

ROMANIAN MATHEMATICAL MAGAZINE

SOLUTIONS

Founding Editor DANIEL SITARU

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro Proposed by

Daniel Sitaru-Romania
M arin Chirciu-Romania
Hung Nguyen Viet-Vietnam
Marian Ursărescu-Romania
George Apostolopoulos - Greece
Vasile Jiglău-Romania
Florică Anastase-Romania
D.M.Bătineţu-Giurgiu - Romania
Neculai Stanciu-Romania

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro Solutions by

Daniel Sitaru-Romania,Marin Chirciu-Romania Tran Hong-Vietnam,Sanong Huayrerai-Thailand Marian Dincă-Romania,Michael Stergiou-Greece Florentin Vișescu - Romania,Henry Ricardo-New York-USA

Marian Ursărescu-Romania,Adrian Popa-Romania Rahim Shahbazov-Azerbaijan,Ravi Prakash-India George Florin Şerban-Romania,George Apostolopoulos- Greece Vasile Jiglău-Romania,M arian Voinea-Romania Florică Anastase-Romania,Naren Bhandari-Bajura-Nepal
D.M.Bătineţu-Giurgiu - Romania,Neculai Stanciu-Romania

Kartick Chandra Betal-India,Mokhtar Khassani-Algerie
Soumitra Mandal-India

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

JP.271. If $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}>0 ; a b c=a+b+c+2$ then:

$$
(2 a+1)^{2}+(2 b+1)^{2}+(2 c+1)^{2} \geq 25
$$

Proposed by Marin Chirciu-Romania
Solution by proposer

$$
\begin{array}{r}
\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}>0 ; a b c=a+b+c+2 \Rightarrow \frac{\mathbf{1}}{\mathbf{1 + a}}+\frac{\mathbf{1}}{\mathbf{1}+\boldsymbol{b}}+\frac{\mathbf{1}}{\mathbf{1}+\boldsymbol{c}}=\mathbf{1} \\
\mathbf{1}=\frac{\mathbf{1}}{\mathbf{1}+\boldsymbol{a}}+\frac{\mathbf{1}}{\mathbf{1}+\boldsymbol{b}}+\frac{\mathbf{1}}{\mathbf{1}+\boldsymbol{c}} \stackrel{A m-H m}{\geq} \frac{\mathbf{9}}{3+\boldsymbol{a}+\boldsymbol{b}+\boldsymbol{c}} \Rightarrow \boldsymbol{a}+\boldsymbol{b}+\boldsymbol{c} \geq \mathbf{6} \tag{1}
\end{array}
$$

Equality if and only if $a=b=c=2$.

$$
\begin{gathered}
a b c=a+b+c+2 \Rightarrow \frac{a}{1+a}+\frac{b}{1+b}+\frac{c}{1+c}=2 \\
2=\sum \frac{a}{1+a}=\sum \frac{a^{2}}{a+a^{2}} \stackrel{\text { Bergstrom }}{\geq} \frac{\left(\sum a\right)^{2}}{\sum\left(a+a^{2}\right)} \stackrel{(1)}{\geq} \frac{36}{\sum\left(a+a^{2}\right)} \\
2 \geq \frac{36}{\sum\left(a+a^{2}\right)} \Rightarrow \sum\left(a+a^{2}\right) \geq 18 \Rightarrow \sum(2 a+1)^{2} \geq 25
\end{gathered}
$$

Equality if only if $a=b=c=2$

JP.272. If $a, b, c, \lambda>0, a^{2}+b^{2}+c^{2}=1$ then:

$$
\begin{aligned}
1 \leq a \sqrt{1+\lambda b c}+b \sqrt{1+\lambda c a}+c \sqrt{1+\lambda a b} \leq \sqrt{3+\lambda} \\
\text { Proposed by Hung Nguyen Viet-Vietnam }
\end{aligned}
$$

Solution 1 by Tran Hong-Dong Thap-Vietnam

$$
\begin{gathered}
1 \stackrel{(*)}{\sim} a \sqrt{1+\lambda b c}+b \sqrt{1+\lambda c a}+c \sqrt{1+\lambda a b} \stackrel{(* *)}{\sim} \sqrt{3+\lambda} \\
(*) \Leftrightarrow 1 \leq \sum_{c y c} a(1+\lambda b c)+2 \sum_{c y c}(a b \sqrt{(1+\lambda c a)(1+\lambda b c)}) \Leftrightarrow \\
1 \leq\left[\sum_{c y c} a(1+\lambda b c)+2 \sum_{c y c}(a b \sqrt{(1+\lambda c a)(1+\lambda b c)})\right]^{2} \Leftrightarrow
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

$$
\begin{aligned}
\mathbf{1 \leq}\left(\sum_{c y c} a(1+\lambda b c)\right)^{2} & +4\left(\sum_{c y c} a(1+\lambda b c)\right)\left(\sum_{c y c}(a b \sqrt{(1+\lambda c a)(1+\lambda b c)})\right)+ \\
& +\left(\sum_{c y c}(a b \sqrt{(1+\lambda c a)(1+\lambda b c)})\right)^{2}
\end{aligned}
$$

$$
\text { Let: } \Omega=4\left(\sum_{c y c} a(1+\lambda b c)\right)\left(\sum_{c y c}(a b \sqrt{(1+\lambda c a)(1+\lambda b c)})\right)+
$$

$$
\left(\sum_{c y c}(a b \sqrt{(1+\lambda c a)(1+\lambda b c)})\right)^{2}, \forall a, b, c, \lambda>0
$$

$$
1 \leq(a+b+c+3 \lambda a b c)^{2}+\Omega \Leftrightarrow
$$

$$
1 \leq a^{2}+b^{2}+c^{2}+9(\lambda a b c)^{2}+2(a b+b c+c a+3 \lambda a b c(a+b+c))+\Omega
$$

$$
\stackrel{a^{2}+b^{2}+c^{2}=1}{\Longleftrightarrow} 0 \leq 9(\lambda a b c)^{2}+2(a b+b c+c a+3 \lambda a b c(a+b+c))+\Omega
$$

Which is clearly true because: $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \lambda, \Omega>0$. Now,

$$
\begin{aligned}
& a \sqrt{1+\lambda b c}+b \sqrt{1+\lambda c a}+c \sqrt{1+\lambda a b} \stackrel{B C S}{\stackrel{m}{\leq}} \sqrt{a^{2}+b^{2}+c^{2}} \cdot \sqrt{(1+\lambda b c)+(1+\lambda a c)+(1+\lambda a b)} \\
& a^{2}+b^{2}+c^{2}=1 \\
& \quad \stackrel{n}{=} \sqrt{3+\lambda(a b+b c+c a)} \stackrel{\sum a b \leq \sum^{2} a^{2}=1}{\sim} \sqrt{3+\lambda \cdot 1}=\sqrt{3+\lambda} \Rightarrow(* *) \text { Is true. Proved. }
\end{aligned}
$$

Solution 2 by Sanong Huayrerai-Nakon Pathom-Thailand

$$
\begin{gathered}
a \sqrt{1+\lambda b c}+b \sqrt{1+\lambda c a}+c \sqrt{1+\lambda a b}=\sqrt{a^{2}+\lambda a^{2} b c}+\sqrt{b^{2}+\lambda b^{2} c a}+\sqrt{c^{2}+\lambda c^{2} a b} \\
\leq \sqrt{3\left(a^{2}+b^{2}+c^{2}\right)+\lambda\left(a^{2} b c+b^{2} c a+c^{2} a b\right)} \leq \sqrt{3+\lambda} \\
\therefore a^{2}+b^{2}+c^{2}=1 \Rightarrow\left(a^{2}+b^{2}+c^{2}\right)^{2} \geq 3\left(a^{2} b c+b^{2} c a+c^{2} a b\right) \\
\text { Because: } a^{2}+b^{2}+c^{2}=1, \text { consider } \\
1+\lambda b c \geq a^{2} ; 1+\lambda c a \geq b^{2} ; 1+\lambda a b \geq c^{2} \text { hence } \\
\\
\sqrt{1+\lambda b c} \geq a, \sqrt{1+\lambda c a} \geq b, \sqrt{1+\lambda a b} \geq c \text { hence } \\
a \sqrt{1+\lambda b c} \geq a^{2}, b \sqrt{1+\lambda c a} \geq b^{2}, c \sqrt{1+\lambda a b} \geq c^{2} \Rightarrow \\
a \sqrt{1+\lambda b c}+b \sqrt{1+\lambda c a}+c \sqrt{1+\lambda a b} \geq a^{2}+b^{2}+c^{2}=1
\end{gathered}
$$

Therefore: $1 \leq a \sqrt{1+\lambda b c}+b \sqrt{1+\lambda c a}+c \sqrt{1+\lambda a b} \leq \sqrt{3+\lambda}$. Proved.

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$J P .273$ If $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}>0$ then:

$$
\frac{a^{3}+b^{3}+c^{3}}{3 a b c}+\frac{a b+b c+c a}{a^{2}+b^{2}+c^{2}} \geq \frac{2\left(a^{2}+b^{2}+c^{2}\right)}{a b+b c+c a}
$$

Proposed by Nguyen Viet Hung-Hanoi - Vietnam

Solution by M arin Chirciu-Romania

Adding $\frac{a^{2}+b^{2}+c^{2}}{a b+b c+c a}$ to both members, the inequality can be written:

$$
\begin{equation*}
\frac{a^{2}+b^{3}+c^{3}}{3 a b c}+\frac{a b+b c+c a}{a^{2}+b^{2}+c^{2}}+\frac{a^{2}+b^{2}+c^{2}}{a b+b c+c a} \geq \frac{3\left(a^{2}+b^{2}+c^{2}\right)}{a b+b c+c a} \tag{1}
\end{equation*}
$$

Using the means inequality, we obtain:

$$
\begin{equation*}
\frac{a b+b c+c a}{a^{2}+b^{2}+c^{2}}+\frac{a^{2}+b^{2}+c^{2}}{a b+b c+c a} \geq 2 \sqrt{\frac{a b+b c+c a}{a^{2}+b^{2}+c^{2}} \cdot \frac{a^{2}+b^{2}+c^{2}}{a b+b c+c a}}=2 \tag{2}
\end{equation*}
$$

From (1) and (2) it suffices to prove that: $\frac{a^{3}+b^{3}+c^{3}}{3 a b c}+2 \geq \frac{3\left(a^{2}+b^{2}+c^{2}\right)}{a b+b c+c a}$
Subtracting 3 from both members of inequality (3), we obtain:

$$
\begin{gathered}
\frac{a^{3}+b^{3}+c^{3}}{3 a b c}-1 \geq \frac{3\left(a^{2}+b^{2}+c^{2}\right)}{a b+b c+c a}-3 \Leftrightarrow \frac{a^{3}+b^{3}+c^{3}-3 a b c}{3 a b c} \geq \\
\geq \frac{3\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)}{a b+b c+c a} \Leftrightarrow \\
\Leftrightarrow \frac{(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)}{3 a b c} \geq \frac{3\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)}{a b+b c+c a} \Leftrightarrow \\
\Leftrightarrow\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)[(a+b+c)(a b+b c+c a)-9 a b c] \geq 0, \text { which }
\end{gathered}
$$

follows from:

$$
\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right) \geq 0 \Leftrightarrow(a-b)^{2}+(b-c)^{2}+(c-a)^{2} \geq 0
$$

Obviously, with equality for $a=b=\boldsymbol{c}$ and

$$
[(a+b+c)(a b+b c+c a)-9 a b c] \geq 0, \text { true from means inequalities: }
$$

$$
a+b+c \geq 3 \sqrt[3]{a b c} \text { and } a b+b c+c a \geq 3 \sqrt[3]{(a b c)^{2}} \text {, wherefrom }
$$

$$
(a+b+c)(a b+b c+c a) \geq 9 a b c
$$

Above we've used the identity:

$$
a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)
$$

We deduce that the inequality from enunciation, with equality holds if and only if

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro $a=b=c$.

JP.274. If $x, y, z \geq 0, x+y+z=1 ; n \geq 2$ then:

$$
(n+1)(x y+y z+z x) \leq n\left(x^{2}+y^{2}+z^{2}\right)+9 x y z
$$

Proposed by M arin Chirciu-Romania
Solution 1 by Tran Hong-Dong Thap-Vietnam
By Schur's inequality:

$$
\begin{gathered}
x^{3}+y^{3}+z^{3}+3 x y z \geq x y(x+y)+y z(y+z)+z x(z+x) \Leftrightarrow \\
x^{2}+y^{2}+z^{2}+\frac{9 x y z}{x+y+z} \geq 2(x y+y z+z x)(*)
\end{gathered}
$$

Now, because: $x+y+z=1$
Inequality becomes as: $(n+1)(x y+y z+z x) \leq n\left(x^{2}+y^{2}+z^{2}\right)+\frac{9 x y z}{x+y+z} \Leftrightarrow$

$$
\begin{gathered}
2(x y+y z+z x)+(n-1)(x y+y z+z x) \leq \\
(n-1)\left(x^{2}+y^{2}+z^{2}\right)+x^{2}+y^{2}+z^{2}+\frac{9 x y z}{x+y+z} \Leftrightarrow \\
(n-1)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)+ \\
+\left(x^{2}+y^{2}+z^{2}+\frac{9 x y z}{x+y+z}-2(x y+y z+z x)\right) \geq 0
\end{gathered}
$$

Which is true because: $n \geq 2 \Rightarrow n-1>0, x^{2}+y^{2}+z^{2} \geq x y+y z+z x$ and by (*)
Proved.
Solution 2 by Marian Dincă-Romania

$$
\begin{gathered}
\text { Let: } x=\frac{a}{a+b+c}, y=\frac{b}{a+b+c}, z=\frac{c}{a+b+c} \\
(n+1)(a b+b c+c a)(a+b+c) \leq n\left(a^{2}+b^{2}+c^{2}\right)(a+b+c)+9 a b c \\
\text { Let: } a+b+c=p, a b+b c+c a=q, a b c=r \\
(n+1) q p \leq n\left(p^{2}-2 q\right) p+9 r \\
f(r)=n\left(p^{2}-2 q\right) p+9 r-(n+1) q p, 0 \leq r \leq \frac{p q}{9}
\end{gathered}
$$

Because it is of te first degree in the variable r, it will be necessary and sufficient to:

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\begin{gathered}
f\left(\frac{p q}{9}\right) \geq 0 \Leftrightarrow n\left(p^{2}-2 q\right) p+9 r-(n+1) q p \geq n p\left(p^{2}-2 q\right)-n p q \geq 0 \Leftrightarrow \\
n p\left(p^{2}-2 q-q\right) \geq 0 \Leftrightarrow n p\left(p^{2}-3 q\right) \geq 0, \text { true. } \\
f(0) \geq 0 \text { for } r=0 \Rightarrow a b c=0
\end{gathered}
$$

Let: $\boldsymbol{c}=\mathbf{0} \Rightarrow \boldsymbol{p}=\boldsymbol{a}+\boldsymbol{b}, \boldsymbol{q}=\boldsymbol{a b} \Rightarrow \boldsymbol{q} \leq \frac{\boldsymbol{p}^{2}}{4}$
$f(0)=n\left(p^{2}-2 q\right) p-(n+1) q p=n\left(p^{2}-\frac{p^{2}}{2}\right) p-\frac{(n+1) p^{3}}{4}=\frac{n p^{3}}{2}-\frac{(n+1) p^{3}}{4}$

$$
=\boldsymbol{p}^{\mathbf{3}}\left(\frac{\boldsymbol{n}-\mathbf{1}}{\mathbf{4}}\right)>0
$$

JP. 275 If in $\triangle A B C, b^{2}+c^{2}=3 a^{2}$ then:

$$
\frac{2}{h_{a}} \sqrt{\frac{b c}{5}}+\frac{w_{b}}{h_{b}}+\frac{w_{c}}{h_{c}}<1+\frac{r}{R}
$$

Proposed by Daniel Sitaru-Romania
Solution by proposer

$$
\begin{gathered}
a^{2}=b^{2}+c^{2}-2 b \cos A=3 a^{2}-2 b c \cos A \\
2 b c \cos A=2 a^{2} \Rightarrow b c \cos A=a^{2} \\
\cos A=\frac{a^{2}}{b c}<1 \Rightarrow a^{2}<b c \text { (1) } \\
w_{a}^{2}=\frac{4 b c s(s-a)}{(b+c)^{2}}=\frac{4 b c}{(b+c)^{2}} \cdot \frac{a+b+c}{2} \cdot \frac{b+c-a}{2}= \\
=\frac{b c}{(b+c)^{2}}\left((b+c)^{2}-a^{2}\right)=b c-\frac{b c a^{2}}{(b+c)^{2}}= \\
=b c-\frac{b c a^{2}}{b^{2}+c^{2}+2 b c}=b c-\frac{b c a^{2}}{3 a^{2}+2 b c}=b c-\frac{b c}{3+\frac{2 b c}{a^{2}}} \stackrel{(1)}{>} b c-\frac{b c}{3+\frac{2 b c}{b c}}= \\
=b c-\frac{b c}{5}=\frac{4 b c}{5} \Rightarrow w_{a}>2 \sqrt{\frac{b c}{5}}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\frac{2}{h_{a}} \sqrt{\frac{b c}{5}}+\frac{w_{b}}{h_{b}}+\frac{w_{c}}{h_{c}}<\frac{w_{a}}{h_{a}}+\frac{w_{b}}{h_{b}}+\frac{w_{c}}{h_{c}} \leq 1+\frac{r}{R}
$$

JP.276. In $\triangle A B C$ the following relationship holds:

$$
\frac{3-n}{2}+\frac{n r}{2} \leq \frac{a^{2}}{b^{2}+c^{2}}+\frac{b^{2}}{c^{2}+a^{2}}+\frac{c^{2}}{a^{2}+b^{2}} \leq \frac{3 R}{4 r} ; n \geq-1
$$

Proposed by Marin Chirciu-Romania

Solution by proposer

$$
\begin{gathered}
\text { LHS: } \frac{a^{2}}{b^{2}+c^{2}}+\frac{b^{2}}{c^{2}+a^{2}}+\frac{c^{2}}{a^{2}+b^{2}} \geq \frac{3-n}{2}+\frac{n r}{2}, n \geq-1 \\
\sum \frac{a^{2}}{b^{2}+c^{2}}=\sum \frac{a^{4}}{a^{2}\left(b^{2}+c^{2}\right)} \stackrel{\text { Bergstrom }}{\geq} \frac{\left(\sum a^{2}\right)^{2}}{2 \sum b^{2} c^{2}} \stackrel{(1)}{\geq} \frac{R(3-n)+2 n r}{2 R}, \text { where }
\end{gathered}
$$

(1) $\Leftrightarrow R\left(\sum a^{2}\right)^{2} \geq \mathbf{2}(2 R-r) \sum b^{2} c^{2}$, true from relationship holds

$$
\sum a^{2}=2\left(s^{2}-r^{2}-4 R r\right), \sum b^{2} c^{2}=s^{4}+s^{2}\left(2 r^{2}-8 R r\right)+r^{2}(4 R+r)^{2}
$$

We must show that:

$$
\begin{gathered}
4 R\left[s^{4}-2 s^{2}\left(r^{2}+4 R r\right)+r^{2}(4 R+r)^{2}\right] \geq[R(3-n)+2 n r]\left[s^{4}+s^{2}\left(2 r^{2}-8 R r\right)+r^{2}(4 R+r)^{2}\right] \\
s^{2}\left[s^{2}(R(n+1)-2 n r)-r\left(R^{2}(8+8 n)+R r(14-18 n)+4 n r^{2}\right)\right]+ \\
+r^{2}(4 R+r)^{2}(R(n+1)-2 n r) \geq 0
\end{gathered}
$$

We distinguish the cases:
Case 1) $\left[s^{2}(R(n+1)-2 n r)-r\left(R^{2}(8+8 n)+R r(14-18 n)+4 n r^{2}\right)\right] \geq 0$ the inequality is obvious.
Case 2) $\left[s^{2}(R(n+1)-2 n r)-r\left(R^{2}(8+8 n)+\operatorname{Rr}(14-18 n)+4 n r^{2}\right)\right]<0$ the inequality becomes:
$r^{2}(4 R+r)^{2} \geq s^{2}\left[r\left(R^{2}(8+8 n)+R r(14-18 n)+4 n r^{2}\right)-s^{2}(R(n+1)-2 n r)\right]$ true from Blundon-Gerretsen inequality

$$
16 R r-5 r^{2} \leq s^{2} \leq \frac{R(4 R+r)^{2}}{2(2 R-r)}
$$

It's suffices to prove:

$$
r^{2}(4 R+r)^{2} \geq \frac{R(4 R+r)^{2}}{2(2 R-r)}\left[r\left(R^{2}(8+8 n)+R r(14-18 n)+4 n r^{2}\right)-\left(16 R r-5 r^{2}\right)(R(n+1)-2 n r)\right] \Leftrightarrow
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

$(8 n+8) R^{3}-(15 n+15) R^{2} r-(4 n+2) R r^{2}+4 n r^{3} \geq 0 \Leftrightarrow$
$(R-2 r)\left[(8 n+8) R^{2}+(n+1) R r-2 n r^{2}\right] \geq 0$ true from $R \geq 2 r$-Euler and with
$n \geq-1$ we obtain: $\left[(8 n+8) R^{2}+(n+1) R r-2 n r^{2}\right] \geq 0$

$$
\begin{gathered}
\frac{a^{2}}{b^{2}+c^{2}}+\frac{b^{2}}{c^{2}+a^{2}}+\frac{c^{2}}{a^{2}+b^{2}} \leq \frac{3 R}{4 r} \\
\sum \frac{a^{2}}{b^{2}+c^{2}}=\frac{2\left[s^{4}-s^{2}\left(4 R r+6 r^{2}\right)+r^{2}\left(6 R^{2}+4 R r+r^{2}\right)\right]}{\left(s^{2}+r^{2}+2 R r\right)^{2}}
\end{gathered}
$$

From $2\left(b^{2}+c^{2}\right) \geq(b+c)^{2} \Leftrightarrow(b-c)^{2} \geq 0$ we get:

$$
\sum \frac{a^{2}}{b^{2}+c^{2}} \leq 2 \sum \frac{a^{2}}{(b+c)^{2}}=\frac{4\left[s^{4}-s^{2}\left(4 R r+6 r^{2}\right)+r^{2}\left(6 R^{2}+4 R r+r^{2}\right)\right]}{\left(s^{2}+r^{2}+2 R r\right)^{2}}
$$

It's suffices to prove that:

$$
\begin{gathered}
\frac{4\left[s^{4}-s^{2}\left(4 R r+6 r^{2}\right)+r^{2}\left(6 R^{2}+4 R r+r^{2}\right)\right]}{\left(s^{2}+r^{2}+2 R r\right)^{2}} \leq \frac{3 R}{4 r} \Leftrightarrow \\
s^{2}\left[s^{2}(3 R-16 r)+r\left(12 R^{2}+70 R r+96 r^{2}\right)\right]+ \\
+r^{2}\left(12 R^{3}-84 R^{2} r-61 R r^{2}-16 r^{3}\right) \geq 0
\end{gathered}
$$

We distinguish the cases:
Case 1) If $3 R-16 r \geq 0$, usig Gerretsen inequality $s^{2} \geq 16 R r-5 r^{2}$
We must show that:

$$
\begin{gathered}
\left(16 R r-5 r^{2}\right)\left[\left(16 R r-5 r^{2}\right)(3 R-16 r)+r\left(12 R^{2}+70 R r+96 r^{2}\right)\right]+ \\
r^{2}\left(12 R^{3}-84 R^{2} r-61 R r^{2}-16 r^{3}\right) \geq 0 \Leftrightarrow \\
243 R^{3}-900 R^{2} r+940 R r^{2}-224 r^{3} \geq 0 \Leftrightarrow \\
(R-2 r)\left(243 R^{2}-414 R r+112 r^{2}\right) \geq 0 \text { true from } R \geq 2 r-\text { Euler. }
\end{gathered}
$$

Case 2) If $3 R-16 r<0$, the inequality can be rewritten:

$$
r^{2}\left(12 R^{3}-84 R^{2} r-61 R r^{2}-16 r^{3}\right) \geq s^{2}\left[s^{2}(16 r-3 R)-r\left(12 R^{2}+70 R r+96 r^{2}\right)\right.
$$

true from Gerretsen: $s^{2} \leq 4 R^{2}+4 R r+3 r^{2}$.
We must show that: $r^{2}\left(12 R^{3}-84 R^{2} r-61 R r^{2}-16 r^{3}\right) \geq$ $\geq\left(4 R^{2}+4 R r+3 r^{2}\right)\left[\left(4 R^{2}+4 R r+3 r^{2}\right)(16 r-3 R)-r\left(12 R^{2}+70 R r+96 r^{2}\right)\right.$

$$
\Leftrightarrow 12 R^{5}-28 R^{4} r-22 R^{3} r^{2}+21 R^{2} r^{3}+44 R r^{4}+32 r^{5} \geq 0
$$

$$
\Leftrightarrow(R-2 r)^{2}\left(12 R^{3}+20 R^{2} r+19 R r^{2}+8 r^{3}\right) \geq 0 .
$$

Equality if and only if $R=2 r$.

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Equality if and only if the triangle is equilateral.

JP.277. In $\triangle A B C$ the following relationship holds:

$$
1 \leq\left(\frac{a}{m_{b}+m_{c}}\right)^{2}+\left(\frac{b}{m_{c}+m_{a}}\right)^{2}+\left(\frac{c}{m_{a}+m_{b}}\right)^{2} \leq \frac{R}{2 r}
$$

Proposed by M arin Chirciu-Romania

Solution by proposer
The $\Delta m_{a} m_{b} m_{c}$ it has the medians $\frac{3 a}{4}, \frac{3 b}{4}, \frac{3 c}{4}$. We show that:

$$
1 \leq\left(\frac{m_{a}}{\frac{3 b}{4}+\frac{3 c}{4}}\right)^{2}+\left(\frac{m_{b}}{\frac{3 c}{4}+\frac{3 a}{4}}\right)^{2}+\left(\frac{m_{c}}{\frac{3 a}{4}+\frac{3 b}{4}}\right)^{2} \leq \frac{R}{2 r} \leftrightarrow \frac{9}{16} \leq \sum\left(\frac{m_{a}}{b+c}\right)^{2} \leq \frac{9 R}{32 r}
$$

Lemma: In any $\triangle A B C$

$$
\sum\left(\frac{m_{a}}{b+c}\right)^{2}==\frac{15 s^{6}-s^{4}\left(52 R r+15 r^{2}\right)+s^{2} r^{2}\left(224 R^{2}+432 R r+85 r^{2}\right)-13 r^{3}(4 R+r)^{3}}{16 s^{2}\left(s^{2}+r^{2}+2 R r\right)^{2}}
$$

Demonstration:

$$
\begin{gathered}
\sum\left(\frac{m_{a}}{b+c}\right)^{2}=\frac{\sum m_{a}^{2}(a+b)^{2}(a+c)^{2}}{(a+b)^{2}(b+c)^{2}(c+a)^{2}} \\
\sum m_{a}^{2}(a+b)^{2}(a+c)^{2}= \\
=\frac{15 s^{6}-s^{4}\left(52 R r+15 r^{2}\right)+s^{2} r^{2}\left(224 R^{2}+432 R r+85 r^{2}\right)-13 r^{3}(4 R+r)^{3}}{4} \\
\prod(b+c)=2 s\left(s^{2}+r^{2}+2 R r\right) \\
\frac{15 s^{6}-s^{4}\left(52 R r+15 r^{2}\right)+s^{2} r^{2}\left(224 R^{2}+432 R r+85 r^{2}\right)-13 r^{3}(4 R+r)^{3}}{16 s^{2}\left(s^{2}+r^{2}+2 R r\right)^{2}} \geq \frac{9}{16} \\
\Leftrightarrow 6 s^{6}-s^{4}\left(88 R r+33 r^{2}\right)+s^{2} r^{2}\left(188 R^{2}+396 R r+76 r^{2}\right) \geq 13 r^{3}(4 R+r)^{3} \\
\Leftrightarrow s^{2}\left[s^{2}\left(6 s^{2}-88 R r-33 r^{2}\right)+r^{2}\left(188 R^{2}+396 R r+76 r^{2}\right)\right] \geq 13 r^{3}(4 R+r)^{3} \\
\text { from Gerretsen inequality: } s^{2} \geq 16 R r-5 r^{2} \geq \frac{r(4 R+r)^{2}}{R+\text { We must show that: }} . \\
\frac{r(4 R+r)^{2}}{R+r} \cdot\left[\left(16 R r-5 r^{2}\right)\left(96 R r-30 r^{2}-88 R r-33 r^{2}\right)+r^{2}\left(188 R^{2}+396 R r+76 r^{2}\right)\right] \geq 13 r^{3}(4 R+r)^{3} \Leftrightarrow
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
$264 R^{2}-717 R r+378 r^{2} \geq 0 \leftrightarrow(R-2 r)(264 R-189 r) \geq 0$ true from Euler $R \geq 2 r$
Using Lemma the inequality can be rewrite
$\frac{15 s^{6}-s^{4}\left(52 R r+15 r^{2}\right)+s^{2} r^{2}\left(224 R^{2}+432 R r+85 r^{2}\right)-13 r^{3}(4 R+r)^{3}}{16 s^{2}\left(s^{2}+r^{2}+2 R r\right)^{2}} \leq \frac{9 R}{32 r} \Leftrightarrow$
$s^{6}(9 R-30 r)+s^{4}\left(36 R^{2} r+122 R r^{2}+30 r^{3}\right)+s^{2} r^{2}\left(36 R^{3}-412 R^{2} r-855 R r^{2}-170 r^{3}\right)+26 r^{4}(4 R+r)^{3} \geq 0 \Leftrightarrow$

$$
\begin{gathered}
s^{2}\left[s^{4}(9 R-30 r)+s^{2}\left(36 R^{2} r+122 R r^{2}+30 r^{3}\right)+\right. \\
\left.+r^{2}\left(36 R^{3}-412 R^{2} r-855 R r^{2}-170 r^{3}\right)\right]+26 r^{4}(4 R+r)^{3} \geq 0
\end{gathered}
$$

We have the cases:
Case 1) If $\left[s^{4}(9 R-30 r)+s^{2}\left(36 R^{2} r+122 R r^{2}+30 r^{3}\right)+r^{2}\left(36 R^{3}-412 R^{2} r-\right.\right.$

$$
855 \operatorname{Rr} 2-170 r 3] \geq 0 \text { the inequality is obvious. }
$$

Case 2) If $\left[\begin{array}{c}s^{4}(9 R-30 r)+s^{2}\left(36 R^{2} r+122 R r^{2}+30 r^{3}\right)+ \\ +r^{2}\left(36 R^{3}-412 R^{2} r-855 R r^{2}-170 r^{3}\right)\end{array}\right]<0$ we can write: $26 r^{4}(4 R+r)^{3} \geq s^{2}\left[s^{4}(30 r-9 R)-s^{2}\left(36 R^{2} r+122 R r^{2}+30 r^{3}\right)-r^{2}\left(36 R^{3}-412 R^{2} r-855 R r^{2}-170 r^{3}\right)\right]$
true from Blundon-Gerretsen: $16 R r-5 r^{2} \leq s^{2} \leq \frac{R(4 R+r)^{2}}{2(2 R-r)} \leq 4 R^{2}+4 R r+3 r^{2}$
We show that: $26 r^{4}(4 R+r)^{3} \geq \frac{R(4 R+r)^{2}}{2(2 R-r)} \cdot\left[\left(4 R^{2}+4 R r+3 r^{2}\right)^{2}(30 r-9 R)\right.$
$-\left(16 R r-5 r^{2}\right)\left(36 R^{2} r+122 R r^{2}+30 r^{3}\right)-r^{2}\left(36 R^{3}-412 R^{2} r-855 R r^{2}-170 r^{3}\right]$
$72 R^{6}-96 R^{5} r+6 R^{4} r^{2}+188 R^{3} r^{3}-60 R^{2} r^{4}-347 R r^{5}-26 r^{6} \geq 0$
$(R-2 r)\left(72 R^{5}+48 R^{4} r+102 R^{3} r^{2}+392 R^{2} r^{3}+180 R r^{4}+13 r^{5}\right) \geq 0$
true from $R \geq 2 r$-Euler.
Equality if and only if the triangle is equilateral.

