s} \sum a^{3}(s-a) \stackrel{(a)}{\leq} \frac{s \sum a^{3}-\sum a^{4}}{8 R^{3} r}$

$$
\text { Now, }\left(\sum a^{3}\right)\left(\sum a\right)=\sum a^{4}+\sum a^{3} b+\sum a b^{3}
$$

$$
\Rightarrow-\sum a^{4}=-2 s \cdot \sum a^{3}+\sum a b\left(\sum a^{2}-c^{2}\right)
$$

$$
\Rightarrow s \sum a^{3}-\sum a^{4}=-2 s^{2}\left(s^{2}-6 R r-3 r^{2}\right)+\sum a b \cdot \sum a^{2}-4 R r s(2 s)
$$

$$
=2 r\left\{s^{2}(2 R+3 r)-r(4 R+r)^{2}\right\}
$$

$$
\Rightarrow \frac{s \sum a^{3}-\sum a^{4}}{8 R^{3} r} \stackrel{(b)}{=} \frac{s^{2}(2 R+3 r)-r(4 R+r)^{2}}{4 R^{3}} \Rightarrow \text { LHS of (1) } \stackrel{(i)}{=} \frac{s^{2}(2 R+3 r)-r(4 R+r)^{2}}{4 R^{3}}
$$

(using (a), (b))
Again, RHS of (1) $=\frac{\sum a^{2}}{4 R^{2}}+\frac{R+r}{R}-\frac{3}{8}=\frac{4\left(s^{2}-4 R r-r^{2}\right)+8 R(R+r)-3 R^{2}}{8 R^{2}}$

$$
\stackrel{(i i)}{=} \frac{4 s^{2}+5 R^{2}+8 R r-4\left(4 R r+r^{2}\right)}{8 R^{2}}
$$

(i), (ii) \Rightarrow in order to prove (1), it is equivalent to proving:

$$
\begin{gathered}
\frac{s^{2}(2 R+3 r)}{4 R^{3}}+\frac{4\left(4 R r+r^{2}\right)}{8 R^{2}} \leq \frac{r(4 R+r)^{2}}{4 R^{3}}+\frac{4 s^{2}+5 R^{2}+8 R r}{8 R^{2}} \\
\Leftrightarrow 2 s^{2}(2 R+3 r)+4 R\left(4 R r+r^{2}\right) \leq 2 r(4 R+r)^{2}+R\left(4 s^{2}+5 R^{2}+8 R r\right) \\
\Leftrightarrow s^{2} \cdot 6 r \stackrel{(2)}{\leq} 5 R^{3}+8 R^{2} r+2 r(4 R+r)^{2}-4 R\left(4 R r+r^{2}\right)
\end{gathered}
$$

$$
\text { Now, LHS of (2) } \stackrel{\text { Gerretsen }}{\leq} 6 r\left(4 R^{2}+4 R r+3 r^{2}\right)
$$

$$
\stackrel{?}{\leq} 5 R^{3}+8 R^{2} r+2 r(4 R+r)^{2}-4 R\left(4 R r+r^{2}\right) \Leftrightarrow 5 t^{3}-12 t-16 \stackrel{?}{\geq} 0\left(t=\frac{R}{r}\right)
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\begin{gathered}
\Leftrightarrow 5 t^{3}-20 t+8 t-16 \xrightarrow[?]{\geq} 0 \\
\Leftrightarrow 5 t(t+2)(t-2)+8(t-2) \stackrel{?}{\geq} 0 \rightarrow \text { true } \because t \stackrel{\text { Euler }}{\geq} 2 \\
\Rightarrow(2) \Rightarrow(1) \Rightarrow \text { given inequality is true (Proved) }
\end{gathered}
$$

Solution 2 by Khaled Abd Imouti-Damascus-Syria

$$
\begin{gathered}
n\left(\sin ^{2} A+\sin ^{2} B+\sin ^{2} C\right)-k\left(\cos ^{3} A+\cos ^{3} B+\cos ^{3} C\right) \stackrel{?}{\leq} \frac{3}{8}(6 n-k) \\
n\left(\sin ^{2} A+\sin ^{2} B+\sin ^{2} C\right)+k\left(-\cos ^{3} A-\cos ^{3} B-\cos ^{3} C\right) \stackrel{?}{\leq} \frac{3}{8}(6 n-k)
\end{gathered}
$$

Let be the function: $f(x)=-\cos ^{3} x, f^{\prime}(x)=3 \sin x \cos ^{2} x \geq 0$
So, f is a convex function and hence by using Popoviciu's inequality:

$$
\begin{gather*}
\frac{1}{3}\left(-\cos ^{3} A-\cos ^{3} B-\cos ^{3} C\right)-\cos ^{3}\left(\frac{A+B+C}{3}\right) \geq \\
\geq \frac{2}{3}\left(-\cos ^{3}\left(\frac{A+B}{2}\right)-\cos ^{3}\left(\frac{B+C}{2}\right)-\cos ^{3}\left(\frac{A+C}{2}\right)\right) \\
-\frac{1}{3}\left(\cos ^{3} A+\cos ^{3} B+\cos ^{3} C\right)-\frac{1}{8} \geq-\frac{2}{3}\left(\sin ^{3} \frac{C}{2}+\sin ^{3} \frac{A}{2}+\sin ^{3} \frac{B}{2}\right) \\
\frac{1}{3}\left(\cos ^{3} A+\cos ^{3} B+\cos ^{3} C\right)+\frac{1}{8} \geq \frac{2}{3}\left(\sin ^{3} \frac{C}{2}+\sin ^{3} \frac{A}{2}+\sin ^{3} \frac{B}{2}\right) \\
\cos ^{3} A+\cos ^{3} B+\cos ^{3} C+\frac{3}{8} \geq 2\left(\sin ^{3} \frac{C}{2}+\sin ^{3} \frac{A}{2}+\sin ^{3} \frac{B}{2}\right) \\
\cos ^{3} A+\cos ^{3} B+\cos ^{3} C \geq-\frac{3}{8}+2\left(\sin ^{3} \frac{C}{2}+\sin ^{3} \frac{A}{2}+\sin ^{3} \frac{B}{2}\right) \\
\operatorname{but}: \sin ^{3} \frac{C}{2}+\sin ^{3} \frac{A}{2}+\sin ^{3} \frac{B}{2} \geq \frac{3}{8} \\
2\left(\sin ^{3} \frac{C}{2}+\sin ^{3} \frac{A}{2}+\sin ^{3} \frac{B}{2}\right) \geq \frac{6}{8} \\
\left(\sin ^{3} \frac{A}{2}+\sin ^{3} \frac{C}{2}+\sin ^{3} \frac{B}{2} \geq 3 \sqrt[3]{3} \sin ^{3} \frac{A}{2} \sin 3 \frac{B}{2} \sin ^{3} \frac{C}{2}\right. \\
\left.\sin ^{3} \frac{A}{2}+\sin ^{3} \frac{C}{2}+\sin ^{3} \frac{B}{2} \geq 3 \sin ^{\frac{A}{2}} \sin \frac{B}{2} \sin \frac{C}{2} \geq \frac{3}{8}\right) \\
\cos ^{3} A+\cos ^{3} B+\cos ^{3} C \geq \frac{3}{8} \tag{1}\\
-k\left(\cos ^{3} A+\cos ^{3} B+\cos ^{3} C\right) \leq-\frac{3 k}{8}(1)
\end{gather*}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\frac{\sin ^{2} A+\sin ^{2} B+\sin ^{2} C}{3} \leq\left(\frac{\sin A+\sin B+\sin C}{3}\right)^{2} \quad \mathrm{AM}-\mathrm{GM}
$$

$$
\sin ^{2} A+\sin ^{2} B+\sin ^{2} C \leq \frac{1}{3}(\sin A+\sin B+\sin C)^{2}
$$

As you know: $\sin A+\sin B+\sin C \leq \frac{3 \sqrt{3}}{2}$. So: $(\sin A+\sin B+\sin C) \leq \frac{27}{4}$

$$
\begin{gather*}
\sin ^{2} A+\sin ^{2} B+\sin ^{2} C \leq \frac{1}{3} \cdot \frac{27}{4} \Rightarrow \sin ^{2} A+\sin ^{2} B+\sin ^{2} C \leq \frac{9}{4} \\
n\left(\sin ^{2} A+\sin ^{2} B+\sin ^{2} C\right) \leq \frac{9 n}{4} \tag{2}
\end{gather*}
$$

From (1) and (2):

$$
\begin{gathered}
n\left(\sin ^{2} A+\sin ^{2} B+\sin ^{2} C\right)-k\left(\cos ^{3} A+\cos ^{3} B+\cos ^{3} C\right) \leq \frac{9 n}{4}-\frac{3 k}{8} \\
n\left(\sin ^{2} A+\sin ^{2} B+\sin ^{2} C\right)-k\left(\cos ^{3} A+\cos ^{3} B+\cos ^{3} C\right) \leq \frac{3}{8}(6 n-k)
\end{gathered}
$$

JP.218. Let a, b and c be positive real numbers. Prove that:
(a) $\frac{a^{4}+b^{4}}{\left(a^{2}-a b+b^{2}\right)^{2}}+\frac{b^{4}+c^{4}}{\left(b^{2}-b c+c^{2}\right)^{2}}+\frac{c^{4}+a^{4}}{\left(c^{2}-c a+a^{2}\right)^{2}} \leq 6$
(b) $\sqrt{\frac{a^{5}+b^{5}}{a^{2}+b^{2}}}+\sqrt{\frac{b^{5}+c^{5}}{b^{2}+c^{2}}}+\sqrt{\frac{c^{5}+a^{5}}{c^{2}+a^{2}}} \geq 3 \sqrt{a b c}$

Proposed by George Apostolopoulos - Messolonghi - Greece
Solution 1 by Ravi Prakash-New Delhi-India

$$
\begin{aligned}
& 2-\frac{a^{4}+b^{4}}{\left(a^{2}-a b+b^{2}\right)^{2}}=\frac{2\left(a^{4}+a^{2} b^{2}+b^{4}-2 a^{3} b-2 a b^{3}+2 a^{2} b^{2}\right)-\left(a^{4}+b^{4}\right)}{\left(a^{2}-a b+b^{2}\right)^{2}}= \\
& =\frac{a^{4}-4 a^{3} b+6 a^{2} b^{2}-4 a b^{3}+b^{4}}{\left(a^{2}-a b+b^{2}\right)^{2}}=\frac{(a-b)^{4}}{\left(a^{2}-a b+b^{2}\right)^{2}} \geq 0 \Rightarrow \frac{a^{4}+b^{4}}{\left(a^{2}-a b+b^{2}\right)^{2}} \leq 2
\end{aligned}
$$

Similarly, for other two expressions. Thus: $\sum \frac{a^{4}+b^{4}}{\left(a^{2}-a b+b^{2}\right)^{2}} \leq 6$
Equality when $a=b=c$.

$$
\begin{aligned}
& \text { Consider } \frac{a^{5}+b^{5}}{a^{2}+b^{2}}-\frac{1}{2}\left(a^{3}+b^{3}\right)=\frac{2 a^{5}+2 b^{5}-\left(a^{5}+a^{2} b^{3}+a^{3} b^{2}+b^{5}\right)}{2\left(a^{2}+b^{2}\right)} \\
& =\frac{a^{2}\left(a^{3}-b^{3}\right)+b^{2}\left(b^{3}-a^{3}\right)}{2\left(a^{2}+b^{2}\right)}=\frac{\left(a^{2}-b^{2}\right)\left(a^{3}-b^{3}\right)}{2\left(a^{2}+b^{2}\right)} \geq 0
\end{aligned}
$$

> ROMANIAN MATHEMATICAL MAGAZINE $\Rightarrow \sqrt{\frac{\boldsymbol{a}^{5}+\boldsymbol{b}^{5}}{\boldsymbol{a}^{2}+\boldsymbol{b}^{2}}} \geq \sqrt{\frac{\boldsymbol{a}^{3}+\boldsymbol{b}^{3}}{2}} \geq(\boldsymbol{a} \boldsymbol{b})^{\frac{3}{2}} \Rightarrow \sum_{c y c} \sqrt{\frac{\boldsymbol{a}^{5}+\boldsymbol{b}^{5}}{\boldsymbol{a}^{2}+\boldsymbol{b}^{2}}} \geq \sum_{c y c}(\boldsymbol{a b})^{\frac{3}{2}} \geq 3 \sqrt{\boldsymbol{a b c}}$

Equality when $\boldsymbol{a}=\boldsymbol{b}=\boldsymbol{c}$.
Solution 2 by Marian Ursărescu-Romania

$$
\begin{gather*}
\text { (a) First, we show: } \frac{a^{4}+b^{4}}{\left(a^{2}-a b+b^{2}\right)^{2}} \leq 2 \text { (1) } \tag{1}\\
\Leftrightarrow a^{4}+b^{4} \leq 2\left(a^{2}-a b+b^{2}\right)^{2} \Leftrightarrow a^{4}+b^{4} \leq 2\left(a^{2}+b^{2}\right)^{2}-4 a b\left(a^{2}+b^{2}\right)+2 a^{2} b^{2} \Leftrightarrow \\
\Leftrightarrow a^{4}+b^{4}+6 a^{2} b^{2}-4 a b\left(a^{2}+b^{2}\right) \geq 0 \\
\Leftrightarrow\left(a^{2}+b^{2}\right)^{2}-4 a b\left(a^{2}+b^{2}\right)+4 a^{2} b^{2} \geq 0 \Leftrightarrow \\
\Leftrightarrow\left(a^{2}+b^{2}-2 a b\right)^{2} \geq 0 \Leftrightarrow(a-b)^{4} \geq 0 \text { true. From (1) } \Rightarrow \sum \frac{a^{4}+b^{4}}{\left(a^{2}-a b+b^{2}\right)^{2}} \leq 6 \\
\text { (b) We show this: } \sqrt{\frac{a^{5}+b^{5}}{a^{2}+b^{2}}} \geq \sqrt{a b \sqrt{a b}} \text { (2) } \\
\Leftrightarrow \frac{a^{5}+b^{5}}{a^{2}+b^{2}} \geq a b \sqrt{a b} \text { (3) } \tag{3}
\end{gather*}
$$

But $a^{5}+b^{5} \geq a b\left(a^{3}+b^{3}\right)$ (4) (because $\Leftrightarrow a^{5}-a^{4} b+b^{5}-a b^{4} \geq 0$)

$$
\Leftrightarrow a^{4}(a-b)-b^{4}(a-b) \geq 0 \Leftrightarrow(a-b)\left(a^{4}-b^{4}\right) \geq 0 \Leftrightarrow
$$ $\Leftrightarrow(a-b)^{2}(a+b)\left(a^{2}+b^{2}\right) \geq 0$ which it is true.

From (3) and (4) we must show: $\frac{a b\left(a^{3}+b^{3}\right)}{a^{2}+b^{2}} \geq a b \sqrt{a b} \Leftrightarrow$

$$
\begin{gather*}
\Leftrightarrow a^{3}+b^{3} \geq \sqrt{a b}\left(a^{2}+b^{2}\right) \\
a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right) \geq 2 \sqrt{a b}\left(a^{2}-a b+b^{2}\right) \tag{6}
\end{gather*}
$$

From (5)+(6) $\Rightarrow 2 \sqrt{a b}\left(a^{2}-a b+b^{2}\right) \geq \sqrt{a b}\left(a^{2}+b^{2}\right) \Leftrightarrow$ $\Leftrightarrow 2\left(a^{2}-a b+b^{2}\right) \geq a^{2}+b^{2} \Leftrightarrow a^{2}-2 a b+b^{2} \geq 0 \Leftrightarrow(a-b)^{2} \geq 0$ true.

$$
\text { From (2) } \Rightarrow \sum \sqrt{\frac{a^{5}+b^{5}}{a^{2}+b^{2}}} \geq \sqrt{a b \sqrt{a b}}+\sqrt{b c \sqrt{b c}}+\sqrt{a c \sqrt{a c}} \geq
$$

$$
\geq 3 \sqrt[3]{\sqrt{a^{2} b^{2} c^{2} \sqrt{a^{2} b^{2} c^{2}}}}=3 \sqrt{a b c}
$$

Solution 3 by Sanong Huayrerai-Nakon Pathom-Thailand

1) For $x, y>0$, we get:

$$
\begin{aligned}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
& \text { www.ssmrmh.ro } \\
& \begin{array}{c}
(x-y)^{2}\left(x^{2}+x+y^{2}\right) \geq \mathbf{3 x y}(x-y)^{2} \Rightarrow(x-y)\left(x^{3}-y^{3}\right) \geq \mathbf{3 x y}(x-y)^{2} \\
\Rightarrow x^{3}(x-y)+y^{3}(y-x) \geq 3 x y(x-y)^{2} \\
\Rightarrow x^{4}-x^{3} y+y^{4}-y^{3} x \geq 3\left(x^{3} y+y^{3} x-2 x^{2} y^{2}\right) \\
\Rightarrow x^{4}+y^{4}+6 x^{2} y^{2} \geq 4\left(x^{3} y+y^{3} x\right)
\end{array} \\
& \begin{array}{c}
2\left(x^{4}+y^{4}\right)+6 x^{2} y^{2}-4\left(x^{3} y+y^{2} x\right) \geq x^{6}+y^{4} \Rightarrow \frac{x^{4}+y^{4}}{\left(x^{2}-x y+y^{2}\right)^{2}} \leq 2
\end{array}
\end{aligned}
$$

Hence for $a, b, c>0$ we have: $\frac{a^{4}+b^{4}}{\left(a^{2}-a b+b^{2}\right)^{2}}+\frac{b^{4}+c^{4}}{\left(b^{2}-b c+c^{2}\right)^{2}}+\frac{c^{4}+a^{4}}{\left(c^{2}-c a+a^{2}\right)^{2}}=2+2+2=6 \mathrm{ok}$
2) For $a, b, c>0$, we know: $\sqrt{\frac{a^{5}+b^{5}}{a^{2}+b^{2}}}+\sqrt{\frac{b^{5}+c^{5}}{b^{2}+c^{2}}}+\sqrt{\frac{c^{5}+a^{5}}{c^{2}+a^{2}}} \geq$

$$
\begin{gathered}
\geq \sqrt{\frac{\left(a^{3}+b^{3}\right)\left(a^{2}+b^{2}\right)}{2\left(a^{2}+b^{2}\right)}}+\sqrt{\frac{\left(b^{3}+c^{3}\right)\left(b^{2}+c^{2}\right)}{2\left(b^{2}+c^{2}\right)}}+\sqrt{\frac{\left(c^{3}+a^{3}\right)\left(c^{2}+a^{2}\right)}{2\left(c^{2}+a^{2}\right)}} \\
=\sqrt{\frac{a^{3}+b^{3}}{2}}+\sqrt{\frac{b^{3}+c^{3}}{2}}+\sqrt{\frac{c^{3}+a^{3}}{2}} \geq 3 \sqrt[6]{\frac{\left(a^{3}+b^{3}\right)\left(b^{3}+c^{3}\right)\left(c^{3}+a^{3}\right)}{8}} \geq 3 \sqrt{a b c} \\
\operatorname{Iff} \frac{\left(a^{3}+b^{3}\right)\left(b^{3}+c^{3}\right)\left(c^{3}+b^{2}\right)}{8} \geq(a b c)^{3}
\end{gathered}
$$

and it is true because $\frac{\left(a^{3}+b^{3}\right)\left(b^{3}+c^{3}\right)\left(c^{3}+a^{3}\right)}{8} \geq \frac{(a b c+a b c)^{3}}{8}=\frac{(2 a b c)^{3}}{8}=(a b c)^{3} \mathrm{ok}$
Therefore, it is true.

JP.219. Let be $a, b, c>0$ such that: $a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}=3 a^{2} b^{2} c^{2}$. Find the maximum value of:

$$
P=\frac{a b}{2 a^{6}-a^{5}+b^{4}+a^{2}+1}+\frac{b c}{2 b^{6}-b^{5}+c^{4}+b^{2}+1}+\frac{c a}{2 c^{6}-c^{5}+a^{4}+c^{2}+1}
$$

Proposed by Hoang Le Nhat Tung - Hanoi - Vietnam

Solution by Amit Dutta-Jamshedpur-India
First of all, we need to minimize the denominators.
i.e., $2 a^{6}-a^{5}+b^{4}+a^{2}+1$ so, $2 a^{6}-a^{5}+a^{2}+1=\left(a^{6}+1\right)+\left(a^{6}-a^{5}+a^{2}\right)$

Now, $a^{6}+1 \stackrel{A M-G M}{\geq} 2 a^{3}$. Equality holds when $a=1$.

$$
a^{6}-a^{5}+a^{2}=a^{6}-a^{2}\left(a^{3}-1\right)=a^{6}-a^{3}+a^{3}-a^{2}\left(a^{3}-1\right)=
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\begin{gathered}
=a^{3}\left(a^{3}-1\right)-a^{2}\left(a^{3}-1\right)+a^{3}=\left(a^{3}-a^{2}\right)\left(a^{3}-1\right)+a^{3} \\
a^{6}-a^{5}+a^{2}=a^{2}(a-1)^{2}\left(a^{2}+a+1\right)+a^{3} \geq a^{3}
\end{gathered}
$$

Equality holds when $a=1 . \therefore a^{6}-a^{5}+a^{2} \geq a^{3}$

$$
\begin{align*}
& \text { so, } 2 a^{6}-a^{5}+a^{2}+1=\left(a^{6}+1\right)+\left(a^{6}-a^{5}+a^{2}\right) \geq 2 a^{3}+a^{3} \geq 3 a^{3} \\
& \therefore 2 a^{6}-a^{5}+b^{4}+a^{2}+1 \geq 3 a^{3}+b^{4} \geq a^{3}+a^{3}+a^{3}+b^{4} \stackrel{A M-G M}{\geq} 4 b a^{\frac{9}{4}} \\
& \therefore P=\sum_{c y c(a, b, c)} \frac{a b}{2 a^{6}-a^{5}+b^{5}+a^{2}+1} \\
& P \leq \sum_{c y c} \frac{a b}{4 b a^{\frac{9}{4}}}=\sum_{\text {cyc }} \frac{1}{4 a^{\frac{5}{4}}} \\
& P \leq \sum_{c y c} \frac{\mathbf{1}}{4 a a^{\frac{1}{4}}}=\sum_{c y c} \frac{\mathbf{1} \times \mathbf{1}}{4 a \cdot \mathbf{4}}\left\{\frac{\mathbf{1}}{\boldsymbol{a}}+\mathbf{1}+\mathbf{1}+\mathbf{1}\right\} \\
& P \leq \sum_{c y c} \frac{1 \times 1}{4 a \times 4}\left(\frac{1}{a}+3\right) \leq \sum_{c y c} \frac{1}{16 a}\left(\frac{1}{a}+3\right) \\
& P \leq \frac{1}{16}\left\{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}\right\}+\frac{3}{16}\left\{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right\} \\
& \because a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}=3 a^{2} b^{2} c^{2} \\
& \therefore \frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=3 \tag{1}
\end{align*}
$$

Using Cauchy's Schwarz inequality: $\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}\right)\left(1^{2}+1^{2}+1^{2}\right) \geq\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^{2}$

$$
\begin{gathered}
9 \geq\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^{2} \\
\therefore \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \leq 3 \text { (2) } \\
\therefore P \leq \frac{1}{16}\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}\right)+\frac{3}{16}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)
\end{gathered}
$$

Using (1) and (2): $P \leq \frac{1}{16} \times 3+\frac{3}{16} \times 3$

$$
P \leq \frac{3}{16}+\frac{9}{16} \leq \frac{12}{16} \leq \frac{3}{4} ; P \leq \frac{3}{4}
$$

Equality holds when $a=b=c=1$.

$$
\therefore P_{\max }=\frac{3}{4}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
JP.220. Let a, b, c be positive real numbers. Prove that:

$$
\frac{b+c}{a}+\frac{c+a}{b}+\frac{a+b}{c} \geq \frac{4\left(a^{2}+b^{2}+c^{2}\right)}{a b+b c+c a}+\frac{2(a b+b c+c a)}{a^{2}+b^{2}+c^{2}}
$$

Proposed by Hoang Le Nhat Tung - Hanoi - Vietnam
Solution 1 by Bogdan Fustei-Romania

$$
\begin{gathered}
\Rightarrow \frac{1}{2} \sum \frac{b+c}{a}=\frac{1}{2} \sum\left(\frac{a}{b}+\frac{b}{a}\right)=\frac{1}{2} \sum \frac{a^{2}+b^{2}}{a b} \stackrel{\text { Bergstrom }}{\geq} \frac{\left(\sum \sqrt{a^{2}+b^{2}}\right)^{2}}{2(a b+b c+a c)}= \\
=\frac{a^{2}+b^{2}+c^{2}+\sum \sqrt{\left(a^{2}+b^{2}\right)\left(a^{2}+c^{2}\right)}}{a b+b c+a c} \geq \frac{\left(a^{2}+b^{2}+c^{2}\right)+\sum\left(a^{2}+b c\right)}{a b+b c+a c}= \\
=\frac{2\left(a^{2}+b^{2}+c^{2}\right)}{a b+b c+a c}+1 \geq \frac{2\left(a^{2}+b^{2}+c^{2}\right)}{a b+b c+a c}+\frac{a b+b c+a c}{a^{2}+b^{2}+c^{2}} ; a^{2}+b^{2}+c^{2} \geq a b+b c+a c-\text { true } \\
\Rightarrow \frac{b+c}{a}+\frac{c+a}{b}+\frac{a+b}{c} \geq \frac{4\left(a^{2}+b^{2}+c^{2}\right)}{a b+b c+a c}+\frac{2(a b+b c+a c)}{a^{2}+b^{2}+c^{2}} . \text { Q.E.D. }
\end{gathered}
$$

Solution 2 by Soumava Chakraborty-Kolkata-India

Let $b+c=x, c+a=y, a+b=z$. Then, x, y, z are sides of a triangle with semiperimeter, circumradius, inradius $=s, R, r$ (say)

$$
\because 2 \sum a=\sum x=2 s, \therefore a=s-x, b=s-y, c=s-z
$$

Now, $\sum a^{2}=\sum\left(s^{2}-2 s x+x^{2}\right)=3 s^{2}-2 s(2 s)+2\left(s^{2}-4 R r-r^{2}\right) \stackrel{(1)}{=} s^{2}-8 R r-2 r^{2}$ and $\sum a b=\sum(s-x)(s-y)=\sum\left(s^{2}-s(x+y)+x y\right)$

$$
=3 s^{2}-4 s^{2}+s^{2}+4 R r+r^{2} \stackrel{(2)}{=} 4 R r+r^{2}
$$

$$
\begin{aligned}
& \text { Also, } \sum \frac{b+c}{a}=\sum \frac{x}{s-x}=\sum \frac{x-s+s}{s-x}=-3+\frac{s}{r^{2} s} \sum\left(s^{2}-s(y+z)+y z\right) \\
& =-3+\frac{3 s^{2}-4 s^{2}+s^{2}+4 R r+r^{2}}{r^{2}}=-3+\frac{4 R+r}{r} \stackrel{(3)}{=} \frac{4 R-2 r}{r}
\end{aligned}
$$

(1), (2), (3) \Rightarrow given inequality \Leftrightarrow

$$
\begin{gathered}
\frac{2 R-r}{r} \geq \frac{2\left(s^{2}-8 R r-2 r^{2}\right)}{4 R r+r^{2}}+\frac{4 R r+r^{2}}{s^{2}-8 R r-2 r^{2}}=\frac{2\left(s^{2}-8 R r-2 r^{2}\right)^{2}+\left(4 R r+r^{2}\right)^{2}}{\left(4 R r+r^{2}\right)\left(s^{2}-8 R r-2 r^{2}\right)} \\
\quad \Leftrightarrow(2 R-r)(4 R+r)\left(s^{2}-8 R r-2 r^{2}\right) \geq 2\left(s^{2}-8 R r-2 r^{2}\right)^{2}+\left(4 R r+r^{2}\right)^{2} \\
\quad \Leftrightarrow 2 s^{4}-s^{2}\left(8 R^{2}+30 R r+7 r^{2}\right)+64 R^{3} r+144 R^{2} r^{2}+60 R r^{3}+7 r^{4} \stackrel{(4)}{\leq} 0
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Now, Rouche $\Rightarrow s^{2} \geq m-n \Rightarrow s^{2}-m+n \stackrel{(a)}{\geq} 0$ and $s^{2} \leq m+n \Rightarrow s^{2}-m-n \stackrel{(b)}{\leq} 0$, where $m=2 R^{2}+10 R r-r^{2}$ and $n=2(R-2 r) \sqrt{R^{2}-2 R r}$

$$
\begin{gathered}
\text { (a). (b) } \Rightarrow s^{4}-s^{2}(2 m)+m^{2}-n^{2} \leq 0 \\
\Rightarrow 2 s^{4}-s^{2}\left(8 R^{2}+40 R r-4 r^{2}\right)+128 R^{3} r+96 R^{2} r^{2}+24 R r^{3}+2 r^{4} \stackrel{(i)}{\leq} 0 \\
\text { (4),(i) } \Rightarrow \text { it suffices to prove: } \\
2 s^{4}-s^{2}\left(8 R^{2}+30 R r+7 r^{2}\right)+64 R^{3} r+144 R^{2} r^{2}+60 R r^{3}+7 r^{4} \leq \\
\leq 2 s^{4}-s^{2}\left(8 R^{2}+40 R r-4 r^{2}\right)+128 R^{3} r+96 R^{2} r^{2}+24 R r^{3}+2 r^{4} \Leftrightarrow \\
\Leftrightarrow s^{2}\left(10 R r-11 r^{2}\right) \stackrel{(5)}{\leq} r\left(64 R^{3}-48 R^{2} r-36 R r^{2}-5 r^{3}\right)
\end{gathered}
$$

$$
\begin{gathered}
\text { Now, LHS of (5) } \stackrel{\text { Gerretsen }}{\leq}\left(4 R^{2}+4 R r+3 r^{2}\right)\left(10 R r-11 r^{2}\right) \\
\begin{array}{c}
\stackrel{?}{\leq} r\left(64 R^{3}-48 R^{2} r-36 R r^{2}-5 r^{3}\right) \Leftrightarrow 12 t^{3}-22 t^{2}-11 t+14 \stackrel{?}{\geq} 0 \quad\left(t=\frac{R}{r}\right) \\
\Leftrightarrow(t-2)\{(t-2)(12 t+26)+45\} \stackrel{?}{\geq} 0
\end{array}
\end{gathered}
$$

$$
\rightarrow \text { true } \because t \stackrel{\text { Euler }}{\geq} 2 \Rightarrow(5) \Rightarrow(4) \Rightarrow \text { given inequality is true (Proved) }
$$

Solution 3 by Tran Hong-Dong Thap-Vietnam
Let $\boldsymbol{p}=\boldsymbol{a}+\boldsymbol{b}+\boldsymbol{c} ; \boldsymbol{q}=\boldsymbol{a} \boldsymbol{b}+\boldsymbol{b} \boldsymbol{c}+\boldsymbol{c a} ; \boldsymbol{r}=\boldsymbol{a b c} \quad(\boldsymbol{p}, \boldsymbol{q}, \boldsymbol{r}>0)$. Inequality:

$$
\begin{gathered}
\leftrightarrow[b c(b+c)+c a(c+a)+a b(a+b)]\left(a^{2}+b^{2}+c^{2}\right)(a b+b c+c a) \geq \\
\geq a b c\left[4\left(a^{2}+b^{2}+c^{2}\right)^{2}+2(a b+b c+c a)^{2}\right] \\
\leftrightarrow[p q-3 r]\left[p^{2}-2 q\right] q \geq r\left[4\left(p^{2}-2 q\right)^{2}+2 q^{2}\right] \\
\leftrightarrow p^{3} q^{2}-3 q r p^{2}-2 p q^{3}+6 q^{2} r \geq r\left(4 p^{4}-16 p^{2} q+18 q^{2}\right) \\
\leftrightarrow p^{3} q^{2}+13 q r p^{2}-2 p q^{3}-12 q^{2} r-4 p^{2} r \geq 0 \\
\leftrightarrow\left(p^{3} q^{2}-3 p^{4} r\right)+\left(13 q r p^{2}-2 p q^{3}-12 q^{2} r-p^{4} r\right) \geq 0 \\
\leftrightarrow p^{3}\left(q^{2}-3 p r\right)+4 q r\left(p^{2}-3 q\right)+p\left(9 p q r-2 q^{3}-p^{3} r\right) \geq 0
\end{gathered}
$$

It is true because: $q^{2}-3 q r \geq 0 ; p^{2}-3 q \geq 0$

$$
\begin{equation*}
9 p q r-2 q^{3}-p^{3} r \geq 0 \tag{1}
\end{equation*}
$$

By Schur's inequality: $9 r \geq 4 p q-p^{3} \rightarrow 9 p q r \geq 4(p q)^{2}-p q \cdot p^{3}$
(1) is true because: $(p q)^{2} \geq 3 q^{3} \leftrightarrow p^{2} \geq 3 q$

$$
\begin{equation*}
3(p q)^{2}-p q \cdot p^{3}+q^{2}-p^{3} r \geq 0 \tag{*}
\end{equation*}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

