

ROMANIAN MATHEMATICAL MAGAZINE

SOLUTIONS

Founding Editor DANIEL SITARU

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro Proposed by Daniel Sitaru - Romania, Marian Ursărescu-Romania Marin Chirciu-Romania Hoang Le Nhat Tung-Hanoi-Vietnam

D.M.Bătineţu-Giurgiu-Romania

Radu Diaconu-Romania
Florică Anastase-Romania
Pedro Pantoja-Natal-Brazil
Neculai Stanciu-Romania

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
Solutions by
Daniel Sitaru-Romania,Daniel Văcaru-Romania
Henry Ricardo-New York-USA,Marin Chirciu-Romania Hoang Le Nhat Tung-Hanoi-Vietnam,Agayev Sedreddin-BakuAzerbaijan, Khaled Abd Imouti-Damascus-Siria Daoudi Abdessattar-Sbiba-Tunisia,D.M.Bătineţu-Giurgiu-Romania Michael Sterghiou-Greece,George Florin Şerban-Romania Radu Diaconu-Romania,Avishek Mitra-West Bengal-India Tran Hong-Dong Thap-Vietnam,Florică Anastase-Romania Kamel Benaicha-Algiers-Algerie,Marian Ursărescu-Romania Mokhtar Khassani-Mostaganem-Algerie,Ravi Prakash-New DelhiIndia,Pedro Pantoja-Natal-Brazil,Adrian Popa-Romania,Sergio Esteban-Argentina,Samir HajAli-Damascus-Syria,Remus Florin Stanca-Romania,Hemn Hsain-Uzbekistan,Kaushik Mahanta-India

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

JP.301. Prove that in any $A B C$ triangle the following relationship holds:

$$
\tan ^{2} \frac{A}{2} \cot \frac{B}{2}+\tan ^{2} \frac{B}{2} \cot \frac{C}{2}+\tan ^{2} \frac{C}{2} \cot \frac{A}{2} \geq \sqrt{3}
$$

Proposed by Marian Ursărescu-Romania

Solution 1 by Daniel Văcaru- Romania

$$
\begin{gathered}
\tan ^{2} \frac{A}{2} \cot \frac{B}{2}+\tan ^{2} \frac{B}{2} \cot \frac{C}{2}+\tan ^{2} \frac{C}{2} \cot \frac{A}{2}=\frac{\tan ^{2} \frac{A}{2}}{\tan \frac{B}{2}}+\frac{\tan ^{2} \frac{B}{2}}{\tan \frac{C}{2}}+\frac{\tan ^{2} \frac{C}{2}}{\tan \frac{A}{2}} \\
\stackrel{B e r g s t r o m}{\geq} \frac{\left(\tan \frac{A}{2}+\tan \frac{B}{2}+\tan \frac{C}{2}\right)^{2}}{\tan \frac{A}{2}+\tan \frac{B}{2}+\tan \frac{C}{2}} \stackrel{\tan \tan t}{\operatorname{con} v e x} \\
\stackrel{y t a n}{2} \frac{A+B+C}{3}=\sqrt{3}
\end{gathered}
$$

Solution 2 by Henry Ricardo-New York-USA

Engel's form of the Cauchy-Schwarz inequality gives us

$$
\sum_{c y c} \tan ^{2} \frac{A}{2} \cot \frac{B}{2}=\sum_{c y c} \frac{\tan ^{2} \frac{A}{2}}{\tan \frac{B}{2}} \geq \frac{\left(\sum_{c y c} \tan \frac{A}{2}\right)^{2}}{\sum_{c y c} \tan \frac{B}{2}} \geq \sum_{c y c} \tan \frac{A}{2} \geq \sqrt{3}
$$

Where the last inequality is known (see 2.33 Geometric Inequalities by Bottema)

JP.302. In any $\triangle A B C$ the following relationship holds:

$$
a^{2} r_{a}+b^{2} r_{b}+c^{2} r_{c} \geq 54 R r^{2}
$$

Proposed by Marian Ursărescu-Romania

Solution by Daniel Văcaru-Romania

We can write:

$$
\begin{aligned}
& a^{2} r_{a}+b^{2} r_{b}+c^{2} r_{c}=\frac{a^{2}}{\frac{1}{r_{a}}}+\frac{b^{2}}{\frac{1}{r_{b}}}+\frac{c^{2}}{\frac{1}{r_{c}}} \stackrel{\text { Bergstrom }}{\geq} \frac{(a+b+c)^{2}}{\frac{1}{r_{a}}+\frac{1}{r_{b}}+\frac{1}{r_{c}}}= \\
& =\frac{(a+b+c)^{2}}{\frac{(s-a)+(s-b)+(s-c)}{S}}=\frac{(a+b+c)^{2}}{\frac{1}{r}}=(a+b+c)^{2} r
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

> www.ssmrmh.ro

$$
=\frac{(a+b+c)^{3} \cdot r}{2 s}
$$

But: $(a+b+c)^{3} \geq 27 a b c \Rightarrow$

$$
a^{2} r_{a}+b^{2} r_{b}+c^{2} r_{c} \geq \frac{27 a b c \cdot r}{2 s}=\frac{27 \cdot 4 R S \cdot r}{2 s}=54 R r\left(\frac{S}{s}\right)=54 R r^{2}
$$

JP.303. If $x, y, z \geq 1, x^{2}+y^{2}+z^{2}-2 x y z=1, n \geq 0$ prove:

$$
2(n+x)(n+y)(n+z) \leq(n+1)^{3}(1+x y z)
$$

Proposed by Marin Chirciu-Romania

Solution by proposer

$$
\text { Denote } t=x y z \text { and from } x^{2}+y^{2}+z^{2}-2 x y z=1 \text { we get }
$$

$$
x^{2}+y^{2}+z^{2}=1+2 x y z=1+2 t
$$

From C.B.S. Inequality we have

$$
\begin{aligned}
& (x+y+z)^{2} \leq 3\left(x^{2}+y^{2}+z^{2}\right)=3(1+2 x y z)=3(1+2 t), \text { where } \\
& x+y+z \leq \sqrt{3(1+2 t)} \text { and } x y+y z+z x \leq x^{2}+y^{2}+z^{2}=1+2 t
\end{aligned}
$$

Therefore,

$$
\begin{gathered}
(n+x)(n+y)(n+z)-\frac{(n+1)^{3}}{2} \cdot x y z= \\
=n^{3}+n^{2}(x+y+z)+n(x y+y z+z x)+x y z-\frac{(n+1)^{3}}{2} \cdot x y z \leq \\
\leq n^{3}+n^{2} \sqrt{3(1+2 t)}+n(1+2 t)+t-\frac{(n+1)^{3}}{2} \cdot t= \\
=n^{3}+n+n^{2} \sqrt{3(1+2 t)}-t \cdot \frac{n^{3}+3 n^{2}-n-1}{2}
\end{gathered}
$$

Remains to prove that:

$$
\begin{aligned}
& n^{3}+n+n^{2} \sqrt{3(1+2 t)}-t \cdot \frac{n^{3}+3 n^{2}-n-1}{2} \leq \frac{(n+1)^{3}}{2} \Leftrightarrow \\
& n^{2} \sqrt{3(1+2 t)} \leq \frac{-n^{3}+3 n^{2}+n+1}{2}+t \cdot \frac{n^{3}+3 n^{2}-n-1}{2} \Leftrightarrow
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
3 n^{4}(1+2 t) \leq\left(\frac{-n^{3}+3 n^{2}+n+1}{2}+t \cdot \frac{n^{3}+3 n^{2}-n-1}{2}\right)^{2} \Leftrightarrow
$$

$3 n^{4}(1+2 t) \leq\left(\frac{-n^{3}+3 n^{2}+n+1}{2}\right)^{2}+2 \cdot \frac{-n^{3}+3 n^{2}+n+1}{2} \cdot t \cdot \frac{n^{3}+3 n^{2}-n-1}{2}+\left(t \cdot \frac{n^{3}+3 n^{2}-n-1}{2}\right)^{2} \Leftrightarrow$ $3 n^{4}(1+2 t) \leq \frac{n^{6}-6 n^{5}+7 n^{4}+4 n^{3}+7 n^{2}+2 n+1}{4}+$ $+t \cdot \frac{-n^{6}+11 n^{5}+2 n^{3}-n^{2}-2 n-1}{2}+t^{2} \cdot \frac{n^{6}+6 n^{5}+7 n^{4}-8 n^{3}-5 n^{2}+2 n+1}{4} \Leftrightarrow$ $t^{2}\left(n^{6}+6 n^{5}+7 n^{4}-8 n^{3}-5 n^{2}+2 n+1\right)+2 t\left(-n^{6}+n^{4}+2 n^{3}-n^{2}-2 n-1\right)+$ $+n^{6}-6 n^{5}-5 n^{4}+4 n^{3}+7 n^{2}+2 n+1 \geq 0 \Leftrightarrow$
$(t-1)\left[t\left(n^{6}+6 n^{5}+7 n^{4}-8 n^{3}-5 n^{2}+2 n+1\right)-\left(n^{6}-6 n^{5}-5 n^{4}+4 n^{3}+7 n^{2}+\right.\right.$ $2 n+1)] \geq 0$ which result from $t-1 \geq 0$ and $\left[t\left(n^{6}+6 n^{5}+7 n^{4}-8 n^{3}-5 n^{2}+2 n+1\right)-\left(n^{6}-6 n^{5}-5 n^{4}+4 n^{3}+7 n^{2}+2 n+1\right)\right] \geq 0$ true from

$$
\begin{gathered}
{\left[t\left(n^{6}+6 n^{5}+7 n^{4}-8 n^{3}-5 n^{2}+2 n+1\right)-\left(n^{6}-6 n^{5}-5 n^{4}+4 n^{3}+7 n^{2}+2 n+1\right)\right] \stackrel{t \geq 1}{\geq}} \\
\begin{array}{c}
t \geq 1 \\
\geq\left[\left(n^{6}+6 n^{5}+7 n^{4}-8 n^{3}-5 n^{2}+2 n+1\right)-\left(n^{6}-6 n^{5}-5 n^{4}+4 n^{3}+7 n^{2}+2 n+1\right)\right]= \\
=12 n^{5}+12 n^{4}-12 n^{3}-12 n^{2}=12\left(n^{2}-1\right)\left(n^{3}-1\right)= \\
=12(n-1)^{2}(n+1)\left(n^{2}+n+1\right) \geq 0 \text { true. }
\end{array}
\end{gathered}
$$

Equality holds if and only if $x=y=z=1$

JP.304. Solve the equation in real numbers:

$$
3 \cdot \sqrt[3]{x^{2}-x+1}+\sqrt[4]{\frac{x^{8}+1}{2}}=2\left(x^{4}-3 x+4\right)
$$

Proposed by Hoang Le Nhat Tung-Hanoi-Vietnam

Solution by proposer

$$
\begin{equation*}
3 \cdot \sqrt[3]{x^{2}-x+1}+\sqrt[4]{\frac{x^{8}+1}{2}}=2\left(x^{4}-3 x+4\right) \tag{1}
\end{equation*}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
By C-B-S Inequality, we have

$$
\begin{gather*}
\left(\sqrt{2\left(x^{8}+1\right)}+2 x^{2}\right)^{2} \leq 2\left[2\left(x^{8}+1\right)+4 x^{4}\right]=4\left(x^{8}+2 x^{4}+1\right)=4\left(x^{4}+1\right)^{2} \Rightarrow \\
\sqrt{2\left(x^{8}+1\right)}+2 x^{2} \leq 2\left(x^{4}+1\right) \Leftrightarrow \sqrt{2\left(x^{8}+1\right)} \leq 2\left(x^{4}-x^{2}+1\right) \Leftrightarrow \\
\sqrt[4]{\frac{x^{8}+1}{2}} \leq \sqrt{x^{4}-x^{2}+1} ; \tag{2}
\end{gather*}
$$

Other

$$
\begin{gather*}
\sqrt{x^{4}-x^{2}+1}=\sqrt{\left(x^{2}+1\right)^{2}-(x \sqrt{3})^{2}}= \\
=\sqrt{(2+\sqrt{3})\left(x^{2}-x \sqrt{3}+1\right)(2-\sqrt{3})\left(x^{2}+x \sqrt{3}+1\right)} \leq \\
\leq \frac{(2+\sqrt{3})\left(x^{2}-x \sqrt{3}+1\right)+(2-\sqrt{3})\left(x^{2}+x \sqrt{3}+1\right)}{2}= \\
=\frac{4 x^{2}-6 x+4}{2}=2 x^{2}-3 x+2 \tag{3}
\end{gather*}
$$

From (2),(3) we get: $\sqrt[4]{\frac{x^{8}+1}{2}} \leq \sqrt{x^{4}-x^{2}+1} \leq 2 x^{2}-3 x+2$; (4)

By AM-GM inequality, we have:

$$
\begin{equation*}
3 \cdot \sqrt[3]{\left(x^{2}-x+1\right) \cdot 1 \cdot 1} \leq\left(x^{2}-x+1\right)+1+1=2 x^{2}-3 x+2 \tag{5}
\end{equation*}
$$

From (4),(5) result

$$
3 \cdot \sqrt[3]{x^{2}-x+1}+\sqrt[4]{\frac{x^{8}+1}{2}} \leq x^{2}-x+3+2 x^{2}-3 x+2=3 x^{2}-4 x+5 ;(6)
$$

From (1),(6) result

$$
\begin{gather*}
2\left(x^{4}-3 x+4\right) \leq 3 x^{2}-4 x+5 \Leftrightarrow 2 x^{4}-3 x^{2}-2 x+3 \leq 0 \Leftrightarrow \\
2 x^{3}(x-1)+2 x^{2}(x-1)-x(x-1)-3(x-1) \leq 0 \Leftrightarrow \\
(x-1)\left(2 x^{3}+2 x^{2}-x-3\right) \leq 0 \Leftrightarrow(x-1)\left(2 x^{2}(x-1)+4 x(x-1)+3(x-1)\right) \leq 0 \\
(x-1)^{2}\left(2 x^{2}+4 x+3\right) \leq 0 ;(7) \tag{7}\\
(x-1)^{2} \geq 0, \forall x \in \mathbb{R} ; 2 x^{2}+4 x+3=2(x+1)^{2}+1 \geq 1>0 . \text { Hence } \\
(x-1)^{2}\left(2 x^{2}+4 x+3\right) \geq 0 \text { and from (7) we get }
\end{gather*}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
(x-1)^{2}\left(2 x^{2}+4 x+3\right)=0 . \text { Equality occurs if: } \\
\left\{\begin{array}{c}
x-1=0 \\
\sqrt{2\left(x^{8}+1\right)}=2 x^{2} \\
(2+\sqrt{3})\left(x^{2}-x \sqrt{3}+1\right)=(2-\sqrt{3})\left(x^{2}+x \sqrt{3}+1\right) \\
x^{2}-x+1=1
\end{array} \Leftrightarrow x=1\right.
\end{gathered}
$$

Hence, $x=1$ is the solution of the equation.