JP.278. Solve for real numbers ($a \geq 0$;fixed):
$\sqrt[3]{3 x^{2}-3 x+1}+4 \sqrt[4]{4 x^{3}-3 x^{4}}=a x^{5}+(1-5 a) x+4 a+4$
Proposed by M arin Chirciu-Romania
Solution by Michael Stergiou-Greece

$$
\begin{gather*}
\sqrt[3]{3 x^{2}-3 x+1}+4 \sqrt[4]{4 x^{3}-3 x^{4}}=a x^{5}+(1-5 a) x+4 a+4 \\
a x^{5}+a+a+a+a \geq 5 \cdot \sqrt[5]{a^{5} x^{5}}=5 a x \tag{2}
\end{gather*}
$$

So, RHS of (1) $\geq x+4$

ROMANIAN MATHEMATICAL MAGAZINE

 www.ssmrmh.ro$\sqrt[3]{\left(3 x^{2}-3 x+1\right) \cdot 1 \cdot 1} \stackrel{A m-G m}{\leftrightharpoons} \frac{3 x^{2}-3 x+1+1+1}{3}=x^{2}-x+1$
$4 \sqrt[4]{\left(4 x^{3}-3 x^{4}\right) \cdot 1 \cdot 1 \cdot 1} \stackrel{A m-G m}{\sim} 4 \cdot \frac{4 x^{3}-3 x^{4}+1+1+1}{4}=4 x^{3}-3 x^{4}+3$
Therefore LHS of $(1) \leq x^{2}-x+1+4 x^{3}-3 x^{4}+3$ while RHS of (1) $) \geq x+4$
But: $x^{2}-x+1+4 x^{3}-3 x^{4}+3-(x+4)=-x(x-1)^{2}(3 x+2) \leq 0$
Hence we can have only equalities for $x=1$.

JP.279. RMM NUM BER 19 WINTER 2020
By Marin Chirciu - Romania

1) In $\triangle A B C$ the following relationship holds:

$$
\frac{1}{r_{a}\left(r_{a}+2 r_{b}\right)}+\frac{1}{r_{b}\left(r_{b}+2 r_{c}\right)}+\frac{1}{r_{c}\left(r_{c}+2 r_{a}\right)} \leq \frac{1}{9 r^{2}}
$$

Proposed by Nguyen Viet Hung - Hanoi- Vietnam

Solution:

Using means inequality, we obtain:

$$
\begin{aligned}
& r_{a}+2 r_{b}=r_{a}+r_{b}+r_{b} \geq 3 \sqrt[3]{\frac{S}{s-a} \cdot \frac{S}{s-b} \cdot \frac{S}{s-b}}=\frac{3 S}{\sqrt[3]{(s-a)(s-b)(s-b)}} \\
& \text { We obtain: } \frac{1}{r_{a}\left(r_{a}+2 r_{b}\right)} \leq \frac{1}{r_{a} \cdot \frac{1}{\sqrt[3]{(s-a)(s-b)(s-b)}}=\frac{1}{\frac{s}{s-a} \cdot \frac{3}{\sqrt[3]{(s-a)(s-b)(s-b)}}}=\frac{(s-a) \sqrt[3]{(s-a)(s-b)^{2}}}{3 S^{2}}} \\
& \text { It follows: } M_{s}=\sum \frac{1}{r_{a}\left(r_{a}+2 r_{b}\right)} \leq \sum \frac{(s-a) \sqrt[3]{(s-a)(s-b)^{2}}}{3 S^{2}}= \\
& \quad=\frac{1}{3 S^{2}} \sum(s-a) \sqrt[3]{(s-a)(s-b)^{2}} \sqrt[A M-G M]{\leq} \\
& \leq \frac{1}{3 S^{2}} \sum(s-a) \cdot \frac{(s-a)+(s-b)+(s-c)}{3}=\frac{1}{9 S^{2}} \sum(s-a)(3 s-a-2 b)= \\
& =\frac{s^{2}}{9 s^{2}}=\frac{s^{2}}{9 s^{2} r^{2}}=\frac{1}{9 r^{2}}=M_{d}, \text { which follows from } \sum(s-a)(3 s-a-2 b)=s^{2}
\end{aligned}
$$

Equality holds if and only if $\triangle A B C$ is equilateral.
Remark.Let's find an inequality having an opposite sense:

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

2) In $\triangle A B C$ the following relationship holds:

$$
\begin{aligned}
& \frac{1}{r_{a}\left(r_{a}+2 r_{b}\right)}+\frac{1}{r_{b}\left(r_{b}+2 r_{c}\right)}+\frac{1}{r_{c}\left(r_{c}+2 r_{a}\right)} \geq \frac{9}{(4 R+r)^{2}} \\
& \text { Marin Chirciu - Romania }
\end{aligned}
$$

Solution

Using Bergström's inequality we obtain:

$$
\begin{gathered}
M_{s}=\sum \frac{1}{r_{a}\left(r_{a}+2 r_{b}\right)} \geq \frac{9}{\sum r_{a}\left(r_{a}+2 r_{b}\right)}=\frac{9}{\sum\left(r_{a}^{2}+2 r_{a} r_{b}\right)}=\frac{9}{\left(\sum r_{a}\right)^{2}}=\frac{9}{(4 R+r)^{2}} \\
=M_{d}
\end{gathered}
$$

Equality holds if and only if $\triangle A B C$ is equilateral.
Remark.
We can write the double inequality:
3) In $\triangle A B C$ the following relationship holds:

$$
\frac{9}{(4 R+r)^{2}} \leq \frac{1}{r_{a}\left(r_{a}+2 r_{b}\right)}+\frac{1}{r_{b}\left(r_{b}+2 r_{c}\right)}+\frac{1}{r_{c}\left(r_{c}+2 r_{a}\right)} \leq \frac{1}{9 r^{2}}
$$

Solution
See inequalities 1) and 2).
Equality holds if and only if $\triangle A B C$ is equilateral.
Remark.
If we replace r_{a} with $\boldsymbol{h}_{\boldsymbol{a}}$ we propose:
4) In $\triangle A B C$ the following relationship holds:

$$
\begin{aligned}
\frac{9 R^{2}}{4(R+r)^{4}} \leq \frac{1}{h_{a}\left(h_{a}+2 h_{b}\right)}+\frac{1}{h_{b}\left(h_{b}+2 h_{c}\right)}+ & \frac{1}{h_{c}\left(h_{c}+2 h_{a}\right)} \leq
\end{aligned} \frac{1}{9 r^{2}}
$$

Solution

> Left hand inequality: Using Bergström's inequality, we obtain:
$\sum \frac{1}{h_{a}\left(h_{a}+2 h_{b}\right)} \geq \frac{9}{\sum h_{a}\left(h_{a}+h_{b}\right)}=\frac{9}{\sum\left(h_{a}^{2}+2 h_{a} h_{b}\right)}=\frac{9}{\left(\sum h_{a}\right)^{2}}=\frac{9}{\left(\frac{s^{2}+r^{2}+4 R r}{2 R}\right)^{2}}=$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\begin{aligned}
&=\frac{9 \cdot 4 R^{2}}{\left(s^{2}+r^{2}+4 R r\right)^{2}} \stackrel{\text { Bergstrom }}{\geq} \frac{9 \cdot 4 R^{2}}{\left(4 R^{2}+4 R r+3 r^{2}+r^{2}+4 R r\right)^{2}}=\frac{36 R^{2}}{\left(4 R^{2}+8 R r+4 r^{2}\right)^{2}}= \\
&=\frac{36 R^{2}}{\left[4(R+r)^{2}\right]^{2}}=\frac{36 R^{2}}{16(R+r)^{4}}=\frac{9 R^{2}}{4(R+r)^{4}}
\end{aligned}
$$

Equality holds if and only if $\triangle A B C$ is equilateral.
Right hand inequality: Using means inequality, we obtain:

$$
\begin{gathered}
h_{a}+2 h_{b}=h_{a}+h_{b}+h_{c} \geq 3 \sqrt[3]{\frac{2 S}{a} \cdot \frac{2 S}{b} \cdot \frac{2 S}{b}}=\frac{3 \cdot 2 S}{\sqrt[3]{a b b}}=\frac{6 S}{\sqrt[3]{a b^{2}}} \\
\text { We obtain: } \frac{1}{h_{a}\left(h_{a}+2 h_{b}\right)} \leq \frac{1}{h_{a} \cdot \frac{6 S}{\sqrt[3]{a b^{2}}}}=\frac{1}{\frac{2 S}{a} \cdot \frac{6 S}{\sqrt[3]{a b^{2}}}}=\frac{a \sqrt[3]{a b^{2}}}{12 S^{2}} . \text { It follows: } \\
\sum \frac{1}{h_{a}\left(h_{a}+2 h_{b}\right)} \leq \sum \frac{a \sqrt[3]{a b^{2}}}{12 S^{2}}=\frac{1}{12 S^{2}} \sum a \sqrt[3]{a b^{2}} \stackrel{A M-G M}{\leq} \frac{1}{12 S^{2}} \sum a \cdot \frac{a+b+b}{3}= \\
=\frac{1}{36 S^{2}} \sum a(a+2 b)=\frac{1}{36 S^{2}} \sum\left(a^{2}+2 a b\right)=\frac{1}{36 S^{2}}\left(\sum a\right)^{2}=\frac{1}{36 S^{2}} \cdot 4 s^{2}=\frac{4 s^{2}}{36 s^{2} r^{2}}=\frac{1}{9 r^{2}} .
\end{gathered}
$$

Equality holds if and only if $\triangle A B C$ is equilateral.

JP.280. RMM 19 WINTER EDITION 2020
By Marin Chirciu - Romania

1) In $\triangle A B C$:

$$
\sqrt[3]{r_{a}^{4} r_{b}^{2}}+\sqrt[3]{r_{b}^{4} r_{c}^{2}}+\sqrt[3]{r_{c}^{4} r_{a}^{2}} \leq \frac{(4 R+r)^{2}}{3}
$$

Proposed by Nguyen Viet Hung - Hanoi - Vietnam

Solution:

Using means inequality we obtain:

$$
\sqrt[3]{r_{a}^{4} r_{b}^{2}}=\sqrt[3]{r_{a}^{2} \cdot r_{a}^{2} \cdot r_{b}^{2}} \leq \frac{r_{a}^{2}+r_{a}^{2}+r_{b}^{2}}{3}=\frac{2 r_{a}^{2}+r_{b}^{2}}{3} \text { and the analogs. }
$$

It follows $\sqrt[3]{r_{a}^{4} r_{b}^{2}}+\sqrt[3]{r_{b}^{4} r_{c}^{2}}+\sqrt[3]{r_{c}^{4} r_{a}^{2}} \leq \frac{2 r_{a}^{2}+r_{b}^{2}}{3}+\frac{2 r_{b}^{2}+r_{c}^{2}}{3}+\frac{2 r_{c}^{2}+r_{a}^{2}}{3}=r_{a}^{2}+r_{b}^{2}+r_{c}^{2}$
We have:

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro
$r_{a}^{2}+r_{b}^{2}+r_{c}^{2}=\left(\sum r_{a}\right)^{2}-2 \sum r_{b} r_{c}=(4 R+r)^{2}-2 s^{2} \stackrel{(G)}{\leq}(4 R+r)^{2}-2 \frac{r(4 R+r)^{2}}{R+r}=$
$=(4 R+r)^{2}\left(1-\frac{2 r}{R+r}\right)=(4 R+r)^{2}\left(\frac{R-r}{R+r}\right)$, where (G) is Gerretsen's inequality

$$
s^{2} \geq 16 R r-5 r^{2} \geq \frac{r(4 R+r)^{2}}{R+r}
$$

Equality holds if and only if the triangle is equilateral.
Remark.Let's find and inequality having an opposite sense.
2) In $\triangle A B C$

$$
\sqrt[3]{r_{a}^{4} r_{b}^{2}}+\sqrt[3]{r_{b}^{4} r_{c}^{2}}+\sqrt[3]{r_{c}^{4} r_{a}^{2}} \geq 27 r^{2}
$$

Solution
Using the means inequality we obtain:

$$
\begin{aligned}
& \sqrt[3]{r_{a}^{4} r_{b}^{2}}+\sqrt[3]{r_{b}^{4} r_{c}^{2}}+\sqrt[3]{r_{c}^{4} r_{a}^{2}} \geq 3 \sqrt[3]{\sqrt[3]{r_{a}^{4} r_{b}^{2}} \cdot \sqrt[3]{r_{b}^{4} r_{c}^{2}} \cdot \sqrt[3]{r_{c}^{4} r_{a}^{2}}}=3 \sqrt[3]{\sqrt[3]{r_{a}^{6} r_{b}^{6} r_{c}^{6}}}=3 \sqrt[3]{r_{a}^{2} r_{b}^{2} r_{c}^{2}}= \\
&=3 \sqrt[3]{r^{2} s^{4}} \stackrel{(M)}{\geq} \sqrt[3]{r^{2}\left(27 r^{2}\right)^{2}}=3 \sqrt[3]{9^{3} r^{6}}=27 r^{2}, \text { where (M) is Mitrinovic's inequality } \\
& s \geq 3 r \sqrt{3}
\end{aligned}
$$

Equality holds if and only if the triangle is equilateral.
Remark.
If we replace r_{a} with h_{a} we propose:
3) In $\triangle A B C$:

$$
27 r^{2}\left(\frac{2 r}{R}\right)^{\frac{2}{3}} \leq \sqrt[3]{h_{a}^{4} h_{b}^{2}}+\sqrt[3]{h_{b}^{4} h_{c}^{2}}+\sqrt[3]{h_{c}^{4} h_{a}^{2}} \leq \frac{(4 R+r)^{2}}{3}
$$

M arin Chirciu-Romania

Solution

The right inequality: Using the means inequality we obtain:

$$
\sqrt[3]{h_{a}^{4} h_{b}^{2}}=\sqrt[3]{h_{a}^{2} \cdot h_{a}^{2} \cdot h_{b}^{2}} \leq \frac{h_{a}^{2}+h_{a}^{2}+h_{b}^{2}}{3}=\frac{2 h_{a}^{2}+h_{b}^{2}}{3} \text { and the analogs. }
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

It follows $\sqrt[3]{h_{a}^{4} h_{b}^{2}}+\sqrt[3]{h_{b}^{4} h_{c}^{2}}+\sqrt[3]{h_{c}^{3} h_{a}^{2}} \leq \frac{2 h_{a}^{2}+h_{b}^{2}}{3}+\frac{2 h_{b}^{2}+h_{c}^{2}}{3}+\frac{2 h_{c}^{2}+h_{a}^{2}}{3}=h_{a}^{2}+h_{b}^{2}+h_{c}^{2}$
We have: $\boldsymbol{h}_{a}^{2}+h_{b}^{2}+h_{c}^{2}=\left(\sum h_{a}\right)^{2}-2 \sum h_{b} h_{c}=\left(\frac{s^{2}+r^{2}+4 R r}{2 R}\right)^{2}-2 \cdot \frac{2 r s^{2}}{R}=$

$$
=\frac{s^{2}\left(s^{2}+2 r^{2}-8 R r\right)+r^{2}(4 R r+r)^{2}}{4 R^{2}}
$$

We prove: $\frac{s^{2}\left(s^{2}+2 r^{2}-8 R r\right)+r^{2}(4 R+r)^{2}}{4 R^{2}} \leq \frac{(4 R+r)^{2}}{3} \Leftrightarrow$
$\Leftrightarrow 3 s^{2}\left(s^{2}+2 r^{2}-8 R r\right)+3(4 R+r)^{2} \leq 4 R^{2}(4 R+r)^{2}$, which follows from Blundon-
Gerretsen's inequality $s^{2} \leq \frac{R(4 R+r)^{2}}{2(2 R-r)} \leq 4 R^{2}+4 R r+3 r^{2}$. It remains to prove that:

$$
3 \cdot \frac{R(4 R+r)^{2}}{2(2 R-r)}\left(4 R^{2}+4 R r+3 r^{2}+2 r^{2}-8 R r\right)+3 r^{2}(4 R+r)^{2} \leq 4 R^{2}(4 R+r)^{2} \Leftrightarrow
$$

$$
\Leftrightarrow 4 R^{3}+4 R^{2} r-27 R r^{2}+6 r^{3} \geq 0 \Leftrightarrow(R-2 r)\left(4 R^{2}+12 R r-3 r^{2}\right) \geq 0, \text { obviously }
$$

from Euler's inequality $R \geq 2 r$.

Equality holds if and only if the triangle is equilateral.
The left hand inequality: Using the means inequality we obtain:

$$
\begin{aligned}
& \sqrt[3]{h_{a}^{4} h_{b}^{2}}+\sqrt[3]{h_{b}^{4} h_{c}^{2}}+\sqrt[3]{h_{c}^{4} h_{a}^{2}} \geq 3 \sqrt[3]{\sqrt[3]{h_{a}^{4} h_{b}^{2}} \cdot \sqrt[3]{h_{b}^{4} h_{c}^{2}} \cdot \sqrt[3]{h_{c}^{4} h_{a}^{2}}=3 \sqrt[3]{\sqrt[3]{h_{a}^{6} h_{b}^{6} h_{c}^{6}}}=}= \\
&=3 \sqrt[3]{h_{a}^{2} h_{b}^{2} h_{c}^{2}}=3 \sqrt[3]{\left(\frac{2 r^{2} s^{2}}{R}\right)^{2}} \stackrel{(M)}{\geq} \sqrt[3]{\left(\frac{2 r^{2} \cdot 27 r^{2}}{R}\right)^{2}}=3 \sqrt[3]{9^{3} r^{6} \cdot \frac{4 r^{2}}{R^{2}}}=27 r^{2} \sqrt[3]{\frac{4 r^{2}}{R^{2}}}=27 r^{2}\left(\frac{2 r}{R}\right)^{\frac{2}{3}}
\end{aligned}
$$

Equality holds if and only if the triangle is equilateral.

Remark.

If we interchange r_{a}^{2} with r_{a}, we propose:
4) In $\triangle A B C$:

$$
9 r \leq \sqrt[3]{r_{a}^{2} r_{b}}+\sqrt[3]{r_{b}^{2} r_{c}}+\sqrt[3]{r_{c}^{2} r_{a}} \leq 4 R+r
$$

M arin Chirciu - Romania

Solution

Right hand inequality: Using means inequality:

$$
\sqrt[3]{r_{a}^{2} r_{b}}=\sqrt[3]{r_{a} \cdot r_{a} \cdot r_{b}} \leq \frac{r_{a}+r_{a}+r_{b}}{3}=\frac{2 r_{a}+r_{b}}{3} \text { and the analogs. }
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

We obtain $\sqrt[3]{r_{a}^{2} r_{b}}+\sqrt[3]{r_{b}^{2} r_{c}}+\sqrt[3]{r_{c}^{2} r_{a}} \leq \frac{2 r_{a}+r_{b}}{3}+\frac{2 r_{b}+r_{c}}{3}+\frac{2 r_{c}+r_{a}}{3}=r_{a}+r_{b}+r_{c}=4 R+r$
Equality holds if and only if the triangle is equilateral.
The left hand inequality: Using the means inequality we obtain:

$$
\begin{gathered}
\sqrt[3]{r_{a}^{2} r_{b}}+\sqrt[3]{r_{b}^{2} r_{c}}+\sqrt[3]{r_{c}^{2} r_{a}} \geq 3 \sqrt[3]{\sqrt[3]{r_{a}^{2} r_{b}} \cdot \sqrt[3]{r_{b}^{2} r_{c}} \cdot \sqrt[3]{r_{c}^{2} r_{a}}}=3 \sqrt[3]{\sqrt[3]{r_{a}^{3} r_{b}^{3} r_{c}^{3}}}=3 \sqrt[3]{r_{a} r_{b} r_{c}}= \\
=3 \sqrt[3]{r s^{2}} \stackrel{(M)}{\geq} 3 \sqrt[3]{r \cdot 27 r^{2}}=3 \sqrt[3]{27 r^{3}}=9 r, \text { where (M) is Mitrinovic's inequality } \\
s \geq 3 r \sqrt{3} \text {. Equality holds if and only if the triangle is equilateral. }
\end{gathered}
$$

Remark.
If we interchange h_{a}^{2} in h_{a} we propose:
5) In $\triangle A B C$:

$$
9 r\left(\frac{2 r}{R}\right)^{\frac{1}{3}} \leq \sqrt[3]{h_{a}^{2} h_{b}}+\sqrt[3]{h_{b}^{2} h_{c}}+\sqrt[3]{h_{c}^{2} h_{a}} \leq \frac{2(R+r)^{2}}{R}
$$

Marin Chirciu - Romania

Solution

The right hand inequality: Using means inequality we obtain:

$$
\sqrt[3]{h_{a}^{2} h_{b}}=\sqrt[3]{h_{a} \cdot h_{a} \cdot h_{b}} \leq \frac{h_{a}+h_{a}+h_{b}}{3}=\frac{2 h_{a}+h_{b}}{3} \text { and the analogs. }
$$

We obtain $\sqrt[3]{h_{a}^{2} h_{b}}+\sqrt[3]{h_{b}^{2} h_{c}}+\sqrt[3]{h_{c}^{2} h_{a}} \leq \frac{2 h_{a}+h_{b}}{3}+\frac{2 h_{b}+h_{c}}{3}+\frac{2 h_{c}+h_{a}}{3}=h_{a}+h_{b}+h_{c}=$

$$
=\frac{s^{2}+r^{2}+4 R r}{2 R}
$$

It remains to prove that: $\frac{s^{2}+r^{2}+4 R r}{2 R} \leq \frac{2(R+r)^{2}}{R} \Leftrightarrow s^{2} \leq 4 R^{2}+4 R r+3 r^{2}$, (Gerretsen's inequality). Equality holds if and only if the triangle is equilateral.

The left hand inequality: Using means inequality we obtain:

$$
\begin{gathered}
\sqrt[3]{h_{a}^{2} h_{b}}+\sqrt[3]{h_{b} h_{c}}+\sqrt[3]{h_{c}^{2} h_{a}} \geq 3 \sqrt[3]{\sqrt[3]{h_{a}^{2} h_{b}} \cdot \sqrt[3]{h_{b}^{2} h_{c}} \cdot \sqrt[3]{h_{c}^{2} h_{a}}=3 \sqrt[3]{\sqrt[3]{h_{a}^{3} h_{b}^{3} h_{c}^{3}}}=} \\
3 \sqrt[3]{h_{a} h_{b} h_{c}}=3 \sqrt[3]{\frac{2 r^{2} s^{2}}{R}} \stackrel{(M)}{\geq} \sqrt[3]{\frac{2 r^{2} \cdot 27 r^{2}}{R}}=9 r \sqrt[3]{\frac{2 r}{R}}=9 r\left(\frac{2 r}{R}\right)^{\frac{1}{3}}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro where (M) is Mitrinovic's inequality $p \geq 3 r \sqrt{3}$ Equality holds if and only if the triangle is equilateral.

JP.281. ABOUT PROBLEM JP.281-RMM NUM BER 19 WINTER 2020

By Marin Chirciu - Romania

1) If $a, b, c>0 ; a b c=1$ then:

$$
\frac{(a+b)^{2}}{\sqrt{a^{2}+b^{2}}}+\frac{(b+c)^{2}}{\sqrt{b^{2}+c^{2}}}+\frac{(c+a)^{2}}{\sqrt{c^{2}+a^{2}}} \geq 6 \sqrt{2}
$$

Proposed by Nguyen Viet Hung-Hanoi - Vietnam

Solution

Inequality can be written: $\sum \frac{(a+b)^{2}}{\sqrt{2\left(a^{2}+b^{2}\right)}} \geq 6$, which follows from $\frac{(a+b)^{2}}{\sqrt{2\left(a^{2}+b^{2}\right)}} \geq \mathbf{2} \sqrt{\boldsymbol{a b}} \Leftrightarrow$ $\Leftrightarrow \frac{(a+b)^{4}}{2\left(a^{2}+b^{2}\right)} \geq 4 a b \Leftrightarrow a^{4}-4 a^{3} b+6 a^{2} b^{2}-4 a b^{3}+b^{4} \geq 0 \Leftrightarrow(a-b)^{4} \geq 0$, obviously with equality for $a=b$. We obtain:

$$
\sum \frac{(a+b)^{2}}{\sqrt{2\left(a^{2}+b^{2}\right)}} \geq 2 \sum \sqrt{a b} \stackrel{A M-G M}{\geq} 2 \cdot 3 \sqrt[3]{\sqrt{a b} \cdot \sqrt{b c} \cdot \sqrt{c a}}=6 \sqrt[6]{a b c}=6
$$

We deduce that the inequality from enunciation holds, with equality if and only if

$$
a=b=c .
$$

Remark: The inequality can be developed:
2) If $a, b, c>0 ; a b c=1$ then:

$$
\begin{aligned}
\frac{(a+b)^{3}}{\sqrt{a^{2}+b^{2}}}+\frac{(b+c)^{3}}{\sqrt{b^{2}+c^{2}}}+\frac{(c+a)^{3}}{\sqrt{c^{2}+a^{2}}} \geq & 12 \sqrt{2} \\
& \text { Marin Chirciu - Romania }
\end{aligned}
$$

Solution

The inequality can be written: $\sum \frac{(a+b)^{3}}{\sqrt{2\left(a^{2}+b^{2}\right)}} \geq 12$, which follows from

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\frac{(a+b)^{3}}{\sqrt{2\left(a^{2}+b^{2}\right)}} \geq 4 a b \Leftrightarrow
$$

$\Leftrightarrow \frac{(a+b)^{6}}{2\left(a^{2}+b^{2}\right)} \geq 16 a^{2} b^{2} \Leftrightarrow a^{6}+6 a^{5} b-17 a^{4} b^{2}+20 a^{3} b^{3}-17 a^{2} b^{4}+6 a b^{5}+b^{6} \geq 0$
Dividing with $a^{3} b^{3}$ and grouping based on symmetry, wherefrom we obtain:

$$
\left(\frac{a^{3}}{b^{3}}+\frac{b^{3}}{a^{3}}\right)+6\left(\frac{a^{2}}{b^{2}}+\frac{b^{2}}{a^{2}}\right)-17\left(\frac{a}{b}+\frac{b}{a}\right)+20 \geq 0
$$

We denote $\frac{a}{b}+\frac{b}{a}=t \geq 2$, wherefrom follows: $\frac{a^{2}}{b^{2}}+\frac{b^{2}}{a^{2}} t^{2}-2$ and $\frac{a^{3}}{b^{3}}+\frac{b^{3}}{a^{3}}=t^{3}-3 t$
The last inequality can be written: $t^{3}-3 t+6\left(t^{2}-2\right)-17 t+20 \geq 0 \Leftrightarrow$ $\Leftrightarrow t^{3}+6 t^{2}-20 t+8 \geq 0 \Leftrightarrow(t-2)\left(t^{2}+8 t-4\right) \geq 0$, true because $t \geq 2$.