${ }^{(*)}$ is true, because: $\frac{q^{2}}{3} \geq p r \rightarrow \frac{(p q)^{2}}{3} \geq p^{3} r$

$$
\frac{2(p q)^{2}}{3}-p q \cdot p^{3}+q^{2} \geq 0 \leftrightarrow 2(p q)^{2}-3 p q \cdot p^{3}+3 q^{2} \geq 0
$$

Solution 4 by Anant Bansal-India

$$
\begin{equation*}
\sum_{c y c} \frac{a+b}{c}=(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-3 \stackrel{A M \geq H M}{\geq} 9-3=6 \tag{i}
\end{equation*}
$$

Let x, y be two positive real numbers: $\mathrm{By} \mathrm{QM} \geq A M: \sqrt{32 x^{4}+8 y^{4}} \geq 4 x^{2}+2 y^{2}=k$
Maximum k stands for $4 x^{2}=2 y^{2} ; y=x \sqrt{2}$
Maximum value of $\boldsymbol{k}=8$.
Maximum value of $\frac{4 x^{2}+2 y^{2}}{x y}=\frac{8}{\sqrt{2}}<6$
Putting $x=a^{2}+b^{2}+c^{2}$ and $y=a b+b c+c a$

$$
\text { we get } 6 \geq \frac{4\left(a^{2}+b^{2}+c^{2}\right)}{a b+b c+c a}+\frac{2(a b+b c+c a)}{\left(a^{2}+b^{2}+c^{2}\right)}
$$

$$
\text { From (i): } \Rightarrow \sum_{c y c} \frac{a+b}{c} \geq \frac{4\left(a^{2}+b^{2}+c^{2}\right)}{a b+b c+c a}+\frac{2(a b+b c+c a)}{\left(a^{2}+b^{2}+c^{2}\right)}
$$

Solution 5 by Sanong Huayrerai-Nakon Pathom-Thailand
For $a, b, c>0$, we have: $\left(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\right)(a b+b c+c a)\left(a^{2}+b^{2}+c^{2}\right)$

$$
\begin{gathered}
=\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{a}{c}+\frac{c}{b}+\frac{b}{a}\right)(a b+b c+c a)\left(a^{2}+b^{2}+c^{2}\right) \\
=2\left(a^{2}+b^{2}+c^{2}\right)\left(a^{2}+b^{2}+c^{2}\right)+ \\
+\left(\frac{a^{2} b}{c}+\frac{a^{2} c}{b}+\frac{b^{2} c}{a}+\frac{b^{2} a}{c}+\frac{c^{2} a}{b}+\frac{c^{2} b}{a}\right)\left(a^{2}+b^{2}+c^{2}\right)+2(a b+b c+c a)\left(a^{2}+b^{2}+c^{2}\right) \\
\geq 2\left(a^{2}+b^{2}+c^{2}\right)^{2}+2\left(a^{2}+b^{2}+c^{2}\right)\left(a^{2}+b^{2}+c^{2}\right)+2(a b+b c+c a)(a b+b c+c a) \\
=4\left(a^{2}+b^{2}+c^{2}\right)^{2}+2(a b+b c+c a)^{2} \\
\text { Hence } \frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b} \geq \frac{4\left(a^{2}+b^{2}+c^{2}\right)^{2}}{(a b+b c+c a)\left(a^{2}+b^{2}+c^{2}\right)}+\frac{2(a b+b c+c a)^{2}}{(a b+b c+c a)\left(a^{2}+b^{2}+c^{2}\right)} \\
=\frac{4\left(a^{2}+b^{2}+c^{2}\right)}{a b+b c+c a}+\frac{2(a b+b c+c a)}{a^{2}+b^{2}+c^{2}} . \text { Therefore, it is true. }
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro
JP.221. Let $A B C$ be an acute-angled triangle. The perpendiculars from O on $\triangle A B C$ sides, intersect $B C, A C$ and $A B$ sides in A_{1}, A_{2}, A_{3} and the circumcircle of $\triangle A B C$ in the points A_{2}, B_{2}, C_{2}. Prove that:

$$
A_{1} A_{2}^{n}+B_{1} B_{2}^{n}+C_{1} C_{2}^{n} \geq 3 r^{n}, \forall n \in \mathbb{N}^{*}
$$

Proposed by Marian Ursărescu - Romania
Solution 1 by Soumava Chakraborty-Kolkata-India

$\triangle B O A_{1} \cong \triangle C O A_{1} \therefore \angle B O A_{1}=\angle C O A_{1}$ and $\because \angle B O C=2 A(\because$ angle at center is true angle at circumference) $\therefore \angle B O A_{1}=A$. Using $\triangle B O A_{1}, O A_{1}=R \cos A$

$$
\therefore A_{1} A_{2}=O A_{2}-O A_{1}=R-R \cos a \stackrel{(1)}{=} R(1-\cos A)
$$

Similarly, $B_{1} B_{2} \stackrel{(2)}{=} R(1-\cos B)$ and $C_{1} C_{2} \stackrel{(3)}{=} R(1-\cos C)$
Applying Chebysev successively, and $\because n \in \mathbb{N}^{*}$

$$
\begin{gathered}
A_{1} A_{2}^{n}+B_{1} B_{2}^{n}+C_{1} C_{2}^{n} \geq \frac{1}{3^{n-1}}\left(A_{1} A_{2}+B_{1} B_{2}+C_{1} C_{2}\right)^{n} \\
=\frac{1}{3^{n-1}}\left(\sum R(1-\cos A)\right)^{n}(\text { by (1)+(2)+(3)) } \\
=\frac{1}{3^{n-1}}\left(3 R-R\left(\frac{R+r}{R}\right)\right)^{n}=\frac{(2 R-r)^{n}}{3^{n-1}} \stackrel{\text { Euler }}{\geq} \frac{(2(2 r)-r)^{n}}{3^{n-1}}=\frac{3^{n} r^{n}}{3^{n-1}}=3 r^{n} \quad \text { (Proved) }
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$\triangle B O A_{1} \cong \triangle C O A_{1} \therefore \angle B O A_{1}=\angle C O A_{1}$ and $\therefore \angle B O C=2 A \therefore \angle B O A_{1}=A$
From $\triangle B O A_{1}, O A_{1}=R \cos A \therefore A_{1} A_{2}=O A_{2}-O A_{1}=R-R \cos A \stackrel{(1)}{=} R(1-\cos A)$

$$
\begin{gathered}
\text { Similarly, } B_{1} B_{2} \stackrel{(2)}{=} R(1-\cos B) \text { and } C_{1} C_{2} \stackrel{(3)}{=} R(1-\cos C) \\
\text { Let } f(x)=x^{n} \therefore f^{\prime \prime}(x)=n(n-1) x^{n-2} \geq 0 \forall n \geq 1 \text { and } \forall x>0 \\
\therefore\left(A_{1} A_{2}\right)^{n}+\left(B_{1} B_{2}\right)^{n}+\left(C_{1} C_{2}\right)^{n} \stackrel{\text { Jensen }}{\geq} 3\left(\frac{A_{1} A_{2}+B_{1} B_{2}+C_{1} C_{2}}{3}\right)^{n} \\
=3\left(\frac{R\left(3-\sum \cos A\right)}{3}\right)^{2}(\text { by }(1)+(2)+(3)) \\
\quad=3\left(\frac{3 R-\frac{R(R+r)}{R}}{3}\right)^{n}=3\left(\frac{2 R-r}{3}\right)^{n} \stackrel{\text { Euler }}{\geq} 3\left(\frac{3 r}{3}\right)^{n}=3 r^{n} \text { (proved) }
\end{gathered}
$$

Solution 2 by Tran Hong-Dong Thap-Vietnam

$$
\begin{aligned}
I A_{1}= & \sqrt{R^{2}-\left(\frac{B C}{2}\right)^{2}}=\sqrt{R^{2}-\frac{a^{2}}{4}}=\sqrt{R^{2}-\frac{(2 R \sin A)^{2}}{4}} \\
& =R \sqrt{1-\sin ^{2} A}=R \sqrt{\cos ^{2} A} \stackrel{\text { acute }}{=} R \cos A
\end{aligned}
$$

$$
\begin{gathered}
\text { ROMANIAN MATHEMATICAL MAGAZINE } \\
\rightarrow \boldsymbol{A}_{1} A_{2}=I A_{2}-I A_{1}=R-R \cos A=R(1-\cos A)=2 R \sin ^{2} \frac{A}{2} \text { (etc) } \\
\rightarrow \boldsymbol{L H S}=\left(2 R \sin ^{2} \frac{A}{2}\right)^{n}+\left(2 R \sin ^{2} \frac{B}{2}\right)^{n}+\left(2 R \sin ^{2} \frac{C}{2}\right)^{n}= \\
=(2 R)^{n}\left(\sin ^{2 n} \frac{A}{2}+\sin ^{2 n} \frac{B}{2}+\sin ^{2 n} \frac{C}{2}\right)=\omega \\
\operatorname{Let} f(x)=\sin ^{2 n} \frac{x}{2} ;\left(0<x<\frac{\pi}{2}, n \geq 1\right) \rightarrow f^{\prime \prime}(x) \\
=\frac{n}{2} \sin ^{2 n-2} \frac{x}{2}\left[(2 n-1) \cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2}\right]=\frac{n}{2} \sin ^{2 n-2} \frac{x}{2}\left[2 n \cos ^{2} \frac{x}{2}-1\right] \\
\geq \frac{n}{2} \sin ^{2 n-2} \frac{x}{2}\left[2 \cos ^{2} \frac{x}{2}-1\right]=n \cos x \sin ^{2 n-2} \frac{x}{2}>0 ;\left(0<x<\frac{\pi}{2}, n \geq 1\right) \\
\rightarrow \omega \stackrel{J e n s e n}{\geq}(2 R)^{n} \cdot 3 \cdot \sin ^{2 n} \frac{A+B+C}{6} \\
=(2 R)^{n} \cdot 3 \cdot \sin ^{2 n} \frac{\pi}{6}=(2 R)^{n} \cdot 3 \cdot \frac{1}{2^{2 n}} \stackrel{\text { Euler }}{\geq}(2 \cdot 2 r)^{n} \cdot 3 \cdot \frac{1}{2^{2 n}}=3 \cdot r^{n}(\text { Proved })
\end{gathered}
$$

JP.222. In $A B C$ triangle the following relationship holds:

$$
a\left(\frac{b}{a}\right)^{\frac{h_{c}}{w_{c}}}+b\left(\frac{a}{b}\right)^{\frac{h_{c}}{w_{c}}}+b\left(\frac{c}{b}\right)^{\frac{h_{a}}{w_{a}}}+c\left(\frac{b}{c}\right)^{\frac{h_{a}}{w_{a}}}+c\left(\frac{a}{c}\right)^{\frac{h_{b}}{w_{b}}}+a\left(\frac{c}{a}\right)^{\frac{h_{b}}{w_{b}}} \leq 4 s
$$

Proposed by Daniel Sitaru - Romania
Solution 1 by Bogdan Fustei-Romania

$$
\left(\frac{b}{a}\right)^{\frac{h_{c}}{w_{c}}}=\left(1+\frac{b}{a}-1\right)^{\frac{h_{c}}{w_{c}}}=\left(1+\frac{b-a}{a}\right)^{\frac{h_{c}}{w_{c}}}
$$

$$
\frac{h_{c}}{w_{c}} \leq 1 \text { (and the analogs) because } h_{c} \leq w_{c} \text { (and the analogs) }
$$

$$
\frac{b-a}{a}=\frac{b}{a}-1>-1 \text {; We will apply Bernoulli's inequality: }
$$

$$
\left.\left(\frac{b}{a}\right)^{\frac{h_{c}}{w_{c}}}=\left(1+\frac{b}{a}-1\right)^{\frac{h_{c}}{w_{c}}} \leq 1+\frac{h_{c}}{w_{c}}\left(\frac{b-a}{a}\right) \right\rvert\, \cdot a \Rightarrow a\left(\frac{b}{a}\right)^{\frac{h_{c}}{w_{c}}} \leq a+\frac{h_{c}}{w_{c}}(b-a) \text { (and the }
$$ analogs). Summing we will obtain:

$$
a\left(\frac{b}{a}\right)^{\frac{h_{c}}{w_{c}}}+b\left(\frac{a}{b}\right)^{\frac{h_{c}}{w_{c}}}+b\left(\frac{c}{b}\right)^{\frac{h_{a}}{w_{a}}}+c\left(\frac{a}{c}\right)^{\frac{h_{b}}{w_{b}}}+c\left(\frac{a}{c}\right)^{\frac{h_{a}}{w_{a}}}+a\left(\frac{c}{a}\right)^{\frac{h_{a}}{w_{b}}} \leq
$$

ROMANIAN MATHEMATICAL MAGAZINE

$$
\leq 4 s+\sum \frac{h_{a}}{w_{a}}(b-c+c-b)=4 s
$$

Solution 2 by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\text { Let } \frac{a}{b}=t \text { and let } 0<\theta \leq 1 \\
a\left(\frac{b}{a}\right)^{\theta}+b\left(\frac{a}{b}\right)^{\theta(1)} \leq a+b \Leftrightarrow b t \frac{1}{t^{\theta}}+b t^{\theta} \leq b t+b \\
\Leftrightarrow \frac{t}{t^{\theta}}+t^{\theta} \leq t+1 \Leftrightarrow t^{\theta}-1 \leq t\left(1-\frac{1}{t^{\theta}}\right) \\
\Leftrightarrow\left(t^{\theta}-1\right)\left(1-\frac{t}{t^{\theta}}\right) \leq 0 \Leftrightarrow\left(t^{\theta}-1\right)\left(t^{\theta-1}-1\right) \stackrel{(2)}{\leq} 0
\end{gathered}
$$

Case 1) $t \geq 1$. Then, $\theta \ln t \geq 0 \Rightarrow \ln t^{\theta} \geq \ln 1 \Rightarrow t^{\theta}-1 \stackrel{(a)}{\geq} 0$
Also, $(\theta-1) \ln t \leq 0 \Rightarrow \ln t^{\theta-1} \leq \ln 1 \Rightarrow t^{\theta-1} \leq 1 \Rightarrow t^{\theta-1}-1 \stackrel{(b)}{\leq} 0$

$$
\text { (a). }(b) \Rightarrow(2) \Rightarrow(1) \text { is true. }
$$

Case 2) $t<1$. Then, $\boldsymbol{\theta} \ln t<0 \Rightarrow \ln \boldsymbol{t}^{\boldsymbol{\theta}}<1 \Rightarrow \boldsymbol{t}^{\boldsymbol{\theta}}-\mathbf{1} \stackrel{(c)}{<} \mathbf{0}$
Also, $(\theta-1) \ln t \geq 0 \Rightarrow \ln t^{\theta-1} \geq \ln 1 \Rightarrow t^{\theta-1}-1 \stackrel{(d)}{\geq} 0$
(c).(d) \Rightarrow (2) \Rightarrow (1) is true. $\therefore \forall \theta \in(0,1], a\left(\frac{b}{a}\right)^{\theta}+b\left(\frac{a}{b}\right)^{\theta} \leq a+b$

$$
\Rightarrow a\left(\frac{b}{a}\right)^{\frac{h_{c}}{w_{c}}}+b\left(\frac{a}{b}\right)^{\frac{h_{c}}{w_{c}}(i)} \leq a+b\left(\text { choosing } \theta=\frac{h_{c}}{w_{c}}\right)
$$

Similarly, $\boldsymbol{b}\left(\frac{c}{b}\right)^{\frac{h_{a}}{w_{a}}}+\boldsymbol{c}\left(\frac{b}{c}\right)^{\frac{h_{a}}{w_{a}}} \leq \boldsymbol{(i i)} \leq \boldsymbol{c}$ and $\boldsymbol{c}\left(\frac{a}{c}\right)^{\frac{h_{b}}{w_{b}}}+\boldsymbol{a}\left(\frac{c}{a}\right)^{\frac{h_{b}}{w_{b}}(i i i)} \leq c+a$

$$
\text { (i) }+(\mathrm{ii})+(\mathrm{iii}) \Rightarrow L H S \leq \sum(a+b)=4 s \text { (proved) }
$$

Solution 3 by Tran Hong-Dong Thap-Vietnam

Let $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{x}^{\alpha},(\boldsymbol{x}>0,0<\alpha \leq 1) \rightarrow \boldsymbol{f}^{\prime \prime}(\boldsymbol{x})=\boldsymbol{\alpha}(\boldsymbol{\alpha}-\mathbf{1}) \boldsymbol{x}^{\alpha-2} \leq \mathbf{0},(\boldsymbol{x}>0,0<\alpha \leq 1)$
We have: $0<\frac{h_{a}}{w_{a}}, \frac{h_{b}}{w_{b}}, \frac{h_{c}}{w_{c}} \leq 1$. Now, using Jensen's inequality:

$$
\begin{aligned}
& \Omega_{1}=\frac{a}{2 s} \cdot\left(\frac{b}{a}\right)^{\frac{h_{c}}{w_{c}}}+\frac{b}{2 s} \cdot\left(\frac{a}{b}\right)^{\frac{h_{c}}{w_{c}}}+\frac{c}{2 s} \cdot\left(\frac{c}{a}\right)^{\frac{h_{c}}{w_{c}}} \leq\left(\frac{b+a+c}{2 s}\right)^{\frac{h_{c}}{w_{c}}}=1 \\
& \Omega_{2}=\frac{a}{2 s} \cdot\left(\frac{c}{a}\right)^{\frac{h_{b}}{w_{b}}}+\frac{c}{2 s} \cdot\left(\frac{a}{c}\right)^{\frac{h_{b}}{w_{b}}}+\frac{b}{2 s} \cdot\left(\frac{b}{b}\right)^{\frac{h_{b}}{w_{b}}} \leq\left(\frac{a+c+b}{2 s}\right)^{\frac{h_{b}}{w_{b}}}=1
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\begin{gathered}
\Omega_{2}=\frac{b}{2 s} \cdot\left(\frac{c}{b}\right)^{\frac{h_{a}}{w_{a}}}+\frac{c}{2 s} \cdot\left(\frac{b}{c}\right)^{\frac{h_{a}}{w_{a}}}+\frac{a}{2 s} \cdot\left(\frac{a}{a}\right)^{\frac{h_{a}}{w_{a}}} \leq\left(\frac{b+c+a}{2 s}\right)^{\frac{h_{a}}{w_{a}}}=1 \\
\rightarrow \Omega_{1}+\Omega_{2}+\Omega_{2}=\frac{a}{2 s} \cdot\left(\frac{b}{a}\right)^{\frac{h_{c}}{w_{c}}}+\frac{b}{2 s} \cdot\left(\frac{a}{b}\right)^{\frac{h_{c}}{w_{c}}}+\frac{c}{2 s} \cdot\left(\frac{c}{c}\right)^{\frac{h_{c}}{w_{c}}}+\frac{a}{2 s} \cdot\left(\frac{c}{a}\right)^{\frac{h_{b}}{w_{b}}}+ \\
+\frac{c}{2 s} \cdot\left(\frac{a}{c}\right)^{\frac{h_{b}}{w_{b}}}+\frac{b}{2 s} \cdot\left(\frac{b}{b}\right)^{\frac{h_{b}}{w_{b}}}+\frac{b}{2 s} \cdot\left(\frac{c}{b}\right)^{\frac{h_{a}}{w_{a}}}+\frac{c}{2 s} \cdot\left(\frac{b}{c}\right)^{\frac{h_{a}}{w_{a}}}+\frac{a}{2 s} \cdot\left(\frac{a}{a}\right)^{\frac{h_{a}}{w_{a}}} \leq 3 \\
\leftrightarrow \frac{a}{2 s} \cdot\left(\frac{b}{a}\right)^{\frac{h_{c}}{w_{c}}}+\frac{b}{2 s} \cdot\left(\frac{a}{b}\right)^{\frac{h_{c}}{w_{c}}}+\frac{a}{2 s} \cdot\left(\frac{c}{a}\right)^{\frac{h_{b}}{w_{b}}}+\frac{c}{2 s} \cdot\left(\frac{a}{c}\right)^{\frac{h_{b}}{w_{b}}}+\frac{b}{2 s} \cdot\left(\frac{c}{b}\right)^{\frac{h_{a}}{w_{a}}}+\frac{c}{2 s} \cdot\left(\frac{b}{c}\right)^{\frac{h_{a}}{w_{a}}} \leq \\
\leq 3-\frac{a+b+c}{2 s}=2 \\
\leftrightarrow a\left[\left(\frac{b}{a}\right)^{\frac{h_{c}}{w_{c}}}+\left(\frac{c}{a}\right)^{\frac{h_{b}}{w_{b}}}\right]+b\left[\left(\frac{a}{b}\right)^{\frac{h_{c}}{w_{c}}}+\left(\frac{c}{b}\right)^{\frac{h_{a}}{w_{a}}}\right]+c\left[\left(\frac{a}{c}\right)^{\frac{h_{b}}{w_{b}}}+\left(\frac{b}{c}\right)^{\frac{h_{a}}{w_{a}}}\right] \leq 4 s . \text { Proved. }
\end{gathered}
$$

JP.223. Let a, b, c be the lengths of the sides of a triangle with circumradius R. Prove that:

$$
a\left(a^{3}+(b+c)^{3}\right)+b\left(b^{3}+(c+a)^{3}\right)+c\left(c^{3}+(a+b)^{3}\right) \leq 243 R^{4}
$$

Proposed by George Apostolopoulos - Messolonghi - Greece

Solution 1 by Marian Ursărescu-Romania
In any $\triangle A B C$ we have: $a^{2}+b^{2}+c^{2} \leq 9 R^{2} \Rightarrow$

$$
\Rightarrow 81 R^{4} \geq\left(a^{2}+b^{2}+c^{2}\right)^{2} \Rightarrow 243 R^{4} \geq 3\left(a^{2}+b^{2}+c^{2}\right)^{2} \Rightarrow
$$

We must show:

$$
\begin{gather*}
3\left(a^{2}+b^{2}+c^{2}\right)^{2} \geq a^{4}+b^{4}+c^{4}+a(b+c)^{3}+b(c+a)^{3}+c(a+b)^{3} \Leftrightarrow \\
\Leftrightarrow 2\left(a^{4}+b^{4}+c^{4}\right)+6\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right)-a(b+c)^{3}-b(c+a)^{3}-c(a+b)^{3} \geq 0 \tag{1}\\
\text { Let } f_{4}(a, b, c)=2\left(a^{4}+b^{4}+c^{4}\right)+6\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right)-a(b+c)^{3}- \\
-b(c+a)^{3}-c(a+b)^{3}
\end{gather*}
$$

We use Cârtoaje's theorem: If $f_{4}(a, b, c)$ is a homogeneous and symmetric polygon of degree 4 then $f_{4}(a, b, c) \geq 0 \quad \forall a, b, c \in \mathbb{R} \Leftrightarrow f_{4}(a, 1,1) \geq 0, \forall a \in \mathbb{R}$

$$
(1) \Leftrightarrow 2\left(a^{4}+2\right)+6\left(2 a^{2}+1\right)-8 a-2(a+1)^{3} \geq 0 \Leftrightarrow
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
$\Leftrightarrow a^{4}+2+6 a^{2}+3-4 a-a^{3}-3 a^{2}-3 a-1 \geq 0 \Leftrightarrow$
$\Leftrightarrow a^{4}-a^{3}+3 a^{2}-7 a+4 \geq 0 \Leftrightarrow(a-1)^{2}\left(a^{2}+a+4\right) \geq 0$, which is true.
Solution 2 by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
& \sum\left(a^{4}+b^{4}\right) \geq \sum \frac{1}{2}\left(a^{2}+b^{2}\right)^{2} \stackrel{A-G}{\geq} \sum\left[\frac{1}{2} \cdot 2 a b\left(a^{2}+b^{2}\right)\right] \\
& =\sum\left(a^{3} b+a b^{3}\right) \Rightarrow \sum\left(a^{3} b+a b^{3}\right) \stackrel{(1)}{\leq} 2 \sum a^{4} \\
& \text { Now, LHS }=\sum a^{4}+\sum a\left(b^{3}+c^{3}+3 b c(b+c)\right) \\
& =\sum a^{4}+\sum\left(a b^{3}+a^{3} b\right)+3 a b c \cdot 4 s \stackrel{b y(1)}{\leq} 3 \sum a^{4}+3 \cdot 16 R r s^{2} \stackrel{?}{\leq} 243 R^{4} \\
& \Leftrightarrow\left(\sum a^{2}\right)^{2}-2\left[\left(\sum a b\right)^{2}-2 a b c(2 s)\right]+16 R r s^{2} \stackrel{?}{\leq} 81 R^{4} \\
& \Leftrightarrow 4\left(s^{2}-4 R r-r^{2}\right)^{2}-2\left(s^{2}+4 R r+r^{2}\right)^{2}+48 R r s^{2} \stackrel{?}{\leq} 81 R^{4} \\
& \Leftrightarrow 2 s^{4}-12 r^{2} s^{2}+2 r^{2}(4 R+r)^{2} \underset{(2)}{\stackrel{?}{2}} 81 R^{4} \\
& \text { Now, LHS of (2) } \stackrel{\text { Gerretsen }}{\leq}\left(2\left(4 R^{2}+4 R r+3 r^{2}\right)-12 r^{2}\right) s^{2}+2 r^{2}(4 R+r)^{2} \\
& =\left(8 R^{2}+8 R r-6 r^{2}\right) s^{2}+2 r^{2}(4 R+r)^{2} \\
& \stackrel{\text { Gerretsen }}{\leq}\left(4 R^{2}+4 R r+3 r^{2}\right)\left(8 R^{2}+8 R r-6 r^{2}\right)+2 r^{2}(4 R+r)^{2} \stackrel{?}{\leq} 81 R^{4} \\
& \Leftrightarrow 49 t^{4}-64 t^{3}-64 t^{2}-16 t+16 \stackrel{?}{\geq} 0 \\
& \Leftrightarrow(t-2)\left(49 t^{3}+34 t^{2}+4(t-2)\right) \stackrel{?}{\geq} 0 \rightarrow \text { true } \because t \stackrel{\text { Euler }}{\geq} 2 \\
& \Rightarrow(2) \Rightarrow \text { given inequality is true (proved) }
\end{aligned}
$$

JP.224. Let a, b, c be the lengths of the sides of a triangle with circumradius R. Prove that:

$$
\frac{\left(\frac{a+b}{c}\right)^{3}+\left(\frac{b+c}{a}\right)^{3}+\left(\frac{c+a}{b}\right)^{3}+3}{\frac{1}{a^{4}}+\frac{1}{b^{4}}+\frac{1}{c^{4}}} \leq(3 R)^{4}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
Solution 1 by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
& \text { Given inequality } \Leftrightarrow(3 R)^{4} \frac{\sum a^{4} b^{4}}{(a b c)^{4}} \geq \frac{\sum a^{3} b^{3}(a+b)^{3}+3 a^{3} b^{3} c^{3}}{(a b c)^{3}} \\
& \Leftrightarrow \frac{81(a b c)^{4} \cdot \sum a^{4} b^{4}}{256 s^{2}\left(\prod(s-a)\right)^{2}(a b c)^{4}} \geq \frac{\sum a^{3} b^{3}(a+b)^{3}+3 a^{3} b^{3} c^{3}}{(a b c)^{3}} \\
& \Leftrightarrow\left[81 \sum(y+z)^{4}(z+x)^{4}\right] \prod(y+z)^{3} \geq \\
& 256 x^{2} y^{2} z^{2}\left(\sum x\right)^{2}\left[\sum(y+z)^{3}(z+x)^{3}(x+y+2 z)^{3}+3 \prod(y+z)^{3}\right] \\
& \left(\begin{array}{l}
a=y+z \\
b=z+x \\
c=x+y
\end{array}\right) \Leftrightarrow 81\left(\sum x^{14} y^{3}+\sum x^{3} y^{14}\right)+567\left(\sum x^{13} y^{4}+\sum x^{4} y^{13}\right)+ \\
& +243 x y z\left(\sum x^{13} y+\sum x y^{13}\right)+2268 x y z\left(\sum x^{12} y^{2}+\sum x^{2} y^{12}\right)+ \\
& +1354 x^{2} y^{2} z^{2}\left(\sum x^{11}\right)+1701\left(\sum x^{12} y^{5}+\sum x^{5} y^{12}\right)+ \\
& +9072 x y z\left(\sum x^{11} y^{3}+\sum x^{3} y^{11}\right)+2835\left(\sum x^{11} y^{6}+\sum x^{6} y^{11}\right)+ \\
& +5399(x y z)^{2}\left(\sum x^{10} y+\sum x y^{10}\right)+18757 x^{2} y^{2} z^{2}\left(\sum x^{9} y^{2}+\sum x^{2} y^{9}\right)+ \\
& +79112 x^{3} y^{3} z^{3}\left(\sum x^{5} y^{3}+\sum x^{3} y^{5}\right)+123720(x y z)^{3}\left(\sum x^{4} y^{4}\right)+ \\
& +20412 x y z\left(\sum x^{10} y^{4}+\sum x^{4} y^{10}\right)+2997\left(\sum x^{10} y^{7}+\sum x^{7} y^{10}\right)+ \\
& +29484 x y z\left(\sum x^{9} y^{5}+\sum x^{5} y^{9}\right)+46747 x^{2} y^{2} z^{2}\left(\sum x^{8} y^{3}+\sum x^{3} y^{8}\right)+ \\
& +2511\left(\sum x^{9} y^{8}+\sum x^{8} y^{9}\right)+31428 x y z\left(\sum x^{8} y^{6}+\sum x^{6} y^{8}\right)+ \\
& +81317 x^{2} y^{2} z^{2}\left(\sum x^{7} y^{4}+\sum x^{4} y^{7}\right)+4256 x^{3} y^{3} z^{3}\left(\sum x^{6} y^{2}+\sum x^{2} y^{6}\right)+ \\
& +30618 x y z\left(\sum x^{7} y^{7}\right)+104659 x^{2} y^{2} z^{2}\left(\sum x^{6} y^{5}+\sum x^{5} y^{6}\right) \stackrel{(1)}{\geq} \\
& \geq 3784 x^{3} y^{3} z^{3}\left(\sum x^{8}\right)+19992 x^{3} y^{3} z^{3}\left(\sum x^{7} y+\sum x y^{7}\right)+ \\
& +102432 x^{4} y^{4} z^{4}\left(\sum x^{5}\right)+121880 x^{4} y^{4} z^{4}\left(\sum x^{4} y+\sum x y^{4}\right)+ \\
& +69816 x^{4} y^{4} z^{4}\left(\sum x^{3} y^{2}+\sum x^{2} y^{3}\right)+236664 x^{5} y^{5} z^{5}\left(\sum x^{2}\right)+
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro $+277128 x^{5} y^{5} z^{5}\left(\sum x y\right)$
$\sum x^{4} y^{4} \geq x^{2} y^{2} z^{2}\left(\sum x^{2}\right) \Rightarrow 123720 x^{3} y^{3} z^{3} \stackrel{(2)}{\geq} 123720 x^{5} y^{5} z^{5}\left(\sum x^{2}\right)$ $\sum x^{5} y^{3}+\sum x^{3} y^{5} \geq 2 \sum x^{4} y^{4} \geq 2 x^{2} y^{2} z^{2}\left(\sum x^{2}\right) \Rightarrow$
$\Rightarrow 56472 x^{3} y^{3} z^{3}\left(\sum x^{5} y^{3}+\sum x^{3} y^{5}\right) \stackrel{(3)}{\geq} 112944 x^{5} y^{5} z^{5}\left(\sum x^{2}\right)$ $\sum x^{5} y^{3}+\sum x^{3} y^{5} \geq 2 x^{2} y^{2} z^{2}\left(\sum x^{2}\right) \geq 2 x^{2} y^{2} z^{2}\left(\sum x y\right)$
$\Rightarrow 22640 x^{3} \boldsymbol{y}^{3} z^{3}\left(\sum x^{5} y^{3}+\sum x^{3} y^{5}\right) \stackrel{(4)}{\geq} 45280 x^{5} y^{5} z^{5}\left(\sum x y\right)$ $\sum x^{6} y^{5}+\sum x^{5} y^{6}=\sum x^{5}\left(y^{6}+z^{6}\right) \stackrel{A-G}{\geq} 2 \sum x^{5} y^{3} z^{3}=2 x^{3} y^{3} z^{3}\left(\sum x^{2}\right) \geq 2(x y z)^{3} \sum x y$
$\Rightarrow 104659 x^{2} y^{2} z^{2}\left(\sum x^{6} y^{5}+\sum x^{5} y^{6}\right) \stackrel{(5)}{\geq} 209318 x^{5} y^{5} z^{5}\left(\sum x y\right)$
$2 \sum x^{7} y^{7}=\sum x^{7}\left(y^{7}+z^{7}\right) \stackrel{C B C}{\geq} \frac{1}{2} \sum x^{7}\left(y^{4}+z^{4}\right)\left(y^{3}+z^{3}\right) \stackrel{A-G}{\geq} \sum x^{7} y^{2} z^{2}\left(y^{3}+z^{3}\right)$
$=x^{2} y^{2} z^{2}\left(\sum x^{5} y^{3}+\sum x^{3} y^{5}\right) \stackrel{A-G}{\geq} 2 x^{2} y^{2} z^{2} \sum x^{4} y^{4} \stackrel{\text { earlier }}{\geq} 2 x^{4} y^{4} z^{4}\left(\sum x y\right)$
$\Rightarrow 14018 x y z\left(\sum x^{7} y^{7}\right) \stackrel{(6)}{\geq} 14018 x^{5} y^{5} z^{5}\left(\sum x y\right)$
$2 \sum x^{7} y^{7} \stackrel{\text { earlier }}{\geq} x^{2} y^{2} z^{2} \sum x^{5}\left(y^{3}+z^{3}\right) \geq x^{2} y^{2} z^{2} \sum x^{5} y z(y+z)$
$=x^{3} y^{3} z^{3}\left(\sum x y\left(x^{3}+y^{3}\right)\right) \geq x^{3} y^{3} z^{3} \sum x^{2} y^{2}(x+y)=x^{3} y^{3} z^{3}\left(\sum x^{3} y^{2}+\sum x^{2} y^{3}\right)$
$\Rightarrow 16600 x y z\left(\sum x^{7} y^{7}\right) \stackrel{(7)}{\geq} 8300 x^{4} y^{4} z^{4}\left(\sum x^{3} y^{2}+\sum x^{2} y^{3}\right)$
$\sum x^{7} y^{4}+\sum x^{4} y^{7}=\sum x^{7}\left(y^{4}+z^{4}\right) \stackrel{A-G}{\geq} 2 \sum x^{7} y^{2} z^{2}=x^{2} y^{2} z^{2} \sum\left(x^{5}+y^{5}\right)$
$\stackrel{C B C}{\geq} \frac{1}{2} x^{2} y^{2} z^{2} \sum\left(x^{2}+y^{2}\right)\left(x^{3}+y^{3}\right) \stackrel{A-G}{\geq} x^{2} y^{2} z^{2} \sum x y \cdot x y(x+y)=$ $=x^{2} y^{2} z^{2}\left(\sum x^{3} y^{2}+\sum x^{2} y^{3}\right)$
$\Rightarrow \mathbf{6 1 5 1 6} x^{2} y^{2} z^{2}\left(\sum x^{7} y^{4}+\sum x^{4} y^{7}\right) \stackrel{(8)}{\geq} \mathbf{6 1 5 1 6} x^{4} y^{4} z^{4}\left(\sum x^{3} y^{2}+\sum x^{2} y^{3}\right)$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro
$\sum x^{7} y^{4}+\sum x^{4} y^{7} \stackrel{\text { earlier }}{\geq} \frac{1}{2} x^{2} y^{2} z^{2} \sum\left(x^{2}+y^{2}\right)\left(x^{3}+y^{3}\right) \stackrel{A-G}{\geq} x^{2} y^{2} z^{2} \sum x y\left(x^{3}+y^{3}\right)$
$\Rightarrow 19801 x^{2} y^{2} z^{2}\left(\sum x^{7} y^{4}+\sum x^{4} y^{7}\right) \stackrel{(9)}{\geq} 19801 x^{4} y^{4} z^{4}\left(\sum x^{4} y+\sum x y^{4}\right)$
$\sum x^{9} y^{5}+\sum x^{5} y^{9}=\sum x^{9}\left(y^{5}+z^{5}\right) \stackrel{(C B C)}{\geq} \frac{1}{2} \sum x^{9}\left(y^{2}+z^{2}\right)\left(y^{3}+z^{3}\right) \stackrel{A-G}{\geq}$