JP.305. Solve the equation:

$$
\sqrt{2\left(x^{4}+1\right)}+2 \sqrt{3 x-2 x^{4}}=7-3 x
$$

Proposed by Hoang Le Nhat-Hanoi-Vietnam

Solution 1 by Agayev Sedreddin-Baku-Azerbaijan

$$
\begin{gathered}
\sqrt{2\left(x^{4}+1\right)}+2 \sqrt{3 x-2 x^{4}}=7-3 x \\
\left\{\begin{array}{c}
3 x-2 x^{4} \geq 0 \\
7-3 x \geq 0
\end{array} \Rightarrow x \in\left[0 ; \sqrt[3]{\frac{3}{2}}\right]\right. \\
7-3 x=\sqrt{2\left(x^{4}+1\right)}+2 \sqrt{3 x-2 x^{4}} \leq \frac{2+x^{4}+1}{2}+2 \cdot \frac{1+3 x-2 x^{4}}{2}= \\
=\frac{x^{4}}{2}+\frac{3}{2}+1+3 x-2 x^{4}=-\frac{3}{2} x^{4}+3 x+\frac{5}{2} \Rightarrow \frac{3}{2} x^{4}-6 x+\frac{9}{2} \leq 0 \\
x^{4}-4 x+3 \leq 0 \Leftrightarrow x^{4}+3 \leq 4 x ;(*) \\
x \geq 0 ; x^{4}+3=x^{4}+1+1+1 \geq 4 \sqrt[4]{x^{4}}=4 x ; \quad(* *) \\
\text { By (*),(**) } \Rightarrow x^{4}+3=4 x \Rightarrow x=1 .
\end{gathered}
$$

Solution 2 by Khaled Abd Imouti-Damascus-Siria

$$
\begin{align*}
& \sqrt{2\left(x^{4}+1\right)}+2 \sqrt{3 x-2 x^{4}}=7-3 x ; \tag{1}\\
& \qquad\left\{\begin{array}{c}
3 x-2 x^{4} \geq 0 \\
7-3 x \geq 0
\end{array} \Rightarrow x \in\left[0 ; \sqrt[3]{\frac{3}{2}}\right]\right. \\
& \text { Denote: }\left\{\begin{array}{c}
u=2 x^{4}+1 \\
v=3 x-2 x^{4}
\end{array} \Rightarrow u+v=3 x+2\right.
\end{align*}
$$

So, the equation (1) can be written as:

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
$\sqrt{u}+2 \sqrt{v}=7-(u+v-2) \Leftrightarrow \sqrt{u}+2 \sqrt{v}=9-(u+v) ;(2)$
Now, let be: $\alpha=u-4 ; \beta=v-1$ then: $u=\alpha+4 ; v=\beta+1 \stackrel{(2)}{\Rightarrow}$

$$
\sqrt{\alpha+4}+2 \sqrt{\beta+1}=4-\alpha-\beta \Leftrightarrow 2 \sqrt{\beta+1}+\beta=4-\alpha-\sqrt{\alpha+4} ;(3)
$$

Let be the function: $f_{1}(\beta)=2 \sqrt{\beta+1}+\beta ; f_{1}(0)=2 ; \boldsymbol{f}_{1}^{\prime}(\beta)=1+\frac{1}{\sqrt{\beta+1}}>0$ Let be the function: $\boldsymbol{f}_{2}(\alpha)=4-(\alpha+\sqrt{\alpha+4}) ; f_{2}(0)=2 ; \boldsymbol{f}^{\prime}(\alpha)=-\left(1+\frac{1}{2 \sqrt{\alpha+4}}\right)<0$

So, the equation (3)is satisfying when $\alpha=\beta=0 \Rightarrow\left\{\begin{array}{c}3 x-2 x^{4}=0 \\ 7-3 x=0\end{array} \Rightarrow x=1\right.$

Solution 3 by proposer

$$
\begin{align*}
& \sqrt{2\left(x^{4}+1\right)}+2 \sqrt{3 x-2 x^{4}}=7-3 x \tag{1}\\
& \left\{\begin{array}{c}
3 x-2 x^{4} \geq 0 \\
7-3 x \geq 0
\end{array} \Rightarrow x \in\left[0 ; \sqrt[3]{\frac{3}{2}}\right]\right.
\end{align*}
$$

Using AM-GM for two positive real numbers, we have:

$$
\begin{gathered}
\sqrt{2\left(x^{4}+1\right)}=\sqrt{2\left[\left(x^{2}+1\right)^{2}-(x \sqrt{2})^{2}\right]}= \\
=\sqrt{(2+\sqrt{2})\left(x^{2}-x \sqrt{2}+1\right)(2-\sqrt{2})\left(x^{2}+x \sqrt{2}+1\right)} \leq \\
\leq \frac{(2+\sqrt{2})\left(x^{2}-x \sqrt{2}+1\right)+(2-\sqrt{2})\left(x^{2}+x \sqrt{2}+1\right)}{2}=2 x^{2}-2 x+2 \Rightarrow \\
\sqrt{2\left(x^{4}+1\right)} \leq 2 x^{2}-2 x+2 ;(2)
\end{gathered}
$$

Other: $2 \sqrt{3 x-2 x^{4}}=2 \sqrt{x\left(3-2 x^{3}\right)} \leq x+3-2 x^{3}=-2 x^{3}+x+3$; (3)
From (2),(3) result:

$$
\begin{gathered}
\sqrt{2\left(x^{4}+1\right)}+2 \sqrt{3 x-2 x^{4}} \leq 2 x^{2}-2 x+2-2 x^{3}+x+3=-2 x^{3}+2 x^{2}-x+5 ;(4) \\
\quad \text { From (1),(4) result: } 7-3 x \leq-2 x^{3}+2 x^{2}-x+5 \Leftrightarrow \\
2 x^{3}-2 x^{2}-2 x+2 \leq 0 \Leftrightarrow(x-1)^{2}(x+1) \leq 0 ;(5)
\end{gathered}
$$

Because: $x \in\left[0 ; \sqrt[3]{\frac{3}{2}}\right] \Rightarrow x+1>0$ and how $(x-1)^{2} \geq 0 \Rightarrow(x-1)^{2}(x+1) \geq 0 ;(6)$
From (5),(6) equality occurs if (2),(3) simultaneous occurrence. Hence:

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
x \in\left[0 ; \sqrt[3]{\frac{3}{2}}\right] \\
(2+\sqrt{2})\left(x^{2}-x \sqrt{2}+1\right)=(2-\sqrt{2})\left(x^{2}+x \sqrt{2}+1\right) \\
x=3-2 x^{3} \\
x-1=0 \\
x \in\left[0 ; \sqrt[3]{\frac{3}{2}}\right] \\
2 x^{2}-4 x+2=0 \\
2 x^{3}+x-3=0 \\
x=1
\end{gathered} \Leftrightarrow x=1 \text {. } \begin{gathered}
x
\end{gathered}
$$

Solution of equation is: $S=\{1\}$

JP.306. If $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}>0$ then:

$$
(a+2 c) \sqrt{a}+(b+2 a) \sqrt{b}+(c+2 b) \sqrt{c} \leq(a+b+c) \sqrt{3(a+b+c)}
$$

Proposed by Daniel Sitaru-Romania

Solution by Daniel Văcaru-Romania

Function $t \rightarrow \sqrt{t}$ is concave. That implies:

$$
\begin{gathered}
\frac{(a+2 c) \sqrt{a}+(b+2 a) \sqrt{b}+(c+2 b) \sqrt{c}}{((a+2 c)+(b+2 a)+(c+2 b))} \leq \sqrt{\frac{(a+2 c) a+(b+2 a) b+(c+2 b) c}{3(a+b+c)}} \\
(a+2 c) \sqrt{a}+(b+2 a) \sqrt{b}+(c+2 b) \sqrt{c} \leq 3(a+b+c) \sqrt{\frac{(a+b+c)^{2}}{3(a+b+c)}} \rightarrow \\
\quad(a+2 c) \sqrt{a}+(b+2 a) \sqrt{b}+(c+2 b) \sqrt{c} \leq(a+b+c) \sqrt{3(a+b+c)}
\end{gathered}
$$

JP.307. Solve the equation in real numbers:

$$
\sqrt{x^{3}-2 x^{2}+2 x}+3 \sqrt[3]{x^{2}-x+1}+2 \sqrt[4]{4 x-3 x^{4}}=\frac{x^{4}-3 x^{3}}{2}+7
$$

Proposed by Hoang Le Nhat-Hanoi-Vietnam

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

Solution by proposer

$$
\begin{gathered}
\sqrt{x^{3}-2 x^{2}+2 x}+3 \sqrt[3]{x^{2}-x+1}+2 \sqrt[4]{4 x-3 x^{4}}=\frac{x^{4}-3 x^{3}}{2}+7 ;(1) \\
\text { Let: }\left\{\begin{array} { c }
{ x ^ { 3 } - 2 x ^ { 2 } + 2 x \geq 0 } \\
{ 4 x - 3 x ^ { 4 } \geq 0 }
\end{array} \Rightarrow \left\{\begin{array} { c }
{ x (x ^ { 2 } - 2 x + 2) \geq 0 } \\
{ x (3 x ^ { 3 } - 4) \leq 0 }
\end{array} \Rightarrow \left\{\begin{array}{c}
x\left((x-1)^{2}+1\right) \geq 0 \\
0 \leq x \leq \sqrt[3]{\frac{4}{3}}
\end{array} \Leftrightarrow\right.\right.\right. \\
0 \leq x \leq \sqrt[3]{\frac{4}{3}} \\
x^{2}-x+1=\left(x^{2}-x+\frac{1}{4}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^{2}+\frac{3}{4} \geq \frac{3}{4}>0
\end{gathered}
$$

Hence, by AM-GM inequality for positive real numbers:

$$
\begin{gather*}
\sqrt{x^{3}-2 x^{2}+2 x}+3 \sqrt[3]{x^{2}-x+1}+2 \sqrt[4]{4 x-3 x^{4}}= \\
=\sqrt{x\left(x^{2}-2 x+2\right)}+3 \sqrt[3]{\left(x^{2}-x+1\right) \cdot 1 \cdot 1}+2 \sqrt[4]{x\left(4-3 x^{3}\right) \cdot 1 \cdot 1} \leq \\
\leq \frac{x+x^{2}-2 x+2}{2}+\left(x^{2}-x+1\right)+1+1+2 \cdot \frac{x+4-3 x^{3}+1+1}{4} \Leftrightarrow \\
\sqrt{x^{3}-2 x^{2}+2 x}+3 \sqrt[3]{x^{2}-x+1}+2 \sqrt[4]{4 x-3 x^{4}} \leq \frac{-3 x^{3}+3 x^{2}-2 x+14}{2} ; \tag{2}
\end{gather*}
$$

From (1),(2) we get:

$$
\begin{gathered}
\frac{x^{4}-3 x^{3}}{2}+7 \leq \frac{-3 x^{3}+3 x^{2}-2 x+14}{2} \Leftrightarrow \frac{x^{4}-3 x^{3}+14}{2} \leq \frac{-3 x^{3}+3 x^{2}-2 x+14}{2} \Leftrightarrow \\
x^{4}-3 x^{3}+14 \leq-3 x^{3}+3 x^{2}-2 x+14 \Leftrightarrow x\left(x^{3}-3 x+2\right) \leq 0 \Leftrightarrow \\
x\left(x^{2}(x-1)+x(x-1)-2(x-1)\right) \leq 0 \Leftrightarrow x(x-1)\left(x^{2}+x-2\right) \leq 0 \\
x(x+2)(x-1)^{2} \leq 0 ;(3)
\end{gathered}
$$

Because: $x \geq 0 \Rightarrow x(x+2) \geq 0 \Rightarrow x(x+2)(x-1)^{2} \geq 0$; (4)
From (3),(4) equality $x(x+2)(x-1)^{2}=0$ occurs if and only if

$$
\left\{\begin{array} { c }
{ x = x ^ { 2 } - 2 x + 2 } \\
{ x ^ { 2 } - x + 1 = 1 } \\
{ x = 4 - 3 x ^ { 3 } = 1 } \\
{ x (x + 2) (x - 1) ^ { 2 } = 0 }
\end{array} \Leftrightarrow \left\{\begin{array}{c}
(x-1)(x-2)=0 \\
x(x-1)=0 \\
3 x^{3}+x-4=0 \\
x(x+2)(x-1)^{2}=0
\end{array} \Leftrightarrow x=1\right.\right.
$$

Solution of equation is $S=\{1\}$.

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
JP.308. Let $a, b, c \in[1,3]$ such that $a+b+c=6$. Find the maximum value of the expression:

$$
P=a^{4}+b^{4}+c^{4}
$$

Proposed by Hoang Le Nhat Tung-Vietnam

Solution 1 by Daoudi Abdessattar-Sbiba-Tunisia

Suppose $\boldsymbol{c} \geq \boldsymbol{b} \geq \boldsymbol{a}$ and $3>2>1$ we have:
$3 \geq \boldsymbol{c} \Rightarrow \mathbf{3 + 2} \geq \boldsymbol{c}+\boldsymbol{b}$ because $\boldsymbol{a}+\boldsymbol{b}+\boldsymbol{c}=\mathbf{6}$ and $\boldsymbol{a}>1 ; \mathbf{3 + 2}+\mathbf{1}=\boldsymbol{a}+\boldsymbol{b}+\boldsymbol{c}$

$$
f(x)=x^{4} \text {-convex function } \Rightarrow f(a)+f(b)+f(c) \leq f(1)+f(2)+f(3)
$$

Equality holds if: $c=3, b=2, a=1$ or permutation.
Solution 2 by proposer

$$
\begin{gathered}
\text { Let } a-2=x, b-2=y, c-2=z ; x, y, z \in \mathbb{R} \Rightarrow a=x+2, b=y+2, c=z+2 \\
\text { Because } a, b, c \in[1,3] \Rightarrow x+2, y+2, z+2 \in[1,3] \Leftrightarrow x, y, z \in[-1,1] \\
\text { We have: } P=a^{4}+b^{4}+c^{4}=(x+2)^{4}+(y+2)^{4}+(z+2)^{4}= \\
=\left(x^{4}+8 x^{3}+24 x^{2}+32 x+16\right)+\left(y^{4}+8 y^{3}+24 y^{2}+32 y+16\right)+ \\
+\left(z^{4}+8 z^{3}+24 z^{2}+32 z+16\right)= \\
=\left(x^{4}+y^{4}+z^{4}\right)+8\left(x^{3}+y^{3}+z^{3}\right)+24\left(x^{2}+y^{2}+z^{2}\right)+32(x+y+z)+48 ;(1) \\
\text { Because } a+b+c=6 \Rightarrow x+2+y+2+z+2=6 \Rightarrow x+y+z=0 ;(2) \\
\text { Other, } x+y+z=0 \Leftrightarrow y+z=-x \Leftrightarrow(y+z)^{3}=-x^{3} \Leftrightarrow \\
x^{3}+y^{3}+z^{3}=-3 y z(y+z)=3 x y z
\end{gathered}
$$