We obtain:

$$
\sum \frac{(a+b)^{3}}{\sqrt{2\left(a^{2}+b^{2}\right)}} \geq 4 \sum a b \stackrel{A M-G M}{\geq} 4 \cdot 3 \sqrt[3]{a b \cdot b c \cdot c a}=12 \sqrt[6]{(a b c)^{2}}=12
$$

We deduce that the inequality from enunciation holds, with equality if and only if

$$
a=b=c .
$$

Remark.
The inequality can be generalized:
3) If $a, b, c>0 ; a b c=1$ then:

$$
\begin{array}{r}
\frac{(a+b)^{n}}{\sqrt{a^{2}+b^{2}}}+\frac{(b+c)^{n}}{\sqrt{b^{2}+c^{2}}}+\frac{(c+a)^{n}}{\sqrt{c^{2}+a^{2}}} \geq 3 \cdot 2^{n-1} \sqrt{2}, \text { where } n \geq 2, n \in \mathbb{N} \\
\text { M arin Chirciu - Romania }
\end{array}
$$

Solution

The inequality can be written: $\sum \frac{(a+b)^{n}}{\sqrt{2\left(a^{2}+b^{2}\right)}} \geq 3 \cdot 2^{n-1}$, which follows from

$$
\begin{gathered}
\frac{(a+b)^{n}}{\sqrt{2\left(a^{2}+b^{2}\right)}} \geq(2 \sqrt{a b})^{n-1} \Leftrightarrow \\
\Leftrightarrow \frac{(a+b)^{2 n}}{2\left(a^{2}+b^{2}\right)} \geq(4 a b)^{n-1} \Leftrightarrow(a+b)^{2 n} \geq 2\left(a^{2}+b^{2}\right)(4 a b)^{n-1} \Leftrightarrow
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

 $\left[(a+b)^{2}\right]^{n} \geq 2\left(a^{2}+b^{2}\right)(4 a b)^{n} \cdot \frac{1}{4 a b} \Leftrightarrow\left[\frac{(a+b)^{2}}{4 a b}\right]^{n} \geq \frac{a^{2}+b^{2}}{2 a b}$, where we prove through mathematical induction after $n \geq 2, n \in \mathbb{N}$.Let be $P(n):\left[\frac{(a+b)^{2}}{4 a b}\right]^{n} \geq \frac{a^{2}+b^{2}}{2 a b}, n \geq 2, n \in \mathbb{N}$.

$$
P(2):\left[\frac{(a+b)^{2}}{4 a b}\right]^{2} \geq \frac{a^{2}+b^{2}}{2 a b} \Leftrightarrow \frac{(a+b)^{4}}{2\left(a^{2}+b^{2}\right)} \geq 4 a b \Leftrightarrow
$$

$\Leftrightarrow a^{4}-4 a^{3} b+6 a^{2} b^{2}-4 a b^{3}+b^{4} \geq 0 \Leftrightarrow(a-b)^{4} \geq 0$, obviously with equality for $a=b$.

$$
P(k) \Rightarrow P(k+1) \text {, where } k \geq 2, k \in \mathbb{N}
$$

We propose that $P(k):\left[\frac{(a+b)^{2}}{4 a b}\right]^{k} \geq \frac{a^{2}+b^{2}}{2 a b} ; k \geq 2, k \in \mathbb{N}$, true and we prove that

$$
P(k+1):\left[\frac{(a+b)^{2}}{4 a b}\right]^{k+1} \geq \frac{a^{2}+b^{2}}{2 a b} \text { true. }
$$

Indeed: $\left[\frac{(a+b)^{2}}{4 a b}\right]^{k+1}=\left[\frac{(a+b)^{2}}{4 a b}\right]^{k} \cdot \frac{(a+b)^{2}}{4 a b} \stackrel{P(k)}{\geq} \frac{a^{2}+b^{2}}{2 a b} \cdot \frac{(a+b)^{2}}{4 a b} \stackrel{(1)}{\geq} \frac{a^{2}+b^{2}}{2 a b}$, where (1) $\frac{(a+b)^{2}}{4 a b} \geq 1 \Leftrightarrow$ $\Leftrightarrow(a-b)^{4} \geq \mathbf{0}$, obviously with equality for $a=b$.

We obtain:

$$
\begin{gathered}
\sum \frac{(a+b)^{n}}{\sqrt{2\left(a^{2}+b^{2}\right)}} \geq \sum(2 \sqrt{a b})^{n-1} \stackrel{A M-G M}{\geq} 3 \sqrt[3]{(2 \sqrt{a b})^{n-1} \cdot(2 \sqrt{b c})^{n-1} \cdot(2 \sqrt{c a})^{n-1}}= \\
=3 \sqrt[3]{(8 a b c)^{n-1}}=3 \sqrt[3]{8^{n-1}}=3 \cdot 2^{n-1}
\end{gathered}
$$

We deduce that the inequality from enunciation holds if and only if $a=b=c$.
Note.
For $n=2$ we obtain Problem JP.281, RMM Number 19, Winter 2020, proposed by Nguyen Viet Hung, Vietnam
4) If $a, b, c>0 ; a b c=1$ then:

$$
\frac{(a+b)^{n}}{\sqrt{a^{2}+b^{2}}}+\frac{(b+c)^{n}}{\sqrt{b^{2}+c^{2}}}+\frac{(c+a)^{n}}{\sqrt{c^{2}+a^{2}}} \geq 3 \cdot 2^{n-\frac{1}{2}}, \text { where } n \geq 2, n \in \mathbb{N}
$$

Proposed by Marin Chirciu - Romania

Solution

We reformulate the enunciation from 3)

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

JP.282. If $a, b, c>1$ then:

$$
\log a \cdot \log b \cdot \log c \cdot\left(\log _{a} e+\log _{b} e+\log _{c} e\right)^{2} \geq 3 \log (a b c)
$$

Proposed by Daniel Sitaru - Romania

Solution 1 by Florentin Vișescu - Romania
We denote $\ln a=x>0 ; \ln b=y>0 ; \ln c=z>0$

$$
\begin{gathered}
x y z\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^{2} \geq 3(x+y+z) \\
x y z\left(\frac{y z+x z+x y}{x y z}\right)^{2} \geq 3(x+y+z) \\
\frac{(x y+x z+y z)^{2}}{x y z} \geq 3(x+y+z)
\end{gathered}
$$

$$
x^{2} y^{2}+x^{2} z^{2}+y^{2} z^{2}+2 x^{2} y z+2 x y^{2} z+2 x y z^{2} \geq 3 x^{2} y z+3 x y^{2} z+3 x y z^{2}
$$

$$
x^{2} y^{2}+x^{2} z^{2}+y^{2} z^{2}-x^{2} y z-x y^{2} z-x y z^{2} \geq 0 \mid 2
$$

$$
(x y-x z)^{2}+(x y-y z)^{2}+(x z-y z)^{2} \geq 0 \text { True }
$$

Solution 2 by Henry Ricardo-New York-USA
Setting $\log a=A, \log b=B, \log c=C$, and noting that $\log _{r} s=\frac{1}{\log _{s} r^{\prime}}$, we have:

$$
\begin{gathered}
\prod_{\text {cyclic }} \log a \cdot\left(\sum_{\text {cyclic }} \log _{a} e\right)^{2}=A B C\left(\frac{1}{A}+\frac{1}{B}+\frac{1}{C}\right)\left(\frac{1}{A}+\frac{1}{B}+\frac{1}{C}\right) \\
=(A B+B C+C A)\left(\frac{1}{A}+\frac{1}{B}+\frac{1}{C}\right)=2(A+B+C)+\sum_{\text {cyclic }} \frac{A B}{C} \geq 3(A+B+C) \\
\Leftrightarrow \sum_{\text {cyclic }} \frac{A B}{C} \geq A+B+C \Leftrightarrow \sum_{\text {cyclic }}(A B)^{2} \geq \sum_{\text {cyclic }}(A B)(B C),
\end{gathered}
$$

which is true by the AGMinequality. Equality holds if and only if $a=b=c$.
JP. 283 If $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c} \in \mathbb{R}$ then:

$$
2 \sum_{c y c} \sin ^{2} a+\sum_{c y c} \sin ^{2}(a+b) \leq \frac{27}{4}
$$

Proposed by Daniel Sitaru-Romania

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Solution 1 by M arian Ursărescu-Romania

We must show:

$$
\begin{aligned}
& 2 \sum_{c y c}\left(1-\cos ^{2} a\right)+\sum_{c y c}\left(1-\cos ^{2}(a+b)\right) \leq \frac{27}{4} \\
& 6-\sum_{c y c} \cos ^{2} a+3-\sum_{c y c} \cos ^{2}(a+b) \leq \frac{27}{4} \\
& 2 \sum_{c y c} \cos ^{2} a+\sum_{c y c} \cos ^{2}(a+b) \geq \frac{9}{4} \\
& \cos ^{2} a+\cos ^{2} b+\cos ^{2}(a+b)+\cos ^{2} b+\cos ^{2} c+\cos ^{2}(b+c)+\cos ^{2} c+\cos ^{2} a+\cos ^{2}(c+a) \geq \frac{9}{4} \ldots(1) \\
& \cos ^{2} a+\cos ^{2} b+\cos ^{2}(a+b)=\frac{1+\cos 2 a}{2}+\cos ^{2} b+\frac{1+\cos 2(a+b)}{2} \\
& =1+\cos ^{2} b+\frac{\cos 2 a+\cos 2(a+b)}{2}=1+\cos ^{2} b+\cos (2 a+b) \cos b \\
& =\left[\cos b+\frac{\cos (2 a+b)}{2}\right]^{2}+\frac{1}{4}-\frac{\cos ^{2}(2 a+b)}{4}+\frac{3}{4} \\
& =\underbrace{\left[\cos b+\frac{\cos (2 a+b)}{2}\right]^{2}}_{>0}+\underbrace{\frac{\sin ^{2}(2 a+b)}{4}}_{>0}+\frac{3}{4} \geq \frac{3}{4} \\
& \cos ^{2} a+\cos ^{2} b+\cos ^{2}(a+b) \geq \frac{3}{4} \\
& \text { and two similary relationship } \\
& 2 \sum_{c y c} \sin ^{2} a+\sum_{c y c} \sin ^{2}(a+b) \leq \frac{27}{4}
\end{aligned}
$$

Solution 2 by Adrian Popa-Romania

Firstly we show that: $\sin ^{2} a+\sin ^{2} b+\sin ^{2}(a+b) \leq \frac{9}{4}$
$\therefore\left[\frac{1-\cos 2 a}{2}+\frac{1-\cos 2 b}{2}=1-\cos (a+b) \cos (a-b)\right]$

$$
1-\cos (a+b) \cos (a-b)+1-\cos ^{2}(a+b) \stackrel{?}{\dot{\sim}} \frac{9}{4}
$$

$$
\begin{aligned}
2-\cos (a+b) \cos (a-b) & -\cos ^{2}(a+b) \leq 2+|\cos (a+b) \cos (a-b)|-\cos ^{2}(a+b) \leq \\
\leq & 2+|\cos (a+b)|-\cos ^{2}(a+b)
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Denote: $|\cos (a+b)|=x$ and let: $f(x)=2+x-x^{2}$

$$
\begin{gathered}
f^{\prime}(x)=1-2 x ; f^{\prime}(x)=0 \Leftrightarrow x=\frac{1}{2} ; f_{\max }=f\left(\frac{1}{2}\right)=\frac{9}{4} . \text { Then: } \\
\sin ^{2} a+\sin ^{2} b+\sin ^{2}(a+b) \leq \frac{9}{4} \\
\sin ^{2} a+\sin ^{2} c+\sin ^{2}(a+c) \leq \frac{9}{4} \\
\sin ^{2} b+\sin ^{2} c+\sin ^{2}(b+c) \leq \frac{9}{4}
\end{gathered}
$$

So,

$$
2 \sum_{c y c} \sin ^{2} a+\sum_{c y c} \sin ^{2}(a+b) \leq \frac{27}{4}
$$

JP.284. In acute $\triangle A B C$ the following relationship holds:

$$
\frac{\sqrt{\sin 2 A}+\sqrt{\sin 2 B}+\sqrt{\sin 2 C}}{\sqrt{\tan A}+\sqrt{\tan B}+\sqrt{\tan C}} \geq \sqrt{2\left(\frac{r}{R}+1\right)^{2}-4}
$$

Proposed by M arian Ursărescu-Romania

Solution by proposer

$$
2(x+y) \geq(\sqrt{x}+\sqrt{y})^{2}, \forall x, y>0
$$

Let: $x=\sin 2 A+\sin 2 B-\sin 2 C ; y=\sin 2 A-\sin 2 B+\sin 2 C$

$$
\begin{gathered}
4 \sin 2 A \geq(\sqrt{\sin 2 A+\sin 2 B-\sin 2 C}+\sqrt{\sin 2 A-\sin 2 B+\sin 2 C})^{2} \\
\sqrt{\sin 2 A+\sin 2 B-\sin 2 C}+\sqrt{\sin 2 A-\sin 2 B+\sin 2 C} \leq 2 \sqrt{\sin 2 A}
\end{gathered}
$$

Analogous:

$$
\begin{align*}
& \sqrt{\sin 2 A+\sin 2 B-\sin 2 C}+\sqrt{-\sin 2 A+\sin 2 B+\sin 2 C} \leq 2 \sqrt{\sin 2 B} \\
& \sqrt{\sin 2 A-\sin 2 B+\sin 2 C}+\sqrt{-\sin 2 A+\sin 2 B+\sin 2 C} \leq 2 \sqrt{\sin 2 C} \\
& \sum \sqrt{\sin 2 A+\sin 2 B-\sin 2 C} \leq \sqrt{\sin 2 A}+\sqrt{\sin 2 B}+\sqrt{\sin 2 C} \tag{1}
\end{align*}
$$

But: $\sin 2 A+\sin 2 B-\sin 2 C=2 \sin (A+B) \cos (A-B)-2 \sin C \cos C$
$=2 \sin C[\cos (A-B)-\cos C]=-4 \sin C \sin \left(\frac{A-B+C}{2}\right) \sin \left(\frac{A-B-C}{2}\right)$

> ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
> $=4 \cos A \cos B \sin C=4 \cos A \cos B \cos C t a n C=\frac{s^{2}-(2 R+r)^{2}}{R^{2}} \operatorname{tanC} ;(2)$

From (1),(2) we have: $\sqrt{\frac{s^{2}-(2 R+r)^{2}}{R^{2}}} \sum \sqrt{\operatorname{tanA}} \leq \sum \sqrt{\sin 2 A}$

$$
\begin{gathered}
\sqrt{\frac{s^{2}-(2 R+r)^{2}}{R^{2}}} \leq \frac{\sum \sqrt{\sin 2 A}}{\sum \sqrt{\operatorname{tanA}}} ;(3) \\
\sqrt{\frac{s^{2}-(2 R+r)^{2}}{R^{2}}} \stackrel{(*)}{\geq} \sqrt{\frac{2 R^{2}+8 R r+3 r^{2}-4 R^{2}-4 R r-r^{2}}{R^{2}}}= \\
=\sqrt{\frac{2 r^{2}+4 R r-2 R^{2}}{R^{2}}}=\sqrt{2\left(\frac{r}{R}+1\right)^{2}-4} \\
(*): s^{2} \geq 2 R^{2}+8 R r+3 r^{2} ;(4)
\end{gathered}
$$

From (3) and (4) we have:

$$
\frac{\sqrt{\sin 2 A}+\sqrt{\sin 2 B}+\sqrt{\sin 2 C}}{\sqrt{\tan A}+\sqrt{\tan B}+\sqrt{\tan C}} \geq \sqrt{2\left(\frac{r}{R}+1\right)^{2}-4}
$$

JP. 285 In $\triangle A B C$ the following relationship holds:

$$
\frac{m_{a}^{2}}{m_{b}}+\frac{m_{b}^{2}}{m_{c}}+\frac{m_{c}^{2}}{m_{a}} \geq s \sqrt{3}
$$

Proposed by Marian Ursărescu-Romania
Solution by Rahim Shahbazov-Baku-Azerbaijan

$$
\begin{equation*}
\frac{\boldsymbol{m}_{a}^{2}}{m_{b}}+\frac{\boldsymbol{m}_{b}^{2}}{\boldsymbol{m}_{c}}+\frac{\boldsymbol{m}_{c}^{2}}{\boldsymbol{m}_{a}} \geq \boldsymbol{s} \sqrt{\mathbf{3}} . \tag{1}
\end{equation*}
$$

Lemma: $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}>0$ then: $\frac{x^{2}}{y}+\frac{y^{2}}{z}+\frac{z^{2}}{x} \geq 3 \cdot \sqrt{\frac{x^{2}+y^{2}+y^{2}}{3}} \stackrel{(1)}{\Rightarrow}$

$$
L H S \geq 3 \cdot \sqrt{\frac{m_{a}^{2}+m_{b}^{2}+m_{c}^{2}}{3}} \geq s \sqrt{3} \Rightarrow 3\left(a^{2}+b^{2}+c^{2}\right) \geq(a+b+c)^{2}
$$

Prove lemma: $\frac{x^{2}}{y}+\frac{y^{2}}{z}+\frac{z^{2}}{x} \geq \frac{\left(x^{2}+y^{2}+z^{2}\right)^{2}}{x^{2} y+y^{2} z+z^{2} x}$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

$$
\begin{gathered}
\geq \frac{\left(x^{2}+y^{2}+z^{2}\right)^{2}}{\sqrt{\left(x^{2}+y^{2}+z^{2}\right)\left(x^{2} y^{2}+y^{2} z^{2}+z^{2} y^{2}\right)}} \geq 3 \cdot \sqrt{\frac{x^{2}+y^{2}+y^{2}}{3}} \Rightarrow \\
\left(x^{2}+y^{2}+z^{2}\right)^{2} \geq x^{2} y^{2}+y^{2} z^{2}+z^{2} y^{2}
\end{gathered}
$$

SP.271. If $a_{1}, a_{2}, \ldots, a_{n}>0 ; a_{1} a_{2} \cdot \ldots \cdot a_{n}=1 ; \lambda \geq \frac{1}{2}$ then:

$$
\frac{1}{\lambda+a_{1}}+\frac{1}{\lambda+a_{2}}+\cdots+\frac{1}{\lambda+a_{n}} \leq \frac{a_{1}+a_{2}+\cdots+a_{n}}{\lambda+1}
$$

Proposed by M arin Chirciu-Romania

Solution by Michael Sterghiou-Greece

$$
\begin{equation*}
\frac{1}{\lambda+a_{1}}+\frac{1}{\lambda+a_{2}}+\cdots+\frac{1}{\lambda+a_{n}} \leq \frac{a_{1}+a_{2}+\cdots+a_{n}}{\lambda+1} \tag{1}
\end{equation*}
$$

Denote $S_{n}=\sum_{i=1}^{n} a_{i}$. For $n=1$ we have equality.
For $n=2 \stackrel{(1)}{\Rightarrow} \frac{1}{\lambda+a_{1}}+\frac{1}{\lambda+\frac{1}{a_{1}}} \leq \frac{a_{1}+\frac{1}{a_{1}}}{\lambda+1}$ which reduces to $-\frac{\lambda\left(a_{1}-1\right)^{2}\left(a_{1}^{2}+\lambda a_{1}+a_{1}+1\right)}{(1+\lambda)\left(\lambda+a_{1}\right)\left(\lambda a_{1}+1\right)} \leq 0$ so, for $n=2,(1)$ holds. Assume that (1) holds for any n numbers (satisfying the conditions of the problem) such $a_{1}, a_{2}, \ldots, a_{n-1}, \vartheta$ where $\vartheta=a_{n} a_{n+1}$.

Then $a_{1} \cdot a_{2} \cdot \ldots \cdot a_{n-1} \cdot \boldsymbol{\vartheta}=1$ and by induction

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{1}{a_{i}+\lambda} \leq \frac{S_{n-1}+\boldsymbol{\vartheta}}{1+\lambda} \tag{2}
\end{equation*}
$$

Now, we have to prove that: $\sum_{i=1}^{n+1} \frac{1}{a_{i}+\lambda} \leq \frac{s_{n+1}}{1+\lambda}=\frac{s_{n-1}}{1+\lambda}+\frac{a_{n}+a_{n+1}}{1+\lambda} \quad$ (3).
From (2) $\left(\sum_{i=1}^{n-1} \frac{1}{a_{i}+\lambda}\right)+\frac{1}{\lambda+\vartheta} \leq \frac{s_{n-1}+\vartheta}{1+\lambda}$ or $\sum_{i=1}^{n-1} \frac{1}{a_{i}+\lambda} \leq \frac{s_{n-1}+\vartheta}{1+\lambda}-\frac{1}{\lambda+\vartheta}$
Because of this it suffices to show that: $\frac{S_{n-1}+\vartheta}{1+\lambda}-\frac{1}{\lambda+\vartheta}+\frac{1}{a_{n}+\lambda}+\frac{1}{a_{n+1}+\lambda} \leq \frac{s_{n-1}}{1+\lambda}+\frac{a_{n}+a_{n+1}}{1+\lambda}$
Putting: $a_{n}=x, a_{n+1}=y, \vartheta=x y$ the last inequality becomes:

$$
\frac{x y}{1+\lambda}-\frac{1}{\lambda+x y}+\frac{1}{x+\lambda}+\frac{1}{y+\lambda}-\frac{x+y}{1+\lambda} \leq 0 \text { which reduces to: }
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\frac{(x-1)(y-1)\left[\lambda^{3}+\lambda^{2} x y+\lambda^{2} x+\lambda^{2} y+\lambda^{2}+\lambda x^{2} y+\lambda x y^{2}+\lambda x y+x^{2} y^{2}-x y\right]}{(\lambda+1)(\lambda+x)(\lambda+y)(\lambda+x y)} \overbrace{幺}^{(4)} 0
$$

The expression in [.] in the nominator of (4) is increasing function of λ and for $\lambda \geq \frac{1}{2}$
it is positive (obvious).
(4) holds if one of x, y is ≥ 1 and the other ≤ 1.

We can clearly assume this as the inequality is cyclic and we cannot have all a_{i} greater then 1 or smaller then 1.This completes the proof.Done.

SP.272. RM M NUM BER 19 WINTER 2020
By Marin Chirciu - Romania

1) In $\triangle A B C$ the following relationship holds:

$$
\frac{3}{R} \leq \frac{r_{b}+r_{c}}{a^{2}}+\frac{r_{c}+r_{a}}{b^{2}}+\frac{r_{a}+r_{b}}{c^{2}} \leq \frac{3}{4 r}\left(\frac{R^{2}}{r^{2}}-2\right)
$$

Proposed by George Apostolopoulos-M essolonghi- Greece

Solution

We prove the following lemma:

Lemma:

2) In $\triangle A B C$ the following relationship holds:

$$
\frac{r_{b}+r_{c}}{a^{2}}+\frac{r_{c}+r_{a}}{b^{2}}+\frac{r_{a}+r_{b}}{c^{2}}=\frac{s^{2}+r^{2}-8 R r}{4 R r^{2}}
$$

Proof.
Using the formula $r_{a}=\frac{s}{s-a}$ we obtain:

$$
\begin{aligned}
\sum \frac{r_{b}+r_{c}}{a^{2}}=\sum \frac{\frac{S}{s-b}+\frac{S}{s-c}}{a^{2}} & =s \sum \frac{1}{a(s-b)(s-c)}=r s \cdot \frac{s^{2}+r^{2}-8 R r}{4 R r^{3} s}= \\
& =\frac{s^{2}+r^{2}-8 R r}{4 R r^{2}}
\end{aligned}
$$

Which follows from the known identity in triangle:

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\sum \frac{1}{a(s-b)(s-c)}=\frac{s^{2}+r^{2}-8 R r}{4 R r^{3} s}
$$

Let's get back to the main problem.
The left hand - inequality: Using the Lemma the inequality can be written:

$$
\begin{gathered}
\frac{s^{2}+r^{2}-8 R r}{4 R r^{2}} \geq \frac{3}{R} \Leftrightarrow s^{2} \geq 8 R r+11 r^{2}, \text { which follows from Gerretsen's inequality } \\
s^{2} \geq 16 R r-5 r^{2} . \text { It remains to prove that: } \\
16 R r-5 r^{2} \geq 8 R r+11 r^{2} \Leftrightarrow R \geq 2 r, \text { (Euler's inequality). }
\end{gathered}
$$

Equality holds if and only if $\triangle A B C$ is equilateral.
The right hand inequality: Using the Lemma the inequality can be written:

$$
\frac{s^{2}+r^{2}-8 R r}{4 R r^{2}} \leq \frac{3}{4 r}\left(\frac{R^{2}}{r^{2}}-2\right) \Leftrightarrow r\left(s^{2}+r^{2}-8 R r\right) \leq 3 R\left(R^{2}-2 r^{2}\right)
$$

which follows from Gerretsen's inequality $s^{2} \leq 4 R^{2}+4 R r+3 r^{2}$.

It remains to prove that:

$$
r\left(4 R^{2}+4 R r+3 r^{2}+r^{2}-8 R r\right) \leq 3 R\left(R^{2}-2 r^{2}\right) \Leftrightarrow 3 R^{3}-4 R^{2} r-2 R r^{2}-4 r^{3} \geq 0 \Leftrightarrow
$$

Equality holds if and only if $\triangle A B C$ is equilateral.
Remark.
The right-hand inequality can be strengthened:
3) In $\triangle A B C$ the following relationship holds:

$$
\frac{r_{b}+r_{c}}{a^{2}}+\frac{r_{c}+r_{a}}{b}+\frac{r_{a}+r_{b}}{c^{2}} \leq \frac{1}{R}\left(\frac{R^{2}}{r^{2}}-\frac{R}{r}+1\right)
$$

Marin Chirciu - Romania
Solution
Using the Lemma the inequality can be written:
$\frac{s^{2}+r^{2}-8 R r}{4 R r^{2}} \leq \frac{1}{R}\left(\frac{R^{2}}{r^{2}}-\frac{R}{r}+1\right)$, which follows from Gerretsen's inequality:

$$
s^{2} \leq 4 R^{2}+4 R r+3 r^{2}
$$

We obtain:

$$
\frac{s^{2}+r^{2}-8 R r}{4 R r^{2}} \leq \frac{4 R^{2}+4 R r+3 r^{2}+r^{2}-8 R r}{4 R r^{2}}=\frac{4 R^{2}-4 R r+4 r^{2}}{4 R r^{2}}=\frac{R^{2}-R r+r^{2}}{R r^{2}}=
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
 $$
=\frac{1}{R}\left(\frac{R^{2}}{r^{2}}-\frac{R}{r}+1\right)
$$

Equality holds if and only if $\triangle A B C$ is equilateral.
Remark.
Inequality 3) is stronger than inequality 1) from the right.
4) In $\triangle A B C$ the following relationship holds:

$$
\frac{r_{b}+r_{c}}{a^{2}}+\frac{r_{c}+r_{a}}{b^{2}}+\frac{r_{a}+r_{b}}{c^{2}} \leq \frac{1}{R}\left(\frac{R^{2}}{r^{2}}-\frac{R}{r}+1\right) \leq \frac{3}{4 r}\left(\frac{R^{2}}{r^{2}}-2\right)
$$

Solution

$$
\text { See 3) and } \frac{1}{R}\left(\frac{R^{2}}{r^{2}}-\frac{R}{r}+1\right) \leq \frac{3}{4 r}\left(\frac{R^{2}}{r^{2}}-2\right) \Leftrightarrow 3 R^{3}-4 R^{2} r-2 R r^{2}-4 r^{3} \geq 0 \Leftrightarrow
$$

$$
\Leftrightarrow(R-2 r)\left(3 R^{2}+2 R r+2 r^{2}\right) \geq 0, \text { obviously from Euler's inequality } R \geq 2 r .
$$

Equality holds if and only if $\triangle A B C$ is equilateral.
Remark.