$$
\geq \sum x^{9} y z\left(y^{3}+z^{3}\right)
$$

$$
=x y z \sum x^{8}\left(y^{3}+z^{3}\right) \geq x^{2} y^{2} z^{2} \sum x^{7}(y+z) \stackrel{C B C}{\geq} \frac{1}{2} x^{2} y^{2} z^{2} \sum x\left(y^{2}+z^{2}\right)\left(y^{5}+z^{5}\right)
$$

$$
\stackrel{A-G}{\geq} x^{2} y^{2} z^{2} \sum x y z\left(y^{5}+z^{5}\right)=2 x^{3} y^{3} z^{3}\left(\sum x^{5}\right) \Rightarrow 5580 x y z\left(\sum x^{9} y^{5}+\sum x^{5} y^{9}\right)
$$

$$
\stackrel{(10)}{\geq} 11160 x^{4} y^{4} z^{4}\left(\sum x^{5}\right)
$$

$$
\sum x^{9} y^{8}+\sum x^{8} y^{9}=\sum x^{9}\left(y^{8}+z^{8}\right) \stackrel{A-G}{\geq} 2 x^{9} y^{4} z^{4}=2 x^{4} y^{4} z^{4}\left(\sum x^{5}\right)
$$

$$
\Rightarrow 2511\left(\sum x^{9} y^{8}+\sum x^{8} y^{9}\right) \stackrel{(11)}{\geq} 5022 x^{4} y^{4} z^{4}\left(\sum x^{5}\right)
$$

$$
\sum x^{8} y^{6}+\sum x^{6} y^{8} \stackrel{A-G}{\geq} 2 \sum x^{7} y^{7} \stackrel{\text { earlier }}{\geq} x^{2} y^{2} z^{2} \cdot \sum x^{5}\left(y^{3}+z^{3}\right) \geq
$$

$$
\geq x^{3} y^{3} z^{3} \sum x^{4}(y+z)
$$

$$
\Rightarrow 31428 x y z\left(\sum x^{8} y^{6}+\sum x^{6} y^{8}\right) \stackrel{(12)}{\geq} 31428 x^{4} y^{4} z^{4}\left(\sum x^{4} y+\sum x y^{4}\right)
$$

$$
\sum x^{8} y^{3}+\sum x^{3} y^{8}=\sum x^{3}\left(y^{8}+z^{8}\right) \stackrel{C B C}{\geq} \frac{1}{2} \sum x^{3}\left(y^{2}+z^{2}\right)\left(y^{6}+z^{6}\right) \stackrel{A-G}{\geq}
$$

$$
\geq \sum x^{3} y z\left(y^{6}+z^{6}\right)
$$

$$
=x y z \sum x^{2}\left(y^{6}+z^{6}\right) \stackrel{C B C}{\geq} \frac{1}{2} x y z \sum x^{2}\left(y^{2}+z^{2}\right)\left(y^{4}+z^{4}\right) \stackrel{A-G}{\geq} x y z \sum x^{2} y z\left(y^{4}+z^{4}\right)
$$

$$
=x^{2} y^{2} z^{2}\left(\sum x^{4} y+\sum x y^{4}\right) \Rightarrow 46747 x^{2} y^{2} z^{2}\left(\sum x^{8} y^{3}+\sum x^{3} y^{8}\right) \stackrel{(13)}{\geq}
$$

$$
\geq 46747 x^{4} y^{4} z^{4}\left(\sum x^{4} y+\sum x y^{4}\right)
$$

$$
\sum x^{9} y^{5}+\sum x^{5} y^{9}=\sum x^{5}\left(y^{9}+z^{9}\right) \stackrel{C B S}{\geq} \frac{1}{2} \sum x^{5}\left(y^{2}+z^{2}\right)\left(y^{7}+z^{7}\right) \stackrel{A-G}{\geq}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\geq \sum x^{5} y z\left(y^{7}+z^{7}\right)
$$

$$
=x y z \sum x^{4}\left(y^{7}+z^{7}\right) \stackrel{\text { earlier }}{\geq} x^{3} y^{3} z^{3} \sum x y\left(x^{3}+y^{3}\right)=x^{3} y^{3} z^{3}\left(\sum x^{4} y+\sum x y^{4}\right)
$$

$$
\Rightarrow 23904 x y z\left(\sum x^{9} y^{5}+\sum x^{5} y^{9}\right) \stackrel{(14)}{\geq} 23904 x^{4} y^{4} z^{4}\left(\sum x^{4} y+\sum x y^{4}\right)
$$

$$
\sum x^{10} y^{7}+\sum x^{7} y^{10}=\sum x^{10}\left(y^{7}+z^{7}\right) \stackrel{C B C}{\geq} \frac{1}{2} \sum x^{10}\left(y^{6}+z^{6}\right)(y+z)
$$

$$
\stackrel{A-G}{\geq} \sum x^{10} y^{3} z^{3}(y+z)=x^{3} y^{3} z^{3} \sum x^{7}(y+z)=x^{3} y^{3} z^{3} \sum x\left(y^{7}+z^{7}\right)
$$

$$
\stackrel{C B C}{\geq} \frac{1}{2} x^{3} y^{3} z^{3} \sum x\left(y^{2}+z^{2}\right)\left(y^{5}+z^{5}\right) \stackrel{A-G}{\geq} x^{3} y^{3} z^{3} \sum x y z\left(y^{5}+z^{5}\right)
$$

$$
=2 x^{4} y^{4} z^{4}\left(\sum x^{5}\right) \Rightarrow 2997\left(\sum x^{10} y^{7}+\sum x^{7} y^{10}\right) \stackrel{(15)}{\geq} 5994 x^{4} y^{4} z^{4}\left(\sum x^{5}\right)
$$

$$
\sum x^{10} y^{4}+\sum x^{4} y^{10}=\sum x^{10}\left(y^{4}+z^{4}\right) \stackrel{C B C}{\geq} \frac{1}{2} \sum x^{10}(y+z)\left(y^{3}+z^{3}\right)
$$

$$
\geq \frac{1}{2} \sum x^{10}(y+z)^{2} y z \stackrel{A-G}{\geq} 2 x y z \sum x^{9} y z=x^{2} y^{2} z^{2} \sum\left(x^{8}+y^{8}\right)
$$

$$
\stackrel{(C B C)}{\geq} \frac{1}{2} x^{2} y^{2} z^{2} \sum\left(x^{2}+y^{2}\right)\left(x^{6}+y^{6}\right) \stackrel{A-G}{\geq} x^{2} y^{2} z^{2} \sum x y\left(x^{6}+y^{6}\right)
$$

$$
=x^{2} y^{2} z^{2} \sum x\left(y^{7}+z^{7}\right) \stackrel{\text { earlier }}{\geq} 2 x^{3} y^{3} z^{3}\left(\sum x^{5}\right)
$$

$$
\Rightarrow 20412 x y z\left(\sum x^{10} y^{4}+\sum x^{4} y^{10}\right) \stackrel{(16)}{\geq} 40824 x^{4} y^{4} z^{4}\left(\sum x^{5}\right)
$$

$$
\sum x^{9} y^{2}+\sum x^{2} y^{9}=\sum x^{9}\left(y^{2}+z^{2}\right) \stackrel{A-G}{\geq} 2 x y z \sum x^{8}=x y z \sum\left(x^{8}+y^{8}\right)
$$

$$
\stackrel{\text { earlier }}{\geq} 2 x^{2} y^{2} z^{2}\left(\sum x^{5}\right) \Rightarrow 18757 x^{2} y^{2} z^{2}\left(\sum x^{9} y^{2}+\sum x^{2} y^{9}\right) \stackrel{(17)}{\geq}
$$

$$
\geq 37514 x^{4} y^{4} z^{4}\left(\sum x^{5}\right)
$$

$$
\sum x^{10}+\sum x y^{10}=\sum x y\left(x^{9}+y^{9}\right) \stackrel{C B C}{\geq} \frac{1}{2} \sum x y\left(x^{2}+y^{2}\right)\left(x^{7}+y^{7}\right)
$$

$$
\stackrel{A-G}{\geq} \sum x^{2} y^{2}\left(x^{7}+y^{7}\right)=\sum x^{9} y^{2}+\sum x^{2} y^{9} \stackrel{\text { earlier }}{\geq} 2 x^{2} y^{2} z^{2}\left(\sum x^{5}\right)
$$

$$
\Rightarrow 959 x^{2} y^{2} z^{2}\left(\sum x^{10} y+\sum x y^{10}\right) \stackrel{(18)}{\geq} 1918 x^{4} y^{4} z^{4}\left(\sum x^{5}\right)
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro
$\sum x^{10} y+\sum x y^{10} \stackrel{\text { earlier }}{\geq} \sum x^{9} y^{2}+\sum x^{2} y^{9}=\sum x^{9}\left(y^{2}+z^{2}\right) \stackrel{A-G}{\geq} 2 x y z\left(\sum x^{8}\right)$
$=x y z \sum\left(x^{8}+y^{8}\right) \stackrel{C B C}{\geq} \frac{1}{2} x y z \sum\left(x^{2}+y^{2}\right)\left(x^{6}+y^{6}\right) \stackrel{A-G}{\geq} x y z \sum x y\left(x^{6}+y^{6}\right)$
$\Rightarrow 4440 x^{2} y^{2} z^{2} \xrightarrow{(19)} 4440 x^{3} y^{3} z^{3}\left(\sum x^{7} y+\sum x y^{7}\right)$
$\sum x^{11} y^{6}+\sum x^{6} y^{11}=\sum x^{11}\left(y^{6}+z^{6}\right) \stackrel{A-G}{\geq} 2 \sum x^{11} y^{3} z^{3}=2 x^{3} y^{3} z^{3}\left(\sum x^{8}\right)$ $\stackrel{\text { earlier }}{\geq} x^{3} y^{3} z^{3}\left(\sum x^{7} y+\sum x y^{7}\right) \Rightarrow$
$\Rightarrow 2835\left(\sum x^{10} y+\sum x y^{10}\right) \stackrel{(20)}{\geq} 2835 x^{3} y^{3} z^{3}\left(\sum x^{7} y+\sum x y^{7}\right)$
$\sum x^{11} y^{3}+\sum x^{3} y^{11}=\sum x^{11}\left(y^{3}+z^{3}\right) \geq \sum x^{11} y z(y+z)=x y z \sum x^{10}(y+z)$
$=x y z \sum x\left(y^{10}+z^{10}\right) \stackrel{C B C}{\geq} \frac{1}{2} x y z \sum x\left(y^{2}+z^{2}\right)\left(y^{8}+z^{8}\right) \stackrel{A-G}{\geq} 2 x^{2} y^{2} z^{2} \sum x^{8}$
$\stackrel{\text { earlier }}{\geq} x^{2} y^{2} z^{2}\left(\sum x^{7} y+\sum x y^{7}\right) \Rightarrow 9072 x y z\left(\sum x^{11} y^{3}+\sum x^{3} y^{11}\right) \stackrel{(21)}{\geq}$ $\geq 9072 x^{3} y^{3} z^{3}\left(\sum x^{7} y+\sum x y^{7}\right)$
$\sum x^{12} y^{5}+\sum x^{5} y^{12}=\sum x^{5} y^{5}\left(x^{7}+y^{7}\right) \stackrel{C B C}{\geq} \frac{1}{2} \sum x^{5} y^{5}\left(x^{2}+y^{2}\right)\left(x^{5}+y^{5}\right)$
$\stackrel{A-G}{\geq} \sum x^{6} y^{6}\left(x^{5}+y^{5}\right)=\sum x^{11} y^{6}+\sum x^{6} y^{11} \stackrel{\text { earlier }}{\geq} x^{3} y^{3} z^{3}\left(\sum x^{7} y+\sum x y^{7}\right)$
$\Rightarrow 1701\left(\sum x^{12} y^{5}+\sum x^{5} y^{12}\right) \stackrel{(22)}{\geq} 1701 x^{3} y^{3} z^{3}\left(\sum x^{7} y+\sum x y^{7}\right)$
$2 \sum x^{11}=\sum\left(x^{11}+y^{11}\right) \stackrel{C B C}{\geq} \frac{1}{2} \sum\left(x^{2}+y^{2}\right)\left(x^{9}+y^{9}\right) \stackrel{A-G}{\geq} \sum x y\left(x^{9}+y^{9}\right)$
$=\sum x^{10} y+\sum x y^{10} \stackrel{\text { earlier }}{\geq} x y z\left(\sum x^{7} y+\sum x y^{7}\right) \Rightarrow 1354 x^{2} y^{2} z^{2}\left(\sum x^{11}\right) \stackrel{(23)}{\geq}$ $\geq 677 x^{3} y^{3} z^{3}\left(\sum x^{7} y+\sum x y^{7}\right)$
$\sum x^{12} y^{2}+\sum x^{2} y^{12}=\sum x^{12}\left(y^{2}+z^{2}\right) \stackrel{A-G}{\geq} 2 \sum x^{12} y z=2 x y z\left(\sum x^{11}\right)$
$\stackrel{\text { earlier }}{\geq} x^{2} y^{2} z^{2}\left(\sum x^{7} y+\sum x y^{7}\right) \Rightarrow 1267 x y z\left(\sum x^{12} y^{2}+\sum x^{2} y^{12}\right) \stackrel{(24)}{\geq}$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\geq 1267 x^{3} y^{3} z^{3}\left(\sum x^{7} y+\sum x y^{7}\right)
$$

$$
\sum x^{12} y^{2}+\sum x^{2} y^{12} \stackrel{\text { earlier }}{\geq} x y z \sum\left(x^{11}+y^{11}\right) \stackrel{C B C}{\geq} \frac{1}{2} x y z \sum\left(x^{2}+y^{2}\right)\left(x^{9}+y^{9}\right)
$$

$$
\stackrel{A-G}{\geq} x y z \sum x y\left(x^{9}+y^{9}\right)=x y z\left(\sum x^{10} y+\sum x y^{10}\right) \stackrel{\text { earlier }}{\geq} 2 x^{2} y^{2} z^{2}\left(\sum x^{8}\right)
$$

$$
\Rightarrow 1001 x y z\left(\sum x^{12} y^{2}+\sum x^{2} y^{12}\right) \stackrel{(25)}{\geq} 2002 x^{3} y^{3} z^{3}\left(\sum x^{8}\right)
$$

$$
\sum x^{13} y+\sum x y^{13}=\sum x y\left(z^{12}+y^{12}\right) \stackrel{C B C}{\geq} \frac{1}{2} \sum x y\left(x^{2}+y^{2}\right)\left(x^{10}+y^{10}\right)
$$

$$
\stackrel{A-G}{\geq} \sum x^{2} y^{2}\left(x^{10}+y^{10}\right)=\sum x^{12} y^{2}+\sum x^{2} y^{12} \stackrel{\text { earlier }}{\geq} 2 x^{2} y^{2} z^{2}\left(\sum x^{8}\right)
$$

$$
\Rightarrow 243 x y z\left(\sum x^{13} y+\sum x y^{13}\right) \stackrel{(26)}{\geq} 486 x^{3} y^{3} z^{3}\left(\sum x^{8}\right)
$$

$$
\sum x^{13} y^{4}+\sum x^{4} y^{13}=\sum x^{4} y^{4}\left(x^{9}+y^{9}\right) \stackrel{C B C}{\geq} \frac{1}{2} \sum x^{4} y^{4}\left(x^{2}+y^{2}\right)\left(x^{7}+y^{7}\right)
$$

$$
\stackrel{A-G}{\geq} \sum x^{5} y^{5}\left(x^{7}+y^{7}\right) \stackrel{C B C}{\geq} \frac{1}{2} \sum x^{5} y^{5}\left(x^{2}+y^{2}\right)\left(x^{5}+y^{5}\right)
$$

$$
\stackrel{A-G}{Z} \sum x^{6} y^{6}\left(x^{5}+y^{5}\right)=\sum x^{11} y^{6}+\sum x^{6} y^{11} \stackrel{\text { earlier }}{\geq} 2 x^{3} y^{3} z^{3}\left(\sum x^{8}\right)
$$

$$
\Rightarrow 567\left(\sum x^{13} y^{4}+\sum x^{4} y^{13}\right) \stackrel{(27)}{\geq} 1134 x^{3} y^{3} z^{3}\left(\sum x^{8}\right)
$$

$$
\sum x^{14} y^{3}+\sum x^{3} y^{14}=\sum x^{3} y^{3}\left(x^{11}+y^{11}\right) \stackrel{C B C}{\geq} \frac{1}{2} \sum x^{3} y^{3}\left(x^{2}+y^{2}\right)\left(x^{9}+y^{9}\right)
$$

$$
\stackrel{A-G}{\geq} \sum x^{4} y^{4}\left(x^{9}+y^{9}\right)=\sum x^{13} y^{4}+\sum x^{4} y^{13} \stackrel{\text { earlier }}{\geq} 2 x^{3} y^{3} z^{3}\left(\sum x^{8}\right)
$$

$$
\Rightarrow 81\left(\sum x^{14} y^{3}+\sum x^{3} y^{14}\right) \stackrel{(28)}{\geq} 162 x^{3} y^{3} z^{3}\left(\sum x^{8}\right)
$$

$$
(2)+(3)+(4)+(5)+(6)+(7)+(8)+(9)+(10)+(11)+(12)+(13)+(14)+(15)+(16)+
$$

$$
+(17)+(18)+(19)+(20)+(21)+(22)+(23)+(24)+(25)+(26)+(27)+(28) \Rightarrow(1)
$$

is true (Proved)

Solution 2 by Tran Hong-Dong Thap-Vietnam

$$
\begin{aligned}
& \text { Let } \Omega=\frac{\left(\frac{a+b}{c}\right)^{3}+\left(\frac{b+c}{a}\right)^{3}+\left(\frac{c+a}{b}\right)^{3}+3}{\frac{1}{a^{4}} \frac{1}{b^{4}}+\frac{1}{c^{4}}}=\frac{a b c\left[a b(a+b)^{3}+(b c(b+c))^{3}+(c a(c+a))^{3}+3(a b c)^{3}\right]}{a^{4} b^{4}+b^{4} c^{4}+c^{4} a^{4}} \\
& \mathbf{9 R}^{2} \geq \boldsymbol{a}^{2}+\boldsymbol{b}^{2}+\boldsymbol{c}^{2} \rightarrow(\mathbf{3 R})^{4}=\left(9 \boldsymbol{R}^{2}\right)^{2} \geq\left(\boldsymbol{a}^{2}+b^{2}+\boldsymbol{c}^{2}\right)^{2}
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

We must show that:

$$
\begin{gather*}
\frac{a b c\left[(a b(a+b))^{3}+(b c(b+c))^{3}+(c a(c+a))^{3}+3(a b c)^{3}\right]}{a^{4} b^{4}+b^{4} c^{4}+c^{4} a^{4}} \leq\left(a^{2}+b^{2}+c^{2}\right)^{2} \\
\leftrightarrow a b c\left[(a b(a+b))^{3}+(b c(b+c))^{3}+(c a(c+a))^{3}+3(a b c)^{3}\right] \\
\leq\left(a^{4} b^{4}+b^{4} c^{4}+c^{4} a^{4}\right)\left(a^{2}+b^{2}+c^{2}\right)^{2} \\
\leftrightarrow\left(a^{4} b^{8}+a^{8} b^{4}+a^{4} c^{8}+a^{8} c^{4}+b^{4} c^{8}+b^{8} c^{4}\right)+2\left(a^{6} b^{6}+b^{6} c^{6}+c^{6} a^{6}\right)+ \\
+2 a^{2} b^{2} c^{2}\left(a^{4} b^{2}+a^{4} c^{2}+b^{4} a^{2}+b^{4} c^{2}+c^{4} a^{2}+c^{4} b^{2}\right) \geq \\
\geq a b c\left(a^{6} b^{3}+a^{6} c^{3}+b^{6} a^{3}+b^{6} c^{3}+c^{6} a^{3}+c^{6} b^{3}\right)+ \\
+3 a b c\left(a^{5} b^{4}+a^{5} c^{4}+b^{5} c^{4}+b^{5} a^{4}+c^{5} a^{4}+c^{5} b^{4}\right) \quad\left(^{*}\right) \tag{*}\\
3 a b c \leq a^{3}+b^{3}+c^{3} \rightarrow 3 a b c\left(a^{5} b^{4}+a^{5} c^{4}+b^{5} c^{4}+b^{5} a^{4}+c^{5} a^{4}+c^{5} b^{4}\right) \leq \\
\leq\left(a^{3}+b^{3}+c^{3}\right)\left(a^{5} b^{4}+a^{5} c^{4}+b^{5} c^{4}+b^{5} a^{4}+c^{5} a^{4}+c^{5} b^{4}\right)= \\
=a^{8}\left(b^{4}+c^{4}\right)+b^{8}\left(c^{4}+a^{4}\right)+c^{8}\left(b^{4}+a^{4}\right)+ \\
+a^{3}\left(b^{5} c^{4}+b^{5} a^{4}+c^{5} a^{4}+c^{5} b^{4}\right)+b^{3}\left(a^{5} b^{4}+a^{5} c^{4}+c^{5} a^{4}+c^{5} b^{4}\right)+ \\
+c^{3}\left(a^{5} b^{4}+a^{5} c^{4}+b^{5} c^{4}+b^{5} a^{4}\right)
\end{gather*}
$$

We must show that:

$$
\begin{gather*}
2\left(a^{6} b^{6}+b^{6} c^{6}+c^{6} a^{6}\right)+2 a^{2} b^{2} c^{2}\left(a^{4} b^{2}+a^{4} c^{2}+b^{4} a^{2}+b^{4} c^{2}+c^{4} a^{2}+c^{4} b^{2}\right) \geq \\
\geq a b c\left(a^{6} b^{3}+a^{6} c^{3}+b^{6} a^{3}+b^{6} c^{3}+c^{6} a^{3}+c^{6} b^{3}\right) \\
+a^{3}\left(b^{5} c^{4}+b^{5} a^{4}+c^{5} a^{4}+c^{5} b^{4}\right)+b^{3}\left(a^{5} b^{4}+a^{5} c^{4}+c^{5} a^{4}+c^{5} b^{4}\right)+ \\
+c^{3}\left(a^{5} b^{4}+a^{5} c^{4}+b^{5} c^{4}+b^{5} a^{4}\right) \\
=a^{3} b^{3} c^{3}\left(a^{2} b+b^{2} a+b^{2} c+c^{2} b+c^{2} a+c a^{2}\right)+a^{7}\left(b^{5}+c^{5}\right)+b^{7}\left(a^{5}+c^{5}\right)+ \\
+c^{7}\left(a^{5}+b^{5}\right) . \text { It is true because: } \\
2\left(a^{6} b^{6}+b^{6} c^{6}+c^{6} a^{6}\right) \geq a^{3} b^{3} c^{3}\left(a^{2} b+b^{2} a+b^{2} c+c^{2} b+c^{2} a+c a^{2}\right)(1) \\
+a^{6} b^{6}+b^{6} c^{6}+c^{6} a^{6} \geq a^{3} b^{3} c^{3}\left(a^{3}+b^{3}+c^{3}\right) \geq a^{3} b^{3} c^{3}\left(a^{2} b+b^{2} c+c^{2} a\right) \\
+a^{6} b^{6}+b^{6} c^{6}+c^{6} a^{6} \geq a^{3} b^{3} c^{3}\left(a^{3}+b^{3}+c^{3}\right) \geq a^{3} b^{3} c^{3}\left(b^{2} a+c a^{2}+c^{2} b\right) \rightarrow(1) \text { true. } \\
2 a^{2} b^{2} c^{2}\left(a^{4} b^{2}+a^{4} c^{2}+b^{4} a^{2}+b^{4} c^{2}+c^{4} a^{2}+c^{4} b^{2}\right) \geq \\
\geq
\end{gather*}
$$

(2) true because: By ABC theorem: $2\left(a^{4} b^{2}+a^{4} c^{2}+b^{4} a^{2}+b^{4} c^{2}+c^{4} a^{2}+c^{4} b^{2}\right)>0$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\text { With } f\left(a^{2} b^{2} c^{2}\right)=2 a^{2} b^{2} c^{2}\left(a^{4} b^{2}+a^{4} c^{2}+b^{4} a^{2}+b^{4} c^{2}+c^{4} a^{2}+c^{4} b^{2}\right)-
$$

$$
-\left[\begin{array}{c}
a b c\left(a^{6} b^{3}+a^{6} c^{3}+b^{6} a^{3}+b^{6} c^{3}+c^{6} a^{3}+c^{6} b^{3}\right)+a^{7}\left(b^{5}+c^{5}\right)+ \\
+b^{7}\left(a^{5}+c^{5}\right)+c^{7}\left(a^{5}+b^{5}\right)
\end{array}\right]
$$

So, (*) true. Proved

JP.225. Solve the following system of equations:

$$
\left\{\begin{array}{c}
x^{3}+2 x+3=8 y^{3}-6 x y+4 y \\
\sqrt{x^{2}-2 y+2}+\sqrt{x^{2}-4 y+4}=x^{2}-3 y+4
\end{array}\right.
$$

Proposed by Hoang Le Nhat Tung - Hanoi - Vietnam
Solution 1 by Amit Dutta-Jamshedpur-India

$$
\begin{gathered}
\text { Domain }\left(x^{2}-2 y+2\right) \geq 0,\left(x^{2}-4 y+4\right) \geq 0 \\
G M \leq A M \\
\sqrt{x^{2}-2 y+2}=\sqrt{\left(x^{2}-2 y+2\right) \cdot 1} \leq \frac{\left(x^{2}-2 y+2\right)+1}{2} \\
\sqrt{x^{2}-2 y+2} \leq\left(\frac{x^{2}-2 y+3}{2}\right) \\
\sqrt{x^{2}-4 y+4}=\sqrt{\left(x^{2}-4 y+4\right) \cdot 1} \leq\left(\frac{x^{2}-4 y+5}{2}\right)
\end{gathered}
$$

Adding these: $\sqrt{x^{2}-2 y+2}+\sqrt{x^{2}-4 y+4} \leq\left(x^{2}-3 y+4\right)$
But we have: $\sqrt{x^{2}-2 y+2}+\sqrt{x^{2}-4 y+4}=\left(x^{2}-3 y+4\right)$
So, for equality, we must have: $\left\{\begin{array}{l}x^{2}-2 y+2=1 \Rightarrow x^{2}=2 y-1 \\ x^{2}-4 y+4=1 \Rightarrow x^{2}=4 y-3\end{array}\right.$
Solve these two equations, we get: $\left\{\begin{array}{c}x= \pm 1 \\ y=1\end{array}\right\}$
But for the system of equation, we must check these solutions for the other equation

$$
\begin{gathered}
\text { also: i.e., } x^{3}+2 x+3=8 y^{3}-6 x y+4 y \\
\operatorname{For}(x, y)=(1,1) ; L H S=6 ; R H S=6
\end{gathered}
$$

Equality holds, $\mathrm{so}(1,1)$ is a solution for other possible solution: $(x, y)=(-1,1)$

$$
L H S=0 ; R H S=18
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Equality do not hold. So, $(-1,1)$ is not the solution for this system of equation.
Hence, $(1,1)$ is the only solution.
Solution 2 by Orlando Irahola Ortega-Bolivia

$$
\left\{\begin{array}{c}
x^{3}+2 x+3=8 y^{3}-6 x y+4 y \tag{2}\\
\sqrt{x^{2}-2 y+2}+\sqrt{x^{2}-4 y+4}=x^{2}-3 y+4
\end{array}\right.
$$

$2 \times(2) 2\left(\sqrt{x^{2}-2 y+2}+\sqrt{x^{2}-4 y+4}\right)={\sqrt{x^{2}-2 y+2}}^{2}+{\sqrt{x^{2}-4 y+4}}^{2}+2$

$$
\text { Sea: } a=\sqrt{x^{2}-2 y+2} ; b=\sqrt{x^{2}-4 y+4}
$$

$$
\Rightarrow 2 a+2 b=a^{2}+b^{2}+2 \Rightarrow(a-1)^{2}+(b-1)^{2}=0 \Rightarrow a-1=0 \wedge b-1=0
$$

$$
\begin{equation*}
a=1 \wedge b=1 \tag{2.1}
\end{equation*}
$$

Si: $a=1 \Rightarrow \sqrt{x^{2}-2 y+2}=1 \Rightarrow 2 y=x^{2}+1$
$\mathrm{Si}: b=1 \Rightarrow \sqrt{x^{2}-4 y+4}=1 \Rightarrow 4 y=x^{2}+3$
(A) (1) $\rightarrow x^{3}+2 x+3=(2 y)^{3}-3 x(2 y)+2(2 y)$; (2.1) en (1) \Rightarrow
$\Rightarrow x^{3}+2 x+3=\left(x^{2}+1\right)^{3}-3 x\left(x^{2}+1\right)+2\left(x^{2}+1\right)$
$\Rightarrow x^{6}+3 x^{4}-4 x^{3}+5 x^{2}-5 x=0 \Rightarrow x(x-1)\left(x^{4}+x^{3}+4 x^{2}+5\right)=0 \Rightarrow$
$x_{1}=0 \Rightarrow y_{1}=y_{2} ; x_{2}=1 \Rightarrow y_{2}=1$

$$
x^{4}+x^{3}+4 x^{2}+5=0 \quad(* *)
$$

$$
4^{4}(* *) \Rightarrow(4 x)^{4}+4(4 x)^{3}+64\left(4 x^{2}+1280\right)=0
$$

$$
\Rightarrow\left[(4 x)^{2}+2(4 x)\right]^{2}+60(4 x)^{2}+1280=0
$$

$$
\Rightarrow \underbrace{\left(16 x^{2}+8 x\right)^{2}}_{\geq 0}+\underbrace{960 x^{2}+1280}_{>0}=0 \rightarrow\left(16 x^{2}+8 x\right)^{2}+960 x^{2}+1280>0 \Rightarrow x \in \mathbb{C}
$$

(B) $8 \times(1) \Rightarrow 8 x^{3}+16 x+24=(4 y)^{3}-12 x(4 y)+8(4 y)$; (2.2) en (1) \Rightarrow

$$
\Rightarrow 8 x^{3}+16 x+24=\left(x^{2}+3\right)^{3}-12 x\left(x^{2}+3\right)+8\left(x^{3}+3\right)
$$

$$
\Rightarrow x^{6}+9 x^{4}-20 x^{3}+35 x^{2}-52 x+27=0 \Rightarrow(x-1)^{2}\left(x^{4}+2 x^{3}+12 x^{2}+2 x+27\right)=0
$$

$$
\Rightarrow x=1 \wedge x^{4}+2 x^{3}+12 x^{2}+2 x+27=0
$$

$$
\underbrace{\left(x^{2}+x\right)^{2}}_{\geq 0}+\underbrace{11 x^{2}+2 x+27}_{>0}=0
$$

$$
\left(x^{2}+x\right)^{2}+\mathbf{1 1} x^{2}+2 x+27>0 \Rightarrow x \in \mathbb{C}
$$

$$
(x, y) \in \mathbb{R}^{2} \mid(x, y)=(\mathbf{1} ; \mathbf{1})
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
SP.211. Find all real roots of the following equation:

$$
\sqrt[2 n]{2-x^{2}}+\sqrt[2 n]{2|x|-1}=\left(x^{2}-1\right)^{2 m}+2
$$

where m, n are positive integers.