From (1),(2) we get: $P=\left(x^{4}+y^{4}+z^{4}\right)+24 x y z+32(x+y+z)+48$

$$
\text { Because } x+y+z=0 \Rightarrow
$$

$$
\begin{gathered}
P=\left(x^{4}+y^{4}+z^{4}\right)+24 x y z+24\left[(x+y+z)^{2}-2(x y+y z+z x)\right]+48 \Leftrightarrow \\
P=\left(x^{4}+y^{4}+z^{4}\right)-48(x y+y z+z x)+24 x y z+48 ;(3) \\
\text { Because } x, y, z \in[-1,1] \Rightarrow 0 \leq x^{2}, y^{2}, z^{2} \leq 1 \Rightarrow \\
x^{2}\left(x^{2}-1\right)+y^{2}\left(y^{2}-1\right)+z^{2}\left(z^{2}-1\right) \leq 0 \Leftrightarrow \\
x^{4}+y^{4}+z^{4} \leq x^{2}+y^{2}+z^{2}=-2(x y+y z+z x) ;(\therefore x+y+z=0) ;(4) \\
\text { From (3),(4) } \Rightarrow P \leq-50(x y+y z+z x)+24 x y z+48 ;(5)
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
How $x, y, z \in[-1,1] \Rightarrow(x+1)(y+1)(z+1) \geq 0 ;(1-x)(1-y)(1-z) \geq 0$ hence

$$
13(x+1)(y+1)(z+1)+37(1-x)(1-y)(1-z(\geq 0 \Leftrightarrow
$$

$$
13(x y z+x y+y z+z x+x+y+z+1)+37(1+x y+y z+z x-x-y-z-x y z) \geq 0 \Leftrightarrow
$$

$$
-24 x y z+50(x y+y z+z x)-24(x+y+z)+50 \geq 0 \Leftrightarrow
$$

$$
-50(x y+y z+z x)+24 x y z \leq 50
$$

$$
\text { From }(5),(6) \Rightarrow P \leq 50+48=98 \Rightarrow P_{\operatorname{Max}}=98
$$

$$
\text { Hence } P_{\text {Max }}=98 \Leftrightarrow\left\{\begin{array}{c}
x+y+z=0 ; x, y, z \in[-1,1] \\
(x+1)(y+1)(z+1)=(1-x)(1-y)(1-z)
\end{array}\right.
$$

$$
\Leftrightarrow x=1, y=0, z=-1 \Leftrightarrow a=3 ; b=2 ; c=1
$$

JP.309. If $\boldsymbol{m} \in \mathbb{N}, \boldsymbol{h}_{A}, \boldsymbol{h}_{\boldsymbol{B}}, \boldsymbol{h}_{\boldsymbol{C}}, \boldsymbol{h}_{\boldsymbol{D}}$-be the lengths of altitudes of tetrahedron [ABCD] and r-the radius of the insphere, then:

$$
m+\frac{1}{4}\left(\left(\frac{h_{A}-3 r}{h_{A}+3 r}\right)^{m+1}+\left(\frac{h_{B}-3 r}{h_{B}+3 r}\right)^{m+1}+\left(\frac{h_{C}-3 r}{h_{C}+3 r}\right)^{m+1}+\left(\frac{h_{D}-3 r}{h_{D}+3 r}\right)^{m+1}\right) \geq \frac{m+1}{7}
$$

Proposed by D.M.Bătineţu-Giurgiu, Daniel Sitaru-Romania

Solution by proposers

Applying J.Radon Inequality, we have

$$
\begin{gathered}
W_{m}=m+\frac{1}{4} \sum_{c y c}\left(\frac{h_{A}-3 r}{h_{A}+3 r}\right)^{m+1} \geq m+\frac{1}{4^{m+1}}\left(\sum_{c y c} \frac{h_{A}-3 r}{h_{A}+3 r}\right)^{m+1} \stackrel{A M-G M}{\geq} \\
\geq(m+1)^{m+1} \sqrt{\underbrace{1 \cdot 1 \cdot \ldots \cdot 1} \cdot \frac{1}{4^{m+1}}\left(\sum_{c y c} \frac{h_{A}-3 r}{h_{A}+3 r}\right)^{m+1}}= \\
=(m+1) \cdot \frac{1}{4} \cdot \sum_{c y c} \frac{h_{A}-3 r}{h_{A}+3 r}=(m+1) W_{0}=\frac{m+1}{4} \cdot U_{0} ;(1), \text { where } \\
U_{0}=\sum_{c y c} \frac{h_{A}-3 r}{h_{A}+3 r}=\sum_{c y c} \frac{h_{A} S_{A}-3 r S_{A}}{h_{A} S_{A}+3 r S_{A}}=\sum_{c y c} \frac{V-r S_{A}}{V+r S_{A}} \Leftrightarrow \\
U_{0}+4=\sum_{c y c}\left(\frac{V-r S_{A}}{V+r S_{A}}+1\right)=2 V \cdot \sum_{c y c} \frac{1}{V+r S_{A}} \stackrel{B e r g s t r o m}{\geq} 2 V \cdot \frac{(1+1+1+1)^{2}}{4 V+r \sum_{c y c} S_{A}}=
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro
 $=32 V \cdot \frac{1}{4 V+r S}=\frac{32 V}{4 V+r S}=\frac{32}{7} \Leftrightarrow U_{0} \geq \frac{32}{7}-4=\frac{4}{7}$;

From (1), (2) we deduce that

$$
W_{m} \geq \frac{m+1}{4} \cdot \frac{4}{7}=\frac{m+1}{7}
$$

Note:
Equality occurs if and only if the tetrahedron is regular.
So, V-volume of tetrahedron; S_{A}-lateral area of the face and analogs; S - area of tetrahedron and $3 V=r S$.

JP.310. If $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}>0 ; a b c=1$ then:

$$
\sum_{c y c} \frac{c\left(a^{2}+b^{2}\right)+1}{a+b} \geq \frac{3}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)
$$

Proposed by Daniel Sitaru-Romania

Solution 1 by Daniel Văcaru-Romania

$$
\begin{gathered}
\sum_{c y c} \frac{c\left(a^{2}+b^{2}\right)+1}{a+b}=\sum_{c y c} \frac{c(a+b)^{2}-1}{a+b}=\sum_{c y c}\left(c(a+b)-\frac{a b c}{a+b}\right) \stackrel{A m-G m}{\geq} \\
\geq \sum_{c y c}\left(c(a+b)-\frac{c \sqrt{a b}}{2}\right)^{A m-G m} \sum_{c y c}\left(c(a+b)-\frac{(a+b) c}{4}\right)= \\
\quad=\frac{3}{4} \sum_{c y c} c(a+b)=\frac{3}{2} \sum_{c y c} a b=\frac{3}{2} \sum_{c y c} \frac{a b}{a b c}=\frac{3}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)
\end{gathered}
$$

Solution 2 by Henry Ricardo-New York-USA

First, we denote that the AGM inequality gives us:
$c\left(a^{2}+b^{2}\right)+1 \geq 2 a b c+1=3$, and then we see that:
$\frac{2}{a+b} \leq \frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)$ by the Harmonic Mean-Arithmetic Mean inequality.
Therefore,

$$
\begin{aligned}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
& \begin{aligned}
& \sum_{c y c} \frac{c\left(a^{2}+b^{2}\right)+1}{a+b} \geq 3 \sum_{c y c} \frac{1}{a+b} \geq \frac{3}{4} \sum_{c y c}\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{3}{4} \cdot 2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)= \\
&=\frac{3}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)
\end{aligned}
\end{aligned}
$$

JP.311. If $x, y, z>0 ; \sqrt{x}+\sqrt{y}+\sqrt{z}=3$ then:

$$
x+y+z \geq \sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}
$$

Proposed by Daniel Sitaru-Romania

Solution 1 by Daniel Văcaru-Romania

We have that: $(\sqrt{x}, \sqrt{y}, \sqrt{z})$ and $(\sqrt{x}, \sqrt{y}, \sqrt{z})$ has the same orientation, then

$$
\begin{gathered}
(\sqrt{x}+\sqrt{y}+\sqrt{z})^{2} \stackrel{\text { Chebyshev's }}{\leq} 3(x+y+z) \rightarrow x+y+z \geq 3 ;(1) \\
\quad \text { We can write: } \\
\sqrt[3]{x}=\sqrt[3]{\sqrt{x} \cdot \sqrt{x} \cdot 1} \stackrel{A m-G m}{\leq} \frac{2 \sqrt{x}+1}{3} \rightarrow \sum_{c y c} \sqrt[3]{x} \leq \frac{2}{3} \sum_{c y c} \sqrt{x}+1=2+1=2 ;(2)
\end{gathered}
$$

(1) (2)

$$
\text { We obtain: } x+y+z \geq 3 \geq \sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}
$$

Solution 2 by Daniel Văcaru-Romania

$$
\text { We have: } \begin{gathered}
3=\sqrt{x}+\sqrt{y}+\sqrt{z} \stackrel{C B S}{\leq} \sqrt{(1+1+1)\left(\sqrt{x}^{2}+\sqrt{y}^{2}+\sqrt{z}^{2}\right)} \\
\rightarrow x+y+z \geq 3 ;(1)
\end{gathered}
$$

We can write:

$$
\sqrt[3]{x}=\sqrt[3]{\sqrt{x} \cdot \sqrt{x} \cdot 1} \stackrel{A m-G m}{\leq} \frac{2 \sqrt{x}+1}{3} \rightarrow \sum_{c y c} \sqrt[3]{x} \leq \frac{2}{3} \sum_{c y c} \sqrt{x}+1=2+1=2 ;(2)
$$

$$
\text { We obtain: } x+y+z \stackrel{(1)}{\geq} 3 \stackrel{(2)}{\geq} \sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}
$$

Solution 3 by Daniel Văcaru-Romania

We have:

$$
x+1 \geq 2 \sqrt{x} \rightarrow x+y+z+3 \geq 2(\sqrt{x}+\sqrt{y}+\sqrt{z}) \rightarrow x+y+z \geq 3 ;(1)
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
We can write:

$$
\sqrt[3]{x}=\sqrt[3]{\sqrt{x} \cdot \sqrt{x} \cdot 1} \stackrel{A m-G m}{\leq} \frac{2 \sqrt{x}+1}{3} \rightarrow \sum_{c y c} \sqrt[3]{x} \leq \frac{2}{3} \sum_{c y c} \sqrt{x}+1=2+1=2 ;(2)
$$

We obtain: $x+y+z \stackrel{(1)}{\geq} 3 \stackrel{(2)}{\geq} \sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}$
Solution 4 by Henry Ricardo-New York-USA
The power mean inequality gives us:

$$
\begin{gathered}
\frac{x+y+z}{3} \geq\left(\frac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{3}\right)^{2} \geq\left(\frac{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}{3}\right)^{3} \\
\text { Or } \\
\frac{x+y+z}{3} \geq 1 \geq\left(\frac{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}{3}\right)^{3} \Rightarrow \frac{x+y+z}{3} \geq 1 \geq \frac{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}{3}
\end{gathered}
$$

Multiplying through by 3 gives us the desired result.
Equality holds if and only if $x=y=z=1$.

JP.312. If $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}>0$

$$
\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\left(\frac{a}{a+\lambda b}+\frac{b}{b+\lambda c}+\frac{c}{c+\lambda a}\right) \geq \frac{9}{\lambda+1}, \lambda \geq 0
$$

Proposed by Marin Chirciu-Romania

Solution by Daniel Văcaru-Romania

We have:

$$
\begin{gathered}
\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\left(\frac{a}{a+\lambda b}+\frac{b}{b+\lambda c}+\frac{c}{c+\lambda a}\right) \geq \frac{9}{\lambda+1} \leftrightarrow \\
(\lambda+1)\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\left(\frac{a}{a+\lambda b}+\frac{b}{b+\lambda c}+\frac{c}{c+\lambda a}\right) \geq 9 \\
\operatorname{But}(\lambda+1)\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\left(\frac{a}{a+\lambda b}+\frac{b}{b+\lambda c}+\frac{c}{c+\lambda a}\right)= \\
=\left[\lambda\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)+\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\right]\left(\frac{a}{a+\lambda b}+\frac{b}{b+\lambda c}+\frac{c}{c+\lambda a}\right) \geq
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
{\left[3 \lambda+\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\right]\left(\frac{a}{a+\lambda b}+\frac{b}{b+\lambda c}+\frac{c}{c+\lambda a}\right)=} \\
= \\
\left(\frac{a+\lambda b}{b}+\frac{b+\lambda c}{c}+\frac{c+\lambda a}{a}\right)\left(\frac{a}{a+\lambda b}+\frac{b}{b+\lambda c}+\frac{c}{c+\lambda a}\right)^{A m-G m} \geq \\
\\
\geq 3 \sqrt[3]{\frac{a+\lambda b}{b} \cdot \frac{b+\lambda c}{c} \cdot \frac{c+\lambda a}{a}} \cdot 3 \sqrt[3]{\frac{a}{a+\lambda b} \cdot \frac{b}{b+\lambda c} \cdot \frac{c}{c+\lambda a}}=9
\end{gathered}
$$

JP.313. Solve in \mathbb{R} the system of equations:

$$
\left\{\begin{array}{c}
4(x+y)=\sqrt[4]{8\left(x^{4}+y^{4}\right)}+6 \sqrt{x y} \\
16 x^{5}-20 x^{3}=\sqrt{1-y^{2}}-5 y
\end{array}\right.
$$

Proposed by Hoang Le Nhat-Hanoi-Vietnam

Solution by proposer

$$
\begin{gather*}
\left\{\begin{array}{c}
4(x+y)=\sqrt[4]{8\left(x^{4}+y^{4}\right)}+6 \sqrt{x y} \\
16 x^{5}-20 x^{3}=\sqrt{1-y^{2}}-5 y
\end{array} ;(1)\right. \tag{1}\\
\left\{\begin{array}{c}
x y \geq 0 \\
1-y^{2} \geq 0
\end{array} \stackrel{(1)}{\Rightarrow} 4(x+y)=\sqrt[4]{8\left(x^{4}+y^{4}\right)}+6 \sqrt{x y} \geq 0 \Rightarrow x+y \geq 0 \Rightarrow x \geq 0 ; y \geq 0\right.
\end{gather*}
$$

By CBS Inequality, we have:

$$
\begin{gather*}
\left(\sqrt{2\left(x^{4}+y^{4}\right)}+2 x y\right)^{2} \leq 2\left(2\left(x^{4}+y^{4}\right)+4 x^{2} y^{2}\right)=4\left(x^{4}+2 x^{2} y^{2}+y^{4}\right)=4\left(x^{2}+y^{2}\right)^{2} \\
\sqrt{2\left(x^{4}+y^{4}\right)}+2 x y \leq 2\left(x^{2}+y^{2}\right) \Leftrightarrow \sqrt{2\left(x^{4}+y^{4}\right)} \leq 2\left(x^{2}-x y+y^{2}\right) \Leftrightarrow \\
\sqrt[4]{8\left(x^{4}+y^{4}\right)} \leq 2 \sqrt{x^{2}-x y+y^{2}} \Leftrightarrow \\
\sqrt[4]{8\left(x^{4}+y^{4}\right)}+6 \sqrt{x y} \leq 2\left(\sqrt{x^{2}-x y+y^{2}}+3 \sqrt{x y}\right) ;(2) \tag{2}
\end{gather*}
$$

Other hand: $\sqrt{x^{2}-x y+y^{2}}+3 \sqrt{x y}=\sqrt{x^{2}-x y+y^{2}}+\sqrt{x y}+\sqrt{x y}+\sqrt{x y} \leq$
$\leq \sqrt{4\left(x^{2}-x y+y^{2}+x y+x y+x y\right)}=\sqrt{4\left(x^{2}+2 x y+y^{2}\right)}=\sqrt{4(x+y)^{2}}=2(x+y)$

$$
\begin{equation*}
\Rightarrow \sqrt{x^{2}-x y+y^{2}}+3 \sqrt{x y} \leq 2(x+y) \tag{3}
\end{equation*}
$$

From (2),(3) result: $\sqrt[4]{8\left(x^{4}+y^{4}\right)}+6 \sqrt{x y} \leq 4(x+y)$;

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
From (1),(4) result: $\sqrt[4]{8\left(x^{4}+y^{4}\right)}+6 \sqrt{x y}=4(x+y) \Leftrightarrow$

$$
\left\{\begin{array}{l}
\sqrt{2\left(x^{4}+y^{4}\right)}=2 x y \\
x^{2}-x y+y^{2}=x y
\end{array} \Leftrightarrow x=y \geq 0\right.
$$

Let: $x=y \geq 0$ in (1): $16 x^{5}-20 x^{3}=\sqrt{1-y^{2}}-5 y \Leftrightarrow$

$$
\begin{gathered}
16 x^{5}-20 x^{3}=\sqrt{1-x^{2}}-5 x \\
\left\{\begin{array}{c}
1-x^{2} \geq 0 \\
x \geq 0
\end{array} \Leftrightarrow 0 \leq x \leq 1 \Rightarrow x=\cos \alpha\right.
\end{gathered}
$$