The inequalities can be written:

5) In $\triangle A B C$ the following relationship holds:

$$
\frac{3}{R} \leq \frac{r_{b}+r_{c}}{a^{2}}+\frac{r_{c}+r_{a}}{b^{2}}+\frac{r_{a}+r_{b}}{c^{2}} \leq \frac{1}{R}\left(\frac{R^{2}}{r^{2}}-\frac{R}{r}+1\right) \leq \frac{3}{4 r}\left(\frac{R^{2}}{r^{2}}-2\right)
$$

Solution
See inequalities 1) and 4).
Equality holds if and only if $\triangle A B C$ is equilateral.
Remark
If we replace $r_{\boldsymbol{a}}$ with $\boldsymbol{h}_{\boldsymbol{a}}$ we propose:
6) In $\triangle A B C$ the following relationship holds:

$$
\begin{aligned}
& \frac{3}{R} \leq \frac{h_{b}+h_{c}}{a^{2}}+\frac{h_{c}+h_{a}}{b^{2}}+\frac{h_{a}+h_{b}}{c^{2}} \leq \frac{1}{r}\left(\frac{r^{2}}{R^{2}}+\frac{r}{2 R}+1\right) \\
& \text { M arin Chirciu - Romania }
\end{aligned}
$$

Solution

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro
 We prove the following lemma:

Lemma

7) In $\triangle A B C$ the following relationship holds:

$$
\frac{h_{b}+h_{c}}{a^{2}}+\frac{h_{c}+h_{a}}{b^{2}}+\frac{h_{a}+h_{b}}{c^{2}}=\frac{s^{2}+r^{2}-2 R r}{4 R^{2} r}
$$

Proof.
Using the formula $h_{a}=\frac{2 S}{a}$ we obtain:

$$
\begin{aligned}
\sum \frac{h_{b}+h_{c}}{a^{2}}=\sum \frac{\frac{2 S}{b}+\frac{2 S}{c}}{a^{2}} & =\frac{2 S}{a b c} \sum \frac{b+c}{a}=\frac{2 S}{4 R S} \cdot \frac{s^{2}+r^{2}-2 R r}{2 R r}= \\
& =\frac{s^{2}+r^{2}-2 R r}{4 R^{2} r}
\end{aligned}
$$

which follows from the known identity in triangle: $\sum \frac{b+c}{a}=\frac{s^{2}+r^{2}-2 R r}{2 R r}$
Let's get back to the main problem.
The left hand inequality.
Using the Lemma the inequality can be written:
$\frac{s^{2}+r^{2}-2 R r}{4 R^{2} r} \geq \frac{3}{R} \Leftrightarrow s^{2} \geq 14 R r-r^{2}$, which follows from Gerretsen's inequality
$s^{2} \geq 16 R r-5 r^{2}$. It remains to prove that:
$16 R r-5 r^{2} \geq 14 R r-r^{2} \Leftrightarrow R \geq 2 r$, (Euler's inequality)
Equality holds if and only if $\triangle A B C$ is equilateral.
The right hand inequality.
Using the Lemma the inequality can be written:

$$
\frac{s^{2}+r^{2}-2 R r}{4 R^{2} r} \leq \frac{1}{r}\left(\frac{r^{2}}{R^{2}}+\frac{r}{2 R}+1\right)
$$

which follows from Gerretsen's inequality $s^{2} \leq 4 R^{2}+4 R r+3 r^{2}$.
We obtain: $\frac{s^{2}+r^{2}-2 R r}{4 R^{2} r} \leq \frac{4 R^{2}+4 R r+3 r^{2}+r^{2}-2 R r}{4 R^{2} r}=\frac{4 R^{2}+2 R r+4 r^{2}}{4 R^{2} r}=\frac{2 R^{2}+R r+2 r^{2}}{2 R^{2} r}=$

$$
=\frac{1}{r}\left(\frac{r^{2}}{R^{2}}+\frac{r}{2 R}+1\right)
$$

Equality holds if and only if $\triangle A B C$ is equilateral.

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Remark.
Between the sums $\sum \frac{\boldsymbol{h}_{\boldsymbol{b}}+\boldsymbol{h}_{\boldsymbol{c}}}{\boldsymbol{a}^{2}}$ and $\sum \frac{r_{\boldsymbol{b}}+\boldsymbol{r}_{c}}{\boldsymbol{a}^{2}}$ we obtain the relationship:
8) In $\triangle A B C$ the following relationship holds:

$$
\sum \frac{h_{b}+h_{c}}{a^{2}} \leq \sum \frac{r_{b}+r_{c}}{a^{2}}
$$

Marin Chirciu - Romania
Solution
Using the above Lemmas the inequality can be written:

$$
\frac{s^{2}+r^{2}-2 R r}{4 R^{2} r} \leq \frac{s^{2}+r^{2}-8 R r}{4 R r^{2}} \Leftrightarrow s^{2}(R-r) \geq r\left(8 R^{2}-3 R r+r^{2}\right), \text { which follows from }
$$

Gerretsen's inequality $s^{2} \geq 16 R r-5 r^{2}$. It remains to prove that: $\left(16 R r-5 r^{2}\right)(R-r) \geq r\left(8 R^{2}-3 R r+r^{2}\right) \Leftrightarrow 4 R^{2}-9 R r+2 r^{2} \geq 0 \Leftrightarrow$ $\Leftrightarrow(R-2 r)(4 R-r) \geq 0$, obviously from Euler's inequality $R \geq 2 r$.

Equality holds if and only if $\triangle A B C$ is equilateral.
Remark.
The following inequalities can be written:
9) In $\triangle A B C$ the follow ing relationship holds:

$$
\frac{3}{R} \leq \sum \frac{h_{b}+h_{c}}{a^{2}} \leq \sum \frac{r_{b}+r_{c}}{a^{2}} \leq \frac{1}{R}\left(\frac{R^{2}}{r^{2}}-\frac{R}{r}+1\right)
$$

Solution
See inequalities 1), 8) and 3).
Equality holds if and only if $\triangle A B C$ is equilateral.

SP.273. If $x, y \in \mathbb{R}$ then:

$$
\sin ^{4} x+\cos ^{4} x \sin ^{4} y+\cos ^{4} x \cos ^{4} y \geq \frac{1}{3}
$$

When does the equality holds?

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Solution 1 by Ravi Prakash-New Delhi-India

$$
\frac{\sin ^{4} x+\cos ^{4} x \sin ^{4} y+\cos ^{4} x \cos ^{4} y}{3} \geq\left(\frac{\sin ^{2} x+\cos ^{2} x \sin ^{2} y+\cos ^{2} x \cos ^{2} y}{3}\right)^{2}
$$

But $\sin ^{2} x+\cos ^{2} x \sin ^{2} y+\cos ^{2} y \cos ^{2} y=\sin ^{2} x+\cos ^{2} x\left(\sin ^{2} y+\cos ^{2} y\right)$

$$
=\sin ^{2} x+\cos ^{2} x=1
$$

Thus, $\sin ^{4} x+\cos ^{4} x \sin ^{4} y+\cos ^{4} x \cos ^{2} y \geq \frac{1}{3}$
Equality holds if $\sin ^{4} x=\cos ^{4} x \sin ^{4} y=\cos ^{4} x \cos ^{4} y$
x is an odd multiple of $\frac{\pi}{2}$ it is not possible.
$\therefore \cos ^{4} x \neq 0 \Rightarrow \sin ^{4} y=\cos ^{4} y \Rightarrow y=n \pi \pm \frac{\pi}{4} ; n \in \mathbb{Z} \Rightarrow \tan ^{4} x=\frac{1}{4}$

$$
\Rightarrow x=m \pi \pm \tan ^{-1}\left(\frac{1}{\sqrt{2}}\right), m \in \mathbb{Z}
$$

Thus, equality holds when $x=m \pi \pm \tan ^{-1}\left(\frac{1}{\sqrt{2}}\right), y=n \pi \pm \frac{\pi}{4}, m, n \in \mathbb{Z}$

Solution 2 by Marin Chirciu-Romania

Using Bergström's inequality we obtain $\sin ^{4} y+\cos ^{4} y \geq \frac{\left(\sin ^{2} y+\cos ^{2} y\right)^{2}}{2}=\frac{1}{2}$,
with equality if and only if $\sin ^{2} y=\cos ^{2} y$. It follows:
$M_{s}=\sin ^{4} x+\cos ^{4} x\left(\sin ^{4} y+\cos ^{4} y\right) \geq \sin ^{4} x+\cos ^{4} x \cdot \frac{1}{2} \stackrel{(1)}{\geq} \frac{1}{3}=M_{d}$, where (1) \Leftrightarrow
$\Leftrightarrow 6 \sin ^{4} x+3 \cos ^{4} x \geq 2 \Leftrightarrow 6 \sin ^{4} x+3\left(1-\sin ^{2} x\right)^{2} \geq 2 \Leftrightarrow 9 \sin ^{4} x-6 \sin ^{2} x+1 \geq 0 \Leftrightarrow$
$\Leftrightarrow\left(3 \sin ^{2} x-1\right)^{2} \geq 0$, obviously with equality if and only if $3 \sin ^{2} x=1$.
We deduce that the inequality from enunciation holds, with equality if and only if

$$
\sin ^{2} y=\cos ^{2} y \text { and } 3 \sin ^{2} x=1
$$

SP. 274 If in $\triangle A B C ; s=\frac{1}{2}$ then:

$$
a \cdot e^{\frac{m_{a}}{a}}+b \cdot e^{\frac{m_{b}}{b}}+c \cdot e^{\frac{m_{c}}{c}} \geq e^{m_{a}+m_{b}+m_{c}}
$$

Proposed by Daniel Sitaru - Romania
Solution by proposer

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Let be $\boldsymbol{f}_{1}, \boldsymbol{f}_{2}, \boldsymbol{f}_{3}:(0, \infty) \rightarrow \mathbb{R}$

$$
\begin{gathered}
f_{1}(x)=a x \ln x-\left(a+m_{a}\right) x ; f_{2}(x)=b x \ln x-\left(b+m_{b}\right) x \\
f_{3}(x)=c x \ln x-\left(c+m_{c}\right) x \\
f_{1}^{\prime}(x)=a(\ln x+1)-\left(a+m_{a}\right)=a \ln x-m_{a} \\
f_{1}^{\prime}(x)=0 \Rightarrow a \ln x=m_{a} \Rightarrow \ln x=\frac{m_{a}}{a} \\
\ln x=\ln e^{\frac{m_{a}}{a}} \Rightarrow x=e^{\frac{m_{a}}{a}}
\end{gathered}
$$

$$
\min f_{1}(x)=f_{1}\left(e^{\frac{m_{a}}{a}}\right)=a \cdot e^{\frac{m_{a}}{a}} \cdot \ln e^{\frac{m_{a}}{a}}-\left(a+m_{a}\right) \cdot e^{\frac{m_{a}}{a}}=
$$

$$
=m_{a} \cdot e^{\frac{m_{a}}{a}}-a e^{\frac{m_{a}}{a}}-m_{a} \cdot e^{\frac{m_{a}}{a}}=-a e^{\frac{m_{a}}{a}}
$$

$$
\begin{gathered}
f_{1}+f_{2}+f_{3}:(0, \infty) \rightarrow \mathbb{R} \\
\left(f_{1}+f_{2}+f_{3}\right)(x)=f_{1}(x)+f_{2}(x)+f_{3}(x)
\end{gathered}
$$

$\min \left(f_{1}+f_{2}+f_{3}\right)(x)=-(a+b+c) e^{\frac{m_{a}+m_{b}+m_{c}}{a+b+c}}$ $\min f_{1}(x)+\min f_{2}(x)+\min f_{3}(x) \leq \min \left(f_{1}+f_{2}+f_{3}\right)(x)$ $-\boldsymbol{a} e^{\frac{m_{a}}{a}}-\boldsymbol{b} e^{\frac{m_{b}}{b}}-\boldsymbol{c} \boldsymbol{e}^{\frac{m_{c}}{c}} \leq-(\boldsymbol{a}+\boldsymbol{b}+\boldsymbol{c}) \boldsymbol{e}^{\frac{m_{a}+m_{b}+m_{c}}{a+b+c}}$ $a e^{\frac{m_{a}}{a}}+\boldsymbol{b} e^{\frac{m_{b}}{b}}+\boldsymbol{c} \boldsymbol{e}^{\frac{m_{c}}{c}} \geq(\boldsymbol{a}+\boldsymbol{b}+\boldsymbol{c}) e^{\frac{m_{a}+m_{b}+m_{c}}{a+b+c}}=$ $=(2 s) \cdot e^{\frac{m_{a}+m_{b}+m_{c}}{2 s}}=\left(2 \cdot \frac{\mathbf{1}}{2}\right) \cdot e^{\frac{m_{a}+m_{b}+m_{c}}{2 \cdot \frac{1}{2}}}=e^{m_{a}+m_{b}+m_{c}}$

$$
\text { Equality holds for } a=b=c=\frac{1}{6} \text {. }
$$

SP.275. In $\triangle A B C$ the following relationship holds:

$$
\left(\frac{a+b}{m_{a}+m_{b}}\right)^{2}+\left(\frac{b+c}{m_{b}+m_{c}}\right)^{2}+\left(\frac{c+a}{m_{c}+m_{a}}\right)^{2} \geq 4
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Lemma 1. In any $\triangle A B C$, then $\left(m_{b}+m_{c}\right)^{2} \leq 2 a^{2}+\frac{(b+c)^{2}}{4}$
Proof. The desired inequality is equivalent to $4 m_{b} \boldsymbol{m}_{c} \leq \mathbf{2 a}+\boldsymbol{b c}$

$$
\left[2\left(c^{2}+a^{2}\right)-b^{2}\right]\left[2\left(a^{2}+b^{2}\right)-c^{2}\right] \leq\left(2 a^{2}+b c\right)^{2}
$$

$$
4\left(a^{2}+b^{2}\right)\left(a^{2}+c^{2}\right)-2 b^{2}\left(a^{2}+b^{2}\right)-2 c^{2}\left(c^{2}+a^{2}\right)+b^{2} c^{2} \leq 4 a^{4}+2 a^{2} b c+b^{2} c^{2}
$$

$$
2 a^{2} b^{2}+2 a^{2} c^{2}+4 b^{2} c^{2}-2 b^{4}-2 c^{4} \leq 2 a^{2} b c
$$

$$
(a b-a c)^{2} \leq\left(b^{2}-c^{2}\right)^{2}
$$

$$
(a+b+c)(b+c-a)(b-c)^{2} \geq 0
$$

The last inequality is clearly true.

$$
\begin{aligned}
& \sum_{c y c}\left(\frac{b+c}{m_{b}+m_{c}}\right)^{2} \geq \sum_{c y c} \frac{4(b+c)^{2}}{8 a^{2}+(b+c)^{2}} \geq \frac{4\left[(b+c)^{2}+(c+a)^{2}+(a+b)^{2}\right]^{2}}{\sum_{c y c}\left[8 a^{2}(b+c)^{2}+(b+c)^{4}\right]} \\
= & \frac{16\left(a^{2}+b^{2}+c^{2}+a b+b c+c a\right)^{2}}{2\left(a^{4}+b^{4}+c^{4}\right)+22\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right)+16 a b c(a+b+c)+\sum_{c y c} 4 b c\left(b^{2}+c^{2}\right)}
\end{aligned}
$$

Hence, it suffices to show that:

$$
\begin{gathered}
2\left(a^{2}+b^{2}+c^{2}+a b+b c+c a\right)^{2} \geq \\
\left(a^{4}+b^{4}+c^{4}\right)+11\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right)+8 a b c(a+b+c)+\sum_{c y c} 2 b c\left(b^{2}+c^{2}\right)
\end{gathered}
$$

Or equivalent to

$$
\begin{aligned}
& a^{4}+b^{4}+c^{4}+\sum_{c y c} 2 b c\left(b^{2}+c^{2}\right) \geq 5\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right) \\
& a^{4}+b^{4}+c^{4}+\sum_{c y c} 2 b c(b-c)^{2} \geq 5\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right)
\end{aligned}
$$

The last inequality is true because

$$
a^{4}+b^{4}+c^{4} \geq a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}
$$

SP.276. If $x, y, z>0 ; n \geq 1$ then:

$$
\sum_{c y c} \frac{(n x+y)(n x+z)}{y z} \geq \frac{(n+1)^{2}}{2} \sum_{c y c} \frac{y+z}{x}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro
Solution by George Florin Şerban-Romania

$$
\begin{gathered}
\sum_{c y c} \frac{(n x+y)(n x+z)}{y z} \geq \frac{(n+1)^{2}}{2} \sum_{c y c} \frac{y+z}{x} \\
\sum_{c y c}\left(\frac{n^{2} x^{2}}{y z}+\frac{n x z}{y z}+\frac{n x y}{y z}+\frac{y z}{y z}\right) \geq \frac{n^{2}+2 n+1}{2} \sum_{c y c} \frac{y+z}{x} \\
n^{2}\left(\frac{x^{2}}{y z}+\frac{y^{2}}{z x}+\frac{z^{2}}{x y}\right)+3 \geq \frac{n^{2}+1}{2} \sum_{c y c} \frac{y+z}{x}, \frac{n^{2}\left(x^{3}+y^{3}+z^{3}\right)}{x y z}+3 \geq \frac{n^{2}+1}{2} \sum_{c y c} \frac{y+z}{x} \\
n^{2}\left(\frac{x^{3}+y^{3}+z^{3}}{x y z}-\frac{1}{2} \sum_{c y c} \frac{y+z}{x}\right) \geq \frac{1}{2} \sum_{c y c} \frac{y+z}{x}-3 \\
n^{2}\left(\frac{x^{3}+y^{3}+z^{3}}{x y z}-\frac{1}{2} \sum_{c y c} \frac{y+z}{x}\right) \geq \frac{x^{3}+y^{3}+z^{3}}{x y z}-\frac{1}{2} \sum_{c y c} \frac{y+z}{x} \stackrel{y}{2}_{2}^{x} \frac{1}{2} \sum_{c y c} \frac{y+z}{x}-3
\end{gathered}
$$

$$
\text { Because: } x^{3}+y^{3} \geq x y(x+y) \Rightarrow \frac{x^{3}+y^{3}}{x y z} \geq \frac{x y(x+y)}{x y z} \Rightarrow \frac{x^{3}+y^{3}+z^{3}}{x y z} \geq \frac{1}{2} \sum_{c y c} \frac{y+z}{x} \Rightarrow
$$

$$
\frac{x^{3}+y^{3}+z^{3}}{x y z} \geq \sum_{c y c} \frac{y+z}{x}-3 \Rightarrow x^{3}+y^{3}+z^{3} \geq \sum_{c y c} y z(y+z)-3 x y z \Rightarrow
$$

$x^{3}+y^{3}+z^{3}+3 x y z \geq x^{2} y+x y^{2}+y^{2} z+y z^{2}+z^{2} x+z x^{2}$ true by Schur's inequality.

SP.277. In $\triangle A B C$ the following relationship holds:

$$
27\left(\frac{R}{2 r}\right)^{2}-\sum_{c y c}\left(\sqrt{\frac{\sin A}{\sin B}}+\sqrt{\frac{\sin A}{\sin C}}\right)^{3} \geq 3
$$

Proposed by George Apostolopoulos-M essolonghi-Greece

Solution by proposer
Let a, b, c-be the lengths of sides of the $\triangle A B C$.
We know that: $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}} \leq \frac{1}{4 r^{2}}$ and $\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^{2} \leq 3\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}\right)$ so

$$
\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^{2} \leq \frac{3}{4 r^{2}} \text {. We have } \frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}+\frac{2}{a b}+\frac{2}{b c}+\frac{2}{c a} \leq \frac{3}{4 r^{2}}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\begin{gathered}
\frac{3}{4 r^{2}}-\frac{1}{a^{2}} \geq\left(\frac{1}{b}+\frac{1}{c}\right)^{2}+\frac{2}{a}\left(\frac{1}{b}+\frac{1}{c}\right) \stackrel{A m-G m}{\Longrightarrow} \frac{3}{4 r^{2}}-\frac{1}{a^{2}} \geq 2 \sqrt{\left(\frac{1}{b}+\frac{1}{c}\right)^{2} \cdot \frac{2}{a}\left(\frac{1}{b}+\frac{1}{c}\right)} \\
\frac{3}{4 r^{2}}-\frac{1}{a^{2}} \geq 2\left(\frac{1}{b}+\frac{1}{c}\right) \sqrt{\frac{2}{a}\left(\frac{1}{b}+\frac{1}{c}\right) \xrightarrow[{(x+y) \geq(\sqrt{x}+\sqrt{y})^{2}}]{x} \underset{x, y>0}{2}} \\
\frac{3}{4 r^{2}}-\frac{1}{a^{2}} \geq \frac{1}{\sqrt{a}}\left(\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)^{2} \sqrt{\left(\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)^{2}}=\frac{1}{\sqrt{a}}\left(\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)^{3} \\
\text { So: } \frac{1}{a^{2}}+\frac{1}{\sqrt{a}}\left(\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)^{3} \leq \frac{3}{4 r^{2}} \text { or } \\
1+\sqrt{a^{3}}\left(\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)^{3} \leq \frac{3}{4 r^{2}} \cdot a^{2} \Leftrightarrow 1+\left(\sqrt{\frac{a}{b}}+\sqrt{\frac{a}{c}}\right)^{3} \leq \frac{3}{4 r^{2}} \cdot a^{2} \\
\text { Similarly: } 1+\left(\sqrt{\frac{b}{a}}+\sqrt{\frac{b}{c}}\right)^{3} \leq \frac{3}{4 r^{2}} \cdot b^{2} \text { and } 1+\left(\sqrt{\frac{c}{a}}+\sqrt{\frac{c}{b}}\right)^{3} \leq \frac{3}{4 r^{2}} \cdot c^{2}
\end{gathered}
$$

Addind up these inequalities, we have

$$
3+\sum_{c y c}\left(\sqrt{\frac{a}{b}}+\sqrt{\frac{a}{c}}\right)^{3} \leq \frac{3}{4 r^{2}} \cdot\left(a^{2}+b^{2}+c^{2}\right)
$$

We know that $a^{2}+b^{2}+c^{2} \leq 9 R^{2}$ and using the law of the sines, we get

$$
\begin{gathered}
3+\sum_{c y c}\left(\sqrt{\frac{\sin A}{\sin B}}+\sqrt{\frac{\sin A}{\sin C}}\right)^{3} \leq \frac{27 R^{2}}{4 r^{2}} \\
27\left(\frac{R}{2 r}\right)^{2}-\sum_{c y c}\left(\sqrt{\frac{\sin A}{\sin B}}+\sqrt{\frac{\sin A}{\sin C}}\right)^{3} \geq 3
\end{gathered}
$$

SP.278. Let be $f:\left[\frac{\pi}{4}, \frac{3 \pi}{4}\right] \rightarrow \mathbb{R}, f(x)=\frac{\cot ^{2} x-2 \cot x+n-1}{\cot ^{2} x+2 \cot x+n+1} ; n \geq 2$. Find Imf.

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Solution by proposer
Denote $1+\cot x=t$ we have $0 \leq t \leq 2, f(t)=\frac{t^{2}-4 t+n+2}{t^{2}+n}$
We calculate: $f^{\prime}(t)=\frac{4\left(t^{2}-t-n\right)}{\left(t^{2}+n\right)^{2}} \leq 0, \forall t \in[0,2]$ and $f(0)=\frac{n+2}{n}, f(2)=\frac{n-2}{n+4}$ then the function f-is strictly decreasing on $[0,2]$, so

$$
\operatorname{Imf}=[f(2), f(0)]=\left[\frac{n-2}{n+4}, \frac{n+2}{n}\right]
$$

We deduce that $\operatorname{Imf}=\left[\frac{n-2}{n+4}, \frac{n+2}{n}\right]$ it is the function image

$$
f:\left[\frac{\pi}{4}, \frac{3 \pi}{4}\right] \rightarrow \mathbb{R}, f(x)=\frac{\cot ^{2} x-2 \cot x+n-1}{\cot ^{2} x+2 \cot x+n+1}
$$

SP.279. If in $\triangle A B C ; \omega$-Brocard angle then the following relationship holds:

$$
\frac{1}{2 \sin \omega} \geq \sqrt{\frac{w_{a} w_{b} w_{c}}{h_{a} h_{b} h_{c}}} \geq \frac{2 \cos \omega}{\sqrt{3}}
$$

Proposed by Vasile Jiglău-Romania
Solution by proposer
It is a known (and elementary) fact that in triangle $\cos \frac{B-C}{2}=\frac{h_{a}}{l_{a}} ;(1)$
Suppose that the sides of the triangle $A B C$ verify: $c \geq b \geq a$; (2)
Clearly the meansures of the angles of the triangle verify $A \geq B \geq C$, which imply

$$
\begin{gather*}
\sin \frac{C-B}{2} \sin \frac{B-A}{2} \geq 0 \text {. We have: } \frac{h_{b}}{w_{b}}=\cos \frac{C-A}{2}=\cos \left(\frac{C-B}{2}+\frac{B-A}{2}\right) \\
=\cos \frac{C-B}{2} \cos \frac{B-A}{2}-\sin \frac{C-B}{2} \sin \frac{B-A}{2} \leq \cos \frac{C-B}{2} \cos \frac{B-A}{2}=\frac{h_{a}}{w_{a}} \cdot \frac{h_{c}}{w_{c}} \tag{3}
\end{gather*}
$$

Hence, under the hypothesis (1): $\frac{h_{b}}{w_{b}} \geq \frac{h_{a}}{w_{a}} \cdot \frac{h_{c}}{w_{c}}$;
Let's now prove that: $\frac{1}{2 \sin \omega} \geq \sqrt{\frac{R}{2 r}}$
We'll use the formula $\sin \omega=\frac{s}{\sqrt{a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}}}$, where S-is area of the given triangle.

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
This is equivalent to: $\frac{1}{\sin ^{2} \omega} \geq \frac{2 R}{r} \Leftrightarrow \frac{\sum a^{2} b^{2}}{4 S^{2}} \geq \frac{2 R}{r} \Leftrightarrow \sum a^{2} b^{2} \geq 8 R r s^{2}$

$$
\Leftrightarrow \sum a^{2} b^{2} \geq a b c(a+b+c) \Leftrightarrow \sum(a b-b c)^{2} \geq \mathbf{0} ;(4)
$$

On the other hand, it is a known fact that: $\frac{R}{2 r} \geq \frac{1}{\cos ^{2} \frac{B-C}{2}}$ (see the problem 2382 from
"Crux mathematicorum")

$$
\begin{equation*}
\stackrel{b y(1)}{\Longrightarrow} \sqrt{\frac{R}{2 r}} \geq \frac{w_{a}}{h_{a}} \tag{5}
\end{equation*}
$$

From (3),(4) and (5), we obtain that: $\frac{1}{2 \sin \omega} \geq \sqrt{\frac{R}{2 r}} \geq \frac{w_{b}}{h_{b}} \geq \sqrt{\frac{w_{a} w_{b} w_{c}}{h_{a} h_{b} h_{c}}}$, and the first inequality of the enunciation is proved.
The proof of the second inequality of the enunciation: We'll use

$$
\cos \omega=\frac{a^{2}+b^{2}+c^{2}}{2 \sqrt{a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}}}
$$

With the formulas: $w_{a}=\frac{2 \sqrt{b c s(s-a)}}{b+c}, h_{a}=\frac{2 s}{a}$ we can easily see that:

$$
\frac{w_{a} w_{b} w_{c}}{h_{a} h_{b} h_{c}}=\frac{a^{2} b^{2} c^{2}(a+b+c)}{2 S^{2}(a+b)(b+c)(c+a)}
$$

The inequality becomes equivalent to:

$$
\frac{a^{2} b^{2} c^{2}(a+b+c)}{2 S^{2}(a+b)(b+c)(c+a)} \geq \frac{\left(a^{2}+b^{2}+c^{2}\right)^{2}}{3\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right)}
$$

Putting $x=s-a, y=s-b, z=s-c$, the inequality becomes equivalent to:

$$
\begin{gathered}
3\left(\sum(x+y)^{2}(y+z)^{2}\right) \prod(x+y)^{2} \geq x y z\left(\sum(x+y)^{2}\right)^{2} \prod(2 x+y+z) \Leftrightarrow \\
3 \sum x^{8} y^{2}+3 \sum x^{8} z^{2}+12 \sum x^{7} y^{3}+12 \sum x^{7} z^{3}+24 \sum x^{6} y^{4}+24 \sum x^{6} z^{4}+ \\
+30 \sum x^{5} y^{5}+22 \sum x^{5} y^{4} z+22 \sum x^{5} y z^{4} \geq 2 \sum x^{8} y z+8 \sum x^{7} y^{2} z+ \\
+8 \sum x^{7} y z^{2}+40 \sum x^{6} y^{2} z^{2}+32 \sum x^{5} y^{3} z^{2}+32 \sum x^{5} y^{2} z^{3}+ \\
+14 \sum x^{4} y^{4} z^{2}+16 \sum x^{4} y^{3} z^{3},(x, y, z \geq 0),
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Which immediately result by adding the following inequalities, that are simple
applications of the Am-Gm inequality and of the Murihead's lemma:

$$
\begin{gathered}
\sum x^{8} y^{2}+\sum x^{8} z^{2} \geq 2 \sum x^{8} y z \\
8 \sum x^{7} y^{3}+8 \sum x^{7} z^{3} \geq 8 \sum x^{7} y^{2} z+8 \sum x^{7} y z^{2} \\
2 \sum x^{8} y^{2} \geq 2 \sum x^{6} y^{2} z^{2} \\
2 \sum x^{8} z^{2} \geq 2 \sum x^{6} y^{2} z^{2} \\
4 \sum x^{7} y^{3} \geq 4 \sum x^{6} y^{2} z^{2} \\
4 \sum x^{7} z^{3} \geq 4 \sum x^{6} y^{2} z^{2} \\
10 \sum x^{6} y^{4}+10 \sum x^{6} z^{4} \geq 10 \sum x^{5} y^{3} z^{2}+10 \sum x^{5} y^{2} z^{3} \\
14 \sum x^{6} y^{4}+14 \sum x^{6} z^{4} \geq 28 \sum x^{6} y^{2} z^{2} \\
22 \sum x^{5} y^{4} z+22 \sum x^{5} y z^{4} \geq 22 \sum x^{5} y^{3} z^{2}+22 \sum x^{5} y^{2} z^{3} \\
14 \sum x^{5} y^{5} \geq 14 \sum x^{4} y^{4} z^{2}, \\
16 \sum x^{5} y^{5} \geq 16 \sum x^{4} y^{3} z^{3}
\end{gathered}
$$

SP. 280 If $x, y, z \geq 0 ;\{x\}^{9}+\{y\}^{9}+\{z\}^{9}=\frac{1}{64}$ then:

$$
\begin{gathered}
x^{7} \cdot[x] \cdot\{x\}+y^{7} \cdot[y] \cdot\{y\}+z^{7} \cdot[z] \cdot\{z\}<64\left([x]^{9}+[y]^{9}+[z]^{9}\right)+\mathbf{1} \\
\{x\}=x-[x] ;[*]-\text { great integer function } \\
\text { Proposed by Daniel Sitaru - Romania }
\end{gathered}
$$