Proposed by Nguyen Viet Hung - Hanoi - Vietnam

Solution 1 by Michael Sterghiou-Greece

$$
\begin{equation*}
\sqrt[2 n]{2-x^{2}}+\sqrt[2 n]{2|x|-1}=\left(x^{2}-1\right)^{2 m}+2 \tag{1}
\end{equation*}
$$

Let $y=|x| \geq 0$ (1) $\rightarrow \sqrt[2 n]{2-y^{2}}+\sqrt[2 n]{2 y-1}=\left(y^{2}-1\right)^{2 m}+2$
Consider the function $f(t)=\sqrt[2 n]{\boldsymbol{t}}, \boldsymbol{t} \geq 0$ with $f^{\prime \prime}(t)=\frac{(1-2 n)^{\frac{1}{2 n^{-2}}}}{4 n^{2}}<0$
for $n \in \mathbb{N}, n \geq 1$, hence $f(t)$ concave and from Jensen:

$$
\begin{equation*}
\text { LHS of }(1) \leq 2 \cdot \sqrt[2 n]{\frac{2-y^{2}+2 y-1}{2}}=2^{2 n} \sqrt{\frac{1}{2}\left(-y^{2}+2 y+1\right)} \tag{2}
\end{equation*}
$$

From (1)' we have $2-y^{2} \geq 0 \rightarrow y \leq \sqrt{2}$ and $2 y-1 \geq 0 \rightarrow y \geq \frac{1}{2}$ or $\frac{1}{2} \leq y \leq \sqrt{2}$. Now, $-y^{2}+2 y+1>0$ and equality in (2) when

$$
2-y^{2}=2 y-1 \leftrightarrow y=1 . \text { From (1) and (2) }
$$

$$
\rightarrow 2 \cdot \sqrt[2 n]{\frac{1}{2}\left(-y^{2}+2 y+1\right)} \geq\left(y^{2}-1\right)^{2 m}+2 \text { (3).Consider the function }
$$

$f(y)=\frac{1}{2}\left(-y^{2}+2 y+1\right)$ with $f^{\prime}(y)=-y+1$ with root $y=1$ and $f^{\prime \prime}(y)<0$ with $\max f=1$ at $y=1$. As $\frac{1}{2}\left(-y^{2}+2 y+1\right) \leq 1 \rightarrow \sqrt[2 n]{\frac{1}{2}\left(-y^{2}+2 y+1\right)} \leq 1$ and $2 \cdot \sqrt[2 n]{\frac{1}{2}\left(-y^{2}+2 y+1\right)} \leq 2$. The last inequality and (3) give $2 \geq$ LHS of (3) $\geq 2+\left(y^{2}-1\right)^{2 m}$ which can happen only if $\boldsymbol{y}^{2}-1=0$ or $y=1$ or $|x|=1$ or $x= \pm 1$ which are the only real solution of (1).
Solution 2 by Khaled Abd Imouti-Damascus-Syria

$$
\sqrt[2 n]{2-x^{2}}+\sqrt[2 n]{2|x|-1}=\left(x^{2}-1\right)^{2 m}+2
$$

$$
\begin{aligned}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
& \text { www.ssmrmh.ro } \\
& \begin{array}{c|c}
2-x^{2} \geq 0 \\
x \in[-\sqrt{2}, \sqrt{2}]
\end{array}\left|\begin{array}{c}
2|x| \geq 1 \\
|x| \geq \frac{1}{2} \\
\left.\mid-\infty,-\frac{1}{2}\right] \cup\left[\frac{1}{2},+\infty\right.
\end{array}\right| D=\left[-\sqrt{2},-\frac{1}{2}\right] \cup\left[\frac{1}{2}, \sqrt{2}\right]
\end{aligned}
$$

if we have substituted $-x$ instead of x then the relation is True. So, we will solve the equation and the interval $\left[\frac{1}{2}, \sqrt{2}\right]$

$$
\begin{aligned}
& \text { Note in the interval }\left[\frac{1}{2}, \sqrt{2}\right]:|x|=x \\
& \sqrt[2 n]{2-x^{2}}+\sqrt[2 n]{2 x-1}=\left(x^{2}-1\right)^{2 m}+2 \\
& \left(\boldsymbol{x}^{2}-\mathbf{1}\right)^{2 m}+2 \leq 2 \sqrt{\frac{2 n}{2-x^{2}+2 x-1}} \mathbf{2} \\
& \frac{\left(\boldsymbol{x}^{2}-1\right)^{2 m}+2}{2} \leq \sqrt[2 n]{\frac{-x^{2}+2 x+1}{2}} \\
& \frac{\left(\boldsymbol{x}^{2}-1\right)^{2 m}+2}{2} \leq \sqrt[2 n]{1-\frac{(\boldsymbol{x - 1})^{2}}{2}} \leq \mathbf{1} \\
& \frac{\left(\boldsymbol{x}^{2}-1\right)^{2 m}}{2}+\mathbf{1} \leq \mathbf{1} \Rightarrow \frac{\left(\boldsymbol{x}^{2}-1\right)^{2 m}}{2} \leq \mathbf{0}
\end{aligned}
$$

This holds when: $x^{2}-1=0 \Rightarrow x^{2}=1 ; x=1$. So: $S^{\prime}=\{-1,+1\}$

SP.212. Evaluate:

$$
\lim _{n \rightarrow \infty} \frac{\left\lfloor e^{\frac{1}{n}}\right\rfloor+\left\lfloor e^{\frac{2}{n}}\right\rfloor+\cdots+\left\lfloor e^{\frac{n}{n}}\right\rfloor}{n}
$$

where $\lfloor x\rfloor$ denotes the integer part of x.

Proposed by Nguyen Viet Hung - Hanoi - Vietnam

Solution by Samir HajAli-Damascus-Syria

$$
\lim _{n \rightarrow \infty} \frac{\left[e^{\frac{1}{n}}\right]+\left[e^{\frac{2}{n}}\right]+\cdots+\left[e^{\frac{n}{n}}\right]}{n}=\lim _{n \rightarrow \infty} \frac{\sum_{k=1}^{n}\left[e^{\frac{k}{n}}\right]}{n}=\int_{0}^{1}\left[e^{x}\right] d x
$$

ROMANIAN MATHEMATICAL MAGAZINE

 www.ssmrmh.roLet put $e^{x}=t \Rightarrow d x=\frac{d t}{t}$ then $\int_{0}^{1}\left[e^{x}\right] d x=\int_{0}^{e}[t] \frac{d t}{t}=\int_{1}^{2}[t] \frac{d t}{t}+\int_{2}^{e}[t] \frac{d t}{t}$

$$
=\int_{1}^{2} \frac{d t}{t}+\int_{2}^{e} 2 \frac{d t}{t}=\ln 2+2(1-\ln 2)=2-\ln 2
$$

SP.213. Prove that in any $A B C$ triangle the following inequality holds:

$$
\frac{9 r^{2}}{4 R^{2}}\left(2 R^{2}-5 r^{2}\right) \leq \sum \boldsymbol{m}_{a}^{2} \sin ^{2} \frac{B}{2} \sin ^{2} \frac{C}{2} \leq \frac{1}{4 R^{2}}\left(4 R^{4}-37 r^{4}\right)
$$

Proposed by Marin Chirciu - Romania

Solution by proposer

We prove the following lemma:
Lemma: In $\triangle A B C$:

$$
\sum m_{a}^{2} \sin ^{2} \frac{B}{2} \sin ^{2} \frac{C}{2}=\frac{s^{2}\left(s^{2}-12 R r\right)+r(4 R+r)(2 R-r)}{16 R^{2}}
$$

Proof: Using $\boldsymbol{m}_{a}^{2}=\frac{2 b^{2}+2 c^{2}-a^{2}}{4}$ and $\sin ^{2} \frac{A}{2}=\frac{(s-b)(s-c)}{b c}$ we obtain:

$$
\begin{aligned}
& \sum m_{a}^{2} \sin ^{2} \frac{B}{2} \sin ^{2} \frac{C}{2}=\sum \frac{2 b^{2}+2 c^{2}-a^{2}}{4} \cdot \frac{(s-a)(s-c)}{a c} \cdot \frac{(s-a)(s-b)}{a b}= \\
&= \frac{(s-a)(s-b)(s-c)}{4 a b c} \sum \frac{\left(2 b^{2}+2 c^{2}-a^{2}\right)(s-a)}{a} \\
&= \frac{r}{4 R} \cdot \frac{s^{2}\left(s^{2}-12 R r\right)+r(4 R+r)(2 R-r)}{4 R r}=\frac{s^{2}\left(s^{2}-12 R r\right)+r(4 R+r)(2 R-r)}{16 R^{2}}
\end{aligned}
$$

Let's get back to the main problem: Using the Lemma, the inequality can be written:

$$
\frac{9 r^{2}}{4 R^{2}}\left(2 R^{2}-5 r^{2}\right) \leq \frac{s^{2}\left(s^{2}-12 R r\right)+r(4 R+r)(2 R-r)}{16 R^{2}} \leq \frac{1}{4 R^{2}}\left(4 R^{4}-37 r^{4}\right)
$$

which follows from Gerretsen's inequality: $16 R r-5 r^{2} \leq s^{2} \leq 4 R^{2}+4 R r+3 r^{2}$ and
Euler's inequality $R \geq 2 r$. Equality holds if and only if the triangle is equilateral.
SP.214. Prove that in any $A B C$ triangle the following inequality holds:

$$
\begin{array}{r}
\frac{3 r^{2}}{4 R^{2}}(4 R+r)^{2} \leq \sum m_{a}^{2} \cos ^{2} \frac{B}{2} \cos ^{2} \frac{C}{2}<\frac{3}{16}(4 R+r)^{2} \\
\text { Proposed by M arin Chirciu - Romania }
\end{array}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
& \frac{3 r^{2}}{4 R^{2}}(4 R+r)^{2} \stackrel{(1)}{\leq} \sum m_{a}^{2} \cos ^{2} \frac{B}{2} \cos ^{2} \frac{C}{2} \stackrel{(2)}{\leq} \frac{3}{16}(4 R+r)^{2} \\
& \sum m_{a}^{2} \cos ^{2} \frac{B}{2} \cos ^{2} \frac{C}{2}=\left(\frac{s}{4 R}\right)^{2}\left(\sum m_{a}^{2} \sec ^{2} \frac{A}{2}\right) \\
& =\frac{s^{2}}{16 R^{2}} \sum\left\{\left(\frac{2 b^{2}+2 c^{2}+2 a^{2}-3 a^{2}}{4}\right)\left(\frac{b c}{s(s-a)}\right)\right\} \\
& =\left(\frac{s}{64 R^{2}}\right)\left[2\left(\sum a^{2}\right) \sum \frac{b c}{s-a}-3 a b c \sum \frac{a}{s-a}\right] \\
& =\left(\frac{s}{64 R^{2}}\right)\left[\frac{4\left(s^{2}-4 R r-r^{2}\right)}{r^{2} s} \sum b c(s-b)(s-c)-12 \operatorname{Rrs}\left(\sum \frac{a-s+s}{s-a}\right)\right] \\
& =\left(\frac{s}{64 R^{2}}\right)\left[\frac{4\left(s^{2}-4 R r-r^{2}\right)}{r^{2} s} \sum b c\left(s^{2}-s(2 s-a)+b c\right)\right] \\
& -\left(\frac{s}{64 R^{2}}\right) 12 \operatorname{Rrs}\left(-3+\frac{s \sum(s-b)(s-c)}{r^{2} s}\right) \\
& =\left(\frac{s}{64 R^{2}}\right)\left[\frac{4\left(s^{2}-4 R r-r^{2}\right)}{r^{2} s}\left\{s^{2} \sum a b-2 s^{2} \sum a b+3 s a b c+\left(\sum a b\right)^{2}-2 a b c(2 s)\right\}\right] \\
& -\left(\frac{s}{64 R^{2}}\right) 12 R r s\left(-3+\frac{\sum\left(s^{2}-s(b+c)+b c\right)}{r^{2}}\right) \\
& =\left(\frac{s}{64 R^{2}}\right)\left[\frac{4\left(s^{2}-4 R r-r^{2}\right)}{r^{2} s}\left\{\left(\sum a b\right)\left(4 R r+r^{2}\right)-4 R r s^{2}\right\}\right] \\
& -\left(\frac{s}{64 R^{2}}\right) 12 \operatorname{Rrs}\left(-3+\frac{3 s^{2}-4 s^{2}+s^{2}+4 R r+r^{2}}{r^{2}}\right) \\
& =\left(\frac{s}{64 R^{2}}\right)\left[\frac{4\left(s^{2}-4 R r-r^{2}\right)}{s}\left\{s^{2}+(4 R+r)^{2}\right\}-12 \operatorname{Rrs}\left(\frac{4 R-2 r}{r}\right)\right] \\
& =\frac{\left(s^{2}-4 R r-r^{2}\right)\left(s^{2}+(4 R+r)^{2}\right)-6 R s^{2}(2 R-r)}{16 R^{2}} \\
& \stackrel{(a)}{=} \frac{S^{4}+s^{2}\left(4 R^{2}+10 R r\right)-\left(64 R^{3} r+48 R^{2} r^{2}+12 R r^{3}+r^{4}\right)}{16 R^{2}} \\
& \text { (a) } \Rightarrow \text { (1) } \Leftrightarrow \frac{s^{4}+s^{2}\left(4 R^{2}+10 R r\right)-\left(64 R^{3} r+48 R^{2} r^{2}+12 R r^{3}+r^{4}\right)}{16 R^{2}}-\frac{3 r^{2}}{4 R^{2}}(4 R+r)^{2} \geq 0 \\
& \Leftrightarrow s^{4}+s^{2}\left(4 R^{2}+10 R r\right)-\left(64 R^{3} r+48 R^{2} r^{2}+12 R r^{3}+r^{4}\right)-12 r^{2}(4 R+r)^{2} \stackrel{(1 a)}{\geq} 0
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
\text { Now, LHS of (1a) } \left.\begin{array}{c}
\stackrel{\text { Gerretsen }}{\geq} s^{2}\left(4 R^{2}+26 R r-5 r^{2}\right)-\left(64 R^{3} r+48 R^{2} r^{2}+12 R r^{3}+r^{4}\right)- \\
-12 r^{2}(4 R+r)^{2}
\end{array}\right) .
\end{gathered}
$$

$$
\text { Now, LHS of (2a) } \stackrel{\text { Gerretsen }}{\leq} s^{2}\left(8 R^{2}+14 R r+3 r^{2}\right)-\left(64 R^{3} r+48 R^{2} r^{2}+12 R r^{3}+r^{4}\right)-
$$

$$
-3 R^{2}(4 R+r)^{2}
$$

$$
\begin{aligned}
& \stackrel{\text { Gerretsen }}{\leq}\left(4 R^{2}+4 R r+3 r^{2}\right)\left(8 R^{2}+14 R r+3 r^{2}\right)-\left(64 R^{3} r+48 R^{2} r^{2}+12 R r^{3}+r^{4}\right)- \\
& \\
& \qquad-3 R^{2}(4 R+r)^{2} \stackrel{?}{\leq} 0 \Leftrightarrow 16 t^{4}-41 t^{2}-42 t-8 \stackrel{?}{\geq} 0\left(t=\frac{R}{r}\right) \\
& \Leftrightarrow(t-2)\left(16 t^{3}+32 t^{2}+23 t+4\right) \stackrel{?}{\geq} 0 \rightarrow \text { true } \because t \stackrel{\text { Euler }}{\geq} 2 \Rightarrow(2 a) \Rightarrow(2) \text { is true }
\end{aligned}
$$

(proved)

SP.215. Let a, b, c be positive real numbers such that $a+b+c+1=4 a b c$.
Prove that:

$$
\frac{a^{2} b}{b+5 c}+\frac{b^{2} c}{c+5 a}+\frac{c^{2} a}{a+5 b} \geq \frac{1}{2}
$$

Proposed by Hoang Le Nhat Tung - Hanoi - Vietnam
Solution 1 by Michael Sterghiou-Greece

$$
\begin{gather*}
a+b+c+1=4 a b c \text { (c) } \\
\sum_{c y c} \frac{a^{2} b}{b+5 c} \geq \frac{1}{2} \text { (1) } \tag{1}\\
(1) \rightarrow \sum_{c y c} \frac{a^{2} b^{2}}{b^{2}+5 b c} \stackrel{B C S}{\geq} \frac{\left(\sum_{c y c} a b\right)^{2}}{\left(\sum_{c y c} a^{2}\right)+5 \sum_{c y c} a b} \stackrel{?}{\geq} \frac{1}{2} \tag{2}
\end{gather*}
$$

$$
\begin{aligned}
& \stackrel{\text { Gerretsen }}{\geq}\left(16 R r-5 r^{2}\right)\left(4 R^{2}+26 R r-5 r^{2}\right)-\left(64 R^{3} r+48 R^{2} r^{2}+12 R r^{3}+r^{4}\right)- \\
& -12 r^{2}(4 R+r)^{2} \stackrel{?}{\geq} 0 \Leftrightarrow 26 R^{2}-53 R r+2 r^{2} \stackrel{?}{\geq} 0 \Leftrightarrow(R-2 r)(26 R-r) \stackrel{?}{\geq} 0 \\
& \rightarrow \text { true } \because R \stackrel{\text { Euler }}{\geq} 2 r \Rightarrow(1 a) \Rightarrow(1) \text { is true. Again, (a) } \Rightarrow \text { (2) } \\
& \Leftrightarrow \frac{s^{4}+s^{2}\left(4 R^{2}+10 R r\right)-\left(64 R^{3} r+48 R^{2} r^{2}+12 R r^{3}+r^{4}\right)}{16 R^{2}} \leq \frac{3}{16}(4 R+r)^{2} \\
& \Leftrightarrow s^{4}+s^{2}\left(4 R^{2}+10 R r\right)-\left(64 R^{3} r+48 R^{2} r^{2}+12 R r^{3}+r^{4}\right)-3 R^{2}(4 R+r)^{2} \stackrel{(2 a)}{\leq} 0
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
Let $(\boldsymbol{p}, \boldsymbol{q}, \boldsymbol{r})=\left(\sum_{c y c} \boldsymbol{a}, \sum_{c y c} \boldsymbol{a b}, \boldsymbol{a b c}\right)$
(2) $\rightarrow \frac{q^{2}}{p^{2}-2 q+5 q} \geq \frac{1}{2} \rightarrow 2 q^{2} \geq p^{2}+3 q \rightarrow 2 q^{2}-p^{2}-3 q \geq 0$ and as $-3 q \geq-p^{2}$ it suffices that: $2\left(q^{2}-p^{2}\right) \geq 0 \rightarrow q \geq p$
(3) $\rightarrow a b+b c+c a-a-b-c \geq 0$. From (c): $p+1=4 r$ so we have to show that: $a b+b c+c a-4 a b c+1 \geq 0$ or $q-4 r+1 \geq 0$ (4). This is a decreasing function of r so we need to show (4) where r becomes maximal. This according to V. Cirtoaje theorem with fixed happens when $a=b$ assuming WLOG that $a \leq b \leq c$. Assuming

$$
a=b \text { we have: }
$$

From (c) $2 a+c+1=4 a^{2} c$ or $c=\frac{2 a+1}{4 a^{2}-1}=\frac{1}{2 a-1}$. As $c>0$ we have $a>\frac{1}{2}$. Now, (4)
becomes: $a^{2}+2 a c-4 a^{2} c+1 \geq 0$ or $a^{2}+\frac{2 a}{2 a-1}-\frac{4 a^{2}}{2 a-1}+1 \geq 0$ which reduces to:

$$
2 a^{3}-5 a^{2}+4 a-1 \geq 0 \text { or }(a-1)^{2}(2 a-1) \geq 0 \text { which holds. Done! }
$$

Solution 2 by Marian Ursărescu-Romania
One of my student, asked my if it is possible to decondition relationship $a+b+c+1=4 a b c$. The answer is yes: first using Bergström inequality:

$$
\begin{gather*}
\frac{a^{2} b^{2}}{b^{2}+5 c b}+\frac{b^{2} c^{2}}{c^{2}+5 a c}+\frac{c^{2} a^{2}}{a^{2}+5 a b} \geq \frac{(a b+a c+b c)^{2}}{a^{2}+b^{2}+c^{2}+5(a b+a c+b c)} \Rightarrow \\
\text { We must show: } \frac{(a b+b c+a c)^{2}}{a^{2}+b^{2}+c^{2}+5(a b+a c+b c)} \geq \frac{1}{2} \tag{1}
\end{gather*}
$$

Now let $a=\frac{1}{x}, b=\frac{1}{y}, c=\frac{1}{z} \Rightarrow a+b+c+1=4 a b c \Leftrightarrow$

$$
\Leftrightarrow x y+x z+y z+x y t=4(2) \Rightarrow
$$

$$
\begin{equation*}
\text { (1) } \Leftrightarrow \frac{(x+y+z)^{2}}{x^{2} y^{2}+x^{2} z^{2}+y^{2} z^{2}+5 x y z(x+y+z)} \geq \frac{1}{2} \tag{3}
\end{equation*}
$$

Because $x y+x z+y z+x y z=4 \Rightarrow \exists m, n, p>0$ such that: $x=\frac{2 m}{n+p}, y=\frac{2 n}{m+p}$,

$$
\begin{equation*}
z=\frac{2 p}{m+n} \Rightarrow(3) \Leftrightarrow \frac{\left(\sum m(m+n)(m+p)\right)^{2}}{2 \sum m^{2} n^{2}(m+n)+10 m n p \sum m(m+n)(m+p)} \geq 1 \tag{4}
\end{equation*}
$$

Relation (4) it is true because using Cirtoaje's theorem: If $f_{6}(m, n, p)$ it's a symmetric polygon of degree 6 then

$$
f_{\mathbf{6}}(a, b, c) \geq \mathbf{0}, \forall a, b, c \in \mathbb{R} \Leftrightarrow f_{6}(a, \mathbf{1}, \mathbf{1}) \geq \mathbf{0}, \forall a \in \mathbb{R}
$$

ROMANIAN MATHEMATICAL MAGAZINE

 www.ssmrmh.roSP.216. Let I be the incentre of a triangle $A B C$ with inradius r, and let K, L, M be the intersection points of the segments $A I, B I, C I$ with the inscribed of the triangle $A B C$, respectively. Prove that:

$$
A K^{n}+B L^{n}+C M^{n} \geq 3 \cdot r^{n}
$$

for each positive integer n.
Proposed by George Apostolopoulos - Messolonghi - Greece

Solution by Marian Ursărescu - Romania

From Hölder's inequality we have: $A K^{n}+B L^{n}+C M^{n} \geq \frac{(A K+B L+C M)^{n}}{3^{n-1}} \Rightarrow$
We must show: $\frac{(A K+B L+C M)^{n}}{3^{n-1}} \geq 3 r^{n} \Leftrightarrow A K+B L+C M \geq 3 r$
But $A K=A I-r=\frac{r}{\sin _{\frac{A}{2}}^{A}}-r=r\left(\frac{1}{\sin \frac{A}{2}}-1\right)$
From (1)+ (2) we must show that: $\frac{1}{\sin \frac{A}{2}}+\frac{1}{\sin \frac{B}{2}}+\frac{1}{\sin \frac{C}{2}} \geq 6$

$$
\begin{gather*}
\sin \frac{A}{2}=\sqrt{\frac{(s-b)(s-c)}{b c}} \leq \frac{a}{2 \sqrt{b c}} \Rightarrow \frac{1}{\sin \frac{A}{2}} \geq \frac{2 \sqrt{b c}}{a} \Rightarrow \tag{3}\\
\frac{1}{\sin \frac{A}{2}}+\frac{1}{\sin \frac{B}{2}}+\frac{1}{\sin \frac{c}{2}} \geq 2\left(\frac{\sqrt{b c}}{a}+\frac{\sqrt{a c}}{b}+\frac{\sqrt{a b}}{c}\right) \geq 2 \cdot 3 \sqrt[3]{\frac{a b c}{a b c}}=6 \Rightarrow \text { (3) it is true. }
\end{gather*}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

SP.217. Let a, b, c be positive real numbers such that:

$$
\left(a^{3}+b^{3}\right)\left(b^{3}+c^{3}\right)\left(c^{3}+a^{3}\right)=8 \text {. Find the minimum value of: }
$$

$$
T=\frac{a}{\left(b^{2}+b c+c^{2}\right)(a+2 b)^{2}}+\frac{b}{\left(c^{2}+c a+a^{2}\right)(b+2 c)^{2}}+\frac{c}{\left(a^{2}+a b+b^{2}\right)(c+2 a)^{2}}
$$

Proposed by Hoang Le Nhat Tung - Hanoi - Vietnam

Solution 1 by Soumava Chakraborty-Kolkata-India
Firstly, $\frac{a}{a+2 b}+\frac{b}{b+2 c}+\frac{c}{c+2 a}=\frac{a^{2}}{a^{2}+2 a b}+\frac{b^{2}}{b^{2}+2 b c}+\frac{c^{2}}{c^{2}+2 c a}$

$$
\stackrel{\text { Bergstrom }}{\geq} \frac{\left(\sum a\right)^{2}}{\sum a^{2}+2 \sum a b}=\frac{\left(\sum a\right)^{2}}{\left(\sum a\right)^{2}}=1 \Rightarrow \sum \frac{a}{a+2 b} \stackrel{(1)}{\geq} 1
$$

Now, $a^{3}+b^{3} \stackrel{\text { Chebyshev }}{\geq} \frac{1}{2}(a+b)\left(a^{2}+b^{2}\right) \geq \frac{1}{2}(a+b) \cdot \frac{1}{2}(a+b)^{2} \Rightarrow a^{3}+b^{3} \xrightarrow{(a)} \frac{(a+b)^{3}}{4}$
Similarly, $b^{3}+c^{3} \stackrel{(b)}{\geq} \frac{(b+c)^{3}}{4}$ and $c^{3}+a^{3} \stackrel{(c)}{\geq} \frac{(c+a)^{3}}{4}$
(a).(b).(c) $\Rightarrow \frac{\left(\left.\Pi(a+b)\right|^{3}\right.}{64} \leq \Pi\left(a^{3}+b^{3}\right)=8 \Rightarrow \Pi(a+b){ }^{(2)} \leq 8$

Now, $T=\sum \frac{\left(\frac{a}{a+2 b}\right)^{2}}{a\left(b^{2}+b c+c^{2}\right)} \stackrel{\text { Bergstrom }}{\geq} \frac{\left(\Sigma \frac{a}{a b b}\right)^{2}}{\Sigma a^{2} b+\Sigma a b^{2}+3 a b c}$

$$
\stackrel{b y(1)}{\geq} \frac{1}{\Pi(a+b)+a b c} \stackrel{b y(2)}{\geq} \frac{1}{8+a b c} \stackrel{\text { cesaro }}{\geq} \frac{1}{8+\frac{\Pi(a+b)}{2}}
$$

$\stackrel{b y}{ }(2) \frac{1}{8+\frac{8}{8}}=\frac{1}{9}:: T_{\text {min }}=\frac{1}{9}$, equality when $a=b=c=1$. (Answer)
Solution 2 by Tran Hong-Dong Thap-Vietnam
For $a, b>0$ we have: $a^{2}+a b+b^{2} \leq 3\left(a^{2}-a b+b^{2}\right) \leftrightarrow 2\left(a^{2}-2 a b+b^{2}\right) \geq 0$

$$
\begin{gathered}
\leftrightarrow 2(a-b)^{2} \geq 0 \text { (true) } \\
\left(b^{3}+a^{3}\right)\left(a^{3}+c^{3}\right)\left(1^{3}+1^{3}\right) \stackrel{\text { Holder }}{\geq}(b \cdot a \cdot 1+a \cdot c \cdot 1)^{3}=(b a+a c)^{3} \\
\rightarrow\left(b^{3}+a^{3}\right)\left(a^{3}+c^{3}\right) \geq \frac{(b a+a c)^{3}}{2} . \text { Now, } \frac{a}{\left(b^{2}+b c+c^{2}\right)(a+2 b)^{2}} \geq \frac{a}{3\left(b^{2}-b c+c^{2}\right)(a+2 b)^{2}} \\
=\frac{a(b+c)}{3\left(b^{3}+c^{3}\right)(a+2 b)^{2}}=\frac{a(b+c)\left(b^{3}+c^{3}\right)\left(a^{3}+c^{3}\right)}{24(a+2 b)^{2}}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

$$
\geq \frac{(a b+a c)}{24(a+2 b)^{2}} \cdot \frac{(b a+a c)^{3}}{2}=\frac{(a b+a c)^{4}}{48(a+2 b)^{2}}
$$

Similarly: $\frac{b}{\left(c^{2}+c a+a^{2}\right)(b+2 c)^{2}} \geq \frac{b(c+a)\left(a^{3}+b^{3}\right)\left(b^{3}+c^{3}\right)}{24(b+2 c)^{2}} \geq \frac{(b c+b a)^{4}}{48(b+2 c)^{2}}$
And: $\frac{c}{\left(a^{2}+a b+b^{2}\right)(c+2 a)^{2}} \geq \frac{c(a+b)\left(a^{3}+c^{3}\right)\left(b^{3}+c^{3}\right)}{24(c+2 a)^{2}} \geq \frac{(c a+c b)^{4}}{48(c+2 a)^{2}}$

$$
\begin{gathered}
\rightarrow \frac{a}{\left(b^{2}+b c+c^{2}\right)(a+2 b)^{2}}+\frac{b}{\left(c^{2}+c a+a^{2}\right)(b+2 c)^{2}}+\frac{c}{\left(a^{2}+a b+b^{2}\right)(c+2 a)^{2}} \geq \\
\geq \frac{(a b+a c)^{4}}{48(a+2 b)^{2}}+\frac{(b c+b a)^{4}}{48(b+2 c)^{2}}+\frac{(c a+c b)^{4}}{48(c+2 a)^{2}}= \\
=\frac{1}{48}\left(\frac{(a b+a c)^{4}}{(a+2 b)^{2}}+\frac{(b c+b a)^{4}}{(b+2 c)^{2}}+\frac{(c a+c b)^{4}}{(c+2 a)^{2}}\right)=\omega
\end{gathered}
$$

We have: $\frac{(a b+a c)^{4}}{(a+2 b)^{2}}+\frac{(b c+b a)^{4}}{(b+2 c)^{2}}+\frac{(c a+c b)^{4}}{(c+2 a)^{2}} \geq \frac{16}{3}$
It is true because: $\frac{(a b+a c)^{4}}{(a+2 b)^{2}}+\frac{(b c+b a)^{4}}{(b+2 c)^{2}}+\frac{(c a+c b)^{4}}{(c+2 a)^{2}} \stackrel{\text { Schwarz }}{\geq} \frac{\left[(a b+a c)^{2}+(b c+b a)^{2}+(c a+c b)^{2}\right]^{2}}{(a+2 b)^{2}+(b+2 c)^{2}+(c+2 a)^{2}}$. And:

$$
3\left[(a b+a c)^{2}+(b c+b a)^{2}+(c a+c b)^{2}\right]^{2} \geq 16\left((a+2 b)^{2}+(b+2 c)^{2}+(c+2 a)^{2}\right)
$$

(By $A B C$ theorem) $\rightarrow \omega \geq \frac{1}{48} \cdot \frac{16}{3}=\frac{1}{9}$. Equality $\leftrightarrow a=b=c=1$.