Let: $\alpha \in[-\pi, \pi]$. Because $\cos \alpha \geq 0$ then $\alpha \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
From (5) $\Rightarrow 16 \cos ^{5} \alpha-20 \cos ^{3} \alpha+5 \cos \alpha=\sqrt{1-\cos ^{2} \alpha} \Leftrightarrow \cos 5 \alpha=\sqrt{\sin ^{2} \alpha}=|\sin \alpha|$
Case 1: $\cos 5 \alpha=\sin \alpha \geq 0\left(\sin \alpha \geq 0 ; \alpha \in\left[0, \frac{\pi}{2}\right]\right) \Leftrightarrow \cos 5 \alpha=\cos \left(\frac{\pi}{2}-\alpha\right)$

$$
\Leftrightarrow\left\{\begin{array}{l}
5 \alpha=\frac{\pi}{2}-\alpha+2 k \pi \\
5 \alpha=\alpha-\frac{\pi}{2}+2 k \pi
\end{array} ; k \in \mathbb{Z} \Leftrightarrow\right.
$$

$$
\left\{\begin{array} { l }
{ \alpha = \frac { \pi } { 1 2 } + \frac { k \pi } { 3 } } \\
{ \alpha = - \frac { \pi } { 8 } + \frac { k \pi } { 2 } }
\end{array} k \in \mathbb { Z } \stackrel { \alpha \in [0 , \frac { \pi } { 2 }] } { \Longrightarrow } \left\{\begin{array}{l}
0 \leq \frac{\pi}{12}+\frac{k \pi}{3} \leq \frac{\pi}{2} \\
0 \leq-\frac{\pi}{8}+\frac{k \pi}{2} \leq \frac{\pi}{2}
\end{array} \Rightarrow \alpha \in\left\{\frac{\pi}{12} ; \frac{5 \pi}{12} ; \frac{3 \pi}{8}\right\}\right.\right.
$$

Case 2: $\cos 5 \alpha=-\sin \alpha \geq 0 ;\left(\sin \alpha \leq 0 ; \alpha \in\left[-\frac{\pi}{2}, 0\right]\right) ; k \in \mathbb{Z}$

$$
\left\{\begin{array}{c}
\alpha=-\frac{\pi}{12}+\frac{k \pi}{3} \\
\alpha=\frac{\pi}{8}+\frac{k \pi}{2}
\end{array} ; k \in \mathbb{Z} \stackrel{\alpha \in\left[-\frac{\pi}{2}, 0\right]}{\Longrightarrow}\left\{\begin{array}{c}
-\frac{\pi}{2} \leq-\frac{\pi}{12}+\frac{k \pi}{3} \leq 0 \\
-\frac{\pi}{2} \leq \frac{\pi}{8}+\frac{k \pi}{2} \leq 0
\end{array} \Rightarrow \alpha \in\left\{-\frac{\pi}{12} ;-\frac{5 \pi}{12} ;-\frac{3 \pi}{8}\right\}\right.\right.
$$

$$
\text { Other, } \cos \beta=\cos (-\beta) ; \cos \left(\frac{\pi}{12}\right)=\cos \left(-\frac{\pi}{12}\right) ; \cos \left(\frac{5 \pi}{12}\right)=\cos \left(-\frac{5 \pi}{12}\right)
$$

$$
\cos \left(\frac{3 \pi}{8}\right)=\cos \left(-\frac{3 \pi}{8}\right)
$$

$$
(x, y) \in\left\{\left(\cos \frac{\pi}{12} ; \cos \frac{\pi}{12}\right) ;\left(\cos \frac{5 \pi}{12} ; \cos \frac{5 \pi}{12}\right) ;\left(\cos \frac{3 \pi}{8} ; \cos \frac{3 \pi}{8}\right)\right\}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
JP.314. Solve in \mathbb{R} the system of equations:

$$
\left\{\begin{array}{c}
a^{2}+b^{2}+c^{2}=a^{3}+b^{3}+c^{3} \\
a^{3} b+b^{3} c+c^{3} a=3
\end{array}\right.
$$

Proposed by Hoang Le Nhat Tung-Hanoi-Vietnam

Solution by proposer

$$
\left\{\begin{array}{c}
a^{2}+b^{2}+c^{2}=a^{3}+b^{3}+c^{3} \tag{1}\\
a^{3} b+b^{3} c+c^{3} a=3
\end{array}\right.
$$

Lemma: If $a, b, c>0$ then: $\left(a^{2}+b^{2}+c^{2}\right)^{2} \geq 3\left(a^{3} b+b^{3} c+c^{3} a\right)$; (2)
Proof.

$$
\begin{gathered}
\left(a^{2}-a b+2 b c-b^{2}\right)^{2}+\left(b^{2}-b c+2 c a-c^{2}-a b\right)^{2}+\left(c^{2}-c a+2 a b-a^{2}-b c\right)^{2} \geq 0 \Leftrightarrow \\
\left(a^{2}-a b\right)^{2}+2 a\left(a^{2}-a b\right)\left(2 b c-b^{2}-c a\right)+\left(2 b c-b^{2}-c a\right)^{2}+\left(b^{2}-b c\right)^{2}+ \\
+2\left(b^{2}-b c\right)\left(2 c a-c^{2}-a b\right)+\left(2 c a-c^{2}-a b\right)^{2}+\left(c^{2}-c a\right)^{2}+ \\
+2\left(c^{2}-c a\right)\left(2 a b-a^{2}-b c\right)+\left(2 a b-a^{2}-b c\right)^{2} \geq 0 \Leftrightarrow \\
2\left(a^{4}+b^{4}+c^{4}+2 a^{2} b^{2}+2 b^{2} c^{2}+2 c^{2} a^{2}\right)-6\left(a^{3} b+b^{3} c+c^{3} a\right) \geq 0 \Leftrightarrow \\
2\left(a^{2}+b^{2}+c^{2}\right)^{2}-6\left(a^{3} b+b^{3} c+c^{3} a\right) \geq 0 \Leftrightarrow \\
2\left(a^{2}+b^{2}+c^{2}\right)^{2} \geq 6\left(a^{3} b+b^{3} c+c^{3} a\right) \Leftrightarrow\left(a^{2}+b^{2}+c^{2}\right)^{2} \geq 3\left(a^{3} b+b^{3} c+c^{3} a\right)
\end{gathered}
$$

Lemma is proved.
By AM-GM inequality, we have:

$$
\begin{gather*}
\left(a^{3}+a^{3}+1\right)+\left(b^{3}+b^{3}+1\right)+\left(c^{3}+c^{3}+1\right) \geq 3 \sqrt[3]{a^{6}}+3 \sqrt[3]{b^{6}}+3 \sqrt[3]{c^{6}} \Leftrightarrow \\
2\left(a^{3}+b^{3}+c^{3}\right)+3 \geq 3\left(a^{2}+b^{2}+c^{2}\right) ;(4) \tag{4}
\end{gather*}
$$

From (1),(4) result: $2\left(a^{2}+b^{2}+c^{2}\right)+3 \geq 3\left(a^{2}+b^{2}+c^{2}\right) \Leftrightarrow 3 \geq a^{2}+b^{2}+c^{2}$; (5)
From (3),(5) result: $3^{2} \geq\left(a^{2}+b^{2}+c^{2}\right)^{2} \geq 3\left(a^{3} b+b^{3} c+c^{3} a\right) \Leftrightarrow$

$$
a^{3} b+b^{3} c+c^{3} a \leq 3
$$

From (1),(6) we get: $a^{3} b+b^{3} c+c^{3} a=3$ occurs if: $\left\{\begin{array}{c}a, b, c>0 \\ a=b=c=1 \\ a^{2}+b^{2}+c^{2}=3\end{array} \Leftrightarrow a=b=c=1\right.$
The solution of system is $(a, b, c)=(1,1,1)$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
JP.315. If s is the semiperimeter of $A B C$ triangle and r_{a}, r_{b}, r_{c} the radii of excircles, then

$$
\frac{s^{2}-r_{a} r_{b}}{s^{2}+r_{a} r_{b}}+\frac{s^{2}-r_{b} r_{c}}{s^{2}+r_{b} r_{c}}+\frac{s^{2}-r_{c} r_{a}}{s^{2}+r_{c} r_{a}} \geq \frac{3}{2}
$$

Proposed by D.M.Bătineţu Giurgiu, Daniel Sitaru-Romania

Solution 1 by Daniel Văcaru-Romania

$$
\begin{aligned}
& \text { We have: } \\
& \frac{s^{2}-r_{a} r_{b}}{s^{2}+r_{a} r_{b}}=\frac{s^{2}-\frac{s^{2}}{(s-a)(s-b)}}{s^{2}+\frac{S^{2}}{(s-a)(s-b)}}=\frac{s^{2}-s(s-c)}{s^{2}+s(s-c)}=\frac{s c}{s(2 s-c)}=\frac{c}{a+b} \\
& \text { Then: } \sum_{c y c} \frac{s^{2}-r_{a} r_{b}}{s^{2}+r_{a} r_{b}}=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}= \\
& =\frac{a^{2}}{a b+a b}+\frac{b^{2}}{b c+b a}+\frac{c^{2}}{c+c b} \stackrel{\text { Bergstrom }}{\geq} \frac{(a+b+c)^{2}}{2(a b+b c+c a)}= \\
& =1+\frac{a^{2}+b^{2}+c^{2}}{2(a b+b c+c a)} \geq 1+\frac{1}{2}=\frac{3}{2}
\end{aligned}
$$

Solution 2 and generalizations by Marin Chirciu-Romania

1) In $\triangle A B C$ the following relationship holds:

$$
\sum_{c y c} \frac{s^{2}-r_{b} r_{c}}{s^{2}+r_{b} r_{c}} \geq \frac{3}{2}
$$

2) Lemma. In $\triangle A B C$ the following relationship holds:

$$
\sum_{c y c} \frac{s^{2}-r_{b} r_{c}}{s^{2}+r_{b} r_{c}}=\sum_{c y c} \frac{a}{b+c}=\frac{2\left(s^{2}-r^{2}-R r\right)}{s^{2}+r^{2}+2 R r}
$$

Proof. Using the identity: $r_{a}=\frac{s}{s-a}$ we get:

$$
\sum_{c y c} \frac{s^{2}-r_{b} r_{c}}{s^{2}+r_{b} r_{c}}=\sum_{c y c} \frac{s^{2}-\frac{S}{s-b} \cdot \frac{S}{s-c}}{s^{2}+\frac{S}{s-b} \cdot \frac{S}{s-c}}=
$$

> ROMANIAN MATHEMATICAL MAGAZINE $=\sum_{c y c} \frac{\boldsymbol{s}^{2}(\boldsymbol{s}-\boldsymbol{b})(\boldsymbol{s}-\boldsymbol{c})-\boldsymbol{s}(\boldsymbol{s}-\boldsymbol{a})(\boldsymbol{s}-\boldsymbol{s}-\boldsymbol{b})(\boldsymbol{s}-\boldsymbol{c})}{\boldsymbol{s}^{2}(\boldsymbol{s}-\boldsymbol{b})(\boldsymbol{s}-\boldsymbol{c})-\boldsymbol{s}(\boldsymbol{s}-\boldsymbol{a})(\boldsymbol{s}-\boldsymbol{b})(\boldsymbol{s}-\boldsymbol{c})}=\sum_{c y c} \frac{\boldsymbol{s}-(\boldsymbol{s}-\boldsymbol{a})}{\boldsymbol{s}+(\boldsymbol{s}-\boldsymbol{a})}=\sum_{\boldsymbol{c y c}} \frac{\boldsymbol{a}}{\boldsymbol{b}+\boldsymbol{c}}$

Let's solve the proposed problem.
Using lemma and $\sum_{c y c} \frac{a}{b+c} \geq \frac{3}{2}$ (Nesbit I.) we get:

$$
L h s=\sum_{c y c} \frac{s^{2}-r_{b} r_{c}}{s^{2}+r_{b} r_{c}}=\sum_{c y c} \frac{a}{b+c} \geq \frac{3}{2}=R h s
$$

Equality holds if and only if triangle is equilateral.
Remark. Let's find reverse inequality.
3) In $\triangle A B C$ the following relationship holds:

$$
\sum_{c y c} \frac{s^{2}-r_{b} r_{c}}{s^{2}+r_{b} r_{c}} \leq \frac{3 R}{4 r}
$$

Proposed by Marin Chirciu-Romania

Solution by proposer

Using lemma, inequality it can be written as:

$$
\frac{2\left(s^{2}-r^{2}-R r\right)}{s^{2}+r^{2}+2 R r} \leq \frac{3 R}{4 r} \Leftrightarrow s^{2}(3 R-8 r)+r\left(6 R^{2}+11 R r+8 r^{2}\right) \geq 0
$$

We distinguish the cases:
Case 1) If $\mathbf{3 R}-\mathbf{8 r} \geq \mathbf{0}$ the inequality is obviously
Case 2) If $3 R-8 r \leq 0$ the inequality it can be written as:

$$
r\left(6 R^{2}+11 R r+8 r^{2}\right) \geq s^{2}(8 r-3 R)
$$

which result from $s^{2} \leq 4 R^{2}+4 R r+3 r^{2}$ (Gerretsen)
Remain to prove that:

$$
\begin{aligned}
r\left(6 R^{2}+11 R r+8 r^{2}\right) & \geq\left(4 R^{2}+4 R r+3 r^{2}\right)(8 r-3 R) \Leftrightarrow \\
6 R^{3}-7 R^{2} r-6 R r^{2}-8 r^{3} & \geq 0 \Leftrightarrow(R-2 r)\left(6 R^{2}+5 R r+4 r^{2}\right) \geq 0
\end{aligned}
$$

which is true from $R \geq 2 r$ (Euler).Equality holds if and only if triangle is equilateral.
Remark. The inequality it can be doubled.
4) In $\triangle A B C$ the following relationship holds:

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
 $$
\frac{3}{2} \leq \sum_{c y c} \frac{s^{2}-r_{b} r_{c}}{s^{2}+r_{b} r_{c}} \leq \frac{3 R}{4 r}
$$

Proposed by Marin Chirciu-Romania

Solution by proposer

See inequalities 1) and 3)

5) In $\triangle A B C$ the following relationship holds:

$$
\frac{3 r}{R} \leq \sum_{c y c} \frac{s^{2}-r_{a}^{2}}{s^{2}+r_{a}^{2}} \leq \frac{3}{2}
$$

Proposed by Marin Chirciu-Romania

Solution by proposer

6) Lemma. In $\triangle A B C$ the following relationship holds:

$$
\sum_{c y c} \frac{s^{2}-r_{a}^{2}}{s^{2}+r_{a}^{2}}=1+\frac{r}{R}
$$

Proof. Using the identity: $\boldsymbol{r}_{a}=\frac{s}{s-a}$ we get: $L \boldsymbol{h} \boldsymbol{s}=\sum_{c y c} \frac{s^{2}-r_{a}^{2}}{s^{2}+r_{a}^{2}}=\sum_{c y c} \frac{s^{2}-\left(\frac{s}{s-a}\right)^{2}}{s^{2}+\left(\frac{s}{s-a}\right)^{2}}=$

$$
\begin{gathered}
=\sum_{c y c} \frac{s^{2}(s-a)^{2}-s(s-a)(s-b)(s-c)}{s^{2}(s-a)^{2}+s(s-a)(s-b)(s-c)}=\sum_{c y c} \frac{2 s(s-a)-b c}{b c}= \\
=2 s \sum_{c y c} \frac{s-a}{b c}-3=2 s \cdot \frac{4 R+r}{2 R s}-3=\frac{R+r}{r}=R h s
\end{gathered}
$$

Let's solve the proposed problem. Using Lemma and $R \geq 2 r$ (Euler) we get:

$$
\frac{3 r}{R} \leq \frac{R+r}{r} \leq \frac{3}{2}
$$

Equality holds if and only if triangle is equilateral.
7) In $\triangle A B C$ the following relationship holds:

$$
3(2-\sqrt{3}) \leq \sum_{c y c} \frac{s-r_{a}}{s+r_{a}} \leq 3(2-\sqrt{3}) \frac{R}{2 r}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