Solution 1 by proposer

$$
\begin{gathered}
\frac{[x]^{9}+\{x\}^{9}}{[x] \cdot\{x\}}=\frac{[x]^{8}}{\{x\}}+\frac{\{x\}^{8}}{[x]} \stackrel{\text { BERGSTROM }}{\geq} \frac{\left([x]^{4}+\{x\}^{4}\right)^{2}}{\{x\}+[x]} \geq \\
\geq \frac{1}{x} \cdot\left(\frac{\left([x]^{2}+\{x\}^{2}\right)^{2}}{2}\right)^{2}=\frac{1}{4 x}\left([x]^{2}+\{x\}^{2}\right)^{4} \geq
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

$$
\begin{align*}
& \geq \frac{1}{4 x}\left(\left(\frac{[x]+\{x\}}{2}\right)^{2}\right)^{4}=\frac{x^{8}}{16 \cdot 4 x}=\frac{x^{7}}{64} \\
& 64\left([x]^{9}+\{x\}^{9}\right) \geq x^{7} \cdot[x] \cdot\{x\} ; x \geq 0 \\
& x^{7} \cdot[x] \cdot\{x\} \leq 64\left([x]^{9}+\{x\}^{9}\right\} \tag{1}
\end{align*}
$$

Analogous:

$$
\begin{align*}
y^{7} \cdot[y] \cdot\{y\} & \leq \mathbf{6 4}\left([y]^{9}+\{y\}^{9}\right\} \tag{2}\\
z^{7} \cdot[z] \cdot\{z\} & \leq \mathbf{6 4}\left([z]^{9}+\{z\}^{9}\right\} \tag{3}
\end{align*}
$$

By adding (1); (2); (3):

$$
\begin{gathered}
x^{7} \cdot[x] \cdot\{x\}+y^{7} \cdot[y] \cdot\{y\}+z^{7} \cdot[z] \cdot\{z\} \leq \\
\leq \mathbf{6 4}\left([x]^{9}+[y]^{9}+[z]^{9}\right\}+\mathbf{6 4}\left(\{x\}^{9}+\{y\}^{9}+\{z\}^{9}\right)=\mathbf{6 4}\left([x]^{9}+[y]^{9}+[z]^{9}\right\}+\mathbf{1}
\end{gathered}
$$

Inequality is strict because (1); (2); (3) are equalities only for $x=y=z=0$ and in our case $\{x\}^{9}+\{y\}^{9}+\left\{z^{9}\right\}=\frac{1}{64} \neq \mathbf{0}$
Solution 2 by Tran Hong-Dong Thap-Vietnam
Since $\boldsymbol{x}, \boldsymbol{y}, \mathrm{z} \geq \mathbf{0} \Rightarrow[\boldsymbol{x}],[y],[z] \geq \mathbf{0}$ and $\mathbf{0} \leq\{\boldsymbol{x}\},\{y\},\{z\}<\mathbf{1}$
Because: $\{x\}^{6}+\{y\}^{6}+\{z\}^{6}=\frac{1}{64} \rightarrow \mathbf{1}=\mathbf{6 4}\left(\{x\}^{6}+\{y\}^{6}+\{z\}^{6}\right)$
RHS $=\mathbf{6 4}\left([x]^{9}+\{x\}^{9}+[y]^{9}+\{y\}^{9}+[z]^{9}+\{z\}^{9}\right)$
Now: $x^{7} \cdot[x] \cdot\{x\} \stackrel{A m-G m}{\leq} x^{7} \cdot \frac{([x]+\{x\rangle)^{2}}{4}=x^{7} \cdot \frac{x^{2}}{4}=\frac{x^{9}}{4}$
Analogous: $\boldsymbol{y}^{7} \cdot[y] \cdot\{y\} \leq \frac{y^{9}}{4}$ and $z^{7} \cdot[z] \cdot\{z\} \leq \frac{z^{9}}{4}$
LHS $=x^{9} \cdot[x] \cdot\{x\}+y^{9} \cdot[y] \cdot\{y\}+z^{9} \cdot[z] \cdot\{z\} \leq \frac{x^{9}+y^{9}+z^{9}}{4}$

$$
\begin{aligned}
& =\frac{([x]+\{x\})^{9}+([y]+\{y\})^{9}+([z\}+\{z\})^{9}}{4} \\
& =\frac{2^{8}}{4}\left([x]^{9}+\{x\}^{9}+[y]^{9}+\{y\}^{9}+[z]^{9}+\{z\}^{9}\right) \\
& =64\left([x]^{9}+\{x\}^{9}+[y]^{9}+\{y\}^{9}+[z]^{9}+\{z\}^{9}\right)
\end{aligned}
$$

Proved.

Note: For all $\alpha, \beta>0$ we have: $\alpha^{9}+\beta^{9} \geq \frac{(\alpha+\beta)^{9}}{2^{8}}$
Equality $\Leftrightarrow[\boldsymbol{x}]=\{\boldsymbol{x}\}=[\boldsymbol{y}]=\{\boldsymbol{y}\}=[\boldsymbol{z}]=\{\boldsymbol{z}\}=\mathbf{0}$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

But: $\{x\}^{9}+\{y\}^{9}+\left\{z^{9}\right\}=\frac{1}{64} \neq \mathbf{0}$. So, inequality is strict.

SP.281. If $x \in\left(0, \frac{\pi}{2}\right) ; a, b>0$ then:

$$
\left(\left(\sqrt{\frac{a}{b}}\right)^{\frac{\sin x}{x}}+\left(\sqrt{\frac{b}{a}}\right)^{\frac{\sin x}{x}}\right) \cdot\left(\left(\sqrt{\frac{a}{b}}\right)^{\frac{x}{\tan x}}+\left(\sqrt{\frac{b}{a}}\right)^{\frac{x}{\tan x}}\right) \leq\left(\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}\right)^{2}
$$

> Proposed by Daniel Sitaru - Romania

Solution by Florentin Vișescu - Romania

$$
\begin{gathered}
\text { Let be } \sqrt{\frac{a}{b}}=t>0 \\
\left(t^{\frac{\sin x}{x}}+\left(\frac{1}{t}\right)^{\frac{\sin x}{x}}\right) \cdot\left(t^{\frac{x}{\tan x}}+\left(\frac{1}{t}\right)^{\frac{x}{\tan x}}\right) \leq\left(t+\frac{1}{t}\right)^{2}
\end{gathered}
$$

For $x \in\left(0 ; \frac{\pi}{2}\right), 0<\sin x<x<\tan x \mid: x$

$$
0<\frac{\sin x}{x}<1<\frac{\tan x}{x} \Rightarrow \frac{\sin x}{x} \in(0,1), \frac{x}{\tan x} \in(0,1)
$$

We denote $m=\frac{\sin x}{x} \in(0,1) ; n=\frac{x}{\tan x} \in(0,1)$
We prove that $\left(t^{m}+\frac{1}{t^{m}}\right)\left(t^{n}+\frac{1}{t^{n}}\right) \leq\left(t+\frac{1}{t}\right)^{2}$
We prove that $t^{k}+\frac{1}{t^{k}} \leq t+\frac{1}{t} ; t>0$ fixed; $k \in(0,1)$
We consider $f(k)=t^{k}+t^{-k} ; f:(0,1) \rightarrow \mathbb{R}$

$$
\begin{gathered}
f^{\prime}(k)=t^{k} \ln t-t^{k} \ln t=\ln t\left(t^{k}-t^{-k}\right) \\
t^{k}-t^{-k}=\mathbf{0} ; t^{k}=t^{-k} \Rightarrow k=-k ; 2 k=0
\end{gathered}
$$

\boldsymbol{k}	$\mathbf{0}$	$\mathbf{1}$
$\boldsymbol{t}^{\prime}(\boldsymbol{k})$	++++++++++++++++++	
$\boldsymbol{t}(\boldsymbol{k})$	$2 \xrightarrow{t} \boldsymbol{t} \boldsymbol{t}+\frac{1}{t}$	

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

\boldsymbol{k}	$\mathbf{0}$	$\mathbf{1}$
$\boldsymbol{t}^{\prime}(\boldsymbol{k})$	++++++++++++++++++	
$\boldsymbol{t}(\boldsymbol{k})$	$\mathbf{2} \xrightarrow{\boldsymbol{t}+\frac{\mathbf{1}}{\boldsymbol{t}}}$	

So, $f(k) \leq t+\frac{1}{t} \Rightarrow t^{k}+\frac{1}{t^{k}} \leq t+\frac{1}{t}$

SP.282. If in $\triangle A B C ; H$-orthocentre; $H D, H E, H F$ bisectors of angles $B H C, C H A$ respectively $A H B ; D \in(B C) ; E \in(C A) ; F \in(A B)$ then the following relationship holds:

$$
\frac{[D E F]}{[A B C]} \geq 13\left(\frac{r}{R}\right)^{2}-3
$$

Proposed by Marian Ursărescu-Romania
Solution by proposer

$$
\begin{aligned}
& \Delta B G C \Rightarrow \frac{B D}{D C}=\frac{H B}{H C} \text { and analogs } \\
& \frac{B D}{D C} \cdot \frac{C E}{E A} \cdot \frac{A F}{F B}=\frac{H B}{H C} \cdot \frac{H C}{H A} \cdot \frac{H A}{H B}=1 ;(1) \\
& \text { Let: } \frac{H A}{H B}=m, \frac{H B}{H C}=k, \frac{H C}{H A}=p \\
& S_{A E F}=\frac{A F \cdot A E \cdot \sin A}{2}=\frac{m}{(m+1)(p+1)} \cdot \frac{b c \cdot \sin A}{2}=\frac{m}{(m+1)(p+1)} \cdot S_{A B C} \text { and analogs } \\
& S_{D E F}=\frac{1+k m p}{(1+k)(1+m)(1+p)} \stackrel{(1)}{=} \frac{2}{(1+k)(1+m)(1+p)}= \\
& =\frac{2 A H \cdot B H \cdot C H}{(A H+B H)(A H+C H)(C H+B H)} \cdot S_{A B C} \\
& \text { But: } A H=2 R \sin A \Rightarrow \\
& S_{D E F}=\frac{2 \cos A \cos B \cos C}{(\cos A+\cos B)(\cos B+\cos C)(\cos C+\cos A)} \cdot S_{A B C} ;(2) \\
& \text { But: } \cos A \cos B \cos C=\frac{s^{2}-(2 R+r)^{2}}{4 R^{2}} ;(3) \\
& (\cos A+\cos B)(\cos B+\cos C)(\cos C+\cos A)=\frac{r\left(s^{2}+r^{2}+2 R r\right)}{4 R^{3}} ;(4)
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$s^{2} \leq 27 R^{2} \cdot s^{2} \geq \frac{27}{4} \cdot r^{2}, R \geq 2 r ;$ (5)
From (1) $+(2)+(3)+(4)+(5)$ proved.

SP.283. Find $x, y>0$ such that:

$$
\sqrt{\frac{x}{y}}+\sqrt[3]{\frac{3}{x}}+\sqrt[5]{\frac{y}{3}}=\frac{10}{\sqrt[10]{337500}}
$$

Proposed by Daniel Sitaru-Romania
Solution by Tran Hong-Dong Thap-Vietnam

$$
\begin{gathered}
\sqrt{\frac{x}{y}}+\sqrt[3]{\frac{3}{x}}+\sqrt[5]{\frac{y}{3}}=\sqrt{\frac{x}{y}}+\frac{3}{\sqrt[3]{9} \cdot \sqrt[3]{x}}+\frac{5 \sqrt[5]{3^{4}} \cdot \sqrt[5]{y}}{15} \\
=\frac{1}{2} \sqrt{\frac{x}{y}}+\frac{1}{2} \sqrt{\frac{x}{y}}+\frac{1}{\sqrt[3]{9} \cdot \sqrt[3]{x}}+\frac{1}{\sqrt[3]{9} \cdot \sqrt[3]{x}}+\frac{1}{\sqrt[3]{9} \cdot \sqrt[3]{x}}+\frac{5 \sqrt[5]{3^{4}}}{15} \cdot \sqrt[5]{y}+\frac{5 \sqrt[5]{3^{4}}}{15} \cdot \sqrt[5]{y}+\frac{5 \sqrt[5]{3^{4}}}{15} \cdot \sqrt[5]{y}+\frac{5 \sqrt[5]{3^{4}}}{15} \cdot \sqrt[5]{y}+\frac{5 \sqrt[5]{3^{4}}}{15} \cdot \sqrt[5]{y} \\
A m-G m \\
\geq 10 \\
\left(\frac{1}{2}\right)^{2}\left(\frac{1}{\sqrt[3]{9}}\right)^{3}\left(\frac{\sqrt[5]{3^{4}}}{15}\right)^{5} \\
\sqrt{\sqrt[10]{337500}}
\end{gathered}
$$

$$
\text { Equality for: } \frac{1}{2} \sqrt{\frac{x}{y}}=\frac{1}{\sqrt[3]{9 x}}=\frac{\sqrt[5]{81 y}}{15}
$$

$$
\frac{\sqrt{x}}{2 \sqrt{y}}=\frac{1}{\sqrt[3]{9 x}} \Leftrightarrow \sqrt{x} \cdot \sqrt[3]{9 x}=2 \sqrt{y} \Leftrightarrow x^{5}=\frac{64}{81} y^{3} .
$$

$$
\frac{1}{\sqrt[3]{9 x}}=\frac{\sqrt[5]{81 y}}{15} \Leftrightarrow(9 x)^{5} \cdot(81 y)^{3}=45^{15} \Rightarrow y=\sqrt[6]{\frac{9^{4} \cdot 5^{15}}{64}} \Rightarrow x=\sqrt[10]{64 \cdot 5^{15}}
$$

$$
\text { Answer: }(x ; y)=\left(\sqrt[10]{64 \cdot 5^{15}} ; \sqrt[6]{\frac{9 \cdot 5^{15}}{64}}\right)
$$

SP.284. RMM WINTER EDITION 2020

By Marin Chirciu - Romania

1) In $\triangle A B C$ the following relationship holds:

$$
\begin{aligned}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
& \frac{\mathbf{1}}{\mathbf{3 R ^ { 2 }}} \leq \frac{\mathbf{1}}{\left(\boldsymbol{r}_{a}+r_{b}\right)^{2}}+\frac{\mathbf{1}}{\left(\boldsymbol{r}_{b}+\boldsymbol{r}_{c}\right)^{2}}+\frac{\mathbf{1}}{\left(\boldsymbol{r}_{c}+r_{a}\right)^{2}} \leq \frac{\mathbf{1 6} \boldsymbol{R}^{2}-\mathbf{3} r^{2}}{\mathbf{1 2 r}}
\end{aligned}
$$

Proposed by George Apostolopoulos-M essolonghi- Greece

Solution.

The left hand inequality.
Using means inequality and $\Pi\left(r_{b}+r_{c}\right)=4 R s^{2}$ we obtain:

$$
\sum \frac{1}{\left(r_{b}+r_{c}\right)^{2}} \geq 3 \sqrt[3]{\prod \frac{1}{\left(r_{b}+r_{c}\right)^{2}}}=3 \sqrt[3]{\prod \frac{1}{\left(4 R r s^{2}\right)^{2}}} \stackrel{(1)}{\geq} \frac{1}{3 R^{2}}
$$

where (1) $\Leftrightarrow 9 R^{2} \geq \sqrt[3]{\left(4 R s^{2}\right)^{2}} \Leftrightarrow(3 R)^{3} \geq 4 R s^{2} \Leftrightarrow 27 R^{2} \geq 4 s^{2}$, obviously from
Mitrinovic's inequality $s \leq \frac{3 R \sqrt{3}}{2}$. Equality holds if and only if $\triangle A B C$ is equilateral.
The right-hand inequality. We prove the strongest inequality:
2) In $\triangle A B C$ the following relationship holds:

$$
\sum \frac{1}{\left(r_{b}+r_{c}\right)^{2}} \leq \frac{1}{12 r^{2}}
$$

We have $\sum \frac{1}{\left(r_{b}+r_{c}\right)^{2}} \leq \sum \frac{1}{4 r_{b} r_{c}}=\frac{\sum r_{a}}{4 \Pi r_{a}}=\frac{4 R+r}{4 r s^{2}} \stackrel{(2)}{\leq} \frac{1}{12 r^{2}}$
where (2) $\Leftrightarrow s^{2} \geq 3 r(4 R+r)$, which follows from Gerretsen's inequality

$$
s^{2} \geq 16 R r-5 r^{2} . \text { It remains to prove that: }
$$

$16 R r-5 r^{2} \geq 3 r(4 R+r) \Leftrightarrow R \geq 2 r$, (Euler's inequality).
Equality holds if and only if $\triangle A B C$ is equilateral.
Let's get back to solving the right-hand inequality:
Using 2) it suffices to prove that:
$\frac{1}{12 r^{2}} \leq \frac{16 R^{2}-3 r^{2}}{12 r^{4}} \Leftrightarrow R^{2} \geq 4 r^{2} \Leftrightarrow R \geq 2 r$, (Euler's inequality)
Equality hold if and only if $\triangle A B C$ is equilateral.
Remark.
The double inequality can be written:
3) In $\triangle A B C$ the following relationship holds:

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\frac{1}{3 R^{2}} \leq \sum \frac{1}{\left(r_{b}+r_{c}\right)^{2}} \leq \frac{1}{12 r^{2}}
$$

Solution.
See 1) the left hand and 2).
Equality holds if and only if $\triangle A B C$ is equilateral.
Remark.
If we replace $\boldsymbol{r}_{\boldsymbol{a}}$ with $\boldsymbol{h}_{\boldsymbol{a}}$ we propose:
4) In $\triangle A B C$ the following relationship holds:

$$
\frac{1}{3 R^{2}} \leq \sum \frac{1}{\left(h_{b}+h_{c}\right)^{2}} \leq \frac{1}{12 r^{2}}
$$

Marin Chirciu - Romania

Solution

The left-hand inequality.
Using the means inequality and $\Pi\left(\boldsymbol{h}_{\boldsymbol{b}}+\boldsymbol{h}_{\boldsymbol{c}}\right)=\frac{r s^{2}\left(s^{2}+r^{2}+2 R r\right)}{R}$ we obtain:

$$
\begin{aligned}
\sum \frac{1}{\left(h_{b}+h_{c}\right)^{2}} & \geq 3^{\prod \sqrt[3]{\prod \frac{1}{\left(h_{b}+h_{c}\right)^{2}}}}=3^{3} \sqrt{\frac{1}{\left(\frac{r s^{2}\left(s^{2}+r^{2}+2 R r\right)}{R^{2}}\right)^{2}}}= \\
& =3 \sqrt[3]{\frac{R^{4}}{r^{2} s^{4}\left(s^{2}+r^{2}+2 R r\right)^{2}}} \stackrel{(1)}{\geq} \frac{1}{3 R^{2}}
\end{aligned}
$$

where (1) $\Leftrightarrow 9 R^{3} \cdot \sqrt[3]{R} \geq \sqrt[3]{r^{2} s^{4}\left(s^{2}+r^{2}+2 R r\right)^{2}} \Leftrightarrow(3 R)^{3} \cdot R^{2} \geq r s^{2}\left(s^{2}+r^{2}+2 R r\right) \Leftrightarrow$ $\Leftrightarrow 27 R^{5} \geq r s^{2}\left(s^{2}+r^{2}+2 R r\right)$, which follows from Mitrinovic's inequality $s^{2} \leq \frac{27 R^{2}}{4}$ and Gerretsen's inequality $s^{2} \leq 4 R^{2}+4 R r+3 r^{2}$. It remains to prove that:

$$
\begin{aligned}
27 R^{5} & \geq r \cdot \frac{27 R^{2}}{4}\left(4 R^{2}+4 R r+3 r^{2}+r^{2}+2 R r\right) \Leftrightarrow 2 R^{3}-2 R^{2} r-3 R r^{2}-2 r^{3} \geq 0 \Leftrightarrow \\
& \Leftrightarrow(R-2 r)\left(2 R^{2}+2 R r+r^{2}\right) \geq 0, \text { true from Euler's inequality } R \geq 2 r .
\end{aligned}
$$

Equality holds if and only if $\triangle A B C$ is equilateral.
The right-hand inequality.

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

We have $\sum \frac{1}{\left(h_{b}+h_{c}\right)^{2}} \leq \sum \frac{1}{4 h_{b} h_{c}}=\frac{\sum h_{a}}{4 \prod h_{a}}=\frac{\frac{s^{2}+r^{2}+4 R r}{2 R}}{4 \cdot \frac{2 r^{2} s^{2}}{R}}=\frac{s^{2}+r^{2}+4 R r}{16 r^{2} s^{2}} \stackrel{(2)}{\leq} \frac{1}{12 r^{2}}$
where (2) $\Leftrightarrow s^{2} \geq 3 r(4 R+r)$, which follows from Gerretsen's inequality
$s^{2} \geq 16 R r-5 r^{2}$. It remains to prove that:
$16 R r-5 r^{2} \geq 3 r(4 R+r) \Leftrightarrow R \geq 2 r$, (Euler's inequality). Equality holds if and only if $\triangle A B C$ is equilateral.

SP.285. RM M NUMBER 19 WINTER 2020

> By Marin Chirciu - Romania

1) In $\triangle A B C$:

$$
\frac{3 r}{R} \leq \frac{h_{a}}{r_{b}+r_{c}}+\frac{h_{b}}{r_{c}+r_{a}}+\frac{h_{c}}{r_{a}+r_{b}} \leq \frac{3}{2}
$$

Proposed by George Apostolopoulos-Messolonghi- Greece

Proof.
We prove the following lemma:

Lemma.

2) In $\triangle A B C$:

$$
\frac{h_{a}}{r_{b}+r_{c}}+\frac{h_{b}}{r_{c}+r_{a}}+\frac{h_{c}}{r_{a}+r_{b}}=\frac{s^{4}+s^{2}\left(2 r^{2}-4 R r\right)+r(4 R+r)^{3}}{8 R^{2} s^{2}}
$$

Proof.
Using the following formulas $h_{a}=\frac{2 S}{a}$ and $r_{a}=\frac{S}{s-a}$ we obtain:

$$
\begin{gathered}
\sum \frac{h_{a}}{r_{a}+r_{c}}=\sum \frac{\frac{2 S}{a}}{\frac{S}{s-b}+\frac{S}{s-c}}=2 \sum \frac{(s-b)(s-c)}{a^{2}}= \\
=2 \cdot \frac{s^{4}+s^{2}\left(2 r^{2}-4 R r\right)+r(4 R+r)^{3}}{16 R^{2} s^{2}}=
\end{gathered}
$$

$=\frac{s^{4}+s^{2}\left(2 r^{2}-4 R r\right)+r(4 R+r)^{3}}{8 R^{2} s^{2}}$, which follows from the known identity in triangle:

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
 $$
\frac{(s-b)(s-c)}{a^{2}}=\frac{s^{4}+s^{2}\left(2 r^{2}-4 R r\right)+r(4 R+r)^{3}}{16 R^{2} s^{2}}
$$

Let's get back to the main problem:
Left hand inequality: Using the lemma the inequality can be written:

$$
\frac{s^{4}+s^{2}\left(2 r^{2}-4 R r\right)+r(4 R+r)^{3}}{8 R^{2} s^{2}} \geq \frac{3 r}{R} \Leftrightarrow s^{2}\left(s^{2}+2 r^{2}-28 R r\right)+r(4 R+r)^{3} \geq 0
$$

We distinguish the following cases:
Case 1). If ($\left.s^{2}+2 r^{2}-28 R r\right) \geq 0$, the inequality is obvious.
Case 2). If $\left(s^{2}+2 r^{2}-28 R r\right)<0$, the inequality can be rewritten:
$r(4 R+r)^{3} \geq s^{2}\left(28 R r-2 r^{2}-s^{2}\right)$, which follows from Blundon's - Gerretsen's inequality:
$16 R r-5 r^{2} \leq s^{2} \leq \frac{R(4 R+r)^{2}}{2(2 R-r)} \leq 4 R^{2}+4 R r+3 r^{2}$. It remains to prove that:
$r(4 R+r)^{3} \geq \frac{R(4 R+r)^{2}}{2(2 R-r)}\left(28 R r-2 r^{2}-16 R r+5 r^{2}\right) \Leftrightarrow 4 R^{2}-7 R r-2 r^{2} \geq 0 \Leftrightarrow$
$\Leftrightarrow(R-2 r)(4 R+r) \geq 0$, obviously from Euler's inequality $R \geq 2 r$.
Equality holds if and only if $\triangle A B C$ is equilateral.
The right-hand inequality can be written:

$$
\frac{s^{4}+s^{2}\left(2 r^{2}-4 R r\right)+r(4 R+r)^{3}}{8 R^{2} s^{2}} \leq \frac{3}{2} \Leftrightarrow s^{2}\left(12 R^{2}+4 R r-2 r^{2}-s^{2}\right) \geq r(4 R+r)^{3}
$$

Which follows from Gerretsen's inequality:

$$
4 R^{2}+4 R r+3 r^{2} \geq s^{2} \geq 16 R r-5 r^{2} \geq \frac{r(4 R+r)^{2}}{R+r}
$$

It remains to prove that:

$$
\frac{r(4 R+r)^{2}}{R+r}\left(12 R^{2}+4 R r-2 r^{2}-4 R^{2}-4 R r-3 r^{2}\right) \geq r(4 R+r)^{3} \Leftrightarrow
$$

$4 R^{2}-5 R r-6 r^{2} \geq 0 \Leftrightarrow(R-2 r)(4 R+3 r) \geq 0$, obviously from Euler's inequality $R \geq \mathbf{2 r}$. Equality holds if and only if the triangle $A B C$ is equilateral.
Remark.
The double inequality 1) can be strengthened:
3) In $\triangle A B C$:

> ROMANIAN MATHEMATICAL MAGAZINE $\frac{7}{2} \cdot \frac{r}{R}-\frac{7}{8}\left(\frac{r}{R}\right)^{2}+\frac{1}{4}\left(\frac{r}{R}\right)^{3} \leq \frac{h_{a}}{r_{b}+r_{c}}+\frac{\boldsymbol{h}_{a}}{r_{c}+r_{a}}+\frac{\boldsymbol{h}_{b}}{r_{a}+r_{b}} \leq 1+\frac{5}{8} \cdot \frac{r}{R}+\frac{3}{4}\left(\frac{r}{R}\right)^{2}$

Marin Chirciu - Romania
Solution.
The left hand inequality.
Using Lemma and Blundon-Gerretsen's inequality:

$$
\begin{gathered}
16 R r-5 r^{2} \leq s^{2} \leq \frac{R(4 R+r)^{2}}{2(2 R-r)} \leq 4 R^{2}+4 R r+3 r^{2} \text { we obtain: } \\
\frac{s^{4}+s^{2}\left(2 r^{2}-4 R r\right)+r(4 R+r)^{3}}{8 R^{2} s^{2}}=\frac{1}{8 R^{2}}\left[s^{2}+2 r^{2}-4 R r+\frac{r(4 R+r)^{3}}{s^{2}}\right] \geq \\
\geq \frac{1}{8 R^{2}}\left[16 R r-5 r^{2}+2 r^{2}-4 R r+\frac{r(4 R+r)^{3}}{\left.\frac{R(4 R+r)^{2}}{2(2 R-r)}\right]=\frac{r\left(28 R^{2}-7 R r-2 r^{2}\right)}{8 R^{3}}=}\right. \\
=\frac{7}{2} \cdot \frac{r}{R}-\frac{7}{8}\left(\frac{r}{R}\right)^{2}+\frac{1}{4}\left(\frac{r}{R}\right)^{3}
\end{gathered}
$$

Equality holds if and only if $\triangle A B C$ is equilateral.
The right hand inequality:
Using Lemma and Gerretsen's inequality: $4 R^{2}+4 R r+3 r^{2} \geq s^{2} \geq 16 R r-5 r^{2} \geq$

$$
\begin{gathered}
\frac{r(4 R+r)^{2}}{R+r} \text { we obtain: } \\
\frac{s^{4}+s^{2}\left(2 r^{2}-4 R r\right)+r(4 R+r)}{8 R^{2} s^{2}}=\frac{1}{8 R^{2}}\left[s^{2}+2 r^{2}-4 R r+\frac{r(4 R+r)}{s^{2}}\right] \leq \\
\leq \frac{1}{8 R^{2}}\left[4 R^{2}+4 R r+3 r^{2}+2 r^{2}-4 R r+\frac{r(4 R+r)^{3}}{\frac{r(4 R+r)^{2}}{R+r}}\right]= \\
=\frac{8 R^{2}+5 R r+6 r^{2}}{8 R^{2}}=1+\frac{5}{8} \cdot \frac{r}{R}+\frac{3}{4}\left(\frac{r}{R}\right)^{2}
\end{gathered}
$$

Equality holds if and only if $\triangle A B C$ is equilateral.
Remark.
The double inequality 3) is stronger than the double inequality 1)

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
4) In $\triangle A B C$:

$$
\frac{3 r}{R} \leq \frac{7}{2} \cdot \frac{r}{R}-\frac{7}{8}\left(\frac{r}{R}\right)^{2}+\frac{1}{4}\left(\frac{r}{R}\right)^{3} \leq \frac{h_{a}}{r_{b}+r_{c}}+\frac{h_{b}}{r_{c}+r_{a}}+\frac{h_{c}}{r_{a}+r_{b}} \leq 1+\frac{5}{8} \cdot \frac{r}{R}+\frac{3}{4}\left(\frac{r}{R}\right)^{2} \leq \frac{3}{2}
$$

Proof.
See 3) and Euler's inequality $R \geq 2 r$.