SP.218. Let x, y, z be positive real numbers such that:
$x^{2}+y^{2}+z^{2}=3$. Find the minimum of the expression:

$$
P=\frac{x}{\sqrt[4]{\frac{y^{8}+z^{8}}{2}}+3 y z}+\frac{y}{\sqrt[4]{\frac{z^{8}+x^{8}}{2}}+3 z x}+\frac{z}{\sqrt[4]{\frac{x^{8}+y^{8}}{2}}+3 x y}
$$

Proposed by Hoang Le Nhat Tung - Hanoi - Vietnam

Solution 1 by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
& a^{4}+b^{4} \leq 2\left(a^{2}-a b+b^{2}\right)^{2} \Leftrightarrow a^{4}+b^{4} \leq 2\left(a^{2}+b^{2}\right)^{2}-4 a b\left(a^{2}+b^{2}\right)+2 a^{2} b^{2} \\
& \Leftrightarrow a^{4}+b^{4} \leq 2\left(a^{4}+b^{4}\right)+4 a^{2} b^{2}-4 a b\left(a^{2}+b^{2}\right)+2 a^{2} b^{2} \\
& \Leftrightarrow\left(a^{2}+b^{2}\right)^{2}- 4 a b\left(a^{2}+b^{2}\right)+4 a^{2} b^{2} \geq 0 \Leftrightarrow\left(a^{2}+b^{2}-2 a b\right)^{2} \geq 0 \\
& \rightarrow \operatorname{true} \therefore a^{4}+b^{4} \stackrel{(1)}{\leq} 2\left(a^{2}-a b+b^{2}\right)^{2}
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Choosing $a=y^{2}$ and $b=z^{2}$ in (1), $y^{8}+z^{8} \leq 2\left(y^{4}-y^{2} z^{2}+z^{4}\right)^{2}$

$$
\begin{gathered}
\Rightarrow \sqrt[4]{\frac{y^{8}+z^{8}}{2}}+3 y z \leq \sqrt{y^{4}-y^{2} z^{2}+z^{4}}+\sqrt{3}(\sqrt{3} y z) \\
\qquad \begin{array}{c}
\text { CBS } \\
\leq \sqrt{1+3} \sqrt{y^{4}-y^{2} z^{2}+z^{4}+3 y^{2} z^{2}}=2 \sqrt{\left(y^{2}+z^{2}\right)^{2}}=2\left(y^{2}+z^{2}\right) \\
\therefore \sqrt[4]{\frac{y^{8}+z^{8}}{2}}+3 y z \leq 2\left(y^{2}+z^{2}\right)
\end{array}
\end{gathered}
$$

Similarly, $\sqrt[4]{\frac{z^{8}+x^{8}}{2}}+3 z x \leq 2\left(z^{2}+x^{2}\right)$ and,,$\sqrt[4]{\frac{x^{8}+y^{8}}{2}}+3 x y \leq 2\left(x^{2}+y^{2}\right)$
(a), (b), (c) $\Rightarrow P \geq \frac{1}{2} \sum \frac{x}{y^{2}+z^{2}}=\frac{1}{2} \sum \frac{x}{3-x^{2}}: P \stackrel{(i)}{\geq} \frac{1}{2} \sum \frac{x}{3-x^{2}}$

Now, $\frac{x}{3-x^{2}} \geq \frac{x^{2}}{2} \Leftrightarrow 2 \geq x\left(3-x^{2}\right) \Leftrightarrow x^{3}-3 x+2 \geq 0$
$\Leftrightarrow(x+2)(x-1)^{2} \geq 0 \rightarrow$ true $: \frac{x}{3-x^{2}} \stackrel{(d)}{\geq} \frac{x^{2}}{2}$. Similarly, $\frac{y}{3-y^{2}} \stackrel{(e)}{\geq} \frac{y^{2}}{2}$ and, $\frac{x^{(f)}}{3-z^{2}} \stackrel{(f)}{2} \frac{z^{2}}{2}$
(d), (e), (f), (i) $\Rightarrow P \geq \frac{1}{4} \sum x^{2}=\frac{3}{4}$
$\therefore P_{\text {min }}=\frac{3}{4}$ and it occurs when $x=y=z=1$.
Solution 2 by Tran Hong-Dong Thap-Vietnam
For all $a, b>0$ we have: $\sqrt[4]{\frac{a^{8}+b^{8}}{2}}+3 a b \leq 2\left(a^{2}+b^{2}\right)$

$$
\begin{gather*}
\leftrightarrow \sqrt[4]{\frac{a^{8}+b^{8}}{2}} \leq 2\left(a^{2}+b^{2}\right)-3 a b \leftrightarrow \frac{a^{8}+b^{8}}{2} \leq\left(2\left(a^{2}+b^{2}\right)-3 a b\right)^{4} \tag{*}\\
\quad \leftrightarrow \frac{1}{2}(a-b)^{4}\left[31\left(a^{4}+b^{4}\right)+102 a^{2} b^{2}-68\left(a b^{3}+b a^{3}\right)\right] \geq 0
\end{gather*}
$$

$$
\text { Which is true because: } \frac{1}{2}(a-b)^{4} \geq 0
$$

$$
\left\{\begin{array}{c}
31 a^{4}+51 a^{2} b^{2} \stackrel{A M-G M}{\geq} 2 \sqrt{31 \cdot 51 \cdot a^{6} b^{2}}=2 \sqrt{1581} \cdot b a^{3}>68 \cdot b a^{3} \\
31 b^{4}+51 a^{2} b^{2} \stackrel{A M-G M}{\geq} 2 \sqrt{31 \cdot 51 \cdot a^{6} b^{2}}=2 \sqrt{1581} \cdot a b^{3}>68 \cdot a b^{3} \\
\rightarrow 31\left(a^{4}+b^{4}\right)+102 a^{2} b^{2}-68\left(a b^{3}+b a^{3}\right)>0
\end{array}\right.
$$

So, (*) is true. Equality if and only if $a=b$. Now, using (${ }^{*}$) inequality:

$$
\begin{aligned}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
& \boldsymbol{P}=\frac{x}{\sqrt[4]{\frac{y^{8}+z^{8}}{2}}+3 y z}+\frac{y^{\prime}}{\sqrt[4]{\frac{z^{8}+x^{8}}{2}}+3 z x}+\frac{x}{\sqrt[4]{\frac{x^{8}+y^{8}}{2}}+3 x y} \\
& \geq \frac{x}{2\left(y^{2}+z^{2}\right)}+\frac{y}{2\left(z^{2}+x^{2}\right)}+\frac{z}{2\left(x^{2}+y^{2}\right)}=\frac{x}{2\left(3-x^{2}\right)}+\frac{y}{2\left(3-y^{2}\right)}+\frac{z}{2\left(3-z^{2}\right)} \\
& \text { (Because: } \left.x^{2}+y^{2}+z^{2}=3 \rightarrow 0<x^{2}, y^{2}, z^{2}<3\right)
\end{aligned}
$$

$$
\text { Lastly, we must show that: } \frac{x}{2\left(3-x^{2}\right)}+\frac{y}{2\left(3-y^{2}\right)}+\frac{z}{2\left(3-z^{2}\right)} \geq \frac{3}{4}
$$

$$
\begin{equation*}
\leftrightarrow \frac{x}{\left(3-x^{2}\right)}+\frac{y}{\left(3-y^{2}\right)}+\frac{z}{\left(3-z^{2}\right)} \geq \frac{3}{2} \tag{**}
\end{equation*}
$$

We have: $\frac{x}{\left(3-x^{2}\right)} \geq \frac{x^{2}}{2} \stackrel{0<x<\sqrt{3}}{\leftrightarrow} 2 \geq x\left(3-x^{2}\right) \leftrightarrow(x-1)^{2}(x+2) \geq 0$ (true)

$$
\text { Similarly: } \frac{y}{\left(3-y^{2}\right)} \geq \frac{y^{2}}{2} \text { and } \frac{z}{\left(3-z^{2}\right)} \geq \frac{z^{2}}{2}
$$

$$
\begin{gathered}
\rightarrow \frac{x}{\left(3-x^{2}\right)}+\frac{y}{\left(3-y^{2}\right)}+\frac{z}{\left(3-z^{2}\right)} \geq \frac{x^{2}}{2}+\frac{y^{2}}{2}+\frac{z^{2}}{2}=\frac{3}{2} \\
\text { So, (**) true. } \rightarrow P_{\text {min }}=\frac{3}{2} \leftrightarrow x=y=z=1 .
\end{gathered}
$$

SP.219. Prove the following inequality:

$$
\sum_{k=1}^{n} \frac{a_{k}^{2}}{a_{k}+(n+1)\left(S-a_{k}\right)} \geq \frac{1}{n^{2}} \sum_{k}^{n} a_{k}
$$

where $a_{1}, a_{2}, \ldots, a_{n}$ are any strictly positive real numbers and we make the notation: $S=a_{1}+a_{2}+\cdots+a_{n}$

Proposed by Vasile Mircea Popa - Romania

Solution by Marian Ursărescu - Romania
From Bergström inequality, we have:

$$
\begin{gathered}
\sum_{k=1}^{n} \frac{a_{k}^{2}}{a_{k}+(n+1)\left(S-a_{k}\right)} \geq \frac{\left(a_{1}+a_{2}+\cdots+a_{n}\right)^{2}}{\left(a_{1}+a_{2}+\cdots+a_{n}\right)+(n+1)\left(n S-a_{1}-a_{2}-\cdots-a_{n}\right)} \\
=\frac{\left(a_{1}+a_{2}+\cdots+a_{n}\right)^{2}}{S+(n+1)(n-1) S}=\frac{S^{2}}{S+\left(n^{2}-1\right) S}=\frac{S^{2}}{n^{2} S}=\frac{S}{n^{2}}=\frac{1}{n^{2}} \sum_{k=1}^{n} a_{k}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

 www.ssmrmh.roSP.220. Let $a, b, c>0$ such that: $a+b+c=3$. Find the minimum of the expression:

$$
P=\frac{a}{\sqrt[3]{4\left(b^{6}+c^{6}\right)}+7 b c}+\frac{b}{\sqrt[3]{4\left(c^{6}+a^{6}\right)}+7 c a}+\frac{c}{\sqrt[3]{4\left(a^{6}+b^{6}\right)}+7 a b}+\frac{(a+b)(b+c)(c+a)}{24}
$$

Proposed by Hoang Le Nhat Tung - Hanoi - Vietnam

Solution by Tran Hong-Dong Thap-Vietnam
With $a, b>0$ we have: $4\left(a^{6}+b^{6}\right) \leq\left(3 a^{2}-4 a b+3 b^{2}\right)^{3}$

$$
\leftrightarrow(a-b)^{4}\left(23 a^{2}-16 a b+23 b^{2}\right) \geq 0 \leftrightarrow(a-b)^{4}\left[23(a-b)^{2}+3 a b\right] \geq 0 \text { (true) }
$$

Equality if and only if $a=b$. Similarly: $4\left(a^{6}+c^{6}\right) \leq\left(3 a^{2}-4 a c+3 c^{2}\right)^{3}$

$$
\begin{aligned}
& 4\left(b^{6}+c^{6}\right) \leq\left(3 b^{2}-4 b c+3 c^{2}\right)^{3} \rightarrow \sqrt[3]{4\left(b^{6}+c^{6}\right)} \leq 3 b^{2}-4 b c+3 c^{2} \\
& \rightarrow \sqrt[3]{4\left(b^{6}+c^{6}\right)} \leq 3 b^{2}-4 b c+3 c^{2} \\
& \rightarrow \sqrt[3]{4\left(b^{6}+c^{6}\right)}+7 b c \leq 3 b^{2}-4 b c+3 c^{2}+7 b c=3\left(b^{2}+b c+c^{2}\right) \\
& \text { Similarly: } \sqrt[3]{4\left(a^{6}+c^{6}\right)}+7 a c \leq 3\left(a^{2}+a c+c^{2}\right) \\
& \sqrt[3]{4\left(a^{6}+b^{6}\right)}+7 a b \leq 3\left(a^{2}+a b+b^{2}\right) \\
& \rightarrow \Omega=\frac{a}{\sqrt[3]{4\left(b^{6}+c^{6}\right)}+7 b c}+\frac{b}{\sqrt[3]{4\left(a^{6}+c^{6}\right)}+7 a c}+\frac{c}{\sqrt[3]{4\left(a^{6}+b^{6}\right)}+7 a b} \\
& \geq \frac{a}{3\left(b^{2}+b c+c^{2}\right)}+\frac{b}{3\left(a^{2}+a c+c^{2}\right)}+\frac{c}{3\left(a^{2}+a b+b^{2}\right)} \\
& =\frac{1}{3}\left(\frac{a}{b^{2}+b c+c^{2}}+\frac{b}{a^{2}+a c+c^{2}}+\frac{c}{a^{2}+a b+b^{2}}\right) \\
& \text { We have: } \frac{a}{b^{2}+b c+c^{2}}+\frac{b}{a^{2}+a c+c^{2}}+\frac{c}{a^{2}+a b+b^{2}} \\
& =\frac{a^{2}}{a\left(b^{2}+b c+c^{2}\right)}+\frac{b^{2}}{b\left(a^{2}+a c+c^{2}\right)}+\frac{c^{2}}{c\left(a^{2}+a b+b^{2}\right)} \stackrel{\text { Schwarz }}{\geq} \\
& \geq \frac{(a+b+c)^{2}}{a b^{2}+b a^{2}+a c^{2}+c a^{2}+b c^{2}+c b^{2}+3 a b c} \\
& =\frac{9}{a b^{2}+b a^{2}+a c^{2}+c a^{2}+b c^{2}+c b^{2}+3 a b c} \\
& =\frac{9}{\left(a b^{2}+b a^{2}+a c^{2}+c a^{2}+b c^{2}+c b^{2}+2 a b c\right)+a b c}
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
=\frac{9}{(a+b)(b+c)(c+a)+a b c} \stackrel{(a+b)(b+c)(c+a) \geq 8 a b c}{\geq}
$$

$$
\geq \frac{9}{(a+b)(b+c)(c+a)+\frac{(a+b)(b+c)(c+a)}{8}}=\frac{8}{(a+b)(b+c)(c+a)}
$$

Then: $P \geq \frac{8}{3(a+b)(b+c)(c+a)}+\frac{(a+b)(b+c)(c+a)}{24} \stackrel{A M-G M}{\geq} 2 \sqrt{\frac{8}{3(a+b)(b+c)(c+a)} \cdot \frac{(a+b)(b+c)(c+a)}{24}}=\frac{2}{3}$

$$
\rightarrow P_{\min }=\frac{2}{3} \leftrightarrow a=b=c=1
$$

SP.221. Prove that in any $\triangle A B C$ the following inequality holds:

$$
\sqrt[3]{(\pi-A)^{m_{a}^{2}} \cdot(\pi-B)^{m_{b}^{2}} \cdot(\pi-C)^{m_{c}^{2}}} \geq \sqrt[4]{(\pi-A)^{a^{2}}(\pi-B)^{b^{2}}(\pi-C)^{c^{2}}}
$$

A, B, C the measures in radians of the angles.

Proposed by Marian Ursărescu - Romania

Solution by Adrian Popa - Romania

$$
\begin{gathered}
\sqrt[3]{(\pi-A)^{m_{a}^{2}} \cdot(\pi-B)^{m_{b}^{2}} \cdot(\pi-C)^{m_{c}^{2}}} \geq \sqrt[4]{(\pi-A)^{a^{2}}(\pi-B)^{b^{2}}(\pi-C)^{c^{2}}} \Leftrightarrow \\
\Leftrightarrow \frac{1}{3}\left[\ln (\pi-A)^{m_{a}^{2}}+\ln (\pi-B)^{m_{b}^{2}}+\ln (\pi-C)^{m_{c}^{2}}\right] \geq \frac{1}{4}\left[\ln (\pi-A)^{a^{2}}+\ln (\pi-B)^{b^{2}}+\ln (\pi-C)^{c^{2}}\right] \\
\text { We suppose: } A \geq B \geq C \Rightarrow\left\{\begin{array}{c}
a \geq b \geq c \Rightarrow a^{2} \geq b^{2} \geq c^{2} \\
m_{a} \leq m_{b} \leq m_{c} \Rightarrow m_{a}^{2} \leq m_{b}^{2} \leq m_{c}^{2}
\end{array}\right.
\end{gathered}
$$

$$
\Rightarrow B+C \leq A+C \leq A+B \Rightarrow \pi-A \leq \pi-B \leq \pi-C . \text { From Cebyshev we have: }
$$

$$
\begin{aligned}
& \frac{1}{3}\left[m_{a}^{2} \ln (\pi-A)+m_{b}^{2} \ln (\pi-B)+m_{c}^{2} \ln (\pi-C)\right] \geq \\
\geq & \frac{m_{a}^{2}+m_{b}^{2}+m_{c}^{2}}{3 \cdot 3}(\ln (\pi-A)+\ln (\pi-B)+\ln (\pi-C))= \\
= & \frac{\frac{3}{4}\left(a^{2}+b^{2}+c^{2}\right)}{3 \cdot 3}(\ln (\pi-A)+\ln (\pi-B)+\ln (\pi-C))= \\
= & \frac{a^{2}+b^{2}+c^{2}}{4 \cdot 3}(\ln (\pi-A)+\ln (\pi-B)+\ln (\pi-C)) \geq \\
& \text { Cebyshev } \frac{1}{\geq}\left(a^{2} \ln (\pi-A)+b^{2} \ln (\pi-B)+c^{2} \ln (\pi-C)\right)=
\end{aligned}
$$

$$
\begin{gathered}
\text { ROMANIAN MATHEMATICAL MAGAZINE } \\
=\frac{\mathbf{1}}{\mathbf{4}}\left(\ln (\boldsymbol{\pi}-\boldsymbol{A})^{a^{2}}(\boldsymbol{\pi}-\boldsymbol{B})^{\left.b^{2}(\boldsymbol{\pi}-\boldsymbol{C})^{c^{2}}\right)=\ln \left((\boldsymbol{\pi}-\boldsymbol{A})^{\boldsymbol{a}^{2}}(\boldsymbol{\pi}-\boldsymbol{B})^{b^{2}}(\boldsymbol{\pi}-\boldsymbol{C})^{c^{2}}\right)^{\frac{1}{4}} \Rightarrow}\right. \\
\Rightarrow \sqrt[3]{(\boldsymbol{\pi}-\boldsymbol{A})^{m_{a}^{2}}(\boldsymbol{\pi}-\boldsymbol{B})^{m_{b}^{2}}(\boldsymbol{\pi}-\boldsymbol{C})^{m_{c}^{2}}} \geq \sqrt[4]{(\boldsymbol{\pi}-\boldsymbol{A})^{a^{2}}(\boldsymbol{\pi}-\boldsymbol{B})^{b^{2}}(\boldsymbol{\pi}-\boldsymbol{C})^{c^{2}}}
\end{gathered}
$$

SP.222. Let $A B C$ be a triangle and $A^{\prime}, B^{\prime}, C^{\prime}$ the intersection points of the simedians with circumcircle. Prove that:

$$
\frac{6 r}{R^{2}} \leq \frac{1}{K A^{\prime}}+\frac{1}{K B^{\prime}}+\frac{1}{K C^{\prime}} \leq \frac{3 R}{4 r^{2}}
$$

Proposed by Marian Ursărescu - Romania

Solution by Tran Hong-Dong Thap-Vietnam

$$
\text { We have: } A N=\frac{b c \sqrt{2\left(b^{2}+c^{2}\right)-a^{2}}}{\left(b^{2}+c^{2}\right)}
$$

By Van Aubel's theorem we have: $\frac{K A}{K N}=\frac{E A}{E B}+\frac{D A}{D C}=\frac{b^{2}}{a^{2}}+\frac{c^{2}}{a^{2}}=\frac{b^{2}+c^{2}}{a^{2}}$

$$
\rightarrow K A=\frac{b^{2}+c^{2}}{a^{2}+b^{2}+c^{2}} \cdot A N=\frac{b c \sqrt{2\left(b^{2}+c^{2}\right)-a^{2}}}{a^{2}+b^{2}+c^{2}}
$$

Now, we compute $A A^{\prime}:\left\{\begin{array}{c}N B \\ \frac{N C}{N C}=\frac{c^{2}}{b^{2}} \\ N B+N C=a\end{array} \rightarrow\left\{\begin{array}{l}N B=\frac{a c^{2}}{b^{2}+c^{2}} \\ N C=\frac{a b^{2}}{b^{2}+c^{2}}\end{array}\right.\right.$
If $A N, A M$ are symedian and median of triangle, respectively, then $\widehat{B A N}=\widehat{C A M}$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

More, $\widehat{B A^{\prime} A}=\widehat{B A C} \rightarrow \triangle A B A^{\prime} \sim \triangle A M C$

$$
\rightarrow \frac{c}{A M}=\frac{A A^{\prime}}{b} \rightarrow A A^{\prime}=\frac{b c}{A M}=\frac{2 b c}{\sqrt{2\left(b^{2}+c^{2}\right)-a^{2}}}
$$

$$
\rightarrow K A^{\prime}=A A^{\prime}-A K=\frac{2 b c}{\sqrt{2\left(b^{2}+c^{2}\right)-a^{2}}}-\frac{b c \sqrt{2\left(b^{2}+c^{2}\right)-a^{2}}}{a^{2}+b^{2}+c^{2}}
$$

$$
=\frac{3 b c a^{2}}{\left(a^{2}+b^{2}+c^{2}\right)\left(\sqrt{2\left(b^{2}+c^{2}\right)-a^{2}}\right)} \text {. Similarly: } \boldsymbol{K} B^{\prime}=\frac{3 a c b^{2}}{\left(a^{2}+b^{2}+c^{2}\right)\left(\sqrt{2\left(a^{2}+c^{2}\right)-b^{2}}\right)}
$$

$$
\begin{gathered}
\text { And: } K C^{\prime}=\frac{3 a b c^{2}}{\left(a^{2}+b^{2}+c^{2}\right)\left(\sqrt{2\left(a^{2}+b^{2}\right)-c^{2}}\right)} \rightarrow \Omega=\frac{1}{K A^{\prime}}+\frac{1}{K B^{\prime}}+\frac{1}{K C^{\prime}} \\
=\frac{\left(a^{2}+b^{2}+c^{2}\right)}{3 a b c} \cdot\left(\frac{\sqrt{2\left(b^{2}+c^{2}\right)-a^{2}}}{a}+\frac{\sqrt{2\left(a^{2}+c^{2}\right)-b^{2}}}{b}+\frac{\sqrt{2\left(a^{2}+b^{2}\right)-c^{2}}}{c}\right)= \\
=\frac{2\left(a^{2}+b^{2}+c^{2}\right)}{3 a b c} \cdot\left(\frac{A M}{a}+\frac{B M}{b}+\frac{c M}{c}\right) . \text { We have: } \\
\frac{A M}{a}+\frac{B M}{b}+\frac{C M}{c} \geq \frac{3 \sqrt{3}}{2} ; a^{2}+b^{2}+c^{2} \geq 4 \sqrt{3} S=4 \sqrt{3} \cdot \frac{a b c}{4 R}=\frac{a b c \sqrt{3}}{R} \\
\rightarrow \frac{2\left(a^{2}+b^{2}+c^{2}\right)}{3 a b c} \cdot\left(\frac{A M}{a}+\frac{B M}{b}+\frac{C M}{c}\right) \geq 2 \cdot \frac{3 \sqrt{3}}{2} \cdot \frac{a b c \sqrt{3}}{3 R \cdot a b c}=\frac{3}{R}
\end{gathered}
$$

We must show that: $\frac{3}{R} \geq \frac{6 r}{R^{2}} \leftrightarrow R \geq 2 R$ (Euler) $\rightarrow \Omega=\frac{1}{K A^{\prime}}+\frac{1}{K B^{\prime}}+\frac{1}{K C^{\prime}}=\frac{6 r}{R^{2}}$
Lastly, we show that: $\Omega \leq \frac{3 R}{4 r^{2}} \leftrightarrow \frac{2\left(a^{2}+b^{2}+c^{2}\right)}{3 a b c} \cdot\left(\frac{A M}{a}+\frac{B M}{b}+\frac{C M}{c}\right) \leq \frac{3 R}{4 r^{2}}$

$$
\left(a^{2}+b^{2}+c^{2}\right) \leq 9 R^{2} ; a b c=4 R r s \rightarrow \frac{2\left(a^{2}+b^{2}+c^{2}\right)}{3 a b c} \leq \frac{2 \cdot 3 R}{4 r s}
$$

We must show that: $\frac{A M}{a}+\frac{B M}{b}+\frac{c M}{c} \leq \frac{s}{2 r} \leftrightarrow b c A M+a c B M+a b C M \leq \frac{4 R r s}{2 r}=2 R s^{2}$

$$
b c A M+a c B M+a b C M \leq \sqrt{(b c)^{2}+(a c)^{2}+(a b)^{2}} \cdot \sqrt{A M^{2}+B M^{2}+C M^{2}}
$$

Because: $A M^{2}+B M^{2}+C M^{2}=\frac{3}{4}\left(a^{2}+b^{2}+c^{2}\right) \leq \frac{3}{4} \cdot 9 R^{2}$

$$
(b c)^{2}+(a c)^{2}+(a b)^{2} \leq \frac{16}{27} s^{4} . \text { Hence: }
$$

$b c A M+a c B M+a b C M \leq \sqrt{(b c)^{2}+(a c)^{2}+(a b)^{2}} \cdot \sqrt{A M^{2}+B M^{2}+C M^{2}} \leq \frac{4 R r s}{2 r}=2 R s^{2}$

Proved.

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

SP.223. In $\triangle A B C$ the following relationship holds:

$$
\left(a\left(\frac{b}{a}\right)^{\frac{h_{c}}{w_{c}}}+b\left(\frac{a}{b}\right)^{\frac{h_{c}}{w_{c}}}\right)\left(b\left(\frac{c}{b}\right)^{\frac{h_{a}}{w_{a}}}+c\left(\frac{b}{c}\right)^{\frac{h_{a}}{w_{a}}}\right)\left(c\left(\frac{a}{c}\right)^{\frac{h_{b}}{w_{b}}}+a\left(\frac{c}{a}\right)^{\frac{h_{b}}{w_{b}}}\right) \geq 8 a b c
$$

Proposed by Daniel Sitaru - Romania

Solution by Tran Hong-Dong Thap-Vietnam

Because: $0<\frac{h_{a}}{w_{a}} ; \frac{h_{b}}{w_{b}} ; \frac{h_{c}}{w_{c}} \leq 1$. Using AM-GM we have:

$$
\begin{gathered}
a\left(\frac{b}{a}\right)^{\frac{h_{c}}{w_{c}}}+b\left(\frac{a}{b}\right)^{\frac{h_{c}}{w_{c}}} \geq 2 \sqrt{a\left(\frac{b}{a}\right)^{\frac{h_{c}}{w_{c}}} \cdot b\left(\frac{a}{b}\right)^{\frac{h_{c}}{w_{c}}}}=2 \sqrt{a b\left(\frac{b}{a} \cdot \frac{a}{b}\right)^{\frac{h_{c}}{w_{c}}}}=2 \sqrt{a b} \\
b\left(\frac{c}{b}\right)^{\frac{h_{a}}{w_{a}}}+c\left(\frac{b}{c}\right)^{\frac{h_{a}}{w_{a}}} \geq 2 \sqrt{b\left(\frac{c}{b}\right)^{\frac{h_{a}}{w_{a}}} \cdot c\left(\frac{b}{c}\right)^{\frac{h_{a}}{w_{a}}}}=2 \sqrt{b c\left(\frac{c}{b} \cdot \frac{b}{c}\right)^{\frac{h_{a}}{w_{a}}}}=2 \sqrt{b c} \\
c\left(\frac{a}{c}\right)^{\frac{h_{b}}{w_{b}}}+a\left(\frac{c}{a}\right)^{\frac{h_{b}}{w_{b}}} \geq 2 \sqrt{c\left(\frac{a}{c}\right)^{\frac{h_{b}}{w_{b}}} \cdot a\left(\frac{c}{a}\right)^{\frac{h_{b}}{w_{b}}}}=2 \sqrt{c a\left(\frac{a}{c} \cdot \frac{c}{a}\right)^{\frac{h_{b}}{w_{b}}}}=2 \sqrt{c a} \\
\rightarrow L H S \geq 2 \sqrt{a b} \cdot 2 \sqrt{b c} \cdot 2 \sqrt{c a}=8 a b c
\end{gathered}
$$

SP.224. In $\triangle A B C$ the following relationship holds:

$$
\frac{\left(s^{2}+r_{a} r_{b}\right)\left(s^{2}+r_{b} r_{c}\right)\left(s^{2}+r_{c} r_{a}\right)}{\left(s^{2}-r_{a} r_{b}\right)\left(s^{2}-r_{b} r_{c}\right)\left(s^{2}-r_{c} r_{a}\right)} \geq 8
$$

Proposed by Daniel Sitaru - Romania
Solution 1 by Marian Ursărescu-Romania
We have: $r_{a} \boldsymbol{r}_{b} \boldsymbol{r}_{c}=s^{2} r \Rightarrow r_{b} \boldsymbol{r}_{c}=\frac{s^{2} r}{r_{a}} \Rightarrow \frac{s^{2}+r_{b} r_{c}}{s^{2}-r_{b} r_{c}}=\frac{s^{2}+\frac{s^{2} r}{r_{a}}}{s^{2}-\frac{s^{2} r}{r_{a}}}=\frac{1+\frac{r}{r_{a}}}{1-\frac{r}{r_{a}}} \Rightarrow$ we must show:

$$
\frac{\left(1+\frac{r}{r_{a}}\right)\left(1+\frac{r}{r_{b}}\right)\left(1+\frac{r}{r_{c}}\right)}{\left(1-\frac{r}{r_{a}}\right)\left(1-\frac{r}{r_{b}}\right)\left(1-\frac{r}{r_{c}}\right)} \geq 8 \text { (1) }
$$

$$
\begin{equation*}
\text { Let } \frac{r}{r_{a}}=x, \frac{r}{r_{b}}=y, \frac{r}{r_{c}}=z \text {, because } \frac{1}{r_{a}}+\frac{1}{r_{b}}+\frac{1}{r_{c}}=\frac{1}{r} \Rightarrow x+y+z=1 \tag{2}
\end{equation*}
$$

ROMANIAN MATHEMATICAL MAGAZINE WWW.ssmrmh.ro

From (1)+(2) we must show: $\frac{(1+x)(1+y)(1+z)}{(1-x)(1-y)(1-z)} \geq 8$, with $x+y+z=1 \Leftrightarrow$

$$
\begin{equation*}
\frac{(x+y+x+z)(x+y+y+z)(y+z+x+z)}{(x+y)(y+z)(x+z)} \geq \mathbf{8} \tag{3}
\end{equation*}
$$

Let $x+y=m, y+z=n$ and $z+x=p$ (4)
From (3)+ (4) we must show:

$$
\left.\begin{array}{rl}
\begin{array}{l}
(m+n)(n+p)(p+m) \\
m n p
\end{array} & \geq 8 \Leftrightarrow(m+n)(n+p)(p+m) \geq 8 m n p \tag{5}\\
m+n & \geq 2 \sqrt{m n} \\
\text { But } n+p & \geq 2 \sqrt{n p} \\
p+m & \geq 8 \sqrt{p m}
\end{array}\right\} \Rightarrow(m+n)(n+p)(p+m) \geq 8 m n p
$$

Solution 2 by Soumava Chakraborty-Kolkata-India

$$
s^{2}+r_{a} r_{b}=s^{2}+\frac{s(s-a)(s-b)(s-c)}{(s-a)(s-b)}=s(s+s-c) \stackrel{(1)}{=} s(a+b)
$$

Similarly, $s^{2}+r_{b} r_{c} \stackrel{(2)}{=} s(b+c)$ and $s^{2}+r_{c} r_{a} \stackrel{(3)}{=} s(c+a)$

$$
\begin{aligned}
& \text { Also, } s^{2}-r_{a} r_{b}=s^{2}-s(s-c) \stackrel{(4)}{=} s c, \\
& s^{2}-r_{b} r_{c} \stackrel{(5)}{=} s a \text { and } s^{2}-r_{c} r_{a} \stackrel{(6)}{=} s b
\end{aligned}
$$

(1), (2), (3), (4), (5), (6) \Rightarrow given inequality $\Leftrightarrow \frac{s^{3} \Pi(a+b)}{s^{3} a b c} \geq 8 \Leftrightarrow \Pi(a+b) \geq 8 a b c$ \rightarrow true (Cesaro) (Proved)

SP.225. Let a, b, c, d be positive real numbers with $a b c d=1$. Prove that:

$$
\sum_{c y c} \frac{1}{a(b+c+d)} \leq \frac{1}{9}\left(\sum_{c y c} \frac{1}{a^{2}}+2 \sum_{c y c} a^{2}\right)
$$

Proposed by George Apostolopoulos - Messolonghi - Greece

Solution 1 by Ivan M astev-M aribor-Slovenia

$$
\begin{gathered}
a, b, c, d>0 \text { and } a b c d=1 \\
\sum_{c y c} \frac{1}{a(b+c+d)} \leq \frac{1}{9}\left(\sum_{c y c} \frac{1}{a^{2}}+2 \sum_{c y c} a^{2}\right)
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

$$
\begin{gathered}
\begin{array}{c}
\sum_{c y c} \frac{9}{a(b+c+d)} \stackrel{H M-A M}{\leq} \sum_{c y c} \frac{1}{a}\left(\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)=2\left(\frac{1}{a b}+\frac{1}{a c}+\frac{1}{a d}+\frac{1}{b c}+\frac{1}{b d}+\frac{1}{c d}\right)= \\
=\left(\frac{1}{a b}+\frac{1}{b c}+\frac{1}{c d}+\frac{1}{a d}\right)+\left(\frac{1}{a b}+\frac{2}{a c}+\frac{1}{a d}+\frac{1}{b c}+\frac{2}{b d}+\frac{1}{c d}\right) \leq \\
\leq\left(\sum_{c y c} \frac{1}{a^{2}}\right)+2\left(\frac{1}{a c}+\frac{1}{b d}\right)+\left(\frac{1}{a b}+\frac{1}{b c}+\frac{1}{c d}+\frac{1}{a d}\right)= \\
=\left(\sum_{c y c} \frac{1}{a^{2}}\right)+2(b d+a c)+(c d+a d+a b+b c) \leq \\
\leq\left(\sum_{c y c} \frac{1}{a^{2}}\right)+\left(a^{2}+b^{2}+c^{2}+d^{2}\right)+\frac{\left(c^{2}+d^{2}\right)+\left(a^{2}+d^{2}\right)+\left(a^{2}+b^{2}\right)+\left(b^{2}+c^{2}\right)}{2}= \\
=\sum_{c y c} \frac{1}{a^{2}}+2 \sum_{c y c} a^{2}
\end{array},
\end{gathered}
$$

Solution 2 by Marian Ursărescu-Romania

$$
\begin{gather*}
\frac{3}{b+c+d}=\frac{3}{\frac{1}{a c d}+\frac{1}{a b d}+\frac{1}{a b c}} \leq \frac{a c d+a b d+a b c}{3} \Rightarrow \\
\Rightarrow \tag{1}\\
\frac{3}{b+c+d} \leq \frac{a(b c+b d+c d)}{3} \Rightarrow \frac{1}{a(b+c+d)} \leq \frac{b c+b d+c d}{9} \Rightarrow
\end{gather*}
$$

We must show: $2(a b+a c+a d+b c+b d+c d) \leq \sum \frac{1}{a^{2}}+2 \sum a^{2}$
Now, using the inequality:

$$
\begin{equation*}
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2} \geq \frac{2}{3}\left(x_{1} x_{2}+x_{1} x_{3}+x_{1} x_{4}+x_{2} x_{3}+x_{2} x_{4}+x_{3} x_{4}\right) \tag{2}
\end{equation*}
$$

From (2) $\Rightarrow 2 \sum a^{2} \geq \frac{4}{3}(a b+a c+a d+b c+b d+c d)$ (3)
$\sum \frac{1}{a^{2}} \geq \frac{2}{3}\left(\frac{1}{a b}+\frac{1}{a c}+\frac{1}{a d}+\frac{1}{b c}+\frac{1}{b d}+\frac{1}{c d}\right)=\frac{2}{3}(c d+b d+b c+a d+a c+a b)$
From (3) $+(4) \Rightarrow 2 \sum a^{2}+\sum \frac{1}{a^{2}} \geq \frac{4}{3} \sum a b+\frac{2}{3} \sum a b=2 \sum a b \Rightarrow(1)$ it is true.