Solution by proposer

8) Lemma. In $\triangle A B C$ the following relationship holds:

$$
\sum_{c y c} \frac{s-r_{a}}{s+r_{a}}=\frac{s+2 R-r}{s+2 R+r}
$$

Proof. Using the identity: $r_{a}=\frac{s}{s-a}$ we get:

$$
\sum_{c y c} \frac{s-r_{a}}{s+r_{a}}=\sum_{c y c} \frac{s-\frac{s}{s-a}}{s+\frac{S}{s-a}}=\sum_{c y c} \frac{s(s-a)-r s}{s(s-a)+r s}=\sum_{c y c} \frac{(s-a)-r}{(s-a)+r}
$$

Using Ravi substitution: $a=y+z ; b=z+x ; c=x+y ; s-a=x ; s-b=y ; s-c=z$
we get:

$$
\begin{gathered}
\sum_{c y c} \frac{(s-a)-r}{(s-a)+r}=\sum_{c y c} \frac{x-r}{x+r}=\frac{\sum(x-r)(y+r)(z+r)}{\prod(x+r)}= \\
=\frac{2 r^{2}(s+2 R-2 r)}{2 r^{2}(s+2 R+r)}=\frac{s+2 R-r}{s+2 R+r}
\end{gathered}
$$

which result from

$$
\begin{gathered}
\sum(x-r)(y+r)(z+r)=3 x y z+r \sum y z-r^{2} \sum x-3 r^{3}= \\
=3 \Pi(s-a)+r \sum(s-b)(s-c)-r^{2} \sum(s-a)-3 r^{3}= \\
=3 r^{2} s+r \cdot r(4 R+r)-r^{2} s-3 r^{3}=2 r^{2}(s+2 R-r) \\
\prod_{c y c}(x+r)=x y z+r \sum_{c y c} y z+r^{2} \sum_{c y c} x+r^{3}=\prod_{c y c}(s-a)+r \sum_{c y c}(s-b)(s-c)+ \\
+r^{2} \sum_{c y c}(s-a)+r^{3}=r^{2} s+r \cdot r(4 R+r)+r^{2} s+r^{3}=2 r^{2}(s+2 R+r)
\end{gathered}
$$

Let's solve the proposed problem. Using Lemma the inequality it can be written as:

$$
\frac{s+2 R-r}{s+2 R+r} \geq 3(2-\sqrt{3}) \Leftrightarrow s(3 \sqrt{3}-5) \geq 2 R(5-3 \sqrt{3})+r(7-3 \sqrt{3})
$$

which result from $s \geq 3 \sqrt{3} r$ (Mitrinovic)
Remain to prove that: $3 r \sqrt{3}(3 \sqrt{3}-5) \geq 2 R(5-3 \sqrt{3})+r(7-3 \sqrt{3}) \Leftrightarrow$

$$
2 R(3 \sqrt{3}-5) \geq 4 r(3 \sqrt{3}-5) \Leftrightarrow R \geq 2 r(\text { Euler })
$$

Equality holds if and only if triangle is equilateral.

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
\frac{s+2 R-r}{s+2 R+r} \leq 3(2-\sqrt{3}) \frac{R}{2 r} \Leftrightarrow \\
s[3(2-\sqrt{3}) R-2 r] \geq 6 R^{2}(\sqrt{3}-2)+\operatorname{Rr}(3 \sqrt{3}-2)-2 r^{2}
\end{gathered}
$$

which result from $s \geq 3 \sqrt{3} r$ (Mitrinovic). Remains to prove that:

$$
\begin{gathered}
3 \sqrt{3} r[3(2-\sqrt{3}) R-2 r] \geq 6 R^{2}(\sqrt{3}-2)+R r(3 \sqrt{3}-2)-2 r^{2} \Leftrightarrow \\
6(2-\sqrt{3}) R^{2}+5(3 \sqrt{3}-5) R r+2(1-3 \sqrt{3}) r^{2} \geq 0 \Leftrightarrow \\
(R-2 r)[6(2-\sqrt{3}) R+(3 \sqrt{3}-1) r] \geq 0 \text { which result from } R \geq 2 r(\text { Euler })
\end{gathered}
$$

Equality holds if and only if triangle is equilateral.

SP.301. Let $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}>0, a+b+c=3$. Find the minimum of value:

$$
T=\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{1}{a^{3}+b^{3}+a b c}+\frac{1}{b^{3}+c^{3}+a b c}+\frac{1}{c^{3}+a^{3}+a b c}
$$

Proposed by Hoang Le Nhat Tung-Hanoi-Vietnam
Solution 1 by Michael Sterghiou-Greece

$$
\begin{array}{r}
T=\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{1}{a^{3}+b^{3}+a b c}+\frac{1}{b^{3}+c^{3}+a b c}+\frac{1}{c^{3}+a^{3}+a b c} \tag{1}\\
\text { Let }(p, q, r)=\left(\sum a, \sum a b, a b c\right) \text { with } p=3, q \leq 3, r \leq 1
\end{array}
$$

We will to show that $T \geq 4$. We will use the following lemma.

$$
\begin{equation*}
\text { Lemma. If } \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}>0, a+b+c=3 \text { then } \sum \frac{a}{\boldsymbol{b}} \geq \sum \boldsymbol{a}^{2} \tag{L}
\end{equation*}
$$

Proof. Consider the inequality: $\sum \frac{a}{b}+3 \geq 7 \cdot \sum a^{2}$; (2) which written as homogeneous from becomes $2\left(\sum a\right)^{2} \cdot\left(\sum a b^{2}\right)+a b c\left(\sum a\right)^{2} \geq 21 a b c\left(\sum a^{2}\right)$ which can be written as $2 \cdot \sum a(a-b)^{2}(b-2 c)^{2} \geq 0$ which is true, so (2) is true. By adding (2) to the obvious $a^{2}+b^{2}+c^{2} \geq 3$ we get (L).
Now (1) using (L) and BCS we get: $T \geq \sum a^{2}+\frac{9}{2 \sum a^{3}+3 r} \geq 4$ or as:
$\sum a^{2}=p^{2}-2 q=9-2 q ; \sum a^{3}=p^{3}-3 p q+3 r=27-9 q+3 r$ after simplification reduces to: $4 p^{2}-2 q r-22 q+5 r+31 \geq 0 ;(3) \Rightarrow$

$$
\begin{equation*}
f(q)=4 q^{2}-(2 q-5) r-22 q+31 \geq 0 \tag{4}
\end{equation*}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
$(2 q-5)\left\{\begin{array}{c}\geq 0 \text { or } \\ \leq 0\end{array}\right.$ so (4) must work either $r=\left\{\begin{array}{c}\max \text { or } \\ \min \end{array}\right.$ with every fixed $q \in(0,3]$.
This according to V.Cîrtoaje theorem happens when any two of $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ are equal.
Assume $a \leq b \leq c$ WLOG we have to show (4) with either $\boldsymbol{a}=\boldsymbol{b}$ or $\boldsymbol{b}=\boldsymbol{c}$.
In either case $0<b<\frac{3}{2}$. Now, $q=3 b(2-b)$ and $r=b^{2}(3-2 b) ;(a+b+c=3)$ and

$$
(4) \Rightarrow f(b)=-(b-1)^{2}\left(12 b^{3}-54 b^{2}+70 b-31\right) \geq 0,0<b<\frac{3}{2}
$$

It is easy to show that $h(b)=12 b^{3}-54 b^{2}+70 b-31$ has a max on $\left(0, \frac{3}{2}\right)$ of $\frac{11 \sqrt{11}}{9}-7$

$$
\text { at } b=\frac{3}{2}-\frac{\sqrt{11}}{6} \text { as } f^{\prime}(b) \text { is a trinomial. }
$$

This means $\max (h)<0$ and $f(b) \geq 0$. Equality for $a=b=c=1$.

Solution 2 by proposer

By Cauchy-Schwartz inequality, we have:

$$
\begin{gather*}
\frac{1}{a^{3}+b^{3}+a b c}+\frac{1}{b^{3}+c^{3}+a b c}+\frac{1}{c^{3}+a^{3}+a b c}= \\
=\frac{c}{c\left(a^{3}+b^{3}+a b c\right)}+\frac{a}{a\left(b^{3}+c^{3}+a b c\right)}+\frac{b}{b\left(c^{3}+a^{3}+a b c\right)} \geq \\
\geq \frac{(\sqrt{c}+\sqrt{a}+\sqrt{b})^{2}}{c\left(a^{3}+b^{3}+a b c\right)+a\left(b^{3}+c^{3}+a b c\right)+b\left(c^{3}+a^{3}+a b c\right)} \Rightarrow \\
\frac{1}{a^{3}+b^{3}+a b c}+\frac{1}{b^{3}+c^{3}+a b c}+\frac{1}{c^{3}+a^{3}+a b c} \geq \frac{(\sqrt{c}+\sqrt{a}+\sqrt{b})^{2}}{\left(a^{2}+b^{2}+c^{2}\right)(a b+b c+c a)} \tag{1}
\end{gather*}
$$

Other, by AM-GM inequality for three positive real numbers, with $a+b+c=3$ we have:

$$
\begin{gather*}
\left(a^{2}+\sqrt{a}+\sqrt{a}\right)+\left(b^{2}+\sqrt{b}+\sqrt{b}\right)+\left(c^{2}+\sqrt{c}+\sqrt{c}\right) \geq \\
\geq 3 \cdot \sqrt[3]{a^{2} \cdot \sqrt{a} \cdot \sqrt{a}}+3 \cdot \sqrt[3]{b^{2} \cdot \sqrt{b} \cdot \sqrt{b}}+3 \cdot \sqrt[3]{c^{2} \cdot \sqrt{c} \cdot \sqrt{c}} \Rightarrow \\
a^{2}+b^{2}+c^{2}+2(\sqrt{a}+\sqrt{b}+\sqrt{c}) \geq 3 \cdot \sqrt[3]{a^{3}}+3 \cdot \sqrt[3]{b^{3}}+3 \cdot \sqrt[3]{c^{3}}= \\
=3(a+b+c)=(a+b+c)(a+b+c) \Leftrightarrow \\
a^{2}+b^{2}+c^{2}+2(\sqrt{a}+\sqrt{b}+\sqrt{c}) \geq(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2(a b+b c+c a) \Leftrightarrow \\
2(\sqrt{a}+\sqrt{b}+\sqrt{c}) \geq 2(a b+b c+c a) \Leftrightarrow \\
\sqrt{a}+\sqrt{b}+\sqrt{c} \geq a b+b c+c a \tag{2}
\end{gather*}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
From (1) and (2) we get:

$$
\begin{gather*}
\frac{1}{a^{3}+b^{3}+a b c}+\frac{1}{b^{3}+c^{3}+a b c}+\frac{1}{c^{3}+a^{3}+a b c} \geq \frac{(a b+b c+c a)^{2}}{\left(a^{2}+b^{2}+c^{2}\right)(a b+b c+c a)} \Leftrightarrow \\
\frac{1}{a^{3}+b^{3}+a b c}+\frac{1}{b^{3}+c^{3}+a b c}+\frac{1}{c^{3}+a^{3}+a b c} \geq \frac{a b+b c+c a}{a^{2}+b^{2}+c^{2}} ; \tag{3}
\end{gather*}
$$

Other, by Cauchy-Schwartz inequality, we have:

$$
\begin{align*}
\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=\frac{a^{2}}{a b}+\frac{b^{2}}{b c}+\frac{c^{2}}{c a} & \geq \frac{(a+b+c)^{2}}{a b+b c+c a}=\frac{a^{2}+b^{2}+c^{2}+2(a b+b c+c a)}{a b+b c+c a}= \\
& =\frac{a^{2}+b^{2}+c^{2}}{a b+b c+c a}+2 \tag{4}
\end{align*}
$$

From (3),(4), using AM-GM inequality, we have

$$
\begin{gathered}
T=\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{1}{a^{3}+b^{3}+a b c}+\frac{1}{b^{3}+c^{3}+a b c}+\frac{1}{c^{3}+a^{3}+a b c} \geq \\
\geq \frac{a^{2}+b^{2}+c^{2}}{a b+b c+c a}+\frac{a b+b c+c a}{a^{2}+b^{2}+c^{2}}+2 \stackrel{A M-G M}{\geq} 2 \cdot \sqrt{\frac{a^{2}+b^{2}+c^{2}}{a b+b c+c a} \cdot \frac{a b+b c+c a}{a^{2}+b^{2}+c^{2}}}+2=4 \\
\Rightarrow T \geq 4 \Rightarrow T_{\text {min }}=4 \text { and equality occurs if }\left\{\begin{array}{c}
a, b, c>0 ; a+b+c=3 \\
a^{2}=\sqrt{a} ; b^{2}=\sqrt{b} ; c^{2}=\sqrt{c} \\
a=b=c \\
a^{2}+b^{2}+c^{2}=a b+b c+c a
\end{array} \Leftrightarrow\right. \\
a+b+c=1
\end{gathered}
$$

SP. 302 In acute $\triangle A B C, r_{1}, r_{2}, r_{3}$-inradii in $\triangle B O C, \triangle C O A, \triangle A O B, O$-center of circumcircle $\triangle A B C$ and H-orthocenter. Prove that:

$$
\left(\frac{r_{1}}{A H}+\frac{r_{2}}{B H}+\frac{r_{3}}{C H}\right)\left(\sum_{c y c} \frac{A}{a}\right)<\frac{\pi \sqrt{3} s}{12 R r}
$$

Proposed by Radu Diaconu-Romania

Solution 1 by George Florin Şerban-Romania

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
WLOG, suppose: $a \leq b \leq c \Rightarrow\left\{\begin{array}{l}A \leq B \leq C \\ \frac{1}{a} \geq \frac{1}{b} \geq \frac{1}{c}\end{array}\right.$ and from Chebyshev's inequality, we get:

$$
\begin{gather*}
\sum_{c y c} \frac{A}{a} \leq \frac{1}{3} \cdot\left(\sum_{c y c} \frac{1}{a}\right)\left(\sum_{c y c} A\right) \stackrel{(P e t r i v i c)}{\leq} \frac{\pi}{3} \cdot \frac{s}{3 R r}=\frac{\pi s}{9 R r} \\
\left(\sum_{c y c} \frac{r_{1}}{A H}\right)\left(\sum_{c y c} \frac{A}{a}\right)<\frac{\pi \sqrt{3} \cdot s}{12 R r} ;(1) \tag{1}\\
\left(\sum_{c y c} \frac{r_{1}}{A H}\right)\left(\sum_{c y c} \frac{A}{a}\right) \leq \frac{s \pi}{9 R r} \cdot\left(\sum_{c y c} \frac{r_{1}}{A H}\right)<\frac{\pi \sqrt{3} \cdot s}{12 R r} \Leftrightarrow \sum_{c y c} \frac{r_{1}}{A H}<\frac{\pi \sqrt{3} \cdot s}{12 R r} \cdot \frac{9 R r}{s \pi}=\frac{3 \sqrt{3}}{4} \\
S_{[B O C]}=\frac{O B \cdot O C \cdot \sin (\widehat{B O C})}{2}=\frac{R^{2} \cdot \sin 2 A}{2} ; s_{[B O C]}=\frac{B O+O C+a}{2}=\frac{2 R+a}{2} \\
\Rightarrow r_{1}=\frac{S_{[B O C]}}{s_{[B O C]}}=\frac{R^{2} \cdot \sin 2 A}{2} \cdot \frac{2}{2 R+a}=\frac{R^{2} \cdot \sin 2 A}{2 R+2 R \sin A}=\frac{R \cdot \sin 2 A}{2+2 \sin A} \Rightarrow \\
\sum_{c y c} \frac{r_{1}}{A H}=\sum_{c y c} \frac{R \cdot \sin 2 A}{(2+2 \sin A) \cdot 2 R \cos A}=\sum_{c y c} \frac{2 \sin A \cos A}{2 \cos A(2+2 \sin A)}=\frac{1}{2} \sum_{c y c} \frac{\sin A}{1+\sin A} \frac{(2)}{\leq} \frac{3 \sqrt{3}}{4} \\
(2) \Leftrightarrow \sum_{c y c} \frac{\sin A}{1+\sin A} \leq \frac{3 \sqrt{3}}{2} \Leftrightarrow \sum_{c y c}\left(1-\frac{1}{1+\sin A}\right) \leq \frac{3 \sqrt{3}}{2} \Leftrightarrow \\
\sum_{c y c} \frac{1}{1+\sin A}>3-\frac{3 \sqrt{3}}{2} ;(3) \tag{3}
\end{gather*}
$$