Equality holds if and only if $\triangle A B C$ is equilateral.

Remark.
If we interchange r_{a} with $\boldsymbol{h}_{\boldsymbol{a}}$ we propose:
5) In $\triangle A B C$:

$$
\frac{3 r}{R} \leq \frac{r_{a}}{h_{b}+h_{c}}+\frac{r_{b}}{h_{c}+h_{a}}+\frac{r_{c}}{h_{a}+h_{b}} \leq \frac{3 R}{4 r}
$$

Marin Chirciu - Romania

Proof.

We prove the following lemma:

Lemma.

6) In $\triangle A B C$:

$$
\frac{r_{a}}{h_{b}+h_{c}}+\frac{r_{b}}{h_{c}+h_{a}}+\frac{r_{c}}{h_{a}+h_{b}}=\frac{s^{4}+s^{2}\left(32 R^{2}+4 R r+2 r^{2}\right)+r(4 R+r)^{3}}{4 s^{2}\left(s^{2}+r^{2}+2 R r\right)}
$$

Proof.
Using the following formulas $h_{a}=\frac{2 S}{a}$ and $r_{a}=\frac{S}{s-a}$ we obtain:

$$
\begin{gathered}
\sum \frac{r_{a}}{h_{b}+h_{c}}=\sum \frac{\frac{S}{s-a}}{\frac{2 S}{b}+\frac{2 S}{c}}=\frac{1}{2} \cdot \frac{s^{4}+s^{2}\left(32 R^{2}+4 R r+2 r^{2}\right)+r(4 R+r)^{3}}{2 s^{2}\left(s^{2}+r^{2}+2 R r\right)}= \\
=\frac{s^{4}+s^{2}\left(32 R^{2}+4 R r+2 r^{2}\right)+r(4 R+r)^{3}}{4 s^{2}\left(s^{2}+r^{2}+2 R r\right)}, \text { which follows from the following identity: } \\
\sum \frac{b c}{(s-a)(b+c)}=\frac{s^{4}+s^{2}\left(32 R^{2}+4 R r+2 r^{2}\right)+r(4 R+r)^{3}}{2 s^{2}\left(s^{2}+r^{2}+2 R r\right)}, \text { true from the following identities known in } \\
\text { triangle: } \Pi(s-a)=r^{2} s \cdot \Pi(b+c)=2 s\left(s^{2}+r^{2}+2 R r\right) \text { and } \\
\sum b c(a+b)(a+c)(s-b)(s-c)=r^{2}\left[s^{4}+s^{2}\left(32 R^{2}+4 R r+2 r^{2}\right)+r(4 R+r)^{3}\right]
\end{gathered}
$$

Let's get back to the main problem:

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
The left hand identity: Using Lemma the inequality can be written:

$$
\begin{gathered}
\frac{s^{4}+s^{2}\left(32 R^{2}+4 R r+2 r^{2}\right)+r(4 R+r)^{3}}{4 s^{2}\left(s^{2}+r^{2}+2 R r\right)} \geq \frac{3 r}{R} \Leftrightarrow \\
\Leftrightarrow s^{2}\left[s^{2}(R-12 r)+2\left(16 R^{3}+2 R^{2} r-11 R r^{2}-6 r^{3}\right)\right]+\operatorname{Rr}(4 R+r)^{3} \geq 0
\end{gathered}
$$

We distinguish the following cases:
Case 1). If $\left[s^{2}(R-12 r)+2\left(16 R^{3}+2 R^{2} r-11 R r^{2}-6 r^{3}\right)\right] \geq 0$, the inequality is obvious.
Case 2). If $\left[s^{2}(R-12 r)+2\left(16 R^{3}+2 R^{2} r-11 R r^{2}-6 r^{3}\right)\right]<0$, the inequality can be written:

$$
R r(4 R+r)^{3} \geq s^{2}\left[s^{2}(12 r-R)-2\left(16 R^{3}+2 R^{2} r-11 R r^{3}-6 r^{3}\right)\right]
$$

which follows from Blundon-Gerretsen's inequality:
$s^{2} \leq \frac{R(4 R+r)^{2}}{2(2 R-r)} \leq 4 R^{2}+4 R r+3 r^{3}$. It remains to prove that:
$R r(4 R+r)^{3} \geq \frac{R(4 R+r)^{2}}{2(2 R r-r)}\left[\left(4 R^{2}+4 R r+3 r^{2}\right)(12 r-R)-2\left(16 R^{3}+2 R^{2} r-11 R r^{2}-6 r^{3}\right)\right] \Leftrightarrow$
$\Leftrightarrow 36 R^{3}-24 R^{2} r-71 R r^{2}-50 r^{3} \geq 0 \Leftrightarrow(R-2 r)\left(36 R^{2}+48 R r+25 r^{2}\right) \geq 0$
obviously from Euler's inequality $R \geq \mathbf{2 r}$.
Equality holds if and only if $\triangle A B C$ is equilateral.
The right hand inequality: Using Lemma the inequality can be written:

$$
\begin{aligned}
& \frac{s^{4}+s^{2}\left(32 R^{2}+4 R r+2 r^{2}\right)+r\left(4 R+r^{3}\right)}{4 s^{2}\left(s^{2}+r^{2}+2 R r\right)} \leq \frac{3 R}{4 r} \Leftrightarrow \\
\Leftrightarrow & s^{2}\left[s^{2}(3 R-r)-r\left(26 R^{2}+R r+2 r^{2}\right)\right] \geq R r(4 R+r)^{3}
\end{aligned}
$$

which follows from Gerretsen's inequality $s^{2} \geq 16 R r-5 r^{2} \geq \frac{r(4 R+r)^{2}}{R+r}$
It remains to prove that:

$$
\frac{r(4 R+r)^{2}}{R+r}\left[\left(16 R r-5 r^{2}\right)(3 R-r)-r\left(26 R^{2}+R r+2 r^{2}\right)\right] \geq R r(4 R+r)^{3} \Leftrightarrow
$$

$$
\Leftrightarrow 18 R^{2}-37 R r+2 r^{2} \geq 0 \Leftrightarrow(R-2 r)(18 R-r) \geq 0, \text { obviously from Euler's }
$$

inequality $R \geq 2 r$. Equality holds if and only if $\triangle A B C$ is equilateral.
Remark.
Between the sums $\sum \frac{h_{a}}{r_{b}+r_{c}}$ and $\sum \frac{r_{a}}{\boldsymbol{h}_{b}+h_{c}}$ the following relationship exists:

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

7) In $\triangle A B C$:

$$
\sum \frac{h_{a}}{r_{b}+r_{c}} \leq \sum \frac{r_{a}}{h_{b}+h_{c}}
$$

Solution.
Using the above Lemmas the inequality can be written:

$$
\begin{gathered}
\frac{s^{4}+s^{2}\left(2 r^{2}-4 R r\right)+r(4 R+r)^{3}}{8 R^{2} s^{2}} \leq \frac{s^{4}+s^{2}\left(32 R^{2}+4 R r+2 r^{2}\right)+r(4 R+r)^{3}}{4 s^{2}\left(s^{2}+r^{2}+2 R r\right)} \Leftrightarrow \\
\Leftrightarrow s^{2}\left[s^{2}\left(2 R^{2}+2 R r-3 r^{2}-s^{2}\right)+\left(64 R^{4}-56 R^{3} r-36 R^{2} r^{2}-12 R r^{3}-3 r^{4}\right)\right]+ \\
+r(4 R+r)^{3}\left(2 R^{2}-2 R r-r^{2}\right) \geq 0
\end{gathered}
$$

We distinguish the following cases:
Case 1). If $s^{2}\left[s^{2}\left(2 R^{2}+2 R r-3 r^{2}-s^{2}\right)+\left(64 R^{4}-56 R^{3} r-36 R^{2} r^{2}-12 R r^{3}-3 r^{4}\right)\right] \geq 0$ the inequality is obvious.
Case 2). If $s^{2}\left[s^{2}\left(2 R^{2}+2 R r-3 r^{2}-s^{2}\right)+\left(64 R^{4}-56 R^{3} r-36 R^{2} r^{2}-12 R r^{3}-3 r^{4}\right)\right]<0$ the inequality can be written:

$$
\begin{gathered}
r(4 R+r)^{3}\left(2 R^{2}-2 R r-r^{2}\right) \geq \\
\geq s^{2}\left[s^{2}\left(s^{2}+3 r^{2}-2 R r-2 R^{2}\right)-\left(64 R^{4}-56 R^{3} r-36 R^{2} r^{2}-12 R r^{3}-3 r^{4}\right)\right]
\end{gathered}
$$

which follows from Blundon-Gerretsen's inequality:
$s^{2} \leq \frac{R(4 R+r)^{2}}{2(2 R-r)} \leq 4 R^{2}+4 R r+3 r^{2}$. It remains to prove that:

$$
\begin{gathered}
r(4 R+r)^{3}\left(2 R^{2}-2 R r-r^{2}\right) \geq \frac{R(4 R+r)^{2}}{2(2 R-r)} \\
{\left[\left(4 R^{2}+4 R r+3 r^{2}\right)\left(4 R^{2}+4 R r+3 r^{2}+3 r^{2}-2 R r-2 R^{2}\right)-\left(64 R^{4}-56 R^{3} r-36 R^{2} r^{2}-12 R r^{3}-3 r^{4}\right)\right]} \\
\Leftrightarrow 56 R^{5}-40 R^{4} r-114 R^{3} r^{2}-54 R^{2} r^{3}-13 R r^{4}+2 r^{5} \geq 0 \Leftrightarrow \\
\Leftrightarrow(R-2 r)\left(56 R^{4}+72 R^{3} r+30 R^{2} r^{2}+6 R r^{3}-r^{4}\right) \geq 0
\end{gathered}
$$

Obviously from Euler's inequality $R \geq 2 r$.
Equality holds if and only if $\triangle A B C$ is equilateral.
Remark.
We can write the following inequalities:

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
8) In $\triangle A B C$:

$$
\frac{3 r}{R} \leq \sum \frac{h_{a}}{r_{b}+r_{c}} \leq \sum \frac{r_{a}}{h_{b}+h_{c}} \leq \frac{3 R}{4 r}
$$

Solution.

See inequalities 1), 7) and 5).
Equality holds if and only if $\triangle A B C$ is equilateral.

UP. 271 If $\mathbf{0}<\boldsymbol{a} \leq \boldsymbol{b}<\frac{\pi}{4}$ then:

$$
\int_{a}^{b} \int_{a}^{b} \int_{a}^{b}\left(\cos \left(\frac{\pi}{4}-x\right) \cos \left(\frac{\pi}{4}-y\right) \cos \left(\frac{\pi}{4}-z\right)\right) d x d y d z \geq \sin ^{3}(b+a) \cdot \sin ^{3}(b-a)
$$

Proposed by Daniel Sitaru-Romania

Solution by Tran Hong-Dong Thap-Vietnam

$$
\begin{aligned}
& \int_{a}^{b} \int_{a}^{b} \int_{a}^{b}\left(\cos \left(\frac{\pi}{4}-x\right) \cos \left(\frac{\pi}{4}-y\right) \cos \left(\frac{\pi}{4}-z\right)\right) d x d y d z \\
& =\left(\int_{a}^{b} \cos \left(\frac{\pi}{4}-x\right) d x\right)\left(\int_{a}^{b} \cos \left(\frac{\pi}{4}-y\right) d y\right)\left(\int_{a}^{b} \cos \left(\frac{\pi}{4}-z\right) d z\right) \\
& =\left(\int_{a}^{b} \cos \left(\frac{\pi}{4}-x\right) d x\right)^{3}=\left(\sin \left(b-\frac{\pi}{4}\right)-\sin \left(a-\frac{\pi}{4}\right)\right)^{3} \\
& =\left(2 \cos \left(\frac{b+a}{2}-\frac{\pi}{4}\right) \sin \left(\frac{b-a}{2}\right)\right)^{3} \\
& =\left(2 \sqrt{2}\left(\cos \left(\frac{b+a}{2}\right)+\sin \left(\frac{b+a}{2}\right)\right) \sin \left(\frac{b-a}{2}\right)\right)^{3} \\
& \stackrel{A M-G M}{\Sigma}\left(4 \sqrt{2} \sqrt{\cos \left(\frac{b+a}{2}\right) \sin \left(\frac{b+a}{2}\right)} \cdot \sin \left(\frac{b-a}{2}\right)\right)^{3}
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

$$
\left.\begin{array}{c}
\text { www.ssmrmh.ro } \\
\begin{array}{r}
\geq\left(4 \sqrt{\sin (a+b)} \cdot \sin \left(\frac{b-a}{2}\right)\right)^{3} \stackrel{1}{\geq} \sin ^{3}(a+b) \sin ^{3}(b-a) \\
=\sin ^{3}(a+b)\left(2 \sin \left(\frac{b-a}{2}\right) \cos \left(\frac{b+a}{2}\right)\right)^{3}
\end{array} \\
(1) \Leftrightarrow 4^{3} \sin (a+b) \cdot \sqrt{\sin (a+b)} \cdot \sin ^{3}\left(\frac{b-a}{2}\right) \\
\geq 8 \cdot \sin ^{3}(a+b) \cdot \sin ^{3}\left(\frac{b-a}{2}\right) \cos ^{3}\left(\frac{b+a}{2}\right)
\end{array}\right\}
$$

$$
\text { Because: } 0<\boldsymbol{a} \leq \boldsymbol{b}<\frac{\pi}{4} \Rightarrow \mathbf{0}<\boldsymbol{a}+\boldsymbol{b} \leq \frac{\pi}{2} ; \mathbf{0} \leq \frac{b-a}{4}<\frac{\pi}{4} ; 0<\frac{a+b}{2}<\frac{\pi}{2}
$$

$$
\Rightarrow 0<\sin (a+b) ; \cos (a+b)<1 ; \sin \left(\frac{b-a}{2}\right) \geq 0
$$

$$
\Rightarrow 8 \sin (a+b) \cdot \sqrt{\sin (a+b)} \cdot \cos ^{3}\left(\frac{b+a}{2}\right)<1<8
$$

Hence (2) is true then (1) is true.

UP.272. Prove without softs:

$$
\int_{0}^{\frac{\pi}{4}} \int_{0}^{\frac{\pi}{4}} \int_{0}^{\frac{\pi}{4}}(\tan (\sqrt[3]{x y z}))^{3} d x d y d z<\frac{\log ^{3} 2}{8}
$$

Proposed by Florentin Vişescu-Romania
Solution by Adrian Popa-Romania

$$
\begin{gathered}
f(x)=\tan x \Rightarrow f^{\prime}(x)=1+\tan ^{2} x>0 ; \forall x \in\left(0, \frac{\pi}{4}\right) \Rightarrow f \text {-increasing } \\
f^{\prime \prime}(x)=2 \tan x\left(1+\tan ^{2} x\right)>0, \forall x \in\left(0, \frac{\pi}{4}\right) \Rightarrow f \text {-concave. } \\
\tan (\sqrt[3]{x y z}) \stackrel{A m-G m}{\sim} \tan \left(\frac{x+y+z}{3}\right) \stackrel{\text { Jensen }}{\leq} \frac{\tan x+\tan y+\tan z}{3}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{4}} \int_{0}^{\frac{\pi}{4}} \int_{0}^{\frac{\pi}{4}}(\tan (\sqrt[3]{x y z}))^{3} d x d y d z< & \int_{0}^{\frac{\pi}{4}} \int_{0}^{\frac{\pi}{4}} \int_{0}^{\frac{\pi}{4}}\left(\frac{\tan x+\tan y+\tan z}{3}\right)^{3} d x d y d z \\
& <\left(3 \int_{0}^{\frac{\pi}{4}} \frac{\tan x}{3} d x\right)^{3}=\left(\int_{0}^{\frac{\pi}{4}} \tan x d x\right)^{3}=\left(-\left.\log (\cos x)\right|_{0} ^{\frac{\pi}{2}}\right)^{3}=\frac{\log ^{3} 2}{8}
\end{aligned}
$$

UP.273. In acute $\triangle A B C$ the following relationship holds:

$$
\tan (\sqrt{A B})+\tan (\sqrt{B C})+\tan (\sqrt{C A}) \leq \tan A+\tan B+\tan C
$$

Proposed by Florentin Vişescu-Romania
Solution 1 by George Florin Şerban-Romania

$$
f:\left(0, \frac{\pi}{2}\right) \rightarrow \mathbb{R}, f(x)=\tan x, f^{\prime}(x)=\frac{1}{\cos ^{2} x}>0 \Rightarrow f \text {-increasing. }
$$

$\sum_{c y c} \tan (\sqrt{A B}) \leq \sum_{c y c} \tan \left(\frac{A+B}{2}\right)=\sum_{c y c} \tan \left(\frac{\pi}{2}-\frac{C}{2}\right)=\sum_{c y c} \cot \frac{C}{2}=\frac{s}{r} \stackrel{?}{=} \sum_{c y c} \tan A=$ $\Pi_{c y c} \tan A=\frac{2 r s}{s^{2}-(2 R+r)^{2}} \Rightarrow s^{2}-(2 R+r)^{2} \leq 2 r^{2} \Leftrightarrow s^{2} \leq(2 R+r)^{2}+2 r^{2} \Rightarrow s^{2} \leq$ $4 R^{2}+4 R r+3 r^{2}$-true from Gerretsen inequality.
Solution 2 by Sanong Huayrerai-Nakon Pathom-Thailand
In acute $\triangle A B C$ and $x \rightarrow \tan x$ is increasing function, hence

$$
\begin{gathered}
\sqrt{A B}+\sqrt{B C}+\sqrt{C A} \leq \frac{A+B}{2}+\frac{B+C}{2}+\frac{C+A}{2} \text { then } \\
\tan (\sqrt{A B})+\tan (\sqrt{B C})+\tan (\sqrt{C A}) \leq \tan \left(\frac{A+B}{2}\right)+\tan \left(\frac{B+C}{2}\right)+\tan \left(\frac{C+A}{2}\right) \leq \tan A+\tan B+\tan C
\end{gathered}
$$

Remark: for $0<x, y<\frac{\pi}{2}$, we have

$$
\begin{aligned}
& \quad \tan \left(\frac{x}{2}+\frac{y}{2}\right)=\frac{\tan \frac{x}{2}+\tan \frac{y}{2}}{1-\tan \frac{x}{2} \cdot \tan \frac{y}{2}}=\frac{\frac{\sin x}{1+\cos x}+\frac{\sin y}{1+\cos y}}{1-\frac{\sin x}{(1+\cos x)} \cdot \frac{\sin y}{(1+\cos y)}}= \\
& =\frac{\sin x+\sin y+\sin x \cos y+\sin y \cos x}{1+\cos x+\cos y+\cos x \cos y-\sin x \sin y} \leq \frac{1}{2}\left(\frac{\sin x}{\cos x}+\frac{\sin y}{\cos y}\right) ;(*) \\
& 2\left(\sin x \cos x \cos y+\sin y \cos x \cos y+\sin x \cos x \cos ^{2} y+\sin y \cos y \cos ^{2} x \leq\right. \\
& \leq \sin x \cos y+\sin y \cos x+\sin x \cos ^{2} y+\sin y \cos ^{2} x+\sin x \cos x \cos y+
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
 $+\sin y \cos x \cos y+\sin x \cos x \cos ^{2} y+\sin y \cos y \cos ^{2} x-$ $-\sin ^{2} x \sin y \cos y-\sin ^{2} y \sin x \cos x$

Hence
$\sin x \cos x \cos y+\operatorname{sinycosxcosy}+\sin x \cos x \cos ^{2} y+\operatorname{siny} \cos ^{2} y \cos ^{2} x+$ $+\sin ^{2} x \sin y \cos y+\sin ^{2} y \sin x \cos x \leq \sin x \cos y+\sin y \cos x+\sin x \cos ^{2} y+\sin ^{2} y \cos ^{2} x$

It's true, because $\sin x \cos x \cos ^{2} y+\sin ^{2} x \sin y \cos y \leq \sin x \cos x$

$$
\sin y \cos y \cos ^{2} x+\sin ^{2} y \sin x \cos x \leq \sin y \cos x
$$

And $0<x, y<\frac{\pi}{2},(\sin x \cos y-\sin y \cos x)(\cos y-\cos x) \geq 0$

Hence

 $\sin x \cos ^{2} y-\operatorname{sinxcosxcos} y-\operatorname{sinycos} x \cos y+\cos ^{2} x \sin y \geq 0$ $\sin x \cos ^{2} y+\sin y \cos ^{2} x \geq \sin x \cos x \cos y+\sin y \cos x \cos y$Therefore it's true.
Solution 3 by M arian Voinea-Romania

$$
\begin{gathered}
\tan (\sqrt{A B})+\tan (\sqrt{B C})+\tan (\sqrt{C A}) \stackrel{A m-G m}{\leq} \tan \left(\frac{A+B}{2}\right)+\tan \left(\frac{B+C}{2}\right)+\tan \left(\frac{C+A}{2}\right) \\
\underset{\substack{\tan -c o n c a v e}}{\underset{\leq}{s}} \frac{\tan A+\tan B}{2}+\frac{\tan B+\tan C}{2}+\frac{\tan C+\tan A}{2}=\tan A+\tan B+\tan C \\
\text { Equality for } A=B=C=\frac{\pi}{3}
\end{gathered}
$$

UP.274. $\omega_{n}=1-\frac{\binom{n}{1}}{3}+\frac{\binom{n}{2}}{5}-\cdots+\frac{(-1)^{n}\binom{n}{n}}{2 n+1}, n \in \mathbb{N}$. Find:

$$
\Omega=\lim _{n \rightarrow \infty}\left(1+\frac{\sqrt[n]{\omega_{n}}}{n!}\right)^{\frac{n!}{e^{n}}}
$$

Proposed by Florică Anastase-Romania
Solution by proposer

$$
\left(1-x^{2}\right)^{n}=\binom{n}{0}-\binom{n}{1} x^{2}+\binom{n}{2} x^{4}-\cdots+(-1)^{n}\binom{n}{n} x^{2 n}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
I_{n}=\int_{0}^{1}\left(1-x^{2}\right)^{n} \cdot x^{\prime} d x=\left(1-x^{2}\right)^{n} \cdot x \left\lvert\, \begin{aligned}
& 1 \\
& 0
\end{aligned}+2 n \int_{0}^{1}\left(1-x^{2}\right)^{n-1} \cdot x^{2} d x=\right.
$$

$$
=-2 n \int_{0}^{1}\left(1-x^{2}-1\right)\left(1-x^{2}\right)^{n-1} d x=-2 n \int_{0}^{1}\left(1-x^{2}\right)^{n} d x+2 n \int_{0}^{1}\left(1-x^{2}\right)^{n-1} d x=
$$

$$
=-2 n I_{n}+2 n I_{n-1} \Rightarrow I_{n}=\frac{2^{2 n} \cdot(n!)^{2}}{(2 n+1)!}
$$

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \sqrt[n]{\omega_{n}}=\lim _{n \rightarrow \infty} \sqrt[n]{\frac{2^{2 n} \cdot(n!)^{2}}{(2 n+1)!}} \stackrel{c-\text { D'Alembert }}{=} \lim _{n \rightarrow \infty} \frac{2^{2(n+1)}((n+1)!)^{2}}{(2 n+3)!} \cdot \frac{(2 n+1)!}{2^{2 n}(n!)^{2}}=1 \Rightarrow \\
\Omega=\lim _{n \rightarrow \infty}\left(1+\frac{\sqrt[n]{\omega_{n}}}{n!}\right)^{\frac{n!}{e^{n}}}=e^{\lim _{n \rightarrow \infty} \frac{\sqrt[n]{\omega_{n}}}{n!} \cdot \frac{n!}{e^{n}}=e^{0}=1}
\end{gathered}
$$

UP.275. Find:

$$
\Omega=\lim _{n \rightarrow \infty}\left(\frac{1}{n^{8}} \sum_{i=1}^{n} \sum_{j=1}^{i} \sum_{k=1}^{j} \sum_{l=1}^{k}(i j k l)\right)
$$

Proposed by Daniel Sitaru - Romania

Solution by Ravi Prakash-New Delhi-India

We first note that if $k \in \mathbb{N}$,

$$
\sum_{r=1}^{n} r^{k}=\frac{1}{k+1} n^{k+1}+0\left(n^{k}\right)
$$

For $k=1, \sum_{r=1}^{n} r=\frac{1}{2} n^{2}+\frac{1}{2} n$
Assume

$$
\sum_{r=1}^{n} r^{k}=\frac{\mathbf{1}}{k+\mathbf{1}} n^{k+1}+\mathbf{0}\left(n^{k}\right)
$$

For all $k \in \mathbb{N}$ with $1 \leq k \leq m$ where $m \in \mathbb{N}, m \geq 1$
For $m+1$, we note

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
(x+1)^{m+2}-x^{m+2}=(m+2) x^{m+1}+\mathbf{0}\left(x^{m}\right) \Rightarrow \sum_{x=1}^{n}\left[(x+1)^{m+2}-x^{m+2}\right]
$$

$\Rightarrow(n+1)^{m+2}-1=(m+2) \sum_{x=1}^{n} x^{m+1}+a$ polynomial of degree $(m+1)$ with rational coefficients.

$$
\Rightarrow \sum_{x=1}^{n} x^{m+1}=\frac{1}{m+2}(n+1)^{m+2}+a
$$

polynomial of degree ($\boldsymbol{m}+1$) with rational coefficients. Now,

$$
\begin{gathered}
\sum_{l=1}^{k}(l)=\frac{1}{2} k(k+1) \Rightarrow \sum_{k=1}^{j} k \sum_{l=1}^{k} l=\frac{1}{2} \sum_{k=1}^{j}\left(k^{3}+k^{2}\right) \\
=\frac{1}{8} j^{4}+a \text { polynomial of degree } 3 \text { in } j \\
=\sum_{j=1}^{i} j \sum_{k=1}^{j} k \sum_{l=1}^{k} l=\sum_{j=1}^{i} j\left(\frac{1}{8} j^{4}+a \text { polynomial of degree } 3 \text { in } j\right) \\
=\frac{1}{48} i^{6}+a \text { polynomial of degree } 5 \text { in } i \\
\Rightarrow \sum_{i=1}^{n} i \sum_{j=1}^{i} j \sum_{k=1}^{i} k \sum_{l=1}^{k} l=\sum_{i=1}^{n}\left(\frac{1}{48} i^{7}+a \text { polynomial of degree } 6 \text { in } i\right) \\
=\frac{1}{384} n^{8}+\mathrm{a} \mathrm{polynomial} \mathrm{of} \mathrm{degree} 7 \text { in } n . \\
\therefore \lim _{n \rightarrow \infty} \frac{1}{n^{8}} \sum_{i=1}^{n} \sum_{j=1}^{i} \sum_{k=1}^{j} \sum_{l=1}^{k}(i j k l) \\
=\lim _{n \rightarrow \infty}\left(\frac{1}{384}+a \text { polynomial of degree } 7 \text { in } \frac{1}{n}\right)=\frac{1}{384}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
UP.276. Find:

$$
\Omega=\lim _{n \rightarrow \infty}\left(\sum_{i=1}^{n} \sum_{j=1}^{i} \sum_{k=1}^{j} \sum_{l=1}^{k}\left(\frac{1}{2^{i+j+k+l}}\right)\right)
$$