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
UP.211. Calculate the integral:

$$
\int_{0}^{1} \frac{\sqrt{x} \ln x}{x^{2}+1} d x
$$

Proposed by Vasile M ircea Popa - Romania

Solution 1 by M okhtar Khassani-M ostaganem-Algerie

$$
\begin{gathered}
\int_{0}^{1} \frac{\sqrt{x} \log x}{1+x^{2}} d x=\sum_{n=0}^{+\infty}(-1)^{n} \int_{0}^{1} x^{2 n+\frac{1}{2}} \log x d x=\sum_{n=0}^{+\infty} \frac{(-1)^{n+1}}{\left(2 n+\frac{3}{2}\right)^{2}}= \\
\quad=\sum_{n=0}^{+\infty}\left(\frac{1}{\left(4 n+\frac{7}{2}\right)^{2}}-\frac{1}{\left(4 n+\frac{3}{2}\right)^{2}}\right)=\frac{\Psi_{1}\left(\frac{7}{8}\right)-\Psi_{1}\left(\frac{3}{8}\right)}{16}
\end{gathered}
$$

Solution 2 by Samir HajAli-Damascus-Syria

$$
\begin{gathered}
I=\int_{0}^{1} \sqrt{x} \ln x \sum_{n=0}^{\infty}\left(-x^{2}\right)^{n} d x=\sum_{n=0}^{\infty}(-1)^{n} \cdot \int_{0}^{1} \ln x \cdot x^{2 n+\frac{1}{2}} d x \\
=\left.\int_{0}^{1} \frac{\partial}{\partial a} x^{a} d x\right|_{a=2 n+\frac{1}{2}}=\left.\frac{\partial}{\partial a} \int_{0}^{1} x^{a} d x\right|_{a=2 n+\frac{1}{2}}=\left.\frac{\partial}{\partial a}\left(\frac{1}{a+1}\right)\right|_{a=2 n+\frac{1}{2}}=\frac{-1}{\left(2 n+\frac{3}{2}\right)^{2}} \\
\text { So: } I=\sum_{n=0}^{\infty}(-1)^{n+1} \cdot \frac{1}{\left(2 n+\frac{3}{2}\right)^{2}} x^{2 n+\frac{1}{2}} \ln x d x \\
=-\frac{1}{4} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{\left(n+\frac{3}{4}\right)^{2}}=-\frac{1}{4}\left[\sum_{n=0}^{\infty} \frac{1}{\left(2 n+\frac{3}{4}\right)^{2}}-\sum_{n=0}^{\infty} \frac{1}{\left(2 n+\frac{7}{4}\right)^{2}}\right] \\
=-\frac{1}{16}\left[\sum_{n=0}^{\infty} \frac{1}{\left(n+\frac{3}{8}\right)^{2}}-\sum_{n=0}^{\infty} \frac{1}{\left(n+\frac{7}{8}\right)^{2}}\right]=-\frac{1}{16}\left(\zeta\left(2, \frac{3}{8}\right)-\zeta\left(2, \frac{7}{8}\right)\right) \approx-0,3847
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE wWW.ssmrmh.ro

Solution 3 by Abdul Hafeez Ayinde-Nigeria

$$
\begin{gathered}
\Omega=\int_{0}^{1} \frac{\sqrt{x} \ln x}{x^{2}+1} d x \\
\Omega=\sum_{k=0}^{\infty}(-1)^{k} \int_{0}^{1} x^{2 k+\frac{1}{2}} \ln x d x \\
\Omega=\left.\sum_{k=0}^{\infty}(-1)^{k} \cdot \frac{\partial}{\partial b}\right|_{b=2 k+\frac{1}{2}} \int_{0}^{1} x^{b} d x \\
\Omega=\left.\sum_{k=0}^{\infty}(-1)^{k} \cdot \frac{\partial}{\partial b}\right|_{b=2 k+\frac{1}{2}}\left(\frac{1}{b+1}\right) \\
\Omega=-\left.\sum_{k=0}^{\infty}(-1)^{k}\right|_{b=2 k+\frac{1}{2}} \frac{1}{(b+1)^{2}} \\
\Omega=-\sum_{k=0}^{\infty}(-1)^{k} \frac{1}{\left(2 k+\frac{3}{2}\right)^{2}} \\
\Omega=-\sum_{k=0}^{\infty} \frac{(-1)^{k}}{\left(2 k+\frac{3}{2}\right)^{2}} \\
\Omega=-\frac{1}{4} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{\left(k+\frac{3}{4}\right)^{2}} \\
\Omega=-\frac{1}{4}\left(\frac{1}{4}\left(\psi_{1}\left(\frac{3}{8}\right)-\psi_{1}\left(\frac{7}{8}\right)\right)\right) \\
\Omega=\frac{1}{16}\left(\psi_{1}\left(\frac{7}{8}\right)-\psi_{1}\left(\frac{3}{8}\right)\right)
\end{gathered}
$$

Solution 4 by Nelson Javier Villaherrera Lopez-El Salvador

$$
\int_{0}^{1} \frac{\sqrt{x} \ln (x)}{x^{2}+1} d x=-\int_{0}^{1} \frac{-\ln (x) \sqrt{x}}{1+x^{2}} d x=\int_{\infty}^{0} \frac{y e^{-\frac{y}{2}}}{1+e^{-2 y}} e^{-y} d y=-\int_{0}^{\infty} y e^{-\frac{y}{2}} \frac{e^{-y}}{1+e^{-2 y}} d y=
$$

$$
\begin{gathered}
\text { ROMANIAN MATHEMATICAL MAGAZINE } \\
=-\int_{0}^{\infty} y e^{-\frac{y}{2}} \sum_{k=1}^{\infty}(-1)^{k-1} e^{-(2 k-1) y} d y=-\sum_{k=1}^{\infty}(-1)^{k-1} \int_{0}^{\infty} y e^{-\left(2 k-\frac{1}{2}\right) y} d y \\
=-\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{\left(2 k-\frac{1}{2}\right)^{2}} \int_{0}^{\infty}\left(2 k-\frac{1}{2}\right) y e^{-\left(2 k-\frac{1}{2}\right) y}\left(2 k-\frac{1}{2}\right) d y=-4 \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{(4 k-1)^{2}} \int_{0}^{\infty} z e^{-z} d z= \\
=-4 \sum_{k=1}^{\infty} \frac{(-1)^{k-1} \Gamma(1+1)}{(4 k-1)^{2}}=-4 \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{(4 k-1)^{2}} \\
=-\frac{1}{16}\left[\psi_{1}\left(\frac{3}{8}\right)-\psi_{1}\left(\frac{7}{8}\right)\right], \psi_{n}(x)=\{\ln [\Gamma[x]]\}^{n+1}
\end{gathered}
$$

UP.212. Calculate the limit of the sequence $\left(a_{n}\right)_{n \geq 1}$ defined by the following relationship:

$$
a=\frac{1}{n} \int_{1}^{2} \ln \left(1+e^{n \cdot \arctan x}\right) d x
$$

Proposed by Vasile Mircea Popa - Romania

Solution by Remus Florin Stanca - Romania

$$
\begin{gather*}
\lim _{n \rightarrow \infty} a_{n}= \\
\lim _{n \rightarrow \infty}\left(\frac{1}{n} \int_{1}^{2} \ln \left(1+e^{n \arctan x}\right) d x-\frac{1}{n} \int_{1}^{2} \ln \left(e^{n \arctan x}\right) d x\right)+\int_{1}^{2} \arctan x d x \tag{1}\\
\lim _{n \rightarrow \infty}\left(\frac{1}{n} \int_{1}^{2} \ln \left(1+e^{n \arctan x}\right) d x-\frac{1}{n} \int_{1}^{2} \ln \left(e^{n \arctan x}\right) d x\right)=\lim _{n \rightarrow \infty} \frac{\int_{1}^{2} \ln \left(e^{-n \arctan x}+1\right) d x}{n} \\
=\lim _{n \rightarrow \infty} \int_{1}^{2} \frac{\ln \left(e^{-n \arctan x}+1\right)}{n} \cdot x^{\prime} d x= \\
=\lim _{n \rightarrow \infty}\left(\frac{2 \ln \left(e^{-n \arctan 2}+1\right)}{n}-\frac{\ln \left(e^{-n \frac{\pi}{4}+1}\right)}{n}+\int_{1}^{2} \frac{1}{n} \cdot \frac{x}{e^{-n \arctan x}+1} \cdot n e^{-n \arctan x} \cdot \frac{1}{x^{2}+1} d x\right)= \\
=\lim _{n \rightarrow \infty} \int_{1}^{2} \frac{x}{x^{2}+1} \cdot \frac{e^{-n \arctan x}}{e^{-n \arctan x+1}} d x(2) \tag{2}\\
\frac{1}{x^{2}+1} \leq \frac{1}{2} \text { and } e^{-n \arctan x}+1>1 \Rightarrow \frac{x}{\left(x^{2}+1\right)\left(e^{-n \arctan x+1)}<\frac{x}{2} \Rightarrow \frac{x e^{-n \arctan x}}{\left(x^{2}+1\right)\left(e^{-n \arctan x+1)}\right.}<\frac{\pi}{2} \cdot e^{-n \frac{\pi}{4}} \Rightarrow\right.}
\end{gather*}
$$

$$
\begin{gathered}
\text { ROMANIAN MATHEMATICAL MAGAZINE } \\
\Rightarrow \int_{1}^{2} \frac{x e^{-n \arctan x}}{\left(x^{2}+1\right)\left(e^{-n \arctan x}+1\right)} d x<\int_{1}^{2} \frac{x}{2} e^{-\frac{n \pi}{4}} d x=e^{-\frac{n \pi}{4}}-e^{-\frac{n \pi}{4}} \cdot \frac{1}{4} \Rightarrow \\
\Rightarrow \lim _{n \rightarrow \infty} \int_{1}^{2} \frac{x e^{-n \arctan x}}{\left(x^{2}+1\right)\left(e^{-n \arctan x+1)}\right.} d x=0 \text { because } \lim _{n \rightarrow \infty} e^{-\frac{n \pi}{4}}-\frac{e^{-\frac{n \pi}{4}}}{4}-0 \text { and } \\
\int_{1}^{2} \frac{x e^{-n \arctan x}}{\left(x^{2}+1\right)\left(e^{-n \arctan x}+1\right)}>0 \stackrel{(1) ;(2)}{\Rightarrow} \lim _{n \rightarrow \infty} a_{n}=\int_{1}^{2} \arctan x d x=\int_{1}^{2} \arctan x \cdot x^{\prime}= \\
=2 \arctan 2-\frac{\pi}{4}-\frac{1}{2} \int_{1}^{2} \frac{2 x}{x^{2}+1} d x \\
\Rightarrow \lim _{n \rightarrow \infty} a_{n}=2 \arctan 2-\frac{\pi}{4}-\frac{1}{2}(\ln 5-\ln 2)=2 \arctan 2-\frac{\pi}{4}+\ln \left(\sqrt{\frac{2}{5}}\right) \Rightarrow
\end{gathered}
$$

UP.213. Let $A \in M_{3}(\mathbb{R})$ invertible such that: $\operatorname{Tr} A=\operatorname{Tr} A^{-1}=1$. Prove that:

$$
\operatorname{det}\left(A^{2}+A+I_{3}\right) \geq 3 \operatorname{det} A
$$

Proposed by Marian Ursărescu - Romania

Solution by Ravi Prakash-New Delhi-India

$$
\begin{gathered}
\operatorname{As} A^{-1}, \operatorname{exists}, \operatorname{det}(A) \neq 0 . \operatorname{det}\left(A^{2}+A+I_{3}\right)=\operatorname{det}\left(\left(A-\omega I_{3}\right)\left(A-\omega^{2} I_{3}\right)\right) \\
=\operatorname{det}\left(\left(A-\omega I_{3}\right)\right) \overline{\left(A-\omega I_{3}\right)}=\operatorname{det}\left(A-\omega I_{3}\right) \overline{\operatorname{det}\left(A-\omega I_{3}\right)}=\left|\operatorname{det}\left(A-\omega I_{3}\right)\right|^{2} \geq 0
\end{gathered}
$$

\therefore If $\operatorname{det}(A)<0$, then there is nothing to show. We assume $\operatorname{det}(A)>0$. Let $\operatorname{det}(A)=\alpha^{2}$, where $\alpha>0$. We have $A^{*}=\operatorname{det}(A) A^{-1}=\alpha^{2} A^{-1} \Rightarrow \operatorname{Tr}\left(A^{*}\right)=$
$\alpha^{2} \operatorname{Tr}\left(A^{-1}\right)=\alpha^{2}$. Characteristic polynomial of A is: $P(t)=\operatorname{det}\left(t I_{3}-A\right)$
$=t^{3}-\operatorname{Tr}(A) t^{2}+\operatorname{Tr}\left(A^{*}\right) t-\operatorname{det}(A)=\left(t^{3}+\alpha^{2} t\right)-\left(t^{2}+\alpha\right)=\left(t^{2}+\alpha^{2}\right)(t-1)$
Now, from (1): $\operatorname{det}\left(A^{2}+A+I_{3}\right)=\left|\operatorname{det}\left(A-\omega I_{3}\right)\right|^{2}=\left|\operatorname{det}\left(\omega I_{3}-A\right)\right|^{2}$

$$
=|(\omega-\mathbf{1})|\left|\omega^{2}+\alpha^{2}\right|
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
But $|\omega-1|=\left|-\frac{3}{2}+\frac{\sqrt{3}}{2} i\right|=3$ and $\left|\omega^{2}+\alpha^{2}\right|=\left(-\frac{1}{2}+\alpha\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}=\alpha^{4}-\alpha^{2}+1 \geq \alpha^{2}$ Thus, $\operatorname{det}\left(A^{2}+A+I_{3}\right) \geq 3 \alpha^{2}=3 \operatorname{det}(A)$

UP.214. Find:

$$
\Omega=\lim _{n \rightarrow \infty}\left(\frac{1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{2^{n}-1}}{e^{n}}\right)
$$

Proposed by Daniel Sitaru - Romania
Solution 1 by Ravi Prakash-New Delhi-India

$$
\begin{gathered}
a(n)=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{2^{n}-1} \\
=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)+\left(\frac{1}{8}+\cdots+\frac{1}{15}\right)+\cdots+\left(\frac{1}{2^{n-1}}+\cdots+\frac{1}{2^{n}-1}\right) \\
<1+2\left(\frac{1}{2}\right)+4\left(\frac{1}{4}\right)+8\left(\frac{1}{8}\right)+\cdots+2^{n-1}\left(\frac{1}{2^{n-1}}\right)=n+1 \\
\text { Now, } 0<a(n)<n+1 \Rightarrow 0<\frac{a(n)}{e^{n}}<\frac{n+1}{e^{n}}<\frac{2 e}{n+1}\left[e^{n+1}>\frac{(n+1)^{2}}{2}\right] \\
\text { As } \lim _{n \rightarrow \infty} \frac{2 e}{n+1}=0, \text { we get } \lim _{n \rightarrow \infty} \frac{a(n)}{e^{n}}=0
\end{gathered}
$$

Solution 2 by Remus Florin Stanca-Romania

$$
\begin{aligned}
\Omega & =\lim _{n \rightarrow \infty} \frac{1+\frac{1}{2}+\cdots+\frac{1}{2^{n-1}}-\ln \left(2^{n}-1\right)+\ln \left(2^{n}-1\right)}{e^{n}}=\lim _{n \rightarrow \infty} \frac{\gamma}{e^{n}}+\lim _{n \rightarrow \infty} \frac{\ln \left(2^{n}-1\right)}{e^{n}}= \\
& =\lim _{n \rightarrow \infty} \frac{\ln \left(2^{n}-1\right)}{e^{n}} \stackrel{\text { Stolz-Cesaro }}{=} \lim _{n \rightarrow \infty} \frac{\ln \frac{2^{n+1}-1}{2^{n}-1}}{e^{n+1}-e^{n}}=\lim _{n \rightarrow \infty} \frac{\ln 2}{e^{n}(e-1)}=0 \Rightarrow \Omega=0
\end{aligned}
$$

Solution 3 by Naren Bhandari-Bajura-Nepal

$$
\Omega=\lim _{n \rightarrow \infty} \frac{1}{e^{n}}\left(\sum_{k=1}^{n} \frac{1}{2^{k}-1}\right)=\lim _{n \rightarrow \infty} \frac{1}{e^{n}}\left(\sum_{k=1}^{n} \frac{1}{2^{k}-1}\right) \leq \lim _{n \rightarrow \infty} \frac{1}{e^{n}}\left(\sum_{k=0}^{n} \frac{1}{e^{n}}\right)
$$

Here $\sum_{k=1}^{n} \frac{1}{2^{k}}$ is a convergent series this $\sum_{k=1}^{n} \frac{1}{2^{k}-1}$ is also convergent series

$$
\begin{aligned}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
& \boldsymbol{\Omega}=\lim _{n \rightarrow \infty} \frac{\mathbf{1}}{\boldsymbol{e}^{n}}\left(\sum_{k=1}^{n} \frac{\mathbf{1}}{\mathbf{2}^{k}-\mathbf{1}}\right) \leq \lim _{n \rightarrow \infty} \frac{\mathbf{1}}{\boldsymbol{e}^{n}}\left(\sum_{k=0}^{n} \frac{\mathbf{1}}{2^{k}}\right)=\lim _{n \rightarrow \infty} \frac{\mathbf{1}}{\boldsymbol{e}^{n}}(\mathbf{2})=\mathbf{2} \cdot \mathbf{0}=\mathbf{0}
\end{aligned}
$$

UP.215. If $\mathbf{0}<a \leq b<\frac{\pi}{2}$ then:

$$
\int_{a}^{b} \int_{a}^{b}\left(\frac{\cot x+\cot y+\tan (x+y)}{\cot x \cot y \tan (x+y)}\right) d x d y \leq \frac{\pi(b-a)}{2}
$$

Proposed by Daniel Sitaru - Romania
Solution 1 by Ravi Prakash-New Delhi-India

$$
\begin{gathered}
\mathrm{NUM}=\cot x+\cot y+\tan (x+y)==\frac{\cos x}{\sin x}+\frac{\cos y}{\sin y}+\tan (x+y) \\
=\frac{\sin (x+y)}{\sin x \sin y}+\frac{\sin (x+y)}{\cos (x+y)}=\frac{\sin (x+y)}{\sin x \sin y \cos (x+y)}[\cos (x+y)+\sin x \sin y] \\
=\frac{\sin (x+y) \cos x \cos y}{\sin x \sin y \cos (x+y)}=\tan (x+y) \cot x \cot y=\text { DEN } \\
\therefore \Omega=\int_{a}^{b} \int_{a}^{b} 1 d x d y=(b-a)^{2}<\frac{\pi}{2}(b-a) \\
{\left[\because 0<a \leq b<\frac{\pi}{2} \Rightarrow b-a<\frac{\pi}{2}\right]}
\end{gathered}
$$

Solution 2 by Andrew Okukura-Romania

$$
\begin{gathered}
\frac{\cot x+\cot y+\tan (x+y)}{\cot x \cot y \tan (x+y)}=\frac{\cot x+\cot y+\frac{\tan x+\tan y}{1-\tan x \tan y}}{\cot x \cot y \frac{\tan x+\tan y}{1-\tan x \tan y}}= \\
=\frac{\cot x+\cot y+\frac{\tan x+\tan y}{1-\tan x \tan y}}{\frac{\cot x+\cot y}{1-\tan x \tan y}}=1-\tan x \tan y+\frac{\tan x+\tan y}{\cot x+\cot y}= \\
=1-\tan x \tan y+\tan x \tan y=1 . \text { By noting the left side, I, we have: } \\
I=\int_{a}^{b}\left(\int_{a}^{b} d x\right) d y=\int_{a}^{b}(b-a) d y=(b-a)^{2} . \text { But }(b-a) \leq \frac{\pi}{2} \Rightarrow y \leq \frac{\pi}{2}(b-a)
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Solution 3 by Remus Florin Stanca-Romania

$$
\begin{gather*}
\tan (x+y)=\frac{\tan x+\tan y}{1-\tan x \tan y}=\frac{\frac{1}{\cot x}+\frac{1}{\cot y}}{1-\frac{1}{\cot x \cot y}}=\frac{\cot x+\cot y}{\cot x \cot y-1} \Rightarrow \\
\Rightarrow \tan (x+y) \cot x \cot y-\tan (x+y)=\cot (x)+\cot (y) \Rightarrow \\
\Rightarrow \tan (x+y) \cot x \cot y=\tan (x+y)+\cot x+\cot y \Rightarrow \\
\Rightarrow \int_{a}^{b} \frac{\cot x+\cot y+\tan (x+y)}{\cot x \cot (y) \tan (x+y)} d x=\int_{a}^{b} 1 d x=b-a \Rightarrow \\
\Rightarrow \int_{a}^{b} \int_{a}^{b \cot x+\cot y+\tan (x+y)} \cot x \cot y \tan (x+y) \tag{1}\\
b<\frac{\pi}{2} \text { and }-a<0 \tag{2}\\
0_{0}^{b y} \frac{a d d i n g}{\Rightarrow} b-a<\frac{\pi}{2} \left\lvert\, \cdot((b-a) \geq 0) \Rightarrow(b-a)^{2} \leq \frac{\pi(b-a)}{2}\right. \\
(1) ;(2) \\
\Rightarrow \int_{a}^{b} \int_{a}^{b} \frac{\cot x+\cot y+\tan (x+y)}{\cot x \cot y \tan (x+y)} d x d y \leq \frac{\pi(b-a)}{2}
\end{gather*}
$$

Solution 4 by Avishek Mitra-West Bengal-India

$$
\begin{aligned}
& \Omega=\int_{a}^{b} \int_{a}^{b} \frac{\cot x+\cot y+\tan (x+y)}{\cot x \cdot \cot y \cdot \tan (x+y)} d x d y \\
& =\int_{a}^{b} \int_{a}^{b} \frac{\cot x+\cot y}{\cot x \cot y \cdot \frac{(\tan x+\tan y)}{(1-\tan x \tan y)}}+\frac{1}{\cot x \cot y} d x d y \\
& =\int_{a}^{b} \int_{a}^{b}\left\{\frac{(\cot x+\cot y)(1-\tan x \tan y)}{(\cot x+\cot y)}+\tan x \cdot \tan y\right\} d x d y= \\
& =\int_{a}^{b} \int_{a}^{b}(1-\tan x \cdot \tan y+\tan x \cdot \tan y) d x d y \\
& =\int_{a}^{b} \int_{a}^{b} d x d y=(b-a) \int_{a}^{b} d y=(b-a)^{2} \\
& \Leftrightarrow \mathrm{Or}, \Rightarrow \int_{a}^{b} \int_{a}^{b} \frac{\cot x+\cot y+\tan (x+y)}{\cot x \cot y \tan (x+y)} d x d y=\int_{a}^{b} \int_{a}^{b} \frac{\frac{1}{\tan x}+\frac{1}{\tan y}+\tan (x+y)}{\cot x \cdot \cot y \cdot \tan (x+y)} d x d y
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
=\int_{a}^{b} \int_{a}^{b} \frac{\frac{\tan x+\tan y}{\tan x \tan y}+\tan (x+y)}{\cot x \cot y \tan (x+y)} d x d y=
$$

$$
=\int_{a}^{b} \int_{a}^{b}\left\{\frac{\tan x+\tan y}{\tan (x+y)}+\frac{\tan (x+y) \cdot \tan x \tan y}{\tan (x+y)}\right\} d x d y
$$

$$
=\int_{a}^{b} \int_{a}^{b}\left\{\frac{(\tan x+\tan y)}{\frac{(\tan x+\tan y)}{(1-\tan x \tan y)}}+\tan x \tan y\right\} d x d y=
$$

$$
=\int_{a}^{b} \int_{a}^{b}(1-\tan x \tan y+\tan x \tan y) d x d y=\int_{a}^{b} \int_{a}^{b} d x d y=(b-a)^{2}
$$

\Leftrightarrow need to show $\Rightarrow(b-a)^{2} \leq \frac{\pi(b-a)}{2} \Rightarrow(b-a) \leq \frac{\pi}{2} \Leftrightarrow\left(* \operatorname{true}\right.$ as $\left.a \leq b<\frac{\pi}{2}, b<\frac{\pi}{2}\right)$

$$
\Leftrightarrow(b-a)^{2} \leq \frac{\pi(b-a)}{2}(* \text { true })
$$

$$
\Leftrightarrow \int_{a}^{b} \int_{a}^{b} \frac{\cot x+\cot y+\tan (x+y)}{\cot x \cot y \tan (x+y)} d x d y \leq \frac{\pi(b-a)}{2}
$$

UP.216. If $\mathbf{0}<a \leq b<\frac{\pi}{2}$ then:

$$
\int_{a}^{b} \int_{a}^{b} \frac{(1+\tan x)(1+\tan y)\left(1+\tan \left(\frac{\pi}{4}-x-y\right)\right)}{1+\tan x \tan y \tan \left(\frac{\pi}{4}-x-y\right)} d x d y \leq \pi(b-a)
$$

Proposed by Daniel Sitaru - Romania
Solution 1 by Jovica Mikic-Sarajevo-Bosnia
Let $x, y, z \geq 0$ such that: $x+y+z=\frac{\pi}{4}$ then:

$$
\begin{gather*}
\sum_{c y c} \tan x+\sum_{c y c} \tan x \tan y=1+\tan x \tan y+\tan z \tag{*}\\
x+y=\frac{\pi}{4}-z ; \tan (x+y)=\tan \left(\frac{\pi}{4}-z\right) \\
\frac{\tan x+\tan y}{1-\tan x \tan y}=\frac{1-\tan z}{1+\tan z} \Leftrightarrow
\end{gather*}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro
 $\Leftrightarrow(\tan x+\tan y)(1+\tan z)=(1-\tan x \tan y)(1-\tan z) \quad(* *)$

$\tan x+\tan y+\tan x \tan z+\tan y \tan z=1-\tan z-\tan x \tan y+\tan x \tan y \tan z$

$$
\begin{equation*}
\sum_{c y c} \tan x+\sum_{c y c} \tan x \tan y=1+\tan x \tan y \tan z \tag{*}
\end{equation*}
$$

then: $(1+\tan x)(1+\tan y)(1+\tan z)=2(1+\tan x \tan y \tan z)$
proof: $(1+\tan x)(1+\tan y)(1+\tan z)=$
$=1+\sum_{c y c} \tan x+\sum_{c y c} \tan x \tan y+\tan x \tan y \tan z \stackrel{*}{=} 2(1+\tan x \tan y \tan z)$
Finally,

$$
\begin{aligned}
& \int_{a}^{b} \int_{a}^{b} \frac{(1+\tan x)(1+\tan y)(1+\tan z)}{1+\tan x \tan y \tan z} d x d y=\int_{a}^{b} \int_{a}^{b} 2 d x d y= \\
&=2(b-a)^{2}<2(b-a) \cdot \frac{\pi}{2}=(b-a) \pi \text { Q.E.D. Since, } 0<a \leq b<\frac{\pi}{2} \Rightarrow b-a<\frac{\pi}{2}
\end{aligned}
$$

Solution 2 by Amit Dutta-Jamshedpur-India

$$
\begin{aligned}
& \tan \left(\frac{\pi}{4}-x-y\right)=\tan \left(\frac{\pi}{4}-(x+y)\right)=\frac{1-\tan (x+y)}{1+\tan (x+y)}=\frac{1-\frac{(\tan x+\tan y)}{1-\tan x \tan y}}{1+\left(\frac{\tan x+\tan y}{1-\tan x \tan y}\right)} \\
& \tan \left(\frac{\pi}{4}-x-y\right)=\frac{1-\tan x \tan y-\tan x-\tan y}{1-\tan x \tan y+\tan x+\tan y} \\
& 1+\tan \left(\frac{\pi}{4}-(x+y)\right)=\frac{2(1-\tan x \tan y)}{1-\tan x \tan y+\tan x+\tan y} \\
& \therefore \text { Numerator of the integrand }=\frac{2(1+\tan x)(1+\tan y)(1-\tan x \tan y)}{1-\tan x \tan y+\tan x+\tan y} \\
& \text { Denominator of the integrand }=1+\tan x \tan y \tan \left(\frac{\pi}{4}-x-y\right) \\
& =1+\tan x \tan y\left\{\frac{1-\tan x \tan y-\tan x-\tan y}{1-\tan x \tan y+\tan x+\tan y}\right\} \\
& =\frac{1-\tan x \tan y+\tan x+\tan y+\tan x \tan y-\tan ^{2} x \tan ^{2} y-\tan ^{2} x \tan y-\tan x \tan ^{2} y}{1-\tan x \tan y+\tan x \tan y} \\
& =\frac{(1+\tan x+\tan y+\tan x \tan y)-\tan x \tan y(1+\tan x+\tan y+\tan x \tan y)}{1-\tan x \tan y+\tan x+\tan y} \\
& =\frac{(1+\tan x)(1+\tan y)-\tan x \tan y(1+\tan x)(1+\tan y)}{1-\tan x \tan y+\tan x+\tan y}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
& \qquad \begin{array}{l}
\text { www.ssmrmh.ro } \\
=\frac{(\mathbf{1}+\boldsymbol{\operatorname { t a n }} \boldsymbol{x})(\mathbf{1}+\boldsymbol{\operatorname { t a n }} \boldsymbol{y})(\mathbf{1}-\boldsymbol{\operatorname { t a n }} \boldsymbol{x} \boldsymbol{\operatorname { t a n }} \boldsymbol{y})}{1-\boldsymbol{\operatorname { t a n }} \boldsymbol{x} \boldsymbol{\operatorname { t a n }} \boldsymbol{y}+\boldsymbol{\operatorname { t a n }} \boldsymbol{x}+\boldsymbol{\operatorname { t a n }} \boldsymbol{y}}
\end{array}
\end{aligned}
$$