From Bergstrom inequality, we have:

$$
\begin{aligned}
& \sum_{c y c} \frac{1}{1+\sin A} \stackrel{\text { Bergstrom }}{\geq} \frac{(1+1+1)^{2}}{\sum_{c y c}(1+\sin A)}=\frac{9}{3+\sum_{c y c} \sin A}=\frac{9}{3+\frac{s}{R}} \stackrel{\text { Mitrinovic }}{\geq} \\
& \geq \frac{9}{3+\frac{3 \sqrt{3}}{2}}=\frac{18}{6+3 \sqrt{3}}=\frac{6}{2+\sqrt{3}}=6(2-\sqrt{3})=12-6 \sqrt{3}>3-\frac{3 \sqrt{3}}{2} \text { true from } \\
& 12-3 \geq 6 \sqrt{3}-\frac{3 \sqrt{3}}{2} \Leftrightarrow 9>\frac{9 \sqrt{3}}{2} \Leftrightarrow 2>\sqrt{3} \text { true } \Rightarrow(3) \text { true } \Rightarrow(1) \text { true. }
\end{aligned}
$$

Solution 2 by proposer

We have: $A H=2 R \cos A ; B H=2 R \cos B ; C H=2 R \cos C$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
S_{[B O C]}=\frac{O B \cdot O C \cdot \sin 2 A}{2}=\frac{R^{2} \cdot \sin 2 A}{2} ; s_{[B O C]}=\frac{B O+O C+a}{2}=\frac{2 R+a}{2} \\
\Rightarrow r_{1}=\frac{s_{[B O C]}}{s_{[B O C]}}=\frac{R^{2} \cdot \sin 2 A}{2 R+a} \cdot \text { Similarly: } r_{2}=\frac{R^{2} \cdot \sin 2 B}{2 R+b} ; r_{3}=\frac{R^{2} \cdot \sin 2 C}{2 R+c} . \text { Therefore, } \\
\frac{r_{1}}{A H}+\frac{r_{2}}{B H}+\frac{r_{3}}{C H}=\frac{R \sin A}{2 R+a}+\frac{R \sin B}{2 R+b}+\frac{R \sin C}{2 R+c}=R\left(\frac{\sin A}{2 R+a}+\frac{\sin B}{2 R+b}+\frac{\sin C}{2 R+c}\right)
\end{gathered}
$$

WLOG, suppose: $a \leq b \leq c \Rightarrow\left\{\begin{array}{c}\sin A \geq \sin B \geq \sin C \\ \frac{1}{2 R+a} \geq \frac{1}{2 R+b} \geq \frac{1}{2 R+c}\end{array}\right.$ and from Chebyshev's inequality,

we get:

$$
\begin{gather*}
R\left(\frac{\sin A}{2 R+a}+\frac{\sin B}{2 R+b}+\frac{\sin C}{2 R+c}\right) \leq \frac{R}{3} \cdot\left(\sum_{c y c} \sin A\right)\left(\sum_{c y c} \frac{1}{2 R+a}\right) \leq \\
\leq \frac{R}{3} \cdot \frac{3 \sqrt{3}}{2}\left(\sum_{c y c} \frac{1}{2 R+a}\right)=\frac{R \sqrt{3}}{2} \cdot \frac{1}{2 R}\left(\sum_{c y c} \frac{1}{1+\sin A}\right)=\frac{\sqrt{3}}{4}\left(\sum_{c y c} \frac{1}{1+\sin A}\right)<\frac{3 \sqrt{3}}{4} \\
\text { How: } \frac{1}{1+\sin A}<1 ; \frac{1}{1+\sin B}<1 ; \frac{1}{1+\sin C}<1 \Rightarrow \sum_{c y c} \frac{1}{1+\sin A}<3 \\
\frac{r_{1}}{A H}+\frac{r_{2}}{B H}+\frac{r_{3}}{C H}<\frac{3 \sqrt{3}}{4} ; \tag{1}
\end{gather*}
$$

WLOG, suppose: $a \leq b \leq c \Rightarrow\left\{\begin{array}{l}A \leq B \leq C \\ \frac{1}{a} \geq \frac{1}{b} \geq \frac{1}{c}\end{array}\right.$ and from Chebyshev's inequality, we get:

$$
\begin{equation*}
\sum_{c y c} \frac{A}{a} \leq \frac{1}{3} \cdot\left(\sum_{c y c} \frac{1}{a}\right)\left(\sum_{c y c} A\right)=\frac{\pi}{3} \cdot\left(\sum_{c y c} \frac{1}{a}\right) \stackrel{(*)}{\leq} \frac{\pi}{3} \cdot \frac{s}{3 R r}=\frac{\pi s}{9 R r} \tag{2}
\end{equation*}
$$

Where $(*) \Leftrightarrow \sum_{c y c} \frac{1}{a} \leq \frac{s}{3 R r}$ which following from: $3(a b+b c+c a) \leq(a+b+c)^{2} \Rightarrow$

$$
\begin{gathered}
\sum_{c y c} \frac{1}{a} \leq \frac{(a+b+c)^{2}}{3 a b c}=\frac{4 s^{2}}{12 R S}=\frac{s}{3 R r} \\
\left(\frac{r_{1}}{A H}+\frac{r_{2}}{B H}+\frac{r_{3}}{C H}\right)\left(\sum_{c y c} \frac{A}{a}\right)<\frac{3 \sqrt{3}}{4} \cdot \frac{\pi s}{9 R r}=\frac{\pi \sqrt{3} \cdot s}{12 R r}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
SP.303. Let $x, y, z>0$ such that $x+y+z=3$. Find the minimum of value:

$$
P=\frac{x^{3}}{y \sqrt{x^{3}+8}}+\frac{y^{3}}{z \sqrt{y^{3}+8}}+\frac{z^{3}}{x \sqrt{z^{3}+8}}
$$

Proposed by Hoang Le Nhat Tung-Hanoi-Vietnam

Solution 1 by Khaled Abd Imouti-Damascus-Syria

$$
\begin{gathered}
\sqrt{x^{3}+8}=\sqrt{(x+2)\left(x^{2}-2 x+4\right)} \stackrel{A M-G M}{\leq} \frac{(x+2)+\left(x^{2}-2 x+4\right)}{2}=\frac{x^{2}-x+6}{2} \\
\frac{1}{\sqrt{x^{3}+8}} \geq \frac{2}{x^{2}-x+6} \Rightarrow \frac{x^{3}}{\sqrt{x^{3}+8}} \geq \frac{2 x^{3}}{x^{2}-x+6} \\
\text { But: } P=\frac{x^{3}}{y \sqrt{x^{3}+8}}+\frac{y^{3}}{z \sqrt{y^{3}+8}}+\frac{z^{3}}{x \sqrt{z^{3}+8}} \geq \\
\geq \frac{1}{3}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(\frac{x^{3}}{\sqrt{x^{3}+8}}+\frac{y^{3}}{\sqrt{y^{3}+8}}+\frac{z^{3}}{\sqrt{z^{3}+8}}\right) \\
\text { Let be the function: } f(x)=\frac{x^{3}}{\sqrt{x^{3}+8}} ; f(x) \geq \frac{2 x^{3}}{x^{2}-x+6} \Rightarrow \\
P \geq \frac{1}{3}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(\frac{2 x^{3}}{x^{2}-x+6}+\frac{2 y^{3}}{y^{2}-y+6}+\frac{2 z^{3}}{z^{2}-z+6}\right)
\end{gathered}
$$

From AM-HM and $x+y+z=3$, we have: $\frac{x+y+z}{3} \geq \frac{3}{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}} \Rightarrow 1 \geq \frac{3}{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}} \Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z} \leq \frac{1}{3} \Rightarrow$

$$
\begin{equation*}
\frac{1}{3}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right) \geq 1 \tag{*}
\end{equation*}
$$

Let be the function: $g(x)=\frac{2 x^{3}}{x^{2}-x+6}=2 x+2-2 \cdot \frac{5 x+6}{x^{2}-x+6}$

$$
\begin{gathered}
g^{\prime}(x)=2-2 \cdot \frac{-5 x^{2}-12 x+36}{\left(x^{2}-x+6\right)^{2}} \\
g^{\prime \prime}(x)=\frac{-2}{\left(x^{2}-x+6\right)^{2}} \cdot \frac{-10 x^{3}-7 x^{2}-26 x-108}{\left(x^{2}-x+6\right)^{2}}>0 \Rightarrow g \text {-convex function, so } \\
g(x)+g(y)+g(z) \geq \frac{1}{3} g\left(\frac{x+y+z}{3}\right) \Leftrightarrow g(x)+g(y)+g(z) \geq \frac{1}{3} g(1) \Leftrightarrow \\
g(x)+g(y)+g(z) \geq 1 ;(* *) \text { and hence: } P \geq 1 . \\
\min P(x, y, z)=1, \text { for } x=y=z=1
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

Solution 2 by proposer

By AM-GM inequality for positive real numbers, we have:

$$
\begin{gather*}
P=\frac{x^{3}}{y \sqrt{x^{3}+8}}+\frac{y^{3}}{z \sqrt{y^{3}+8}}+\frac{z^{3}}{x \sqrt{z^{3}+8}}= \\
=\frac{x^{3}}{y \sqrt{(x+2)\left(x^{2}-x+4\right)}}+\frac{y^{3}}{z \sqrt{(y+2)\left(y^{2}-y+4\right)}}+\frac{z^{3}}{x \sqrt{(z+2)\left(z^{2}-z+4\right)}} \geq \\
\geq \frac{x^{3}}{y \cdot \frac{(x+2)+\left(x^{2}-x+4\right)}{2}}+\frac{y^{3}}{z \cdot \frac{(y+2)+\left(y^{2}-y+4\right)}{2}}+\frac{z^{3}}{x \cdot \frac{(z+2)+\left(z^{2}-z+4\right)}{2}}= \\
=2\left(\frac{x^{3}}{y\left(x^{2}-x+6\right)}+\frac{y^{3}}{z\left(y^{2}-y+6\right)}+\frac{z^{3}}{x\left(z^{2}-z+6\right)}\right) \Rightarrow \\
P \geq 2\left(\frac{x^{3}}{y\left(x^{2}-x+6\right)}+\frac{y^{3}}{z\left(y^{2}-y+6\right)}+\frac{z^{3}}{x\left(z^{2}-z+6\right)}\right) ; \tag{1}
\end{gather*}
$$

By Cauchy Schwartz inequality, we have:

$$
\begin{align*}
& \frac{x^{3}}{y\left(x^{2}-x+6\right)}+\frac{y^{3}}{z\left(y^{2}-y+6\right)}+\frac{z^{3}}{x\left(z^{2}-z+6\right)}= \\
= & \frac{x^{4}}{x y\left(x^{2}-x+6\right)}+\frac{y^{4}}{y z\left(y^{2}-y+6\right)}+\frac{z^{4}}{z x\left(z^{2}-z+6\right)} \geq \\
\geq & \frac{\left(x^{2}+y^{2}+z^{2}\right)^{2}}{x y\left(x^{2}-x+6\right)+y z\left(y^{2}-y+6\right)+z x\left(z^{2}-z+6\right)} ; \tag{2}
\end{align*}
$$

From (1),(2) we get:

$$
\begin{equation*}
P \geq \frac{\left(x^{2}+y^{2}+z^{2}\right)^{2}}{x y\left(x^{2}-x+6\right)+y z\left(y^{2}-y+6\right)+z x\left(z^{2}-z+6\right)} \tag{3}
\end{equation*}
$$

We will to prove that:

$$
\begin{equation*}
\frac{\left(x^{2}+y^{2}+z^{2}\right)^{2}}{x y\left(x^{2}-x+6\right)+y z\left(y^{2}-y+6\right)+z x\left(z^{2}-z+6\right)} \geq \frac{1}{2} \tag{4}
\end{equation*}
$$

$\Leftrightarrow 2\left(x^{2}+y^{2}+z^{2}\right)^{2} \geq x y\left(x^{2}-x+6\right)+y z\left(y^{2}-y+6\right)+z x\left(z^{2}-z+6\right) \Leftrightarrow$ $2\left(x^{2}+y^{2}+z^{2}\right)^{2}+\left(x^{2} y+y^{2} z+z^{2} x\right) \geq\left(x^{3} y+y^{3} z+z^{3} x\right)+6(x y+y z+z x) \Leftrightarrow$ $6\left(x^{2}+y^{2}+z^{2}\right)^{2}+3\left(x^{2} y+y^{2} z+z^{2} x\right) \geq 3\left(x^{3} y+y^{3} z+z^{3} x\right)+18(x y+y z+z x) \Leftrightarrow$ $6\left(x^{2}+y^{2}+z^{2}\right)^{2}+(x+y+z)\left(x^{2} y+y^{2} z+z^{2} x\right) \geq 3\left(x^{3} y+y^{3} z+z^{3} x\right)+$ $+2(x+y+z)^{2}(x y+y z+z x) \Leftrightarrow$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gather*}
6\left(x^{2}+y^{2}+z^{2}\right)^{2}+\left(x^{3} y+y^{3} z+z^{3} x\right)+x y z(x+y+z)+\left(x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2}\right) \geq \\
\geq 3\left(x^{3} y+y^{3} z+z^{3} x\right)+4(x y+y z+z x)^{2}+2\left(x^{2}+y^{2}+z^{2}\right)(x y+y z+z x) \Leftrightarrow \\
6\left(x^{4}+y^{4}+z^{4}\right)+9\left(x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2}\right) \geq 4\left(x^{3} y+y^{3} z+z^{3} x\right)+ \\
+2\left(x y^{3}+y z^{3}+z x^{3}\right)+9 x y z(x+y+z) ; \tag{5}
\end{gather*}
$$

By AM-GM inequality, we have:

$$
\begin{gather*}
\left(x^{4}+x^{4}+x^{4}+y^{4}\right)+\left(y^{4}+y^{4}+y^{4}+z^{4}\right)+\left(z^{4}+z^{4}+z^{4}+x^{4}\right) \geq \\
\geq 4 \sqrt[4]{x^{12} \cdot y^{4}}+4 \sqrt[4]{y^{12} \cdot z^{4}}+4 \sqrt[4]{z^{12} \cdot x^{4}} \Rightarrow \\
4\left(x^{4}+y^{4}+z^{4}\right) \geq 4\left(x^{3} y+y^{3} z+z^{3} x\right) ;(6) \\
\left(x^{4}+y^{4}+y^{4}+y^{4}\right)+\left(y^{4}+z^{4}+z^{4}+z^{4}\right)+\left(z^{4}+x^{4}+x^{4}+x^{4}\right) \geq \\
\geq 4 \sqrt[4]{x^{4} \cdot y^{12}}+4 \sqrt[4]{y^{4} \cdot z^{12}}+4 \sqrt[4]{z^{4} \cdot x^{12}} \Rightarrow \\
2\left(x^{4}+y^{4}+z^{4}\right) \geq 2\left(x y^{3}+y z^{3}+z x^{3}\right) ;(7) \\
9\left(x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2}\right)=9\left(\frac{x^{2}\left(y^{2}+z^{2}\right)}{2}+\frac{y^{2}\left(z^{2}+x^{2}\right)}{2}+\frac{z^{2}\left(x^{2}+y^{2}\right)}{2}\right) \geq \\
\geq 9\left(x^{2} y z+x y^{2} z+x y z^{2}\right)=9 x y z(x+y+z) ;(8) \tag{8}
\end{gather*}
$$