Proposed by Daniel Sitaru - Romania
Solution 1 by Naren Bhandari-Bajura-Nepal

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sum_{j=1}^{i} \sum_{k=1}^{j} \sum_{l=1}^{k} \frac{1}{2^{i+j+k+l}}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sum_{j=1}^{i}\left(\frac{1}{2^{i+j}} \sum_{k=1}^{j} \sum_{l=1}^{k} \frac{1}{2^{1+k}}\right) \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{\infty} \sum_{i=1}^{\infty}\left(\frac{\mathbf{1}}{2^{i+j}} \sum_{l=1}^{j} \frac{\mathbf{1}}{2^{l}}\left(\sum_{k=1}^{j} \frac{\mathbf{1}}{2^{k}}-\sum_{k=1}^{l-1} \frac{1}{2^{k}}\right)\right)=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sum_{j=1}^{i}\left(\frac{\mathbf{1}}{2^{i+j}} \sum_{l=1}^{i} \frac{\mathbf{1}}{2^{l}}\left(\frac{\mathbf{2}}{2^{l}}-\frac{\mathbf{1}}{2^{j}}\right)\right) \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{2^{i}}\left(\sum_{j=1}^{i} \sum_{l=1}^{j} \frac{2}{2^{j} 4^{l}}-\sum_{j=1}^{i} \sum_{l=1}^{j} \frac{1}{2^{24^{j}}}\right) \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{2^{i}}\left(\sum_{l=1}^{i} \frac{2}{4^{l}}\left(\sum_{j=1}^{i} \frac{1}{2^{j}}-\sum_{j=1}^{l-1} \frac{1}{2^{j}}\right)-\left(\sum_{l=1}^{i} \frac{1}{2^{l}}\left(\sum_{l=1}^{i} \frac{1}{\mathbf{1}^{j}}-\sum_{j=1}^{l-1} \frac{1}{4^{j}}\right)\right)\right) \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{2^{i}}\left(\sum_{l=1}^{i} \frac{2}{4^{l}}\left(1-\frac{1}{2^{i}}-1+\frac{1}{2^{-1}}\right)-\left(\sum_{l=1}^{i} \frac{1}{2^{l}}\left(\frac{1}{3}-\frac{1}{3 \cdot 4^{i}}-\frac{1}{3}+\frac{4}{3 \cdot 4^{l-1}}\right)\right)\right) \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{2^{i}}\left(\sum_{l=1}^{i} \frac{4}{8^{l}}-\sum_{l=1}^{i} \frac{2}{2^{i} \cdot 4^{l}}-\sum_{l=1}^{i} \frac{16}{3 \cdot 8^{l}}+\sum_{l=1}^{i} \frac{1}{3 \cdot 2^{l} \cdot 4^{i}}\right) \\
& =\lim _{n \rightarrow \infty}\binom{\sum_{l=1}^{n} \frac{4}{\mathbf{8}^{l}}\left(\sum_{i=1}^{n} \frac{1}{2^{i}}-\sum_{i=1}^{l-1} \frac{1}{2^{i}}\right)-\sum_{l=1}^{n} \frac{2}{4^{l}}\left(\sum_{i=1}^{n} \frac{1}{4^{i}}-\sum_{i=1}^{l-1} \frac{1}{4^{i}}\right)-}{-\sum_{l=1}^{n} \frac{16}{3 \cdot 8^{l}}\left(\sum_{i=1}^{n} \frac{1}{2^{i}}-\sum_{i=1}^{l-1} \frac{1}{2^{i}}\right)+\sum_{l=1}^{n} \frac{1}{3 \cdot 2^{l}}\left(\sum_{i=1}^{n} \frac{1}{8^{i}}-\sum_{i=1}^{l-1} \frac{1}{8^{i}}\right)}
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro
$=\lim _{n \rightarrow \infty} \sum_{l=1}^{n}\left(\frac{16}{16^{l}}-\frac{8}{3 \cdot 16^{l}}-\frac{32}{3 \cdot 16^{l}}+\frac{8}{21 \cdot 16^{l}}\right)=\frac{64}{21 \times 15}=\frac{64}{315}$
Solution 2 by Ravi Prakash-New Delhi-India

$$
\begin{gathered}
\sum_{l=1}^{k} \frac{1}{2^{l}}=1-\frac{1}{2^{k}} \\
\Rightarrow \sum_{k=1}^{j} \frac{1}{2^{k}} \sum_{l=1}^{k} \frac{1}{2^{l}}=\sum_{k=1}^{j}\left(\frac{1}{2^{k}}-\frac{1}{2^{2 k}}\right)=1-\frac{1}{2^{j}}-\frac{1}{3}\left(1-\frac{1}{2^{2 j}}\right) \\
=\frac{2}{3}-\frac{1}{2^{j}}+\frac{1}{3} \cdot \frac{1}{2^{2 j}} \Rightarrow \sum_{j=1}^{i} \frac{1}{2^{j}} \sum_{k=1}^{j} \frac{1}{2^{k}} \sum_{l=1}^{k} \frac{1}{2^{l}}=\sum_{j=1}^{i} \frac{1}{2^{j}}\left(\frac{2}{3}-\frac{1}{2^{j}}+\frac{1}{3} \cdot \frac{1}{2^{2 j}}\right) \\
=\frac{2}{3}\left(1-\frac{1}{2^{i}}\right)-\frac{1}{3}\left(1-\frac{1}{2^{2 i}}\right)+\frac{1}{3}\left(\frac{1}{7}\right)\left(1-\frac{1}{2^{3 i}}\right) \\
=\frac{8}{21}-\frac{2}{3} \cdot \frac{1}{2^{i}}+\frac{1}{3} \cdot \frac{1}{2^{2 i}}-\frac{1}{21} \cdot \frac{1}{2^{3 i}} \Rightarrow \sum_{i=1}^{n} \frac{1}{2^{i}} \sum_{j=1}^{i} \frac{1}{2^{i}} \sum_{k=1}^{j} \frac{1}{2^{k}} \sum_{l=1}^{k} \frac{1}{2^{l}} \\
=\frac{8}{21}\left(1-\frac{1}{2^{n}}\right)-\frac{2}{3} \cdot \frac{1}{3}\left(1-\frac{1}{2^{2 n}}\right)+\frac{1}{3}\left(\frac{1}{7}\right)\left(1-\frac{1}{2^{3 n}}\right)-\frac{1}{21} \cdot \frac{1}{15}\left(1-\frac{1}{2^{4 n}}\right) \\
\Rightarrow \lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sum_{j=1}^{i} \sum_{k=1}^{j} \sum_{i=1}^{k} \frac{1}{2^{i} 2^{j} 2^{k} 2^{l}}=\frac{8}{21}-\frac{2}{9}+\frac{1}{21}-\frac{1}{315}=\frac{64}{315}
\end{gathered}
$$

Solution 3 by Kartick Chandra Betal-India

$$
\begin{gathered}
\Omega=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sum_{j=1}^{i} \sum_{k=1}^{j} \sum_{l=1}^{k} \frac{1}{2^{i+j+k+l}}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sum_{j=1}^{i} \sum_{k=1}^{j} \frac{1}{2^{i+j+k}} \cdot \frac{1}{2}\left(\frac{1-\frac{1}{2^{k}}}{\frac{1}{2}}\right) \\
=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sum_{j=1}^{i} \frac{1}{2^{i+j}} \sum_{k=1}^{j}\left\{\frac{1}{2^{k}}-\frac{1}{2^{2 k}}\right\}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sum_{j=1}^{i} \frac{1}{2^{i+j}}\left\{\left(1-\frac{1}{2^{j}}\right)-\frac{\frac{1}{3}}{\frac{3}{4}}\left(1-\frac{1}{4^{j}}\right)\right\} \\
=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{2^{i}} \sum_{j=1}^{i}\left\{\frac{2}{3} \cdot \frac{1}{2^{j}}-\frac{1}{2^{2 j}}+\frac{1}{3 \cdot 2^{3 j}}\right\} \\
=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{2^{i}}\left(\frac{2}{3}\left(1-\frac{1}{2^{i}}\right)-\frac{1}{3}\left(1-\frac{1}{4^{i}}\right)+\frac{1}{3} \cdot \frac{1}{7}\left(1-\frac{1}{8^{i}}\right)\right\}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

$$
\begin{gathered}
=\sum_{i=1}^{\infty}\left\{\left(\frac{2}{3}-\frac{1}{3}+\frac{1}{21}\right) \frac{1}{2^{i}}-\frac{2}{3} \cdot \frac{1}{2^{2 i}}+\frac{1}{3} \cdot \frac{1}{2^{3 i}}-\frac{1}{21} \cdot \frac{1}{2^{4 i}}\right\} \\
=\frac{8}{21} \cdot 1-\frac{2}{3} \cdot \frac{1}{3}+\frac{1}{3} \cdot \frac{1}{7}-\frac{1}{21} \cdot \frac{1}{15} \\
=\frac{8}{21}-\frac{2}{9}+\frac{1}{21}-\frac{1}{315}=\frac{120-70+15-1}{3 \cdot 7 \cdot 5 \cdot 3}=\frac{135-71}{315}=\frac{64}{315}
\end{gathered}
$$

UP.281. If $\left(a_{n}\right)_{n \geq 1} \subset(0, \infty) ; \lim _{n \rightarrow \infty}\left(\frac{a_{n+1}}{n^{2} \cdot a_{n}}\right)=a>0 ; x_{1}=a_{1}$;

$$
x_{2}=a_{1} \cdot \sqrt{a_{2}} ; x_{3}=a_{1} \cdot \sqrt{a_{2}} \cdot \sqrt[3]{a_{3}} ; x_{n}=a_{1} \cdot \sqrt{a_{2}} \cdot \sqrt[3]{a_{3}} \cdot \ldots \cdot \sqrt[n]{a_{n}}
$$

then find:

$$
\Omega=\lim _{n \rightarrow \infty}\left(\frac{(n+1)^{3}}{\sqrt[n+1]{x_{n+1}}}-\frac{n^{3}}{\sqrt[n]{x_{n}}}\right)
$$

Proposed by D.M.Bătineţu-Giurgiu, Daniel Sitaru-Romania

Solution 1 by Adrian Popa-Romania

$$
\text { If }\left(y_{n}\right)_{n \geq 1} \text {-is sequence of real numbers such that: }
$$

$$
\text { i) } \lim _{n \rightarrow \infty} \frac{y_{n+1}}{y_{n}}=1
$$

ii) $\lim _{n \rightarrow \infty} \frac{y_{n}}{n}=\alpha \in(0, \infty)$
iii) $\lim _{n \rightarrow \infty}\left(\frac{y_{n+1}}{y_{n}}\right)^{n}=\beta \in(0, \infty)$ then

$$
\lim _{n \rightarrow \infty}\left(y_{n+1}-y_{n}\right)=\alpha \log \beta
$$

$$
\text { Let } \boldsymbol{y}_{\boldsymbol{n}}=\frac{n^{3}}{\sqrt[n]{x_{n}}}
$$

$$
\lim _{n \rightarrow \infty} \frac{y_{n}}{n}=\lim _{n \rightarrow \infty} \frac{n^{2}}{\sqrt[n]{x_{n}}}=\lim _{n \rightarrow \infty} \sqrt[n]{\frac{n^{2 n}}{x_{n}}}=\lim _{n \rightarrow \infty} \frac{(n+1)^{2 n+2}}{x_{n+1}} \cdot \frac{x_{n}}{n^{2 n}}
$$

$$
=\lim _{n \rightarrow \infty} \frac{(n+1)^{2 n}}{n^{2 n}} \cdot \frac{(n+1)^{2} x_{n}}{x_{n+1}}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{2 n} \cdot \frac{(n+1)^{2}}{\sqrt[n+1]{a_{n+1}}}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\begin{gathered}
=e^{2} \cdot \lim _{n \rightarrow \infty} \sqrt[n+1]{\frac{(n+1)^{2 n+2}}{a_{n+1}}}=e^{2} \cdot \lim _{n \rightarrow \infty} \sqrt[n]{\frac{n^{2 n}}{a_{n}}}=e^{2} \cdot \lim _{n \rightarrow \infty} \frac{(n+1)^{2 n+2}}{a_{n+1}} \cdot \frac{a_{n}}{n^{2 n}} \\
=e^{2} \cdot \lim _{n \rightarrow \infty} \frac{(n+1)^{2 n+2}}{n^{2 n}} \cdot \underbrace{\frac{(n+1)^{2}}{n^{2}}}_{\rightarrow \rightarrow 1} \cdot \underbrace{\frac{n^{2} \cdot a_{n}}{a_{n+1}}}_{\rightarrow \frac{1}{a}}=e^{2} \cdot e^{2} \cdot \frac{1}{a}=\frac{e^{4}}{a}>0 \\
\lim _{n \rightarrow \infty} \frac{y_{n+1}}{y_{n}}=\lim _{n \rightarrow \infty} \frac{(n+1)^{3}}{\sqrt[n+1]{x_{n+1}}} \cdot \frac{\sqrt[n]{x_{n}}}{n^{3}}=\lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{\sqrt[n+1]{x_{n+1}}} \cdot \frac{\sqrt[n]{x_{n}}}{n^{2}} \cdot \frac{n+1}{n}=1 \\
\lim _{n \rightarrow \infty}\left(\frac{y_{n+1}}{y_{n}}\right)^{n}=\lim _{n \rightarrow \infty}\left(\frac{\sqrt{n+1} \frac{n^{3}}{x_{n+1}}}{\sqrt[n]{x_{n}}}\right)^{n}=\lim _{n \rightarrow \infty}\left(\frac{n+1}{n}\right)^{3 n} \cdot \frac{x_{n}}{x_{n+1}^{\frac{n}{n+1}}=e^{3} \cdot \lim _{n \rightarrow \infty} \frac{x_{n+1}}{x_{n}} \cdot x_{n+1}^{\frac{1}{n+1}}} \\
=e^{3} \cdot \lim _{n \rightarrow \infty} \sqrt[n+1]{\frac{x_{n+1}}{a_{n+1}}=e^{3} \cdot \lim _{n \rightarrow \infty} \sqrt[n]{\frac{x_{n}}{a_{n}}}=e^{3} \cdot \lim _{n \rightarrow \infty} \frac{\sqrt[n]{x_{n}}}{n^{2}} \cdot \frac{n^{2}}{\sqrt[n]{a_{n}}}=e>0} \\
\text { So, } \Omega=\frac{e^{4}}{a} \cdot \operatorname{loge}=\frac{e^{4}}{a}
\end{gathered}
$$

Solution 2 by Marian Ursărescu-Romania

$$
\begin{gather*}
\Omega=\lim _{n \rightarrow \infty} \frac{n^{3}}{\sqrt[n]{x_{n}}}\left(\frac{(n+1)^{3}}{\sqrt[n+1]{x_{n+1}}} \cdot \frac{\sqrt[n]{x_{n}}}{n^{3}}-1\right)=\lim _{n \rightarrow \infty} \frac{n^{2}}{\sqrt[n]{x_{n}}} \cdot n\left(\left(\frac{n+1}{n}\right)^{3} \frac{\sqrt[n]{x_{n}}}{\sqrt[n+1]{x_{n+1}}}-1\right) ;(1) \tag{1}\\
\begin{array}{l}
\lim _{n \rightarrow \infty} \frac{n^{2}}{\sqrt[n]{x_{n}}}=\lim _{n \rightarrow \infty} \sqrt[n]{\frac{n^{2 n}}{x_{n}}} \stackrel{C_{n}^{\prime} A}{=} \lim _{n \rightarrow \infty} \frac{(n+1)^{2 n+2}}{x_{n+1}} \cdot \frac{x_{n}}{n^{2 n}}=\lim _{n \rightarrow \infty}\left(\frac{n+1}{n}\right)^{2 n} \cdot \frac{x_{n}}{x_{n+1}}(n+1)^{2} \\
=e^{2} \cdot \lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{\sqrt[n+1]{a_{n+1}}}=e^{2} \cdot \lim _{n \rightarrow \infty} \frac{n^{2}}{\sqrt[n]{a_{n}}}=e^{2} \cdot \lim _{n \rightarrow \infty} \sqrt[n]{\frac{n^{2 n}}{a_{n}}} \stackrel{C \cdot D / A}{=} e^{2} \cdot \lim _{n \rightarrow \infty} \frac{(n+1)^{2 n+2}}{a_{n+1}} \cdot \frac{a_{n}}{n^{2 n}} \\
=e^{2} \cdot \lim _{n \rightarrow \infty}\left(\frac{n+1}{n}\right)^{2 n} \cdot \frac{(n+1)^{2} a_{n}}{a_{n+1}}=e^{2} \cdot e^{2} \cdot \frac{1}{a}=\frac{e^{4}}{a} ;(2) \\
\lim _{n \rightarrow \infty} n\left(\left(\frac{n+1}{n}\right)^{3} \frac{\sqrt[n]{x_{n}}}{\sqrt[n+1]{x_{n+1}}}-1\right)=\lim _{n \rightarrow \infty} n \cdot\left(e^{\log \left(\left(\frac{n+1}{n}\right)^{\frac{3}{n+1} \sqrt[n]{x_{n+1}}}\right)}-1\right)
\end{array}
\end{gather*}
$$

$$
\begin{align*}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
& \left.\left.=\lim _{n \rightarrow \infty} \frac{n \cdot\left(e^{\log \left(\left(\frac{n+1}{n}\right)^{\frac{3}{n} \cdot \sqrt[n]{x_{n}}}\right.}\right)}{\sqrt[n+1]{x_{n+1}}}\right)-1\right) \\
& e^{\log \left(\left(\frac{n+1}{n}\right)^{3} \frac{\sqrt[n]{x_{n}}}{\sqrt[n+1]{x_{n+1}}}\right)} \cdot e^{\log \left(\left(\frac{n+1}{n}\right)^{3} \frac{\sqrt[n]{x_{n}}}{\sqrt[n]{x_{n+1}}}\right)} \\
& =\lim _{n \rightarrow \infty}\left(\frac{n+1}{n}\right)^{3 n} \frac{x_{n}}{\sqrt[n+1]{x_{n+1}^{n}}}=\log \left(\lim _{n \rightarrow \infty}\left(\left(1+\frac{1}{n}\right)^{3 n} \cdot \frac{x_{n}}{x_{n+1}} \cdot \sqrt[n+1]{x_{n+1}}\right)\right) \\
& =\log \left(\lim _{n \rightarrow \infty}\left(\left(1+\frac{1}{n}\right)^{3 n} \cdot \frac{\sqrt[n+1]{x_{n+1}}}{\sqrt[n+1]{a_{n+1}}}\right)\right)=\log \left(\lim _{n \rightarrow \infty}\left(\left(1+\frac{1}{n}\right)^{3 n} \cdot \frac{\sqrt[n]{x_{n}}}{\sqrt[n]{a_{n}}}\right)\right) \\
& =\log \left(\lim _{n \rightarrow \infty}\left(\left(1+\frac{1}{n}\right)^{3 n} \cdot \frac{\sqrt[n]{x_{n}}}{n^{2}} \cdot \frac{n^{2}}{\sqrt[n]{a_{n}}}\right)\right)=\log \left(e^{3} \cdot \frac{e^{2}}{a} \cdot \frac{a}{e^{4}}\right)=\log e=1 ;(\tag{3}
\end{align*}
$$

From (1),(2),(3) we have: $\Omega=\frac{e^{4}}{a} \cdot \log e=\frac{e^{4}}{a}$

UP.279. Let $a \in \mathbb{R}_{+}^{*}, f, \Gamma: \mathbb{R}_{+}^{*} \rightarrow \mathbb{R}_{+}^{*}, \lim _{x \rightarrow \infty} \frac{f(x+1) x^{a}}{f(x)}=b \in \mathbb{R}_{+}^{*}$ then exists $\lim _{x \rightarrow \infty}(f(x))^{\frac{1}{x}} \cdot x^{a}$ and find

$$
\lim _{x \rightarrow \infty}\left(\left((\Gamma(x+2))^{\frac{a}{x+1}}-(\Gamma(x+1))^{\frac{a}{x}}\right) \cdot x(f(x))^{\frac{1}{x}}\right)
$$

Proposed by D.M.Bătineţu Giurgiu, Neculai Stanciu-Romania

Solution by proposers

$$
\begin{gathered}
\lim _{x \rightarrow \infty} \frac{(\Gamma(x+1))^{\frac{1}{x}}}{x}=\lim _{n \rightarrow \infty} \frac{(\Gamma(n+1))^{\frac{1}{n}}}{n}=\lim _{n \rightarrow \infty} \sqrt[n]{\frac{n!}{n^{n}}} c-D^{\prime} A \\
\lim _{n \rightarrow \infty} \frac{(n+1)!}{(n+1)^{n+1}} \cdot \frac{n^{n}}{n!}=\lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)^{n}=\frac{1}{e} \\
\lim _{x \rightarrow \infty}(f(x))^{\frac{1}{x}} \cdot x^{a}=\lim _{n \rightarrow \infty}\left(\sqrt[n]{f(n)} \cdot n^{a}\right) \\
=\lim _{n \rightarrow \infty} \sqrt[n]{f(n) \cdot n^{n a}} \stackrel{c-D^{\prime} A}{=} \lim _{n \rightarrow \infty} \frac{f(n+1)(n+1)^{(n+1) a}}{f(n) n^{n a}}=
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\lim _{n \rightarrow \infty} \frac{f(n+1) n^{a}}{f(n)} \cdot\left(\frac{n+1}{n}\right)^{a(n+1)}=b \cdot e^{a}
$$

Let $u(x)=\left(\frac{(\Gamma(x+2)) \frac{1}{x+1}}{(\Gamma(x+1))^{\frac{1}{x}}}\right)^{a}$ then $\lim _{x \rightarrow \infty} u(x)=1$ and $\lim _{x \rightarrow \infty} \frac{u(x)-1}{\log u(x)}=1$

$$
\begin{gathered}
\lim _{x \rightarrow \infty}(u(x))^{x}=\lim _{x \rightarrow \infty}\left(\frac{\Gamma(x+2)}{\Gamma(x+1)} \cdot \frac{1}{(\Gamma(x+2))^{\frac{1}{x+1}}}\right)^{a}=\lim _{x \rightarrow \infty}\left(\frac{x+1}{(\Gamma(x+2)))^{\frac{1}{x+1}}}\right)^{a}=e^{a} \\
\beta(x)=\left((\Gamma(x+2))^{\frac{a}{x+1}}-(\Gamma(x+1))^{\frac{a}{x}}\right) \cdot x(f(x))^{\frac{1}{x}} \\
=(\Gamma(x+1))^{\frac{a}{x}} \cdot(u(x)-1) \cdot x^{1-a} \cdot(f(x))^{\frac{1}{x}} \cdot x^{a} \\
=\left(\frac{(\Gamma(x+1))^{\frac{1}{x}}}{x}\right)^{a} \cdot \frac{u(x)-1}{\operatorname{logu}(x)} \cdot(f(x))^{\frac{1}{x}} \cdot x^{a} \cdot \log (u(x))^{x} \\
\lim _{x \rightarrow \infty} \beta(x)=\left(\frac{1}{e}\right)^{a} \cdot \mathbf{1} \cdot \boldsymbol{b} \cdot e^{a} \cdot \log e^{a}=a b
\end{gathered}
$$

UP. 284 Let a, b, c be the lengths of the sides of a triangle $A B C$ with iradius r, circumradius R and area F. Prove that:

$$
\frac{F}{12 R^{2}(R-r)} \leq \sum_{c y c} \frac{a b}{\left(2 a^{2}+b^{2}+c^{2}\right)(b+c)} \leq \frac{\sqrt{3}}{16 r}
$$

Proposed by George Apostolopoulos-M essolonghi-Greece

Solution by proposer
For the right inequality, we have:

$$
\begin{gathered}
2 a^{2}+b^{2}+c^{2}=\left(a^{2}+b^{2}\right)+\left(a^{2}+c^{2}\right) \geq \frac{(a+b)^{2}}{2}+\frac{(a+c)^{2}}{2} \geq(a+b)(b+c) \\
\text { So, }\left(2 a^{2}+b^{2}+c^{2}\right)(b+c) \geq(a+b)(b+c)(c+a) \geq 8 a b c .
\end{gathered}
$$

$$
\text { Now } \sum_{c y c} \frac{a b}{\left(2 a^{2}+b^{2}+c^{2}\right)(b+c)} \leq \frac{1}{8}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \text {. }
$$

We know that: $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}} \leq \frac{1}{4 r}$ and $\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^{2} \leq 3\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}\right)$, so

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro
$\sum_{c y c} \frac{a b}{\left(2 a^{2}+b^{2}+c^{2}\right)(b+c)} \leq \frac{1}{8} \cdot \sqrt{3} \cdot \sqrt{\frac{1}{4 r^{2}}}=\frac{\sqrt{3}}{16 r}$

For the left inequality, we have

$$
\sum_{c y c} \frac{a b}{\left(2 a^{2}+b^{2}+c^{2}\right)(b+c)}=\sum_{c y c} a b c \cdot \frac{1}{\left(2 a^{2}+b^{2}+c^{2}\right)\left(b c+c^{2}\right)}
$$

Now, using the Cauchy-Schwartz inequality, we get

$$
\begin{gathered}
\sum_{c y c} \frac{a b}{\left(2 a^{2}+b^{2}+c^{2}\right)(b+c)}=\sum_{c y c} a b c \cdot \frac{1}{\left(2 a^{2}+b^{2}+c^{2}\right)\left(b c+c^{2}\right)} \\
\geq a b c \cdot \frac{(1+1+1)^{2}}{2 a b c(a+b+c)+3\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right)+a b\left(a^{2}+b^{2}\right)+b c\left(b^{2}+c^{2}\right)+c a\left(c^{2}+a^{2}\right)+a^{4}+b^{4}+c^{4}} \\
\geq \frac{9 a b c}{2 a b c(a+b+c)+3\left(a^{4}+b^{4}+c^{4}\right)+\left(a b\left(a^{2}+b^{2}\right)+b c\left(b^{2}+c^{2}\right)+c a\left(c^{2}+a^{2}\right)\right)+a^{4}+b^{4}+c^{4}}
\end{gathered}
$$

Now, we will prove that

$$
2 a b c \leq a b\left(a^{2}+b^{2}\right)+b c\left(b^{2}+c^{2}\right)+c a\left(c^{2}+a^{2}\right) \leq 2\left(a^{4}+b^{4}+c^{4}\right)
$$

We have:

$$
\begin{gathered}
2\left(a^{4}+b^{4}+c^{4}\right)-a b\left(a^{2}+b^{2}\right)-b c\left(b^{2}+c^{2}\right)-c a\left(c^{2}+a^{2}\right)= \\
=\left(a^{2}+b^{2}\right)^{2}-a b\left(a^{2}+b^{2}\right)-2 a^{2} b^{2}+\left(b^{2}+c^{2}\right)^{2}+b c\left(b^{2}+c^{2}\right)-2 b^{2} c^{2}+ \\
\quad+\left(c^{2}+a^{2}\right)^{2}+c a\left(c^{2}+a^{2}\right)-2 c^{2} a^{2}= \\
=\left(a^{2}+b^{2}-2 a b\right)\left(a^{2}+b^{2}+a b\right)+\left(b^{2}+c^{2}-2 b c\right)\left(b^{2}+c^{2}+b c\right)+ \\
+\left(c^{2}+a^{2}-2 c a\right)\left(c^{2}+a^{2}+c a\right)=(a-b)^{2}\left(a^{2}+b^{2}+a b\right)+ \\
+(b-c)^{2}\left(b^{2}+c^{2}+b c\right)+(c-a)^{2}\left(c^{2}+a^{2}+c a\right) \geq 0
\end{gathered}
$$

Also, we have: $a^{2}+b^{2} \geq 2 a b ; b^{2}+c^{2} \geq 2 b c ; c^{2}+a^{2} \geq 2 c a$, so

$$
a b\left(a^{2}+b^{2}\right)+b c\left(b^{2}+c^{2}\right)+c a\left(c^{2}+a^{2}\right) \geq 2 a^{2} b^{2}+2 b^{2} c^{2}+2 c^{2} a^{2}
$$

Now, we have $a^{2} b^{2}+b^{2} c^{2} \geq 2 a b^{2} c ; b^{2} c^{2}+c^{2} a^{2} \geq 2 a b c^{2} ; c^{2} a^{2}+a^{2} b^{2} \geq 2 a^{2} b c$ So, $2 a^{2} b^{2}+2 b^{2} c^{2}+2 c^{2} a^{2} \geq 2 a^{2} b c+2 a b^{2} c+2 a b c^{2}=2 a b c(a+b+c)$

We have:

$$
\sum_{c y c} \frac{a b}{\left(2 a^{2}+b^{2}+c^{2}\right)(b+c)} \geq \frac{9 a b c}{2\left(a^{4}+b^{4}+c^{4}\right)+3\left(a^{4}+b^{4}+c^{4}\right)+2\left(a^{4}+b^{4}+c^{4}\right)+a^{4}+b^{4}+c^{4}}=\frac{9 a b c}{8\left(a^{4}+b^{4}+c^{4}\right)}
$$

Now, we will prove that: $a^{4}+b^{4}+c^{4} \leq 54 R^{3}(R-r)$
It is well known that: $a^{4}+b^{4}+c^{4}=2\left(a^{2} b^{2}+2 b^{2} c^{2}+2 c^{2} a^{2}\right)-16 F^{2}$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
So, $a^{4}+b^{4}+c^{4}=2\left((a b+b c+c a)^{2}-2 a b c(a+b+c)\right)-16 F^{2}$.
Now, $a b+b c+c a=s^{2}+r^{2}+4 R r$ so that, with a short calculation,

$$
a^{4}+b^{4}+c^{4}=2\left(s^{4}-2 r s^{2}(4 R+3 r)+r^{2}(4 R+r)^{2}\right)
$$

and the inequality becomes:

$$
s^{4}-2 r(4 R+3 r) s^{2}+r^{2}(4 R+r)^{2}-27 R^{3}(R-r) \leq 0
$$

The left hand side is a quadratic in s^{2} which writes as $\left(s^{2}-\alpha\right)\left(s^{2}-\beta\right)$ with
$\alpha=r(4 R+3 r)-\sqrt{\delta}, \beta=r(4 R+3 r)+\sqrt{\delta}$, the number δ being

$$
8 r^{3}(2 R+r)+27 R^{3}(R-r)
$$

The inequality $\alpha \leq s^{2}$ follows from Gerretsen's inequality $16 R r-5 r^{2} \leq s^{2}$ since

$$
\alpha \leq 3 r^{2}+4 R r \leq 16 R r-5 r^{2} \leq s^{2}
$$

As for the inequality $s^{\mathbf{2}} \leq \boldsymbol{\beta}$, using Gerretsen's second inequality $s^{2} \leq 4 R^{2}+3 r^{2}+4 R r$, we see that it is sufficient to prove $4 R^{2} \leq \sqrt{\delta}$ or

$$
8 r^{4}+16 R r^{3}-27 R^{3} r+11 R^{4} \geq 0
$$

But, setting $x=\frac{R}{2 r} \geq 1$ (Euler) this rewrites as $22 x^{4}-27 x^{3}+4 x+1 \geq 0$, that is

$$
(x-1)\left(11 x^{3}+(x-1)\left(11 x^{2}+6 x+1\right)\right) \geq 0
$$

So, the later inequality holds and we are done.
Equality holds when the triangle is equilateral.
So, $\sum_{c y c} \frac{a b}{\left(2 a^{2}+b^{2}+c^{2}\right)(b+c)} \geq \frac{9 a b c}{8 \cdot 54 R^{3}(R-r)}$ and we know that $a b c=4 R F$ then

$$
\sum_{c y c} \frac{a b}{\left(2 a^{2}+b^{2}+c^{2}\right)(b+c)} \geq \frac{F}{12 R^{2}(R-r)}
$$