\therefore Putting the values of numerator and denominator so obtained in the integration, we are left with

$$
\begin{gathered}
I=\int_{a}^{b} \int_{a}^{b} \frac{2(1+\tan x)(1+\tan y)(1-\tan x \tan y)}{(1+\tan x)(1+\tan y)(1-\tan x \tan y)} d x d y \\
I=\int_{a}^{b} \int_{a}^{b} 2 d x d y=2(b-a)^{2}
\end{gathered}
$$

$$
\begin{gathered}
I=2(b-a)(b-a) \therefore 0<a \leq b \leq \frac{\pi}{2} \therefore(b-a) \leq \frac{\pi}{2} \therefore I \leq 2(b-a) \cdot\left(\frac{\pi}{2}\right) \\
I \leq \pi(b-a) . \text { Proved. }
\end{gathered}
$$

Solution 3 by Avishek Mitra-West Bengal-India

$$
\begin{gathered}
\Leftrightarrow \tan \left(\frac{\pi}{4}-x-y\right)=\frac{1-\tan (x+y)}{1+\tan (x+y)} \Rightarrow 1+\tan \left(\frac{\pi}{4}-x-y\right)=1+\frac{1-\tan (x+y)}{1+\tan (x+y)}= \\
=\frac{2}{1+\tan (x+y)} \Rightarrow(1+\tan x)(1+\tan y)\left(1+\tan \left(\frac{\pi}{4}-x-y\right)\right)= \\
=\frac{2(1+\tan x)(1+\tan y)}{(1+\tan (x+y))} \\
\Leftrightarrow 1+\tan x \tan y \tan \left(\frac{\pi}{4}-x-y\right)=\frac{\tan x \tan y(1-\tan (x+y))}{1+\tan (x+y)}+1= \\
=\frac{\tan x \tan y(1-(\tan x+y))+1+\tan (x+y)}{1+\tan (x+y)} \\
\Leftrightarrow \frac{(1+\tan x)(1+\tan y)\left(1+\tan \left(\frac{\pi}{4}-x-y\right)\right)}{1+\tan x \tan y \tan \left(\frac{\pi}{4}-x-y\right)}= \\
=\frac{2(1+\tan x)(1+\tan y)}{1+\tan x \tan y+\tan (x+y)-\tan x \tan y \tan (x+y)} \\
=\frac{2(1+\tan x)(1+\tan y)}{\frac{\tan x+\tan y}{1-\tan x \tan y}+\tan (x+y)-\tan x \tan y \frac{(\tan x+\tan y)}{(1-\tan x \tan y)}+1}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro
$=\frac{2\left(1-\tan x \tan y+\tan x-\tan ^{2} x \tan y+\tan y-\tan x \tan ^{2} y+\tan x \tan y-\tan ^{2} x \tan ^{2} y\right)}{\left(\tan x+\tan y-\tan ^{2} x \tan ^{2} y-\tan ^{2} x \tan y-\tan x \tan ^{2} y+1\right)}$

$$
=2
$$

$$
\Leftrightarrow \Omega=\int_{a}^{b} \int_{a}^{b} \frac{(1+\tan x)(1+\tan y)\left(1+\tan \left(\frac{\pi}{4}-x-y\right)\right)}{1+\tan x \tan y \tan \left(\frac{\pi}{4}-x-y\right)} d x d y=
$$

$$
=\int_{a}^{b} \int_{a}^{b} 2 d x d y=2(b-a)^{2}
$$

$$
\Leftrightarrow \text { need to show } \Rightarrow 2(b-a)^{2} \leq \pi(b-a)
$$

$$
\Rightarrow 2(b-a)^{2} \leq \pi(b-a) \Rightarrow(b-a) \leq \frac{\pi}{2}\left[* \text { true as } 0 \leq a \text { and } b \leq \frac{\pi}{2}\right]
$$

$$
\Leftrightarrow 2(b-a)^{2} \leq \pi(b-a) \Rightarrow(* \text { true })
$$

$$
\Leftrightarrow \int_{a}^{b} \int_{a}^{b} \frac{(1+\tan x)(1+\tan y)\left(1+\tan \left(\frac{\pi}{4}-x-y\right)\right)}{1+\tan x \tan y \tan \left(\frac{\pi}{4}-x-y\right)} \leq \pi(b-a)
$$

UP.217. Find:

$$
\Omega=\int\left(\tan \left(\frac{\pi-9 x}{3}\right) \tan \left(\frac{\pi-3 x}{3}\right) \tan x \tan \left(\frac{\pi+3 x}{3}\right) \tan \left(\frac{\pi+9 x}{3}\right)\right) d x
$$

Solution 1 by Rovsen Pirguliyev-Sumgait-Azerbaijan
It is known that: $\boldsymbol{\operatorname { t a n }}\left(\frac{\pi}{3}-x\right) \boldsymbol{\operatorname { t a n }} x \boldsymbol{\operatorname { t a n }}\left(\frac{\pi}{x}+x\right)=\boldsymbol{\operatorname { t a n }} 3 x$ (1)
we have:

$$
\begin{gathered}
\Omega=\int \underbrace{\tan \left(\frac{\pi}{3}-3 x\right) \tan \left(\frac{\pi}{3}+3 x\right) \tan 3 x}_{(1)=\tan 9 x} \cdot \underbrace{\tan \left(\frac{\pi}{3}-x\right) \tan \left(\frac{\pi}{3}+x\right) \tan x}_{(1)=\tan 3 x} \cdot \frac{1}{\tan 3 x} d x \\
=\int \tan 9 x \cdot \tan 3 x \cdot \frac{1}{\tan 3 x} d x=\int \tan 9 x d x \\
=\int \frac{\sin 9 x}{\cos 9 x}=-\frac{1}{9} \int \frac{d(\cos 9 x)}{\cos 9 x}=-\frac{1}{9} \ln |\cos 9 x|+C
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

Solution 2 by Avishek Mitra-West Bengal-India

$$
\begin{aligned}
& \Leftrightarrow \tan x \tan \left(\frac{\pi}{3}-x\right) \tan \left(\frac{\pi}{3}+x\right)=\frac{\sin x \sin \left(\frac{\pi}{3}-x\right) \cdot \sin \left(\frac{\pi}{3}+x\right)}{\cos x \cos \left(\frac{\pi}{3}-x\right) \cdot \cos \left(\frac{\pi}{3}+x\right)} \\
& =\frac{\sin x}{\cos x} \cdot \frac{2 \sin (60-x) \cdot \sin (60+x)}{2 \cos (60-x) \cos (60+x)}= \\
& =\frac{\sin x}{\cos x} \cdot \frac{[\cos (60+x-60+x)-\cos (60+x+60-x)]}{[\cos (60+x+60-x)+\cos (60-x-60+x)]} \\
& =\frac{\sin x(\cos 2 x-\cos 120)}{\cos (\cos 120+\cos 2 x)}=\frac{\cos 2 x \cdot \cos x+\frac{\sin x}{2}}{\cos 2 x \cdot \cos x-\frac{\cos x}{2}} \\
& =\frac{2 \cos 2 x \cdot \sin x+\sin x}{2 \cos 2 x \cdot \cos x-\cos x}=\frac{\sin 3 x-\sin x+\sin x}{\cos 3 x+\cos x-\cos x}=\frac{\sin 3 x}{\cos 3 x}=\tan 3 x \\
& \Leftrightarrow \tan \left(\frac{\pi}{3}-3 x\right) \cdot \tan 3 x \tan \left(\frac{\pi}{3}+3 x\right)=\frac{\sin 3 x}{\cos 3 x} \cdot \frac{2 \sin (60-3 x) \cdot \sin (60+3 x)}{2 \cos (60-3 x) \cdot \cos (60+3 x)} \\
& =\frac{\sin 3 x}{\cos 3 x} \cdot \frac{[\cos (60+3 x-60+3 x)-\cos (60+3 x+60-3 x)]}{[\cos (60+3 x+60-3 x)+\cos (60+3 x-60+3 x)]} \\
& =\frac{\sin 3 x}{\cos 3 x} \cdot \frac{(\cos 6 x-\cos 120)}{(\cos 120+\cos 6 x)}=\frac{\cos 6 x \cdot \sin 3 x+\frac{\sin 3 x}{2}}{\cos 3 x \cdot \cos 6 x-\frac{\cos 3 x}{2}} \\
& =\frac{2 \sin 3 x \cdot \cos 6 x+\sin 3 x}{2 \cos 6 x \cdot \cos 3 x-\cos 3 x}=\frac{\sin 9 x-\sin 3 x+\sin 3 x}{\cos 9 x+\cos 3 x-\cos 3 x}=\frac{\sin 9 x}{\cos 9 x}=\tan 9 x \\
& \Leftrightarrow \Omega=\int \tan \left(\frac{\pi-9 x}{3}\right) \cdot \tan \left(\frac{\pi-3 x}{3}\right) \tan x \cdot \tan \left(\frac{\pi+3 x}{3}\right) \cdot \tan \left(\frac{\pi+9 x}{3}\right) d x \\
& =\int \tan \left(\frac{\pi}{3}-3 x\right) \cdot \tan \left(\frac{\pi}{3}+3 x\right) \tan x \tan \left(\frac{\pi}{3}-x\right) \tan \left(\frac{\pi}{3}+x\right) d x \\
& =\int \tan 3 x \tan \left(\frac{\pi}{3}-3 x\right) \tan \left(\frac{\pi}{3}+3 x\right) d x=\int \tan 9 x d x=\frac{1}{9} \log |\sec (9 x)|+c \\
& \Leftrightarrow \tan x \tan \left(\frac{\pi}{3}-x\right) \tan \left(\frac{\pi}{3}+x\right)=\tan x \cdot \frac{\sqrt{3}-\tan x}{1+\sqrt{3} \tan x} \cdot \frac{\sqrt{3}+\tan x}{1-\sqrt{3} \tan x} \\
& =\tan x \cdot \frac{3-\tan ^{2} x}{1-3 \tan ^{2} x}=\frac{3 \tan x-\tan ^{3} x}{1-3 \tan ^{2} x}=\tan 3 x \\
& \Leftrightarrow \tan 3 x \cdot \tan \left(\frac{\pi}{3}-3 x\right) \tan \left(\frac{\pi}{3}+3 x\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
& =\tan 3 x \cdot \frac{\sqrt{3}-\tan 3 x}{1+\sqrt{3} \tan 3 x} \cdot \frac{\sqrt{3}+\tan 3 x}{1-\sqrt{3} \tan 3 x}=\tan 3 x \cdot \frac{3-\tan ^{2} 3 x}{1-3 \tan ^{2} 3 x} \\
& =\frac{3 \tan 3 x-\tan ^{3} 3 x}{1-3 \tan ^{2} 3 x}=\tan (3 \cdot 3 x)=\tan 9 x
\end{aligned} \begin{array}{r}
\Leftrightarrow \int \tan \left(\frac{\pi-9 x}{3}\right) \tan \left(\frac{\pi-3 x}{3}\right) \cdot \tan x \tan \left(\frac{\pi+3 x}{3}\right) \tan \left(\frac{\pi+9 x}{3}\right) d x \\
=\int \tan x \tan \left(\frac{\pi}{3}-x\right) \tan \left(\frac{\pi}{3}+x\right) \tan \left(\frac{\pi}{3}+3 x\right) \tan \left(\frac{\pi}{3}-3 x\right) d x \\
=\int \tan 3 x \tan \left(\frac{\pi}{3}-3 x\right) \tan \left(\frac{\pi}{3}+3 x\right) d x=\int \tan 9 x d x=\frac{1}{9} \log |\sec (9 x)|+c
\end{array}
$$

UP.218. Let be $G=\{a+b \sqrt[3]{5}+c \sqrt[3]{25} \mid a, b, c \in \mathbb{Q}\}$. Prove that: $x \in G \Rightarrow$ $x^{2019} \in G$

Proposed by Daniel Sitaru - Romania

Solution 1 by Jovika Mikic-Sarajevo-Bosnia
Let $x \in G, y \in G$. Let us prove that $x y \in G$

$$
\begin{aligned}
& x=a+b \sqrt[3]{5}+c \sqrt[3]{25} ;\{a, b, c,, d, e, f\} \subset \mathbb{Q} \\
& y=f+e \sqrt[3]{5}+f^{3} \sqrt{25} \\
& x y=(a+b \sqrt[3]{5}+c \sqrt{25})(f+e \sqrt[3]{5}+f \sqrt[3]{25}) \\
&=a f+a e \sqrt[3]{5}+a f \sqrt[3]{25} \\
&+b f \sqrt[3]{5}+b e \sqrt[3]{25}+b f 5 \\
&+c f \sqrt[3]{25}+c e 5+c f 5 \sqrt[3]{5}
\end{aligned}
$$

$$
\text { So, } x y=\underbrace{(a f+b f 5+c e 5)}_{\in \mathbb{Q}}+\underbrace{(a e+b d+5 c f) \sqrt[3]{5}}_{\in \mathbb{Q}}+\underbrace{(a f+b e+c d) \sqrt[3]{25}}_{\in \mathbb{Q}}
$$

Therefore, the set G is closed under multiplication.
It follows, $x^{2019} \in G$, as well as $x^{n} \in G, n \in \mathbb{N}$
Solution 2 by Ravi Prakash-New Delhi-India

$$
\text { Let } x=a+b(5)^{\frac{1}{3}}+c\left(5^{\frac{2}{3}}\right) \in G
$$

$$
\begin{aligned}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
& \text { WWw.Ssmrmh.ro } \\
& y=a_{1}+b_{1}\left(5^{\frac{1}{3}}\right)+c_{1}\left(5^{\frac{2}{3}}\right) \in G \text { where } a, a, b, b, c, c \in \mathbb{Q} \\
& x y=a a_{1}+\left(a_{1} b\right)\left(5^{\frac{1}{3}}\right)+a_{1} c\left(5^{\frac{2}{3}}\right)+5 b_{1} c+a b_{1}\left(5^{\frac{1}{3}}\right)+b b_{1}\left(5^{\frac{2}{3}}\right)+ \\
& +5 b c_{1}+5 c c_{1}\left(5^{\frac{1}{3}}\right)+a c_{1}\left(5^{\frac{2}{3}}\right)=a_{2}+b_{2}\left(5^{\frac{1}{3}}\right)+c_{2}\left(5^{\frac{2}{3}}\right) \\
& \text { where } a_{2}=a a_{1}+5 b_{1} c+5 b c_{1} \in \mathbb{Q} \\
& b_{2}=a_{1} b+a b_{1}+5 c c_{1} \in \mathbb{Q} \\
& c_{2}=a_{1} c+b b_{1}+a c_{1} \in \mathbb{Q}
\end{aligned}
$$

Thus, G is closed under multiplication.
If $x \in G, x \cdot x \in G=x^{2} \in G \Rightarrow x^{2} \cdot x \in G$ or $x^{3} \in G$

Continue like this, $x^{2019} \in G$.

Solution 3 by Marian Ursărescu-Romania
First, we prove: if $x, y \in G \Rightarrow x y \in G$ (1)

$$
\begin{gathered}
\text { Let } x \in G \Rightarrow x=a+b \sqrt[3]{5}+c \sqrt[3]{25} \text { and } y \in G \Rightarrow \\
y=a^{\prime}+b^{\prime} \sqrt[3]{5}+c^{\prime} \sqrt[3]{25}, a, b, c, a^{\prime}, b^{\prime}, c^{\prime} \in \mathbb{Q} \\
x y=\left(a a^{\prime}+5 b c^{\prime}+5 b^{\prime} c\right)+\sqrt[3]{5}\left(a b^{\prime}+a^{\prime} b+5 c c^{\prime}\right)+\sqrt[3]{25}\left(a c^{\prime}+a^{\prime} c+b b^{\prime}\right) \Rightarrow x y \in G
\end{gathered}
$$

Now, we prove by induction: if $x \in G \Rightarrow x^{3 n} \in G, \forall n \geq 1$

$$
\begin{gathered}
P(1): x \in G \Rightarrow x^{3} \in G, x=a+b \sqrt[3]{5}+c \sqrt[3]{25} \Rightarrow \\
x^{3}=a^{3}+5 b^{3}+25 c^{3}+30 a b c+\sqrt[3]{5}\left(3 a^{2} b+15 a c^{2}+15 b^{2} c\right)+ \\
+\sqrt[3]{25}\left(3 a b^{2}+3 a^{2} c+15 b c^{2}\right) \in G \\
P(k): \text { if } x \in G \Rightarrow x^{3 k} \in G \\
P(k+1): \text { if } x \in G \Rightarrow x^{3 k+3} \in G \\
x^{3 k+3}=x^{3 k} \cdot x^{3} \in G \text { from (1) }
\end{gathered}
$$

$$
\text { Let } n=673 \Rightarrow x^{2019} \in G
$$

UP.219. Let a, b, c be positive real numbers such that $a b c=1$. Prove that:

$$
\frac{a^{3}}{b^{4} c\left(a^{2}+a c+c^{2}\right)}+\frac{b^{3}}{c^{4} a\left(b^{2}+b a+a^{2}\right)}+\frac{c^{3}}{a^{4} b\left(c^{2}+c b+b^{2}\right)} \geq 1
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Solution by Sanong Huayrerai-Nakon Pathom-Thailand
For $a b c=1, a, b, c>0$ we get as follows:

$$
\begin{aligned}
& \text { 1. } \frac{a^{2}}{c^{2}}+\frac{c^{2}}{b^{2}}+\frac{b^{2}}{a^{2}} \geq \frac{\left(\frac{a^{2}}{c}+\frac{c^{2}}{b}+\frac{b^{2}}{a}\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}{3} \geq \frac{a^{2}}{c}+\frac{c^{2}}{b}+\frac{b^{2}}{a} \\
& \text { 2. } \frac{a^{4}}{b^{4}}+\frac{b^{4}}{c^{4}}+\frac{c^{4}}{a^{4}}+\frac{a^{2}}{c^{2}}+\frac{c^{2}}{b^{2}}+\frac{b^{2}}{a^{2}} \geq 2\left(\frac{a^{3}}{b^{2} c}+\frac{b^{3}}{c^{2} a}+\frac{c^{3}}{a^{2} b}\right)
\end{aligned}
$$

$$
\text { 2.1. } \frac{a^{3}}{b^{2} c}+\frac{b^{3}}{c^{2} a}+\frac{c^{3}}{a^{2} b} \geq \frac{\left(\frac{a^{2}}{b^{2}}+\frac{b^{2}}{c^{2}}+\frac{c^{2}}{a^{2}}\right)\left(\frac{a}{c}+\frac{c}{b}+\frac{b}{a}\right)}{3} \geq \frac{a^{2}}{b^{2}}+\frac{b^{2}}{c^{2}}+\frac{c^{2}}{a^{2}} \geq \frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}
$$

$$
\text { 2.2. } \frac{a^{3}}{b^{2} c}+\frac{b^{3}}{c^{2} a}+\frac{c^{2}}{a^{2} b} \geq \frac{\left(\frac{a^{2}}{b}+\frac{b^{2}}{c}+\frac{c^{2}}{a}\right)\left(\frac{a}{b c}+\frac{b}{c a}+\frac{c}{a b}\right)}{3} \geq \frac{a^{2}}{b}+\frac{b^{2}}{c}+\frac{c^{2}}{a}
$$

$$
\text { and since } \frac{a^{3}}{b^{4} c\left(a^{2}+a c+a^{2}\right)}+\frac{b^{3}}{c^{4} a\left(b^{2}+a b+a^{2}\right)}+\frac{c^{3}}{a^{4} b\left(c^{2}+b c+b^{2}\right)}
$$

$$
=\frac{\frac{a^{4}}{b^{4}}}{a c\left(a^{2}+a c+c^{2}\right)}+\frac{\frac{b^{4}}{c^{4}}}{a b\left(b^{2}+a b+a^{2}\right)}+\frac{\frac{c^{4}}{a^{4}}}{b c\left(c^{2}+b c+b^{2}\right)}
$$

$$
\geq \frac{\left(\frac{a^{2}}{b^{2}}+\frac{b^{2}}{c^{2}}+\frac{c^{2}}{a^{2}}\right)^{2}}{a^{3} c+c^{3} a+a^{2} c^{2}+a b^{3}+b a^{3}+a^{2} b^{2}+b c^{2}+b^{3} c+b^{2} c^{2}}
$$

$$
=\frac{\frac{a^{4}}{b^{4}}+\frac{b^{4}}{c^{4}}+\frac{c^{4}}{a^{4}}+2\left(\frac{a^{2}}{c^{2}}+\frac{c^{2}}{b^{2}}+\frac{b^{2}}{a^{2}}\right)}{\frac{a^{2}}{b}+\frac{b^{2}}{c}+\frac{c^{2}}{a}+\frac{a^{2}}{c}+\frac{c^{2}}{b}+\frac{b^{2}}{a}+\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}} \geq 1 \text { ok. Therefore, it is true. }
$$

UP.220. If $e_{n}=\left(1+\frac{1}{n}\right)^{n} ; n \in \mathbb{N}^{*}$ then find:

$$
\Omega=\lim _{n \rightarrow \infty}\left(\left(e-e_{n}\right) \cdot e^{H_{n}}\right)
$$

Proposed by D.M. Bătinețu - Giurgiu, Neculai Stanciu - Romania
Solution 1 by Marian Ursărescu-Romania

$$
\begin{gather*}
\Omega=\lim _{n \rightarrow \infty}\left(e-e_{n}\right) e^{H_{n}}=\lim _{n \rightarrow \infty}\left(e-e_{n}\right) n \cdot \frac{e^{H_{n}}}{n} \\
\lim _{n \rightarrow \infty} \frac{e^{H_{n}}}{n}=\lim _{n \rightarrow \infty} \frac{e^{H_{n}}}{e^{\ln n}}=\lim _{n \rightarrow \infty} e^{H_{n}-\ln n}= \\
=\lim _{n \rightarrow \infty} e^{1+\frac{1}{2}+\cdots+\frac{1}{n}-\ln n}=e^{H} \tag{2}
\end{gather*}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
$\lim _{n \rightarrow \infty}\left(e-e_{n}\right) n=\lim _{n \rightarrow \infty} \frac{e-e_{n}}{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{e-\left(1+\frac{1}{n}\right)^{n}}{\frac{1}{n}}$

$$
\text { Let } \frac{1}{n}=x, n \rightarrow \infty \Rightarrow x \rightarrow 0 \Rightarrow
$$

$$
\text { (3) } \Leftrightarrow \lim _{n \rightarrow 0} \frac{e-(1+x)^{\frac{1}{x}}}{x} \stackrel{L^{\prime} H}{=} \lim _{x \rightarrow 0} \frac{-(1+x)^{\frac{1}{x}}\left[-\frac{1}{x^{2}}(1+x)+\frac{1}{x} \cdot \frac{1}{1+x}\right]}{1}
$$

$$
=\lim _{x \rightarrow 0}-(1+x)^{\frac{1}{x} \frac{(-(1+x) \ln (1+x)+x)}{x^{2}(1+x)}=}
$$

$$
=-e \lim _{x \rightarrow 0} \frac{-(1+x) \ln (1+x)+x}{x^{3}+x^{2}} \stackrel{L^{\prime} H}{=}-e \lim _{x \rightarrow 0} \frac{-\ln (1+x)-1+1}{3 x^{2}+2 x}=
$$

$$
\begin{equation*}
=e \lim _{x \rightarrow 0} \frac{\ln (1+x)}{x(2+3 x)}=\frac{e}{2} \tag{4}
\end{equation*}
$$

$$
\text { From (1)+(2)+(3)+(4) } \Rightarrow \Omega=\frac{e}{2} \cdot e^{H}=\frac{e^{H+1}}{2}
$$

Solution 2 by Mokhtar Khassani-M ostaganem-Algerie

$$
\begin{gathered}
\lim _{n \rightarrow+\infty}\left(e-\left(1+\frac{1}{n}\right)^{n}\right) e^{H_{n}}=\lim _{n \rightarrow+\infty}\left[n\left(e-\left(1+\frac{1}{n}\right)^{n}\right) e^{H_{n}-\log n}\right] \\
=e^{\gamma} \lim _{n \rightarrow 0} \frac{e-(1+n)^{\frac{1}{n}}}{n}=e^{\gamma} \lim _{n \rightarrow 0} \frac{1-e^{\frac{\ln (1+n)}{n}-1}}{n}=e^{\gamma+1} \lim _{n \rightarrow 0} \frac{1-e^{-\frac{n}{2}+o\left(n^{2}\right)}}{n}= \\
=e^{\gamma+1} \lim _{n \rightarrow 0} \frac{1-\left(1-\frac{n}{2}+o\left(n^{2}\right)\right)}{n}=\frac{e^{\gamma+1}}{2}
\end{gathered}
$$

Solution 3 by Remus Florin Stanca-Romania

$$
\begin{gather*}
\Omega=\lim _{n \rightarrow \infty} \frac{e-e_{n}}{e^{-H_{n}}}=\lim _{n \rightarrow \infty}\left(e-e_{n}\right) e^{H_{n}-\ln n+\ln n}=e^{\gamma} \lim _{n \rightarrow \infty}\left(e-e_{n}\right) n= \\
=e^{\gamma} \lim _{n \rightarrow \infty}\left(e-\left(1+\frac{1}{n}\right)^{n}\right) n=e^{\gamma} \lim _{n \rightarrow \infty} n \cdot \frac{e^{1}-e^{\ln \left(1+\frac{1}{n}\right)^{n}}}{1-\ln \left(1+\frac{1}{n}\right)^{n}} \cdot\left(1-\ln \left(1+\frac{1}{n}\right)^{n}\right) \tag{1}
\end{gather*}
$$

It's known that $\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=f^{\prime}\left(x_{0}\right) \stackrel{(1)}{\Rightarrow} \Omega=e^{\gamma+1} \lim _{n \rightarrow \infty} n\left(1-n \ln \left(1+\frac{1}{n}\right)\right)=$

$$
=-e^{\gamma+1} \lim _{n \rightarrow \infty} n \ln \left(n \ln \left(1+\frac{1}{n}\right)\right)=-e^{\gamma+1} \lim _{n \rightarrow \infty} \frac{\ln n+\ln \left(\ln \left(1+\frac{1}{n}\right)\right)}{\frac{1}{n}}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
Let $\frac{1}{n}=x \Rightarrow x \rightarrow 0 \Rightarrow \Omega=-e^{\gamma+1} \lim _{x \rightarrow 0} \frac{-\ln x+\ln (\ln (x+1))}{x} \frac{L^{\prime} H}{\frac{0}{0}}-e^{\gamma+1} \lim _{x \rightarrow 0}\left(-\frac{1}{x}+\frac{1}{\ln (x+1)}\right.$.
$1 x+1=$

$$
\begin{gathered}
=-e^{\gamma+1} \lim _{x \rightarrow 0} \frac{1}{x}\left(\frac{x}{(x+1) \ln (x+1)}-1\right)=-e^{\gamma+1} \lim _{x \rightarrow 0} \frac{1}{x}\left(\frac{1}{x+1}-\frac{\ln (x+1)}{x}\right) \frac{L^{\prime} L^{\prime}}{\frac{0}{0}} \\
=-e^{\gamma+1} \lim _{x \rightarrow 0}\left(-\frac{1}{(x+1)^{2}}-\frac{\frac{x}{x+1}-\ln (x+1)}{x^{2}}\right)= \\
=e^{\gamma+1}\left(-1-\lim _{x \rightarrow 0} \frac{\frac{1}{(x+1)^{2}}-\frac{1}{x+1}}{2 x}\right)=e^{\gamma+1}\left(1+\lim _{x \rightarrow 0} \frac{-\frac{2}{(x+1)^{3}}+\frac{1}{(x+1)^{2}}}{2}\right)=\frac{e^{\gamma+1}}{2} \Rightarrow \\
\Rightarrow \Omega=\frac{e^{\gamma+1}}{2}
\end{gathered}
$$

UP.221. If $\left(x_{n}\right)_{n \geq 1} \subset(0, \infty) ; \lim _{n \rightarrow \infty}\left(\frac{x_{n}}{\sqrt{n}} \cdot e^{2 \sqrt{n}}\right)=b \in(0, \infty), a_{n}=\sum_{k=1}^{n} \frac{1}{\sqrt{k}}$ then find:

$$
\Omega=\lim _{n \rightarrow \infty}\left(\left(e^{a_{n+1}}-e^{a_{n}}\right) \cdot x_{n}\right)
$$

Proposed by D.M. Bătinețu - Giurgiu, Neculai Stanciu - Romania Solution 1 by Marian Ursărescu-Romania

$$
\begin{gathered}
\Omega=\lim _{n \rightarrow \infty}\left(e^{a_{n+1}}-e^{a_{n}}\right) x_{n}=\lim _{n \rightarrow \infty} e^{a_{n}}\left(e^{a_{n+1}-a_{n}}-1\right) x_{n} \\
=\lim _{n \rightarrow \infty} \frac{e^{\frac{1}{\sqrt{n+1}}-1}}{\frac{1}{\sqrt{n+1}}} \cdot \frac{1}{\sqrt{n+1}} e^{a_{n}} \cdot x_{n}=\lim _{n \rightarrow \infty} \frac{x_{n}}{\sqrt{n}} e^{2 \sqrt{n}} \cdot \frac{\sqrt{n}}{\sqrt{n+1}} \cdot e^{a_{n}} \cdot e^{-2 \sqrt{n}} \\
=b \lim _{n \rightarrow \infty} e^{1+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{n}}-2 \sqrt{n}}=b \cdot e^{L}, \text { where } \\
L=\lim _{n \rightarrow \infty}\left(1+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{n}}-2 \sqrt{n}\right), L \in(-2, e)
\end{gathered}
$$

It is Ioachimescu limit.
Solution 2 by M okhtar Khassani-M ostaganem-Algerie

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

$$
\begin{aligned}
& \Omega=\lim _{n \rightarrow+\infty}\left(x_{n}\left(e^{e_{n+1}}-e^{a_{n}}\right)\right)=\lim _{n \rightarrow+\infty} \frac{x_{n} e^{2 \sqrt{n}}}{\sqrt{n}} \cdot \frac{\sqrt{n}\left(e \sum_{k=1}^{n+1} \frac{1}{\sqrt{k}}-e \sum_{k=1}^{n+1} \frac{1}{\sqrt{k}}\right)}{e^{2 \sqrt{n}}} \\
&=b \lim _{n \rightarrow+\infty} \frac{\sqrt{n}\left(e^{\zeta\left(\frac{1}{2}\right)+2 \sqrt{n+1}}+\frac{1}{2 \sqrt{n+1}}-\frac{1}{24(n+1)^{\frac{3}{2}}}+\frac{5}{8(n+1)^{\frac{5}{2}}}+o\left(\frac{1}{n^{\frac{5}{2}}}\right)-e^{\zeta\left(\frac{1}{2}\right)+2 \sqrt{n}}+\frac{1}{2 \sqrt{n}}-\frac{1}{24 n^{\frac{3}{2}}}+o\left(\frac{1}{n^{\frac{3}{2}}}\right)\right)}{e^{2 \sqrt{n}}} \\
&=b e^{\zeta\left(\frac{1}{2}\right)} \lim _{n \rightarrow+\infty}\left(\frac{e^{\frac{3}{2 \sqrt{n+1}}+o\left(\left(\frac{1}{n}\right)^{\frac{3}{2}}\right)}-1}{\left.\frac{1}{\sqrt{n}}-\frac{e^{\frac{1}{2 \sqrt{n+1}}+o\left(\left(\frac{1}{n}\right)^{\frac{3}{2}}\right)}-1}{\left.\frac{1}{\sqrt{n}}\right)}\right)=b e^{\zeta\left(\frac{1}{2}\right)}} .\right.
\end{aligned}
$$

Note:

$$
\sum_{k}^{n} \frac{1}{k^{\alpha}}=\zeta(\alpha)+\frac{n^{1-\alpha}}{2}+\frac{1}{2 n^{\alpha}}-\frac{\alpha}{24 n^{1+\alpha}}+o\left(\frac{1}{n^{\alpha+2}}\right), 0<\alpha \neq 1
$$