From (6),(7),(8) we have: $6\left(x^{4}+y^{4}+z^{4}\right)+9\left(x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2}\right) \geq$ $\geq 4\left(x^{3} y+y^{3} z+z^{3} x\right)+2\left(x y^{3}+y z^{3}+z x^{3}\right)+9 x y z(x+y+z) \Rightarrow(5)$ true \Rightarrow (4) true. From (3),(4) we have: $\min P(x, y, z)=1$, for $x=y=z=1$

SP.304. Let $a, b, c>0$ such that $(a+b)(b+c)(c+a)=1$.
Find the minimum value of the expression:

$$
P=\frac{a}{b(b+2 c)(a+3 c)^{2}}+\frac{b}{c(c+2 a)(b+3 a)^{2}}+\frac{c}{a(a+2 b)(c+3 b)^{2}}
$$

Proposed by Hoang Le Nhat Tung-Hanoi-Vietnam

Solution by proposer

By Cauchy-Schwartz inequality, we have:

$$
P=\frac{a}{b(b+2 c)(a+3 c)^{2}}+\frac{b}{c(c+2 a)(b+3 a)^{2}}+\frac{c}{a(a+2 b)(c+3 b)^{2}}=
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gather*}
=\frac{\left(\frac{a}{a+3 c}\right)^{2}}{a b(b+2 c)}+\frac{\left(\frac{b}{b+3 a}\right)^{2}}{b c(c+2 a)}+\frac{\left(\frac{c}{c+3 b}\right)^{2}}{c a(a+2 b} \geq \frac{\left(\frac{a}{a+3 c}+\frac{b}{b+3 a}+\frac{c}{c+3 b}\right)^{2}}{a b(b+2 c)+b c(c+2 a)+c a(a+2 b)} \Rightarrow \\
P \geq \frac{\left(\frac{a}{a+3 c}+\frac{b}{b+3 a}+\frac{c}{c+3 b}\right)^{2}}{a b^{2}+b c^{2}+c a^{2}+6 a b c} ; \tag{1}
\end{gather*}
$$

By AM-GM inequality, we have

$$
\begin{gather*}
(a+b)(b+c)(c+a) \geq 2 \sqrt{a b} \cdot 2 \sqrt{b c} \cdot 2 \sqrt{c a}=8 \sqrt{(a b c)^{2}}=8 a b c \Leftrightarrow \\
a b c \leq \frac{(a+b)(b+c)(c+a)}{8} ;(2) \tag{2}\\
\quad \text { From (2) we have: }
\end{gather*}
$$

$$
\begin{gathered}
\quad(a+b+c)(a b+b c+c a)=(a+b)(b+c)(c+a)+a b c \leq \\
\leq(a+b)(b+c)(c+a)+\frac{(a+b)(b+c)(c+a)}{8}=\frac{9(a+b)(b+c)(c+a)}{8} \\
\text { Then }
\end{gathered}
$$

$$
\begin{gathered}
(a+b)(b+c)(c+a) \geq \frac{8(a+b+c)(a b+b c+c a)}{9} \Leftrightarrow \\
(a+b+c)(a b+b c+c a) \leq \frac{9}{8} \Leftrightarrow
\end{gathered}
$$

$$
\begin{equation*}
\frac{9}{8} \geq\left(a b^{2}+b c^{2}+c a^{2}\right)+\left(a^{2} b+b^{2} c+c^{2} a\right)+3 a b c \tag{3}
\end{equation*}
$$

By AM-GM inequality, we have

$$
\begin{array}{r}
\quad a^{2} b+b^{2} c+c^{2} a \geq 3 \sqrt[3]{\left(a^{2} b\right) \cdot\left(b^{2} c\right) \cdot\left(c^{2} a\right)}=3 \sqrt[3]{(a b c)^{3}}=3 a b c \stackrel{(3)}{\Rightarrow} \\
\frac{9}{8} \geq\left(a b^{2}+b c^{2}+c a^{2}\right)+3 a b c+3 a b c \Leftrightarrow a b^{2}+b c^{2}+c a^{2}+6 a b c \leq \frac{9}{8} \tag{4}
\end{array}
$$

On the other hand, we have:

$$
\begin{align*}
& \frac{a}{a+3 c}+\frac{b}{b+3 a}+\frac{c}{c+3 b}=\frac{a^{2}}{a^{2}+3 a c}+\frac{b^{2}}{b^{2}+3 a b}+\frac{c^{2}}{c^{2}+3 b c} \stackrel{\text { Bergstrom }}{\geq} \\
\geq & \frac{(a+b+c)^{2}}{a^{2}+3 a c+b^{2}+3 a b+c^{2}+3 b c} \geq \frac{(a+b+c)^{2}}{(a+b+c)^{2}+\frac{(a+b+c)^{2}}{3}}=\frac{3}{4} \tag{5}
\end{align*}
$$

From (1),(4),(5) we have:

> ROMANIAN MATHEMATICAL MAGAZINE $\boldsymbol{P} \geq \frac{\left(\frac{\mathbf{3}}{\mathbf{4}}\right)^{\mathbf{2}}}{\frac{\mathbf{9}}{\mathbf{8}}}=\frac{\mathbf{1}}{\mathbf{2}} \Rightarrow \boldsymbol{P}_{\min }=\frac{\mathbf{1}}{\mathbf{2}} \Rightarrow\left\{\begin{array}{c}(\boldsymbol{a}+\boldsymbol{b})(\boldsymbol{b}+\boldsymbol{c})(\boldsymbol{c}+\boldsymbol{a})=\mathbf{1} \\ \boldsymbol{a}=\boldsymbol{b}=\boldsymbol{c}>0\end{array} \Leftrightarrow \boldsymbol{a}=\boldsymbol{b}=\boldsymbol{c}=\frac{\mathbf{1}}{\mathbf{2}}\right.$

Hence, the minimum expression value of expression P is $\frac{1}{2}$ then $a=b=c=\frac{1}{2}$

SP.305. Let $a, b, c>0$ such that $a b c=1$. Find the maximum expression:

$$
P=\frac{1}{\sqrt{3 a^{4}-4 a+2 b^{2}+11}}+\frac{1}{\sqrt{3 b^{4}-4 b+2 c^{2}+11}}+\frac{1}{\sqrt{3 c^{4}-4 c+2 a^{2}+11}}
$$

Proposed by Hoang Le Nhat Tung-Hanoi-Vietnam

Solution by proposer

We have:

$$
\begin{gathered}
3 a^{4}-2 a^{2}-8 a+7=3 a^{3}(a-1)+3 a^{2}(a-1)+a(a-1)-7(a-1)= \\
=(a-1)\left(3 a^{3}+3 a^{2}+a-7\right)=(a-1)\left[3 a^{2}(a-1)+6 a(a-1)+7(a-1)\right]= \\
=(a-1)^{2}\left(3 a^{2}+6 a+7\right) \geq 0 ; \forall a>0
\end{gathered}
$$

Hence

$$
\begin{gathered}
3 a^{4}-4 a+2 b^{2}+11 \geq 4 a+2\left(a^{2}+b^{2}\right)+4 \geq 4 a+2 \cdot 2 a+4= \\
=4(a+a b+1) \Leftrightarrow \frac{1}{3 a^{4}-4 a+2 b^{2}+11} \leq \frac{1}{4(a b+a+1)}
\end{gathered}
$$

By AM-GM inequality we have:

$$
\begin{gathered}
\frac{1}{\sqrt{\left(3 a^{4}-4 a+2 b^{2}+11\right) \cdot 12 \cdot 12}} \leq \frac{1}{3}\left(\frac{1}{3 a^{4}-4 a+2 b^{2}+11}+\frac{1}{12}+\frac{1}{12}\right) \\
\text { Hence } \frac{1}{\sqrt{\left(3 a^{4}-4 a+2 b^{2}+11\right) \cdot 12 \cdot 12}} \leq \frac{1}{3}\left(\frac{1}{4(a b+a+1)}+\frac{1}{6}\right)=\frac{1}{12(a b+a+1)}+\frac{1}{18} \\
\text { Then } \frac{1}{\sqrt{3 a^{4}-4 a+2 b^{2}+11}} \leq \frac{\sqrt[3]{12^{2}}}{12(a b+a+1)}+\frac{\sqrt[3]{12^{2}}}{18}=\frac{1}{\sqrt[3]{12(a b+a+1)}}+\frac{\sqrt[3]{12^{2}}}{18} \\
\text { Similarly: } \frac{1}{\sqrt{3 b^{4}-4 b+2 c^{2}+11}} \leq \frac{1}{\sqrt[3]{12(b c+b+1)}}+\frac{\sqrt[3]{12^{2}}}{18} \\
\text { And } \frac{1}{\sqrt{3 c^{4}-4 c+2 a^{2}+11}} \leq \frac{1}{\sqrt[3]{12}(c a+c+1)}+\frac{\sqrt[3]{12^{2}}}{18}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro
 Hence

$$
\begin{gather*}
P=\frac{1}{\sqrt{3 a^{4}-4 a+2 b^{2}+11}}+\frac{1}{\sqrt{3 b^{4}-4 b+2 c^{2}+11}}+\frac{1}{\sqrt{3 c^{4}-4 c+2 a^{2}+11}} \leq \\
\leq \frac{1}{\sqrt[3]{12}}\left(\frac{1}{a b+a+1}+\frac{1}{b c+b+1}+\frac{1}{a c+c+1}\right)+\frac{\sqrt[3]{12^{2}}}{6} \\
\text { Other, because } a b c=1 \text { then } \\
\quad \frac{1}{a b+a+1}+\frac{1}{b c+b+1}+\frac{1}{a c+c+1}= \\
=\frac{1}{a b+a+1}+\frac{a}{a b c+a b+a}+\frac{a b}{a \cdot a b c+a b c+a b}= \\
=\frac{1}{a b+a+1}+\frac{a}{1+a b+a}+\frac{a b}{a+1+a b}=\frac{a b+a+1}{a b+a+1}=1 ; \tag{2}
\end{gather*}
$$

From (1),(2) we have:
$P \leq \frac{1}{\sqrt[3]{12}} \cdot 1+\frac{\sqrt[3]{12^{2}}}{6}=\frac{18}{6 \sqrt[3]{12}}=\frac{3}{\sqrt[3]{12}} \Rightarrow P \leq \frac{3}{\sqrt[3]{12}} \Rightarrow P_{M a x}=\frac{3}{\sqrt[3]{12}}$
Equality occurs if $\left\{\begin{array}{c}a b c=1 ; a, b, c>0 \\ a-1=b-1=c-1=0\end{array} \Leftrightarrow a=b=c=1\right.$.
Hence the maximum value of expression P is $\frac{3}{\sqrt[3]{12}}$ then $a=b=c=1$.

SP.306. In $\triangle A B C$ the following relationship holds:

$$
\frac{16}{9} \cdot \frac{4 R+r}{3 R-2 r} \leq \frac{a^{2}}{m_{a}^{2}}+\frac{b^{2}}{m_{b}^{2}}+\frac{c^{2}}{m_{c}^{2}} \leq 4\left(\frac{R}{r}-1\right)
$$

Proposed by Marin Chirciu-Romania

Solution 1 by George Florin Şerban-Romania

First, we prove that:

$$
\begin{gathered}
\sum_{c y c} \frac{a}{m_{a}} \geq 2 \sqrt{3} \\
\sum_{c y c} \frac{a}{m_{a}}=2 \sum_{c y c} \frac{a}{\sqrt{2 b^{2}+2 c^{2}-a^{2}}} \geq 2 \sqrt{3} \Leftrightarrow \sum_{c y c} \frac{a}{\sqrt{2 b^{2}+2 c^{2}-a^{2}}} \geq 2 \sqrt{3}
\end{gathered}
$$

Applying Holder Inequality, we get:

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
\sum_{c y c} \frac{a}{\sqrt{2 b^{2}+2 c^{2}-a^{2}}} \cdot \sum_{c y c} \frac{a}{\sqrt{2 b^{2}+2 c^{2}-a^{2}}} \cdot \sum_{c y c} a\left(2 b^{2}+2 c^{2}-a^{2}\right) \geq\left(\sum_{c y c} a\right)^{3} \Leftrightarrow \\
\left(\sum_{c y c} \frac{a}{\sqrt{2 b^{2}+2 c^{2}-a^{2}}}\right)^{2} \geq \frac{\left(\sum_{c y c} a\right)^{3}}{\sum_{c y c} a\left(2 b^{2}+2 c^{2}-a^{2}\right)} \Leftrightarrow \\
\left(\sum_{c y c} \frac{a}{\sqrt{2 b^{2}+2 c^{2}-a^{2}}}\right)^{2} \geq \frac{\left(\sum_{c y c} a\right)^{3}}{2 \sum_{c y c} a b(a+b)-\sum_{c y c} a^{3}} \geq 3 \Leftrightarrow \\
\left(\sum_{c y c} a\right)^{3} \geq 6 \sum_{c y c} a b(a+b)-3 \sum_{c y c} a^{3} \geq 4 \sum_{c y c} a^{3}+6 a b c \geq 3 \sum_{c y c} a b(a+b) \\
\text { true by Schur's Inequality. }
\end{gathered}
$$

$$
\begin{gathered}
\sum_{c y c} \frac{a^{2}}{m_{a}^{2}} \stackrel{c B S}{\geq} \frac{\left(\sum_{c y c} \frac{a}{m_{a}}\right)^{2}}{3} \geq \frac{(2 \sqrt{3})^{2}}{3}=\frac{12}{3}=4 \stackrel{(1)}{\geq} \frac{16}{9} \cdot \frac{4 R+r}{3 R-2 r} \\
\text { (1) } \Leftrightarrow 27 R-18 r \geq 16 R+4 r \Leftrightarrow 11 R \geq 22 r \Leftrightarrow R \geq 2 r(\text { Euler }) \\
\sum_{c y c} \frac{a^{2}}{m_{a}^{2}} \stackrel{\left(m_{a}^{2} \geq s(s-a)\right)}{\leq} \sum_{c y c} \frac{a^{2}}{s(s-a)} \leq \frac{1}{s} \sum_{c y c} \frac{a^{2}}{s-a}=\frac{1}{s} \cdot \frac{4 s(R-r)}{r}=\frac{4(R-r)}{r}=4\left(\frac{R}{r}-1\right)
\end{gathered}
$$