UP.277. Find:

$$
\Omega=\lim _{n \rightarrow \infty}\left(\frac{\sum_{1 \leq i<j<k \leq n}\left(\frac{1}{\sqrt[3]{(i j k)^{2}}}\right)}{e^{H_{n}}}\right)
$$

Proposed by Marian Ursărescu-Romania

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Solution by M okhtar Khassani-M ostaganem-Algerie

$$
\begin{aligned}
& \Omega=\lim _{n \rightarrow \infty}\left(\frac{\sum_{1 \leq i<j<k \leq n}\left(\frac{1}{\sqrt[3]{(i j k)^{2}}}\right)}{e^{H_{n}}}\right)=\lim _{n \rightarrow \infty} \frac{\frac{1}{n^{2}} \cdot \sum_{1 \leq i<j<k \leq n}\left(\frac{1}{\sqrt[3]{\left(\frac{i j k}{n^{3}}\right)^{2}}}\right)}{n e^{H_{n}-l o g n}} \\
& =e^{-\gamma} \lim _{n \rightarrow \infty} \frac{1}{n^{2}} \cdot \sum_{1 \leq i<j<k \leq n}\left(\frac{1}{\sqrt[3]{\left(\frac{i j k}{n^{3}}\right)^{2}}}\right)=e^{-\gamma} \int_{0}^{1} \int_{x}^{1} \int_{y}^{1} \frac{1}{\sqrt[3]{(x y y)^{2}}} d x d y d z \\
& =e^{-\gamma} \int_{0}^{1} \int_{x}^{1} \frac{3(1-y)}{\sqrt[3]{(x y)^{2}}} d y d x=e^{-\gamma} \int_{0}^{1} \int_{x}^{1} \frac{\frac{1}{2}\left(\sqrt[3]{x^{2}}-18 \sqrt[3]{x}+1\right)}{\sqrt[3]{x^{2}}} d y d x=\frac{9}{2} e^{-\gamma}
\end{aligned}
$$

UP.282. If $m, p, r, s, t \geq 0 ;\left(a_{n}\right)_{n \geq 1} ;\left(b_{n}\right)_{n \geq 1} ;\left(c_{n}\right)_{n \geq 1} \subset(0, \infty)$;

$$
\begin{gathered}
\lim _{n \rightarrow \infty}\left(\frac{a_{n+1}}{a_{n} \cdot n^{r}}\right)=a>0 ; \lim _{n \rightarrow \infty}\left(\frac{b_{n+1}}{b_{n} \cdot n^{s}}\right)=b>0 ; \lim _{n \rightarrow \infty}\left(\frac{c_{n+1}-c_{n}}{n^{t}}\right)=c>0 \\
\text { then: } \\
\lim _{n \rightarrow \infty}\left(\frac{c_{n+1} \cdot \sqrt[n+1]{a_{n+1}^{m} \cdot b_{n+1}^{p}}}{(n+1)^{m r+p s+t}}-\frac{c_{n} \cdot \sqrt[n]{a_{n}^{m} \cdot b_{n}^{p}}}{n^{m r+p s+t}}\right)=\frac{a^{m} \cdot b^{p} \cdot c}{(t+1) \cdot e^{m r+p s}}
\end{gathered}
$$

Proposed by D.M.Bătineţu-Giurgiu, Neculai Stanciu-Romania

ROMANIAN MATHw.MATICAL MAGAZINE
Solution by Soumitra M andal-Chandar Nagore-India

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{c_{n}}{n^{t+1}} \stackrel{L . c-s}{=} \lim _{n \rightarrow \infty} \frac{c_{n+1}-c_{n}}{(n+1)^{t+1}-n^{t+1}}=\lim _{n \rightarrow \infty}\left(\frac{c_{n+1}-c_{n}}{n^{t}} \cdot \frac{1}{\frac{\left(1+\frac{1}{n}\right)^{t+1}-1}{\frac{1}{n}}}\right)=\frac{c}{t+1} \\
& \lim _{n \rightarrow \infty} \frac{\sqrt[n]{a_{n}}}{n^{r}} \stackrel{c \cdot D^{\prime} / A}{=} \lim _{n \rightarrow \infty} \frac{a_{n+1}}{n^{r} \cdot a_{n}} \cdot \frac{1}{\left(1+\frac{1}{n}\right)^{n r}}=\frac{a}{e^{r}} \\
& \lim _{n \rightarrow \infty}\left(\frac{n\left(c_{n+1}-c_{n}\right)}{c_{n}}\right)=\lim _{n \rightarrow \infty}\left(\frac{c_{n+1}-c_{n}}{n^{t}} \cdot \frac{n^{t+1}}{c_{n}}\right) \stackrel{L . C-S}{\leftrightharpoons} c \lim _{n \rightarrow \infty} \frac{n^{t}}{c_{n+1}-c_{n}} \cdot \frac{\left(1+\frac{1}{n}\right)^{t+1}-1}{\frac{1}{n}}=t+1 \\
& \lim _{n \rightarrow \infty} \frac{\sqrt[n]{b_{n}}}{n^{s}} \stackrel{c \cdot D^{\prime} A}{\cong} \lim _{n \rightarrow \infty} \frac{b_{n+1}}{n^{s} \cdot b_{n}} \cdot \frac{1}{\left(1+\frac{1}{n}\right)^{n s}}=\frac{b}{e^{s}} \\
& \text { Let: } \boldsymbol{u}_{\boldsymbol{n}}=\frac{\frac{c_{n+1} \cdot \sqrt[n+1]{a_{n+1}^{m} \cdot b_{n+1}^{p}}}{(n+1)^{m r+p s+t}}}{\frac{c_{n} \cdot \sqrt[n]{a_{n}^{m} \cdot b_{n}^{p}}}{n^{m r+p s+t}}} \text { for all } n \in \mathbb{N} \\
& \therefore \lim _{n \rightarrow \infty} u_{n}=1 \text { hence for all } n \rightarrow \infty, \frac{u_{n}-1}{\log \left(u_{n}\right)} \rightarrow 1 \\
& \therefore \lim _{n \rightarrow \infty} \boldsymbol{u}_{\boldsymbol{n}}^{\boldsymbol{n}}= \\
& =\lim _{n \rightarrow \infty}\left(\left[\frac{c_{n+1}-c_{n}}{c_{n}}+1\right)^{\frac{c_{n}}{c_{n+1}-c_{n}} \frac{n\left(c_{n+1}-c_{n}\right)}{c_{n}}} \cdot\left(\frac{a_{n+1}}{a_{n} \cdot n^{r}}\right)^{m} \cdot\left(\frac{b_{n+1}}{b_{n} \cdot n^{s}}\right)^{p} \cdot \frac{n^{m r+s p}}{\sqrt[n+1]{a_{n+1}^{m} b_{n+1}^{p}}} \cdot \frac{1}{\left(1+\frac{1}{n}\right)^{n t}} \cdot \frac{1}{\left(1+\frac{1}{n}\right)^{n(m r+s p)}}\right]= \\
& =e^{t+1} \cdot \boldsymbol{a}^{m} \cdot \boldsymbol{b}^{p} \cdot\left(\frac{e^{r}}{a}\right)^{m} \cdot\left(\frac{e^{s}}{b}\right)^{p} \cdot \frac{1}{e^{t+m r+s p}}=e \\
& \lim _{n \rightarrow \infty}\left(\frac{c_{n+1} \cdot \sqrt[n+1]{a_{n+1}^{m} \cdot b_{n+1}^{p}}}{(n+1)^{m r+p s+t}}-\frac{c_{n} \cdot \sqrt[n]{a_{n}^{m} \cdot b_{n}^{p}}}{n^{m r+p s+t}}\right)= \\
& =\lim _{n \rightarrow \infty} \frac{c_{n} \cdot \sqrt[n]{a_{n}^{m} \cdot b_{n}^{p}}}{n^{m r+p s+t}} \cdot \frac{u_{n}-1}{\log \left(u_{n}\right)} \cdot \log \left(u_{n}^{n}\right)=\frac{a^{m} \cdot b^{p} \cdot c}{(t+1) \cdot e^{m r+p s}}
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

UP.280. Let a, b, c be sides in $\triangle A B C,\left(x_{n}\right)_{n \geq 1},\left(y_{n}\right)_{n \geq 1},\left(z_{n}\right)_{n \geq 1}$ sequences of positive numbers such that:

$$
\lim _{n \rightarrow \infty}\left(x_{n+1}-x_{n}\right)=c, \lim _{n \rightarrow \infty} \frac{y_{n+1}}{n y_{n}}=b, \lim _{n \rightarrow \infty} \frac{z_{n+1}}{n z_{n}}=c .
$$

Prove that:

$$
\lim _{n \rightarrow \infty}\left(\frac{x_{n} \cdot \sqrt[n]{y_{n}}+e \cdot \sqrt[n]{y_{n} z_{n}}+x_{n} \cdot \sqrt[n]{z_{n}}}{n^{2}}\right) \geq \frac{4 \sqrt{3} F}{e}
$$

Proposed by D.M.Bătinețu-Giurgiu and Neculai Stanciu-Romania Solution by M arian Ursărescu-Romania

$$
\begin{gather*}
\lim _{n \rightarrow \infty}\left(\frac{x_{n} \cdot \sqrt[n]{y_{n}}}{n^{2}}\right)=\lim _{n \rightarrow \infty}\left(\frac{x_{n}}{n} \cdot \frac{\sqrt[n]{y_{n}}}{n}\right) \tag{1}\\
\lim _{n \rightarrow \infty} \frac{x_{n}}{n} \stackrel{L C-s}{=} \lim _{n \rightarrow \infty} \frac{x_{n+1}-x_{n}}{n+1-n}=a \tag{2}
\end{gather*}
$$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\sqrt[n]{y_{n}}}{n}=\lim _{n \rightarrow \infty} \sqrt[n]{\frac{y_{n}}{n^{n}}} \stackrel{c-D^{\prime} A}{=} \lim _{n \rightarrow \infty} \frac{y_{n+1}}{(n+1)^{n+1}} \cdot \frac{n^{n}}{y_{n}}=\lim _{n \rightarrow \infty} \frac{y_{n+1}}{n y_{n}} \cdot\left(\frac{n}{n+1}\right)^{n} \cdot \frac{n}{n+1}=\frac{b}{e} \tag{3}
\end{equation*}
$$

From (1)+(2)+(3) we have: $\lim _{n \rightarrow \infty}\left(\frac{x_{n} \cdot n \sqrt[n]{y_{n}}}{n^{2}}\right)=\frac{a b}{e}$
Similarly: $\lim _{n \rightarrow \infty}\left(\frac{x_{n} \cdot \sqrt[n]{z_{n}}}{n^{2}}\right)=\frac{a c}{e}$

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\frac{e \cdot \sqrt[n]{y_{n} z_{n}}}{n^{2}}\right)=\lim _{n \rightarrow \infty} \sqrt[n]{\frac{y_{n}}{n^{n}}} \cdot \sqrt[n]{\frac{z_{n}}{n^{n}}}=\frac{b c}{e} \tag{5}
\end{equation*}
$$

From (4)+(5)+(6) we must show: $\frac{a b+b c+c a}{e} \geq \frac{4 \sqrt{3} F}{e} \Leftrightarrow a b+b c+c a \geq 4 \sqrt{3} F$, true it's Gordon inequality.

UP. 278 If $a, b \in \mathbb{R}$ then:

$$
\int_{a}^{b} \int_{a}^{b}(\cos x \cos y \cos (x+y)) d x d y+\frac{1}{8}(b-a)^{2} \geq 0
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Solution by proposer:

$$
\begin{aligned}
& \text { We start from: }\left(\cos x+\frac{1}{2}(\cos (x+2 y))\right)^{2}+\frac{1}{4} \sin ^{2}(x+2 y) \geq 0 \\
& \cos ^{2} x+\cos x \cos (x+2 y)+\frac{1}{4} \cos ^{2}(x+2 y)+\frac{1}{4} \sin ^{2}(x+2 y) \geq 0 \\
& \cos ^{2} x+\cos x \cos (x+2 y) \geq-\frac{1}{4} \\
& 2 \cos ^{2} x+2 \cos x \cos (x+2 y) \geq-\frac{1}{2} \\
& 2 \cos ^{2} x+\cos 2 y+\cos (2 x+2 y) \geq-\frac{1}{2} \\
& 2 \cos ^{2} x-1+\cos ^{2} y+\cos (2 x+2 y) \geq-\frac{3}{2} \\
& \cos 2 x+\cos 2 y+\cos (2 x+2 y) \geq-\frac{3}{2} \\
& 2 \cos (x+y) \cos (x-y)+2 \cos (x+y)-1 \geq-\frac{3}{2} \\
& 2 \cos (x+y)(\cos (x-y)+\cos (x+y)) \geq-\frac{1}{2} \\
& \cos (x+y) \cdot 2 \cos x \cos y \geq-\frac{1}{4} \\
& 8 \cos x \cos y \cos (x+y)+1 \geq 0 \\
& \cos x \cos y \cos (x+y)+\frac{1}{8} \geq 0 \\
& \int_{a}^{b} \int_{a}^{b} \cos x \cos y \cos (x+y) d x d y+\frac{1}{8}(b-a)^{2} \geq 0
\end{aligned}
$$

UP.283.RMM WINTER EDITION 2020
By Marin Chirciu - Romania

1) In $\triangle A B C$:

$$
\frac{r}{4 R^{4}} \leq \frac{h_{a}}{a^{2}(b+c)^{2}}+\frac{h_{b}}{b^{2}(c+a)^{2}}+\frac{h_{c}}{c^{2}(a+b)^{2}} \leq \frac{1}{64 r^{3}}
$$

Proposed by George Apostolopoulos-Messolonghi- Greece

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Solution

The left hand inequality: Using the means inequality we obtain:

$$
\begin{gathered}
\sum \frac{h_{a}}{a^{2}(b+c)^{2}} \geq 3 \sqrt[3]{\prod \frac{h_{a}}{a^{2}(b+c)^{2}}}=3 \sqrt[3]{\frac{2 r^{2} s^{2}}{16 R^{2} r^{2} s^{2} \cdot 4 s^{2}\left(s^{2}+r^{2}+2 R r\right)^{2}}}= \\
=\frac{3}{\sqrt[3]{32 R^{3} \cdot s^{2}\left(s^{2}+r^{2}+2 R r\right)^{2}}} \stackrel{(1)}{\geq} \frac{r}{4 R^{4}}, \text { where }(1) \Leftrightarrow \frac{27}{32 R^{3} \cdot s^{2}\left(s^{2}+r^{2}+2 R r\right)^{2}} \geq \frac{r^{3}}{64 R^{12}} \Leftrightarrow \\
\Leftrightarrow 54 R^{9} \geq r^{3} s^{2}\left(s^{2}+r^{2}+2 R r\right)^{2}, \text { which follows from Mitrinovic's inequality } \\
s^{2} \leq \frac{27 R^{2}}{4} \text { and Gerretsen } s^{2} \leq 4 R^{2}+4 R r+3 r^{2} . \text { It remains to prove that: } \\
54 R^{9} \geq r^{3} \frac{27 R^{2}}{4}\left(4 R^{2}+4 R r+3 r^{2}+r^{2}+2 R r\right)^{2} \Leftrightarrow 2 R^{7} \geq r^{3}\left(2 R^{2}+3 R r+2 r^{2}\right)^{2} \Leftrightarrow \\
\Leftrightarrow 2 R^{7}-4 R^{4} r^{3}-12 R^{3} r^{4}-17 R^{2} r^{5}-12 R r^{6}-4 r^{7} \geq 0 \Leftrightarrow \\
\Leftrightarrow(R-2 r)\left(2 R^{6}+4 R^{5} r+8 R^{4} r^{2}+12 R^{3} r^{3}+12 R^{2} r^{4}+7 R r^{5}+2 r^{6}\right) \geq 0
\end{gathered}
$$ obviously from Euler's inequality $R \geq \mathbf{2 r}$.

Equality holds if and only if $\triangle A B C$ is equilateral.
The right hand inequality:
We have: $\sum \frac{h_{a}}{a^{2}(b+c)^{2}} \leq \sum \frac{h_{a}}{a^{2} \cdot 4 b c} \leq \frac{1}{4 a b c} \sum \frac{h_{a}}{a}=\frac{1}{4 \cdot 4 R r s} \cdot \frac{s^{4}+s^{2}\left(2 r^{2}-4 R r\right)+r^{2}(4 R r+r)^{2}}{8 R^{2} r s}=$

$$
=\frac{s^{4}+s^{2}\left(2 r^{2}-4 R r\right)+r^{2}(4 R r+r)^{2}}{128 R^{3} r^{2} s^{2}} \stackrel{(2)}{\leq} \frac{1}{64 r^{3}}
$$

where (2) $\Leftrightarrow s^{4}+s^{2}\left(2 r^{2}-4 R r\right)+r^{2}(4 R+r)^{2} \leq 2 R^{3} s^{2}$, which follows from
Gerretsen's inequality $s^{2} \geq 16 R r-5 r^{2}$. It remains to prove that:

$$
s^{4}+s^{2}\left(2 r^{2}-4 R r\right)+r^{2}(4 R+r)^{2} \leq 2 R^{3}\left(16 R r-5 r^{2}\right)
$$

$\Leftrightarrow s^{2}\left(s^{2}+2 r^{2}-8 R r\right)+r^{2}(4 R+r)^{2} \leq 2 R^{3}(16-5 r)$, true from Gerretsen's inequality $s^{2} \leq 4 R^{4}+4 R r+3 r^{2}$. It suffices to prove that:

$$
\begin{aligned}
&\left(4 R^{4}+4 R r+3 r^{2}\right)\left(4 R^{4}+4 R r+3 r^{2}+2 r^{2}-8 R r\right)+r^{2}(4 R+r)^{2} \leq 2 R^{3}(16 R-5 r) \Leftrightarrow \\
& \Leftrightarrow 8 R^{4}-5 R^{3} r-16 R^{2} r^{2}-8 R r^{3}-8 r^{4} \geq 0 \Leftrightarrow(R-2 r)\left(8 R^{3}+11 R^{2} r+6 R r^{2}+4 r^{4}\right) \geq 0
\end{aligned}
$$

obviously from Euler's inequality $R \geq \mathbf{2 r}$.
Equality holds if and only if $\triangle A B C$ is equilateral.
Remark.

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

If we change h_{a} with r_{a} we propose:
2) In $\triangle A B C$:

$$
\frac{r}{4 R^{4}} \leq \frac{r_{a}}{a^{2}(b+c)^{2}}+\frac{r_{b}}{b^{2}(c+a)^{2}}+\frac{r_{c}}{c^{2}(a+b)^{2}} \leq \frac{1}{64 r^{3}}
$$

Marin Chirciu - Romania
Solution.
The left hand inequality:
Using means inequality we obtain:

$$
\begin{aligned}
& \sum \frac{r_{a}}{a^{2}(b+c)^{2}} \geq 3^{\prod \frac{r_{a}}{a^{2}(b+c)^{2}}}=3 \sqrt[3]{\frac{r s^{2}}{16 R^{2} r^{2} s^{2} \cdot 4 s^{2}\left(s^{2}+r^{2}+2 R r\right)^{2}}}= \\
& =\frac{3}{\sqrt[3]{64 R^{2} r \cdot s^{2}\left(s^{2}+r^{2}+2 R r\right)^{2}}} \stackrel{(1)}{\geq} \frac{r}{4 R^{4}} \text {, where (1) } \Leftrightarrow \frac{27}{64 R^{2} r \cdot s^{2}\left(s^{2}+r^{2}+2 R r\right)^{2}} \geq \frac{r^{3}}{64 R^{12}} \Leftrightarrow \\
& \Leftrightarrow \mathbf{2 7} \boldsymbol{R}^{10} \geq \boldsymbol{r}^{4} \boldsymbol{s}^{2}\left(s^{2}+r^{2}+\mathbf{2 R r}\right)^{2} \text {, which follows from Mitrinovic's inequality } \\
& s^{2} \leq \frac{27 R^{2}}{4} \text { and Gerretsen } s^{2} \leq 4 R^{2}+4 R r+3 r^{2} \text {. It remains to prove that: } \\
& 27 R^{10} \geq r^{4} \cdot \frac{27 R^{2}}{4}\left(s^{2}+r^{2}+2 R r\right)^{2} \Leftrightarrow R^{8} \geq r^{4}\left(2 R^{2}+3 R r+2 r^{2}\right)^{2} \Leftrightarrow \\
& \Leftrightarrow R^{8}-4 R^{4} r^{4}-12 R^{3} r^{5}-17 R^{2} r^{6}-12 R r^{7}-4 r^{8} \geq 0 \Leftrightarrow \\
& \Leftrightarrow(R-2 r)\left(R^{7}+2 R^{6} r+4 R^{5} r^{2}+8 R^{4} r^{3}+12 R^{3} r^{4}+12 R^{2} r^{5}+7 R r^{6}+2 r^{7}\right) \geq 0
\end{aligned}
$$

obviuosly from Euler's inequality $R \geq 2 r$.
Equality holds if and only if $\triangle A B C$ is equilateral.
The right hand inequality
We have $\sum \frac{r_{a}}{a^{2}(b+c)^{2}} \leq \sum \frac{r_{a}}{a^{2} \cdot 4 b c} \leq \frac{1}{4 a b c} \sum \frac{r_{a}}{a}=\frac{1}{4 \cdot 4 R r s} \cdot \frac{s^{2}+(4 R+r)^{2}}{4 R s}=$

$$
=\frac{s^{2}+(4 R+r)^{2}}{64 R^{2} r s^{2}} \leq \frac{1}{64 r^{3}}
$$

where (2) $\Leftrightarrow r^{2}(4 R+r)^{2} \leq s^{2}\left(\boldsymbol{R}^{2}-r^{2}\right)$, which follows from Gerretsen's inequality

$$
\begin{gathered}
s^{2} \geq 16 R r-5 r^{2} \geq \frac{r(4 R+r)^{2}}{R+r} \text {. It remains to prove that: } \\
r^{2}(4 R+r)^{2} \leq \frac{r(4 R+r)^{2}}{R+r}\left(R^{2}-r^{2}\right) \Leftrightarrow R^{2}-R r-2 r^{2} \geq 0 \Leftrightarrow(R-2 r)(R+r) \geq 0
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro obviously from Euler's inequality $R \geq 2 r$.

Equality holds if and only if $\triangle A B C$ is equilateral.

UP.285. RMM NUM BER 19 WINTER 2020
By Marin Chirciu - Romania

1) In $\triangle A B C$ the following relationship holds:

$$
\left(\frac{15}{2}-\frac{3 R^{2}}{4 r^{2}}\right) R \leq \frac{w_{a}^{2}}{h_{a}}+\frac{w_{b}^{2}}{h_{b}}+\frac{w_{c}^{2}}{h_{c}} \leq \frac{9 R}{2}
$$

By George Apostolopoulos-M essolonghi- Greece
Solution
We prove the strongest inequality:
2) In $\triangle A B C$ the following relationship holds:

$$
\begin{aligned}
\left(10-\frac{2 r}{R}\right) r \leq \frac{w_{a}^{2}}{h_{a}}+\frac{w_{b}^{2}}{h_{b}}+\frac{w_{c}^{2}}{h_{c}} \leq & 4 R+r \\
& \text { M arin Chirciu - Romania }
\end{aligned}
$$

Solution
The left hand inequality: Using inequality $w_{a} \geq h_{a}$ we obtain:
$\sum \frac{w_{a}^{2}}{h_{a}} \geq \sum \frac{h_{a}^{2}}{h_{a}}=\sum h_{a}=\frac{s^{2}+r^{2}+4 R r}{2 R} \stackrel{\text { Gerretsen }}{\geq} \frac{16 R r-5 r^{2}+r^{2}+4 R r}{2 R} \geq r\left(10-\frac{2 r}{R}\right)$
We prove that $r\left(10-\frac{2 r}{R}\right) \geq\left(\frac{15}{2}-\frac{3 R^{2}}{4 r^{2}}\right) R \Leftrightarrow 3 R^{4}-30 R^{2} r^{2}+40 R r^{3}-8 r^{4} \geq 0 \Leftrightarrow$ $\Leftrightarrow(R-2 r)\left(3 R^{3}+6 R^{2} r-18 R r^{2}+4 r^{3}\right) \geq 0$, obvious from Euler's inequality $R \geq 2 r$.Equality holds if and only if $\triangle A B C$ is equilateral.

The right hand inequality.
Using the formula $h_{a}=\frac{2 S}{a}$ and the inequality $w_{a}^{2} \leq s(s-a)$ we obtain:

$$
\sum \frac{w_{a}^{2}}{h_{a}} \leq \sum \frac{s(s-a)}{\frac{2 S}{a}}=\frac{s}{2 S} \sum a(s-a)=\frac{1}{2 r} \cdot 2 r(4 R+r)=4 R+r
$$

Above we've used the known identity in triangle $\sum a(s-a)=2 r(4 R+r)$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Remark.
We prove that inequality 2) is stronger than inequality 1).
3) In $\triangle A B C$ the following relationship holds:

$$
\left(\frac{15}{2}-\frac{3 R^{2}}{4 r^{2}}\right) R \leq\left(10-\frac{2 r}{R}\right) r \leq \frac{w_{a}^{2}}{h_{a}}+\frac{w_{b}^{2}}{h_{b}}+\frac{w_{c}^{2}}{h_{c}} \leq 4 R+r \leq \frac{9 R}{2}
$$

Solution
See inequality 2) and for the left hand inequality we prove that:

$$
\begin{gathered}
r\left(10-\frac{2 r}{R}\right) \geq\left(\frac{15}{2}-\frac{3 R^{2}}{4 r^{2}}\right) R \Leftrightarrow 3 R^{4}-30 R^{2} r^{2}+40 R r^{3}-8 r^{4} \geq 0 \Leftrightarrow \\
\Leftrightarrow(R-2 r)\left(3 R^{3}+6 R^{2} r-18 R r^{2}+4 r^{3}\right) \geq 0, \text { obviously from Euler's inequality } \\
R \geq 2 r .
\end{gathered}
$$

For the right hand inequality we prove that $4 R+r \leq \frac{9 R}{2} \Leftrightarrow R \geq 2 r$, (Euler's inequality)
Remark.

$$
\text { If we change } h_{a} \text { with } r_{a} \text { we propose: }
$$

4) In $\triangle A B C$ the following relationship holds:

$$
\begin{aligned}
& \frac{18 r^{2}}{R} \leq \frac{w_{a}^{2}}{r_{a}}+\frac{w_{b}^{2}}{r_{b}}+\frac{w_{c}^{2}}{r_{c}} \leq \frac{(2 R-r)^{2}}{r} \\
& \text { M arin Chirciu - Romania }
\end{aligned}
$$

Solution
Using inequality $w_{a} \geq h_{a}$ we obtain:

$$
\begin{gathered}
\sum \frac{w_{a}^{2}}{r_{a}} \geq \sum \frac{h_{a}^{2}}{r_{a}} \stackrel{\text { Bergstrom }}{\geq} \frac{\left(\sum h_{a}\right)^{2}}{\sum r_{a}} \stackrel{(1)}{\geq} \frac{3 \sum h_{b} h_{c}}{\sum r_{a}} \stackrel{(3)}{=} \frac{3 \cdot \frac{2 s^{2} r}{R}}{4 R+r}= \\
=\frac{6 s^{2} r}{R(4 R+r)} \stackrel{(4)}{\geq} \frac{6 r \cdot \frac{r(4 R+r)^{2}}{R+r}}{R(4 R+r)}=
\end{gathered}
$$

$\frac{6 r^{2}(4 R+r)}{r(R+r)}=\frac{6 r^{2}}{R} \cdot \frac{4 R+r}{R+r} \stackrel{(5)}{\geq} \frac{6 r^{2}}{R} \cdot 3=\frac{18 r^{2}}{R}$, where (1) it follows from inequality $(x+y+z)^{2} \geq 3(x y+y z+z x)$, (2) it follows from the known identities in triangle

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
$\sum h_{b} h_{c}=\frac{2 s^{2} r}{R}$ and $\sum r_{a}=4 R+r$, (4) it follows from Gerretsen $s^{2} \geq 16 R r-5 r^{2} \geq \frac{r(4 R+r)^{2}}{R+r}$, and (5) $\frac{4 R+r}{R+r} \geq 3 \Leftrightarrow R \geq 2 r$, (Euler's inequality)

Equality holds if and only if $\triangle A B C$ is equilateral.
The right hand inequality
Using the formula $h_{a}=\frac{s}{s-a}$ and inequality $w_{a}^{2} \leq s(s-a)$ we obtain:

$$
\begin{gathered}
\sum \frac{w_{a}^{2}}{r_{a}} \leq \sum \frac{s(s-a)}{\frac{S}{s-a}}=\frac{s}{S} \sum(s-a)^{2}=\frac{1}{r}\left(s^{2}-2 r^{2}-8 R r\right) \\
\leq \frac{4 R^{2}+4 R r+3 r^{2}-2 r^{2}-8 R r}{r}= \\
=\frac{4 R^{2}-4 R r+r^{2}}{r}=\frac{(2 R-r)^{2}}{r}
\end{gathered}
$$

Above we've used the known identity in triangle $\sum(s-a)^{2}=s^{2}-2 r^{2}-8 R r$.
Equality holds if and only if $\triangle A B C$ is equilateral.

ROMANIAN MATHw.ssmrmh.ro $\underset{\text { www. }}{\text { MAT MAGAZINE }}$

It's nice to be important but more important it's to be nice. At this paper works a TEAM.

This is RMM TEAM.
To be continued!
Daniel Sitaru