Solution 3 by Remus Florin Stanca-Romania

$$
\begin{gathered}
\Omega=\lim _{n \rightarrow \infty} e^{a_{n}}\left(e^{a_{n+1}-a_{n}}-1\right) x_{n}=\lim _{n \rightarrow \infty} e^{a_{n}-2 \sqrt{n}+2 \sqrt{n}} \cdot\left(\frac{1}{\left.e^{\sqrt{n+1}}-1\right) x_{n}=}\right. \\
=e^{S} \cdot \lim _{n \rightarrow \infty} e^{2 \sqrt{n}} x_{n}\left(e^{\frac{1}{\sqrt{n+1}}}-1\right)=
\end{gathered}
$$

UP.222. If $\boldsymbol{a}>0 ;\left(\boldsymbol{x}_{n}\right)_{n \geq 1} \subset(\mathbf{0}, \infty)$ such that:
$\log \left(n+a x_{n}\right)=H_{n}-\gamma$ then find $\Omega=\lim _{n \rightarrow \infty} x_{n}$
Proposed by D.M. Bătinețu - Giurgiu, Neculai Stanciu - Romania
Solution 1 by Marian Ursărescu-Romania

$$
\begin{gather*}
\ln \left(n+a x_{n}\right)=H_{n}-\gamma \Rightarrow n+a x_{n}=e^{H_{n}-\gamma} \Rightarrow \\
x_{n}=\frac{1}{a}\left(e^{H_{n}-\gamma}-n\right) \tag{1}
\end{gather*}
$$

$$
\begin{gather*}
\lim _{n \rightarrow \infty}\left(e^{H_{n}-\gamma}-n\right)=\lim _{n \rightarrow \infty} e^{H_{n}-\gamma}-e^{\ln n}=\lim _{n \rightarrow \infty} e^{\ln n}\left(e^{H_{n}-\gamma-\ln n}-1\right)= \\
=\lim _{n \rightarrow \infty} \frac{n\left(e^{H_{n}-\ln n-\gamma_{-1}}\right)}{H_{n}-\ln n-\gamma}\left(H_{n}-\ln n-\gamma\right) \quad \text { (2) } \tag{2}\\
\lim _{n \rightarrow \infty} \frac{e^{H_{n}-\ln n-\gamma_{-1}}}{H_{n}-\ln n-\gamma}=\ln e=1 \quad \text { (3) } \tag{3}
\end{gather*}
$$

$$
\begin{align*}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
& \text { www.ssmrmh.ro } \\
& \lim _{n \rightarrow \infty} n\left(H_{n}-\ln n-\gamma\right)=\lim _{n \rightarrow \infty} \frac{H_{n}-\ln n-\gamma}{\frac{1}{n}} \underset{\text { for } \frac{0}{0}}{=} \\
& =\lim _{n \rightarrow \infty} \frac{H_{n+1}-\ln (n+1)-H_{n}+\ln n}{\frac{1}{n+1}-\frac{1}{n}}= \\
& =\lim _{n \rightarrow \infty} \frac{\frac{1}{n+1}-\ln \left(\frac{n+1}{n}\right)}{\frac{n-n-1}{n(n+1)}}=\lim _{n \rightarrow \infty} \frac{1-(n+1) \ln \left(1+\frac{1}{n}\right)}{-\frac{1}{n}}= \\
& =\lim _{n \rightarrow 0} \frac{1-\left(\frac{1}{x}+1\right) \ln (1+x)}{-x}=\lim _{n \rightarrow 0} \frac{x-(1+x) \ln (1+x)}{-x^{2}} \stackrel{L^{\prime} H}{=} \\
& =\lim _{n \rightarrow 0} \frac{1-\ln (1+x)-1}{-2 x}=\lim _{n \rightarrow 0} \frac{\ln (1+x)}{2 x}=\frac{1}{2} \tag{4}\\
& \text { From (1) }+(2)+(3)+(4) \Rightarrow \Omega=\frac{1}{a} \cdot \frac{1}{2}=\frac{1}{2 a}
\end{align*}
$$

Solution 2 by Michael Sterghiou-Greece

$$
\begin{gathered}
H_{n}=\ln n+\gamma+e_{n} \text { where } e_{n} \sim \frac{1}{2 n} \text { therefore: } \\
\log \left(n+a x_{n}\right)=\log n+\frac{1}{2 n} \rightarrow x_{n}=\frac{1}{a}\left[e^{\ln n+\frac{1}{2 n}}-n\right]=
\end{gathered}
$$

$\frac{1}{a}\left[n \cdot e^{\frac{1}{2 n}}-n\right]=\frac{1}{a} n\left[e^{\frac{1}{2 n}}-1\right]=\frac{1}{a} \cdot \frac{\frac{1}{2 n}-1}{\frac{1}{n}}$. This limit is of the form $\frac{0}{0}$ as $e^{\frac{1}{2 n}} \rightarrow 1, n \rightarrow \infty$.
Taking the respective function $\frac{e^{\frac{1}{x x}-1}}{\frac{1}{x}}$ and using DLH we have:
$\lim _{x \rightarrow \infty} \frac{\frac{1}{e^{x}-1}}{\frac{1}{x}}=\lim _{x \rightarrow \infty} \frac{-\frac{1}{2 x}-e^{\frac{1}{2 x}}}{-\frac{1}{x^{2}}}=\lim _{x \rightarrow \infty}\left(\frac{1}{2} \cdot e^{\frac{1}{2 x}}\right)=\frac{1}{2}$ as $\lim _{x \rightarrow \infty} e^{\frac{1}{2 x}}=1$. Therefore

$$
\lim _{n \rightarrow \infty} x_{n}=\frac{1}{2 a}
$$

Solution 3 by M okhtar Khassani-M ostaganem-Algerie

$$
\begin{gathered}
\lim _{n \rightarrow+\infty} x_{n}=\lim _{n \rightarrow+\infty} \frac{e^{H_{n}-\gamma}-n}{a}=\frac{1}{a} \lim _{n \rightarrow+\infty}\left(e^{\left(\gamma+\log \left(n+\frac{1}{2}\right)+o\left(\frac{1}{n^{2}}\right)\right)-\gamma}-n\right)= \\
=\frac{1}{a} \lim _{n \rightarrow+\infty}\left(n+\frac{1}{2}-n\right)=\frac{1}{2 a}
\end{gathered}
$$

Solution 4 by Khaled Abd Imouti-Damascus-Syria

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

As you know: $0 \leq \gamma-H_{n}+\frac{1}{2^{n}}+L_{n}(x) \leq \frac{1}{2 n(n-1)}, \forall n \geq 2$

$$
\begin{gathered}
\text { So: } \frac{1}{2 n} \leq \gamma-H_{n}+\frac{1}{n}+L_{n}(n)=\frac{1}{2(n-1)} \\
-\frac{1}{2 n} \geq H_{n}-\gamma-L_{n}(n) \geq \frac{1}{n}-\frac{1}{2(n-1)} \\
L_{n}(n)+\frac{n-2}{2 n(n-1)} \leq H_{n}-\gamma \leq \frac{1}{n}+L_{n}(n), \forall n \geq 2 \\
n \cdot e^{\frac{n-2}{2 n(n-1)}} \leq e^{H_{n}-\gamma} \leq e^{\frac{1}{2 n}} \cdot n \\
n \cdot e^{\frac{n-2}{2 n(n-1)}} \leq n+a \cdot x_{n} \leq e^{\frac{1}{2 n}} \cdot n-n \\
\frac{1}{a}\left(n \cdot e^{\frac{n-2}{2 n(n-1)}}-n\right) \leq x_{n} \leq \frac{1}{a}\left(n \cdot e^{\frac{1}{2 n}}-n\right)
\end{gathered}
$$

Suppose: $f(x)=x \cdot e^{\frac{1}{2 x}}-x, \lim _{x \rightarrow+\infty} f(f(x))=$?

$$
\begin{gathered}
y=\frac{1}{2 x}, x \rightarrow+\infty \Rightarrow y \rightarrow 0 \\
\lim _{x \rightarrow+\infty}(f(x))=\lim _{y \rightarrow 0}\left[\frac{e^{y}-1}{2 y}\right]=\frac{1}{2}
\end{gathered}
$$

Suppose: $g(x)=x \cdot e^{\frac{x-2}{2 x(x-1)}}-x, \lim _{x \rightarrow+\infty}(g(x))=$?

$$
y=\frac{1}{2 x}, \lim _{x \rightarrow+\infty}(g(x))=\lim _{y \rightarrow 0}\left[\frac{e^{\frac{y-4 y^{2}}{1-2 y}}-1}{2 y}\right]=\lim _{y \rightarrow 0}\left[\frac{\left(\frac{y-4 y^{2}}{1-2 y}\right)}{2 y} \cdot \frac{e^{\frac{y-4 y^{2}}{1-2 y}}}{\left(\frac{y-4 y^{2}}{1-2 y}\right)}\right]
$$

$=\lim _{y \rightarrow 0}\left[\frac{1-4 y}{2(1-2 y)} \cdot \frac{e^{\frac{y-42^{2}}{1-2 y}}-1}{\left(\frac{y-4 y^{2}}{1-2 y}\right)}\right]=\frac{1}{2}$. By using Sandwich Theorem $\lim _{n \rightarrow+\infty}\left(x_{n}\right)=\frac{1}{2 a}$

UP.223. If $\left(a_{n}\right)_{n \geq 1} ;\left(b_{n}\right)_{n \geq 1} \subset(0, \infty)$ such that:

$$
\lim _{n \rightarrow \infty}\left(\frac{a_{n+1}}{a_{n}} \cdot \frac{1}{n \sqrt{n}}\right)=a>0 ; \lim _{n \rightarrow \infty}\left(\frac{b_{n+1}}{b_{n}} \cdot \sqrt{n}\right)=b>0
$$

then find:

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\Omega=\lim _{n \rightarrow \infty}\left(\sqrt[n]{a_{n} b_{n}} \cdot\left(\left(1+\frac{1}{n}\right)^{n+1}-e\right)\right)
$$

Proposed by D.M. Bătinețu-Giurgiu, Neculai Stanciu - Romania Solution 1 by Marian Ursărescu-Romania

$$
\begin{align*}
& \Omega=\lim _{n \rightarrow \infty} \frac{\sqrt[n]{a_{n} b_{n}}}{n} \cdot n\left(\left(1+\frac{1}{n}\right)^{n+1}-e\right) \tag{1}\\
& \lim _{n \rightarrow \infty} \frac{\sqrt[n]{a_{n} b_{n}}}{n}=\lim _{n \rightarrow \infty} \sqrt[n]{\frac{a_{n} b_{n}}{n^{n}}} \stackrel{C . D .}{=} \lim _{n \rightarrow \infty} \frac{a_{n+1} b_{n+1}}{(n+1)^{n+1}} \cdot \frac{n^{n}}{a_{n} b_{n}}= \\
& =\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}} \cdot \frac{1}{n \sqrt{n}} \cdot \frac{b_{n+1}}{b_{n}} \cdot \sqrt{n} \cdot \frac{n}{n+1} \cdot\left(\frac{n}{n+1}\right)^{n}=\frac{a b}{e} \tag{2}\\
& \lim _{n \rightarrow \infty} n\left(\left(1+\frac{1}{n}\right)^{n+1}-e\right)=\lim _{n \rightarrow \infty} \frac{\left(1+\frac{1}{n}\right)^{n+1}-e}{\frac{1}{n}}=\lim _{t \rightarrow \infty} \frac{\left(1+\frac{1}{t}\right)^{t+1}-e}{\frac{1}{t}} \\
& =\lim _{x \rightarrow 0} \frac{(1+x)^{\frac{1}{x}+1}-e}{x} \stackrel{L^{\prime} H}{=} \lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}+1}\left[-\frac{1}{x^{2}} \ln (1+x)+\frac{\frac{1}{x}+1}{1+x}\right] \\
& =\lim _{x \rightarrow 0} e\left(-\frac{\ln (1+x)}{x^{2}}+\frac{1}{x}\right)=\lim _{x \rightarrow 0} e\left(-\frac{\ln (1+x)+x}{x^{2}}\right)= \\
& \stackrel{L^{\prime} H}{=} e \lim _{x \rightarrow 0} \frac{-\frac{1}{1+x}+1}{2 x}=e \lim _{x \rightarrow 0} \frac{-1+1+x}{2 x(1+x)}=\frac{e}{2} \text { (3). From (1) }+ \text { (2) }+ \text { (3) } \Rightarrow \Omega=\frac{a b}{2}
\end{align*}
$$

Solution 2 by Soumitra M andal-Chandar Nagore-India

$$
\lim _{n \rightarrow \infty}\left(\frac{a_{n+1}}{a_{n}} \cdot \frac{1}{n \sqrt{n}}\right)=a>0 \text { and } \lim _{n \rightarrow \infty}\left(\frac{b_{n+1}}{b_{n}} \cdot \sqrt{n}\right)=b>0
$$

Let $u_{n}=\frac{1}{e}\left(1+\frac{1}{n}\right)^{n+1}$ for all $n \in \mathbb{N}$, then $\lim _{n \rightarrow \infty} u_{n}=1$. Hence $\frac{u_{n}-1}{\ln u_{n}} \rightarrow 1$ for all $n \rightarrow \infty$
Let $\Omega=n \ln \frac{\left(1+\frac{1}{n}\right)^{n+1}}{e}$ for all $n \in \mathbb{N}$, then $\lim _{n \rightarrow \infty} \Omega=\lim _{n \rightarrow \infty} \frac{(n+1) \ln \left(1+\frac{1}{n}\right)-1}{\frac{1}{n}}$

$$
\text { Cesaro-Stolz } \lim _{n \rightarrow \infty} \frac{(n+1) \ln \left(1+\frac{1}{n}\right)-(n+2) \ln \left(1+\frac{1}{n+1}\right)}{\frac{1}{n}-\frac{1}{n+1}}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

$=\lim _{n \rightarrow \infty}\left\{n(n+1)^{2} \ln \left(1+\frac{1}{n}\right)-n(n+1)(n+2) \ln \left(1+\frac{1}{n+1}\right)\right\}$

$$
=\lim _{n \rightarrow 0} \frac{(1+x)^{2} \ln (1+x)-(1+x)(2 x+1) \ln \left(1+\frac{x}{1+x}\right)}{x^{3}}
$$

$=\lim _{n \rightarrow 0} \frac{(3 x+2)(1+x) \ln (1+x)-(1+x)(2 x+1) \ln (2 x+1)}{x^{3}}\left[\frac{0}{0}\right.$ format $]$
$\stackrel{L^{\prime} \text { Hospital's Rule }}{=} \lim _{x \rightarrow 0} \frac{x+(6 x+5) \ln (1+x)-(4 x+3) \ln (2 x+1)}{3 x^{2}}\left[\frac{0}{0}\right.$ format $]$
$\stackrel{L^{\prime} \text { Hospital's }_{=}^{=} \text {Rule }}{\lim _{x \rightarrow 0}} \frac{1+\frac{6 x+5}{1+x}+6 \ln (1+x)-\frac{2(4 x+3)}{2 x+1}-4 \ln (2 x+1)}{6 x}\left[\frac{0}{0}\right.$ format $]$
$\stackrel{L^{\prime} H o s p i t a l^{\prime} \text { s Rule }}{=} \lim _{x \rightarrow 0} \frac{\frac{6}{1+x}-\frac{6 x+5}{(1+x)^{2}}+\frac{6}{1+x}-\frac{8}{2 x+1}+\frac{4(4 x+3)}{(2 x+1)^{2}}-\frac{8}{2 x+1}}{6}=\frac{1}{2}$

$$
\therefore \lim _{n \rightarrow \infty}\left(\sqrt[n]{a_{n} b_{n}} \cdot\left(\left(1+\frac{1}{n}\right)^{n+1}-e\right)\right)=e \lim _{n \rightarrow \infty}\left(\frac{\sqrt[n]{a_{n} b_{n}}}{n} \cdot\left(\frac{1}{e}\left(1+\frac{1}{n}\right)^{n+1}-1\right)\right)
$$

$$
\begin{gathered}
\stackrel{\text { Cauch }}{D^{\prime} \text { Alembert }}= \\
e \lim _{n \rightarrow \infty}\left(\frac{a_{n+1}}{a_{n}} \cdot \frac{1}{n \sqrt{n}}\right) \cdot \lim _{n \rightarrow \infty}\left(\frac{b_{n+1}}{b_{n}} \sqrt{n}\right) \lim _{n \rightarrow \infty} \frac{1}{\left(1+\frac{1}{n}\right)^{n}} \cdot \lim _{n \rightarrow \infty} \frac{n}{1+n} \cdot \\
\cdot \lim _{n \rightarrow \infty} \frac{u_{n}-1}{\ln u_{n}} \cdot \lim _{n \rightarrow \infty} \ln u_{n}^{n}=\frac{a b}{2} \text { (Answer) }
\end{gathered}
$$

Solution 3 by Remus Florin Stanca-Romania

$$
\begin{gather*}
\Omega=\lim _{n \rightarrow \infty} \frac{\sqrt[n]{a_{n}}}{n \sqrt{n}} \cdot \sqrt[n]{b_{n}} \cdot \sqrt{n} \cdot n\left(\left(1+\frac{1}{n}\right)^{n+1}-e\right) \tag{1}\\
\lim _{n \rightarrow \infty} \frac{\sqrt[n]{a_{n}}}{n \sqrt{n}}=\lim _{n \rightarrow \infty} \sqrt[n]{\frac{a_{n}}{n^{n}(\sqrt{n})^{n}}}=\lim _{n \rightarrow \infty} \frac{a_{n+1}}{(n+1)^{n+1}(\sqrt{n+1})^{n+1}} \cdot \frac{n^{n}(\sqrt{n})^{n}}{a_{n}}= \\
=\frac{1}{e} \cdot \lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}\left(\sqrt{\frac{n}{n+1}}\right)^{n} \cdot \frac{1}{\sqrt{n+1}(n+1)}=\frac{1}{e \sqrt{e}} \cdot \lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}} \cdot \frac{1}{n \sqrt{n}}=\frac{1}{e \sqrt{e}} a \tag{2}\\
\lim _{n \rightarrow \infty} \sqrt{n} \cdot \sqrt[n]{b_{n}}=\lim _{n \rightarrow \infty} \sqrt[n]{(\sqrt{n})^{n} \cdot b_{n}}=\lim _{n \rightarrow \infty} \frac{(\sqrt{n+1})^{n+1} b_{n+1}}{(\sqrt{n})^{n} b_{n}}= \\
\sqrt{e} \cdot \lim _{n \rightarrow \infty} \frac{b_{n+1}}{b_{n}} \sqrt{n}=\sqrt{e} b(3)
\end{gather*}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\begin{gather*}
\stackrel{(1) ;(2) ;(3)}{\Rightarrow} \Omega=\frac{1}{e \sqrt{e}} a \sqrt{e} \lim _{n \rightarrow \infty} n\left(\left(1+\frac{1}{n}\right)^{n+1}-e\right)=\frac{a b}{e} \lim _{n \rightarrow \infty} n\left(e^{\ln \left(1+\frac{1}{n}\right)^{n+1}}-e^{1}\right)= \\
=\frac{a b}{e} \lim _{n \rightarrow \infty} n \frac{e^{\ln \left(1+\frac{1}{n}\right)^{n+1}-e^{1}}}{\ln \left(1+\frac{1}{n}\right)^{n+1}-1}\left(\ln \left(1+\frac{1}{n}\right)^{n+1}-1\right) \tag{4}
\end{gather*}
$$

It's known that $\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=f\left(x_{0}\right) \stackrel{(4)}{\Rightarrow} \Omega=a b \cdot \lim _{n \rightarrow \infty} n\left((n+1) \ln \left(1+\frac{1}{n}\right)-\right.$

$$
\begin{aligned}
& =a b \lim _{n \rightarrow \infty} n \ln \left((n+1) \ln \left(1+\frac{1}{n}\right)\right)=a b \lim _{n \rightarrow \infty} \frac{\ln (n+1)+\ln \left(\ln \left(1+\frac{1}{n}\right)\right)}{\frac{1}{n}}= \\
& \operatorname{Let} \frac{1}{n}=x \Rightarrow \Omega=a b \cdot \lim _{x \rightarrow 0} \frac{\ln \left(\frac{1}{x}+1\right)+\ln (\ln (x+1))}{x}= \\
& =a b \lim _{x \rightarrow 0} \frac{\ln (x+1)-\ln x+\ln (\ln (x+1))}{x} \frac{L^{\prime} H}{\frac{0}{0}} a b \lim _{x \rightarrow 0}\left(\frac{1}{x+1}-\frac{1}{x}+\frac{1}{(x+1) \ln (x+1)}\right)= \\
& =a b\left(1+\lim _{x \rightarrow 0}\left(\frac{1}{(x+1) \ln (x+1)}-\frac{1}{x}\right)\right)=a b+a b \lim _{x \rightarrow 0} \frac{1}{x}\left(\frac{x}{(x+1) \ln (x+1)}-1\right)= \\
& =a b+a b \lim _{x \rightarrow 0} \frac{\ln (x+1)}{x} \cdot \frac{1}{x}\left(\frac{x}{(x+1) \ln (x+1)}-1\right)=a b+a b \lim _{x \rightarrow 0} \frac{1}{x}\left(\frac{1}{x+1}-\frac{\ln (x+1)}{x}\right)= \\
& =a b-a b\left(1+\lim _{x \rightarrow 0} \frac{-\frac{L^{\prime} H}{\overline{0}} a b+a b \lim _{x \rightarrow 0}\left(-\frac{1}{(x+1)^{3}}+\frac{1}{(x+1)^{2}}\right.}{2}\right)=a b-a b\left(1-\frac{1}{2}\right)=\frac{a b}{2} \Rightarrow \Omega=\frac{a b}{2}
\end{aligned}
$$

Solution 4 by M okhtar Khassani-M ostaganem-Algerie

$$
\begin{aligned}
& \lim _{n \rightarrow+\infty} \sqrt[n]{a_{n} b_{n}}\left(\left(1+\frac{1}{n}\right)^{n+1}-e\right)=e \lim _{n \rightarrow+\infty} \sqrt[n]{\frac{a_{n}}{n^{\frac{3 n}{2}}} b_{n} n^{\frac{3}{2}}} n\left(e^{(1+n) \log \left(1+\frac{1}{n}\right)-1}-1\right) \\
= & \lim _{n \rightarrow+\infty} \frac{\frac{a_{n+1}}{(n+1)^{\frac{3(n+1)}{2}} b_{n+1}(n+1)^{\frac{n+1}{2}}}}{\frac{a_{n}}{n^{\frac{3 n}{2}}} b_{n} n^{\frac{n}{2}}} \cdot \frac{e^{(1+n) \log \left(1+\frac{1}{n}\right)-1}-1}{(1+n) \log \left(1+\frac{1}{n}\right)-1} \cdot \frac{(1+n) \log \left(1+\frac{1}{n}\right)-1}{\frac{1}{n}}
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

$$
=a b e \frac{1}{2} \lim _{n \rightarrow+\infty} \frac{n^{n+1}}{(n+1)^{n+1}}=\frac{a b e}{2} \lim _{n \rightarrow+\infty}\left(1-\frac{1}{n+1}\right)^{n+1}=\frac{a b}{2}
$$

UP.224. If $\left(a_{n}\right)_{n \geq 1} ;\left(b_{n}\right)_{n \geq 1} \subset(0, \infty)$ such that:

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left(\frac{a_{n}}{n}\right)= & a>0 ; \lim _{n \rightarrow \infty}\left(\frac{b_{n+1}}{a_{n} b_{n}}\right)=b>0 \text { then find: } \\
\Omega & =\lim _{n \rightarrow \infty}\left(\sqrt[n+1]{b_{n+1}}-\sqrt[n]{b_{n}}\right)
\end{aligned}
$$

Proposed by D.M. Bătinețu - Giurgiu, Daniel Sitaru - Romania

Solution 1 by Soumitra Mandal-Chandar Nagore-India

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{n}=a>0 \text { and } \lim _{n \rightarrow \infty} \frac{b_{n+1}}{a_{n} b_{n}}=b>0
$$

$$
\text { Now, } \lim _{n \rightarrow \infty} \frac{\sqrt[n]{b_{n}}}{n}=\lim _{n \rightarrow \infty} \sqrt[n]{\frac{a_{n}}{n^{n}}} \stackrel{\begin{array}{c}
\text { CAUCHY- } A L E M B E R T
\end{array}}{=} \lim _{n \rightarrow \infty}\left(\frac{b_{n+1}}{a_{n} b_{n}} \cdot \frac{1}{\left(1+\frac{1}{n}\right)^{n}} \cdot \frac{n}{n+1} \cdot \frac{a_{n}}{n}\right)=\frac{a b}{e}
$$

Let $u_{n}=\frac{\sqrt[n+1]{\sqrt{b_{n+1}}}}{\sqrt[n]{b_{n}}}$ for all $n \in \mathbb{N}$ then $\lim _{n \rightarrow \infty} u_{n}=\lim _{n \rightarrow \infty}\left(\frac{\sqrt[n+1]{\sqrt{b_{n+1}}}}{n+1} \cdot \frac{n}{\sqrt[n]{\boldsymbol{b}_{\boldsymbol{n}}}} \cdot\left(1+\frac{1}{n}\right)\right)=1$
Hence $\frac{u_{n}-1}{\ln u_{n}} \rightarrow 1$ for $n \rightarrow \infty . \operatorname{Lim}_{n \rightarrow \infty} u_{n}^{n}=\lim _{n \rightarrow \infty}\left(\frac{b_{n+1}}{a_{n} b_{n}} \cdot \frac{a_{n}}{n} \cdot \frac{n}{n+1} \cdot \frac{n+1}{\sqrt[n+1]{b_{n+1}}}\right)=e$
$\therefore \lim _{n \rightarrow \infty}\left(\sqrt[n+1]{b_{n+1}}-\sqrt[n]{b_{n}}\right)=\lim _{n \rightarrow \infty}\left(\frac{\sqrt[n]{b_{n}}}{n} \cdot \frac{u_{n}-1}{\ln u_{n}} \cdot \ln u_{n}^{n}\right)=\frac{a b}{e} \cdot 1 \cdot \ln e=\frac{a b}{e}$ (Answer)
Solution 2 by Mokhtar Khassani-Mostaganem-Algerie

$$
\begin{gathered}
\Omega=\lim _{n \rightarrow+\infty}\left(\sqrt[n+1]{b_{n+1}}-\sqrt[n]{b_{n}}\right)=\lim _{n \rightarrow+\infty}\left((n+1) \sqrt[n]{\frac{b_{n+1}}{(n+1)^{n+1}}}-n \sqrt[n]{\frac{b_{n}}{n^{n}}}\right)= \\
=\lim _{n \rightarrow+\infty} \frac{\frac{b_{n+1}}{(n+1)^{n+1}}}{\frac{b_{n}}{n^{n}}}=\lim _{n \rightarrow+\infty} \frac{b_{n+1}}{b_{n} a_{n}} \cdot \frac{a_{n}}{n}\left(1-\frac{1}{n+1}\right)^{n+1}=\frac{a b}{e}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

UP.225. If $m \in \mathbb{N}$ then in $\triangle A B C$ the following relationship holds:

$$
3^{m}\left(\left(\frac{a}{h_{a}} \cot A\right)^{m+1}+\left(\frac{b}{h_{b}} \cot B\right)^{m+1}+\left(\frac{c}{h_{c}} \cot C\right)^{m+1}\right) \geq m+2
$$

Proposed by D.M. Bătinețu-Giurgiu, Daniel Sitaru - Romania Solution 1 by Marian Ursărescu-Romania

From Hölder's inequality we have:

$$
\begin{gather*}
\left(\frac{a}{h_{a}} \cot A\right)^{m+1}+\left(\frac{b}{h_{b}} \cot B\right)^{m+1}+\left(\frac{c}{h_{c}} \cot C\right)^{m+1} \geq \frac{\left(\frac{a}{h_{a}} \cot A+\frac{b}{h_{b}} \cot B+\frac{c}{h_{c}} \cot C\right)^{m+1}}{3^{m}} \\
\Rightarrow \text { we must show: }\left(\frac{a}{h_{a}} \cot A+\frac{b}{h_{b}} \cot B+\frac{c}{h_{c}} \cot C\right)^{m+1} \geq m+2 \text { (1) } \tag{1}\\
\text { But } \frac{a}{h_{a}}=\frac{a}{\frac{2 S}{a}}=\frac{a^{2}}{2 S} \tag{2}
\end{gather*}
$$

From (1)+(2) \Rightarrow we must show: $\left(\frac{a^{2} \cot A+b^{2} \cot B+c^{2} \cot C}{2 S}\right)^{m+1} \geq m+2$
But in any $\triangle A B C$ we have: $a^{2} \cot A+b^{2} \cot B+c^{2} \cot C=4 S$ (4)
From (3)+ (4) we must show:
$2^{m+1} \geq m+2, \forall m \in \mathbb{N}$, which it's true, with equality for $m=0$.
Solution 2 by Tran Hong-Dong Thap-Vietnam
Using AM-GM inequality we have:

$$
\begin{gathered}
\left(\frac{a}{h_{a}} \cot A\right)^{m+1}+\left(\frac{b}{h_{b}} \cot B\right)^{m+1}+\left(\frac{c}{h_{c}} \cot C\right)^{m+1} \geq 3 \sqrt[3]{\left(\frac{a}{h_{a}} \cot A \frac{b}{h_{b}} \cot B \frac{c}{h_{c}} \cot C\right)^{m+1}} \\
=3\left(\frac{a b c \cot A \cot B \cot C}{h_{a} h_{b} h_{c}}\right)^{m+1}=3\left(\frac{4 r R s}{\frac{2 s^{2} r^{2}}{R}} \cdot \frac{s^{2}-(2 R+r)^{2}}{2 s r}\right)^{\frac{m+1}{3}} \\
=3\left(\frac{R^{2}\left(s^{2}-(2 R+r)^{2}\right)}{s^{2} r^{2}}\right)^{\frac{m+1}{3}} \\
\rightarrow 3^{m}\left(\left(\frac{a}{h_{a}} \cot A\right)^{m+1}+\left(\frac{b}{h_{b}} \cot B\right)^{m+1}+\left(\frac{c}{h_{c}} \cot C\right)^{m+1}\right)
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

 www.ssmrmh.ro$$
\geq 3^{m+1}\left(\frac{R^{2}\left(s^{2}-(2 R+r)^{2}\right)}{s^{2} r^{2}}\right)^{\frac{m+1}{3}}=\Omega \text {. We have: } \frac{R^{2}\left(s^{2}-(2 R+r)^{2}\right)}{s^{2} r^{2}}>\left(\frac{2}{3}\right)^{3}
$$

In $\triangle A B C$ (acute) we have: $s^{2}-(2 R+r)^{2}>0 \leftrightarrow s^{2}>(2 R+r)^{2} \leftrightarrow s>2 R+r$

$$
R \geq 2 r \rightarrow \frac{R^{2}}{r^{2}} \geq 4 ; \frac{s^{2}-(2 R+r)^{2}}{s^{2}}>\frac{2}{27} \leftrightarrow 5 s>2 R+r
$$

(true because: $s>2 R+r \rightarrow 5 s>2 R+r$)
So, $\Omega \geq 3^{m+1} \cdot\left(\frac{2}{3}\right)^{3 \cdot \frac{m+1}{3}} \geq 2^{m+1} \geq m+2$ (true with $m \in \mathbb{N}$)
Solution 3 by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
m \in \mathbb{N}, \text { repeated Chebyshev } \Rightarrow \sum\left(\frac{a}{h_{a}} \cot A\right)^{m+1} \geq \frac{1}{3^{m}}\left(\sum \frac{a}{h_{a}} \cot A\right)^{m+1} \\
=\frac{1}{3^{m}}\left(\sum \frac{2 R \sin A \cot A}{\frac{2 r s}{a}}\right)^{m+1}=\frac{1}{3^{m}}\left(\sum \frac{2 R \cdot 2 R \sin A \cos A}{2 r s}\right)^{m+1} \\
=\frac{1}{3^{m}}\left(\left(\frac{2 R^{2}}{2 r s}\right) \sum \sin 2 A\right)^{m+1}=\frac{1}{3^{m}}\left(\left(\frac{R^{2}}{r s}\right) 4 \sin A \sin B \sin C\right)^{m+1} \\
=\frac{1}{3^{m}}\left(\frac{4 R^{2}}{r s} \cdot \frac{4 R r s}{8 R^{3}}\right)^{m+1}=\frac{1}{3^{m}}(2)^{m+1}=\frac{1}{3^{m}}(1+1)^{m+1} \\
\text { Bernoulli } \frac{1}{3^{m}}(1+m+1)(\because m+1 \geq 1 \because m \in \mathbb{N}) \\
\geq \\
=\frac{m+2}{3^{m}} \Rightarrow 3^{m} \sum\left(\frac{a}{h_{a}} \cot A\right)^{m+1} \geq m+2 \quad \text { (Proved) }
\end{gathered}
$$

ROMANIAN MATHEMEMATICAL MAGAZINE

It's nice to be important but more important it's to be nice. At this paper works a TEAM.

This is RMM TEAM. To be continued!

Daniel Sitaru