Solution 2 by Avishek Mitra-West Bengal-India

$$
\begin{gathered}
\sum_{c y c} \frac{a^{2}}{m_{a}^{2}} \stackrel{\left(m_{a}^{2} \geq s(s-a)\right)}{\leq} \sum_{c y c} \frac{a^{2}}{s(s-a)} \leq \frac{1}{s} \sum_{c y c} \frac{a^{2}}{s-a}=\frac{\sum_{c y c} a^{2}(s-b)(s-c)}{s(s-a)(s-b)(s-c)}= \\
=\frac{s^{2} \sum_{c y c} a^{2}-s \sum_{c y c}\left(a^{2} b+a b^{2}\right)+\sum_{c y c} a^{2} b c}{S^{2}}= \\
=\frac{s^{2} \sum_{c y c} a^{2}-s \sum_{c y c} a b(a+b)+\sum_{c y c} a^{2} b c}{S^{2}}= \\
=\frac{s^{2} \sum_{c y c} a^{2}-s \sum_{c y c} a b(2 s-c)+a b c \sum_{c y c} a}{S^{2}}= \\
=\frac{s^{2} \sum_{c y c} a^{2}-2 s^{2} \sum_{c y c} a b+s \cdot 3 a b c+2 s \cdot a b c}{S^{2}}= \\
=\frac{s^{2}\left(2 s^{2}-8 R r-2 r^{2}-2 s^{2}-2 r^{2}-8 R r\right)+5 \cdot s \cdot 4 R r s}{S^{2}}=
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
=\frac{s^{2}\left(20 R r-16 R r-4 r^{2}\right)}{r^{2} s^{2}}=\frac{4 R r-4 r^{2}}{r^{2}}=4\left(\frac{R}{r}-1\right)
$$

$$
\sum_{c y c} \frac{a^{2}}{m_{a}^{2}} \stackrel{\text { Bergstrom }}{\geq} \frac{(a+b+c)^{2}}{\sum_{c y c} m_{a}^{2}}=\frac{(2 s)^{2}}{\frac{3}{4} \sum_{c y c} c^{2}}=\frac{4 s^{2}}{\frac{3}{4} \cdot 2\left(s^{2}-4 R r-r^{2}\right)}=\frac{16 s^{2}}{6\left(s^{2}-4 R r-r^{2}\right)}
$$

Now, need to prove:

$$
\begin{gathered}
\frac{16 s^{2}}{6\left(s^{2}-4 R r-r^{2}\right)} \geq \frac{16}{9} \cdot \frac{4 R+r}{3 R-2 r} \Leftrightarrow 3 s^{2}(3 R-2 r) \geq 2\left(s^{2}-4 R r-r^{2}\right)(4 R+r) \Leftrightarrow \\
9 s^{2} R-6 s^{2} r \geq 2\left(4 s^{2} R+s^{2} r-16 R^{2} r-4 R r^{2}-4 R r^{2}-r^{3}\right) \Leftrightarrow \\
9 s^{2} R-8 s^{2} r+32 R^{2} r+16 R r^{2}+2 r^{3} \geq 0 \\
\left(\therefore s^{2} \geq 16 R r-5 r^{2}(\text { Gerretsen })\right)
\end{gathered}
$$

We need to prove that:

$$
\left(16 R r-5 r^{2}\right)(R-8 r)+32 R^{2} r+16 R r^{2}+2 r^{3} \geq 0 \Leftrightarrow
$$

$$
48 R^{2} r-117 R r^{2}+42 r^{3} \geq 0 \Leftrightarrow(R-2 r)(48 R-21 r) \geq 0 \text { true by } R \geq 2 r(\text { Euler })
$$

Proved.

Solution 3 by Tran Hong-Dong Thap-Vietnam

$$
\begin{gathered}
\text { WLOG, suppose: } a \leq b \leq c \Rightarrow\left\{\begin{array} { c }
{ a ^ { 2 } \leq b ^ { 2 } \leq c ^ { 2 } } \\
{ m _ { a } ^ { 2 } \geq m _ { b } ^ { 2 } \geq m _ { c } ^ { 2 } }
\end{array} \Rightarrow \left\{\begin{array}{c}
a^{2} \leq b^{2} \leq c^{2} \\
\frac{1}{m_{a}^{2}} \leq \frac{1}{m_{b}^{2}} \leq \frac{1}{m_{c}^{2}}
\end{array}\right.\right. \\
\Omega=\frac{a^{2}}{m_{a}^{2}}+\frac{b^{2}}{m_{b}^{2}}+\frac{c^{2}}{m_{c}^{2}} \stackrel{\text { Chebyshev's }}{\geq} \frac{1}{3}\left(a^{2}+b^{2}+c^{2}\right)\left(\frac{1}{m_{a}^{2}}+\frac{1}{m_{b}^{2}}+\frac{1}{m_{c}^{2}}\right) \stackrel{\text { Bergstrom }}{\geq} \\
\geq \frac{1}{3}\left(a^{2}+b^{2}+c^{2}\right) \cdot \frac{9}{m_{a}^{2}+m_{b}^{2}+m_{c}^{2}}=\frac{3\left(a^{2}+b^{2}+c^{2}\right)}{\frac{3}{4}\left(a^{2}+b^{2}+c^{2}\right)}=4 \stackrel{(1)}{\geq} \frac{16}{9} \cdot \frac{4 R+r}{3 R-2 r} \\
(1) \Leftrightarrow 9(3 R-2 r) \geq 4(4 R+r) \Leftrightarrow 27 R-18 r \geq 4(4 R+r) \Leftrightarrow \\
\quad 11 R \geq 22 r \Leftrightarrow R \geq 2 r(\text { Euler }) \Leftrightarrow(1) \text { is true. } \\
\Omega=\frac{a^{2}}{m_{a}^{2}}+\frac{b^{2}}{m_{b}^{2}}+\frac{c^{2}}{m_{c}^{2}} \leq 4 \cdot \sum_{c y c} \frac{a^{2}}{(b+c)^{2}-a^{2}}=\frac{4}{a+b+c} \cdot \sum_{c y c} \frac{a^{2}}{b+c-a}= \\
m_{a}^{2}=\frac{2\left(b^{2}+c^{2}\right)-a^{2}}{4} \stackrel{B C s}{\geq} \frac{(b+c)^{2}-a^{2}}{4}(\text { and analogs })
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

$$
\begin{gather*}
=\frac{4}{2 s} \sum_{c y c} \frac{a^{2}}{2(s-a)}=\frac{1}{s} \sum_{c y c} \frac{a^{2}}{s-a} ; ~(2) \\
\therefore \sum_{c y c} \frac{a^{2}}{s-a}=\sum_{c y c} \frac{(s+a-s)^{2}}{s-a}=\sum_{c y c} \frac{s^{2}+2 s(a-s)+(a-s)^{2}}{s-a}= \tag{2}\\
=s^{2} \sum_{c y c} \frac{1}{s-a}-\sum_{c y c} 2 s+\sum_{c y c}(s-a)=s^{2} \cdot \frac{4 R+r}{s r}-6 s+s= \\
=s\left(\frac{4 R+r}{r}-5\right)=4 s \cdot \frac{R-r}{r} ;(3)
\end{gather*}
$$

From (2),(3) we get: $\Omega \leq \frac{1}{s} \cdot 4 s \cdot \frac{R-r}{r}=4\left(\frac{R}{r}-1\right)$

SP.307. In acute $\triangle \mathrm{ABC}$ the following relationship holds:

$$
\sum_{c y c}\left(2+\frac{\sqrt{h_{b} h_{c}}}{a}-\frac{2(s-a)^{2}}{b c}\right) \leq \sum_{c y c}(1+\csc A)^{\frac{1}{1+\cot A} \cdot(1+\sec A)^{\frac{1}{1+\tan A}} \text {. }}
$$

Proposed by Florică Anastase-Romania

Solution by proposer

$$
\begin{gathered}
\text { Let: } f:(0,1) \rightarrow \mathbb{R}, f(x)=\log \left(\frac{1}{x}+1\right) \\
f^{\prime}(x)=\frac{-1}{x(x+1)}<0, \forall x \in(0,1) \Rightarrow f \text {-decreasing. } \\
f^{\prime \prime}(x)=\frac{2 x+1}{x^{2}(x+1)^{2}}>0, \forall x \in(0,1) \Rightarrow f \text {-convexe. } \\
\log (1+\sin x+\cos x)=f\left(\frac{1}{\sin x+\cos x}\right)=f\left(\frac{\sin ^{2} x+\cos ^{2} x}{\sin x+\cos x}\right) \\
=f\left(\frac{\sin x \cdot \sin x+\cos x \cdot \cos x}{\sin x+\cos x}\right) \leq \frac{\sin x f(\sin x)+\cos x f(\cos x)}{\sin x+\cos x} \\
=\frac{1}{1+\cot x} \log \left(\frac{1}{\sin x}+1\right)+\frac{1}{1+\tan x} \log \left(\frac{1}{\cos x}+1\right) \\
=\log \left(\left(\frac{1}{\sin x}+1\right)^{\frac{1}{1+\cot x}} \cdot\left(\frac{1}{\cos x}+1\right)^{\frac{1}{1+\tan x}}\right) \Rightarrow
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
1+\sin x+\cos x \leq\left(\frac{1}{\sin x}+1\right)^{\frac{1}{1+\cot x}} \cdot\left(\frac{1}{\cos x}+1\right)^{\frac{1}{1+\tan x}} \\
1+\sin x+\cos x \leq(\csc x+1)^{\frac{1}{1+\cot x}} \cdot(\sec x+1)^{\frac{1}{1+\tan x}} \\
\sum_{c y c}(1+\csc A)^{\frac{1}{1+\cot A}} \cdot(1+\sec A)^{\frac{1}{1+\tan A}} \geq 3+\sum_{c y c} \sin A+\sum_{c y c} \cos A \\
=3+\frac{s}{R}+\left(1+\frac{r}{R}\right)=4+\left(\frac{1}{2} \sum_{c y c} \frac{h_{b}+h_{c}}{a}\right)+\left(2-2 \sum_{c y c} \frac{(s-a)^{2}}{b c}\right) \\
A m-G m \\
\geq
\end{gathered}+\sum_{c y c}\left(\frac{\sqrt{h_{b} \cdot h_{c}}}{a}-2 \cdot \frac{(s-a)^{2}}{b c}\right) .
$$

SP.308. Let $\left(x_{n}\right)_{\geq 1}, x_{1}=0, x_{n}=\frac{(1-n) x_{n-1}+1-2 n}{n x_{n-1}+2 n}$. Find:

$$
\Omega=\lim _{n \rightarrow \infty} \prod_{k=1}^{n}\left(2+x_{k}\right)
$$

Proposed by Florică Anastase-Romania

Solution by Kamel Benaicha-Algiers-Algerie

$$
\begin{gathered}
\Omega_{n}=\prod_{k=1}^{n}\left(2+x_{k}\right) \\
x_{n}=-1+\frac{1}{n} \cdot \frac{x_{n-1}+1}{x_{n-1}+2} \Rightarrow x_{n}+1=\frac{1}{n} \cdot \frac{x_{n-1}+1}{x_{n-1}+2} \Rightarrow x_{n-1}+2=\frac{1}{n} \cdot \frac{x_{n-1}+1}{x_{n}+1} \\
\Omega_{n}=\prod_{k=1}^{n}\left(2+x_{k}\right)=\prod_{k=1}^{n} \frac{1}{k+1} \cdot \frac{x_{k}+1}{x_{k+1}+1}= \\
=\frac{1}{2} \cdot \frac{x_{1}+1}{x_{2}+1} \cdot \frac{1}{3} \cdot \frac{x_{2}+1}{x_{3}+1} \cdot \ldots \cdot \frac{1}{n+1} \cdot \frac{x_{n}+1}{x_{n+1}+1}=\frac{1}{(n+1)!} \cdot \frac{x_{n}+1}{x_{n+1}+1}= \\
=\frac{1}{2(n+1)!} \cdot \frac{1}{x_{n+1}+1} \Rightarrow \Omega_{n}=\frac{1}{2 n!} \cdot \frac{1}{x_{n}+1}
\end{gathered}
$$

We have:

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\begin{gathered}
x_{n}+2=\frac{1}{n+1} \cdot \frac{x_{n}+1}{x_{n+1}+1} \Rightarrow \frac{1}{x_{n+1}+1}=(n+1) \cdot \frac{x_{n}+2}{x_{n}+1}=(n+1)\left(1+\frac{1}{1+x_{n}}\right) \\
\therefore \Omega_{n}=\frac{1}{2 n!}\left(1+\frac{1}{1+x_{n}}\right)=\frac{1}{2 n!}\left(1+2 n!\cdot \Omega_{n-1}\right) \\
\Omega_{n}-\Omega_{n-1}=\frac{1}{2 n!}
\end{gathered}
$$

So: $\Omega_{2}-\Omega_{1}+\Omega_{3}-\Omega_{2}+\cdots+\Omega_{n}-\Omega_{n-1}=\frac{1}{2}\left(\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{\mathbf{1}}{n!}\right) \Leftrightarrow$

$$
\begin{gathered}
\Omega_{n}-\Omega_{1}=\frac{1}{2} \sum_{k=2}^{\infty} \frac{1}{k!} \Rightarrow \Omega=\lim _{n \rightarrow \infty} \Omega_{n}=\Omega_{1}+\frac{1}{2} \sum_{k=2}^{\infty} \frac{1}{k!} \\
\Omega_{1}=\frac{3}{2} \Rightarrow \Omega=\lim _{n \rightarrow \infty} \prod_{k=1}^{n}\left(2+x_{k}\right)=\frac{3}{2}+\frac{1}{2}(e-2)=\frac{e+1}{2} \\
\left(\therefore \sum_{k=0}^{\infty} \frac{1}{k!}=e \text { denote Napier's constant }\right)
\end{gathered}
$$

SP.309. In any $\triangle A B C$ the following relationship holds:

$$
\frac{r}{4 R} \leq \sin \left(\frac{\pi-A}{4}\right) \sin \left(\frac{\pi-B}{4}\right) \sin \left(\frac{\pi-C}{4}\right) \leq \frac{1}{8}
$$

Proposed by Marian Ursărescu-Romania

Solution by Daniel Văcaru-Romania

$$
\text { We have: } \frac{r}{4 R}=\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} \text {. }
$$

Observe that: $\prod_{c y c} \sin \left(\frac{\pi-A}{4}\right)=\frac{\sum_{c y c} \sin \frac{A}{2}-1}{4} \geq \frac{3 \sqrt[3]{\Pi_{c y c} \sin \frac{A}{2}}-1}{4} \geq \prod_{c y c} \sin \frac{A}{2}$;

$$
\begin{equation*}
\text { Let's denote } \sqrt[3]{\prod_{c y c} \sin \frac{A}{2}}=x \tag{1}
\end{equation*}
$$

Then (1) became: $3 x-1 \geq 4 x^{3} \leftrightarrow(2 x-1)^{2}(1-x) \geq 0$, true because $x<1$.

$$
\text { For the right side, we have: } \frac{\sum_{c y c} \sin \frac{A}{2}-1}{4} \stackrel{t \rightarrow \sin \frac{t}{2} \operatorname{concave}}{4} \quad \frac{3 \sin \left(\frac{A+B+C}{6}\right)}{4}=\frac{1}{8}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
SP.310. Let $\Delta A^{\prime} B^{\prime} C^{\prime}$ the extouch triangle of $\triangle \mathrm{ABC}$. Prove that:
$\mathrm{B}^{\prime} \mathrm{C}^{\prime}$ is tangent of the incircle in $\triangle \mathrm{ABC}$ if and only if

$$
(s-b)^{2}+(s-c)^{2}=(s-a)^{2}
$$

Proposed by Marian Ursărescu-Romania

Solution by proposer

$$
\begin{equation*}
B^{\prime} \boldsymbol{C}^{\prime} \text {-is tangent } \Leftrightarrow \boldsymbol{B C} \boldsymbol{B}^{\prime} \boldsymbol{C} \text {-circumscribe } \Leftrightarrow \boldsymbol{B}^{\prime} \boldsymbol{C}^{\prime}+\boldsymbol{B C}=\boldsymbol{B} \boldsymbol{C}^{\prime}+\boldsymbol{C} B^{\prime} \tag{1}
\end{equation*}
$$

$\operatorname{In} \Delta A^{\prime} B^{\prime} C^{\prime}$ we have: $B^{\prime} C^{\prime}=\sqrt{x^{2}+y^{2}-2 x y \cos A}$
From (1)+(2) we have:

$$
\begin{gather*}
\sqrt{x^{2}+y^{2}-2 x y \cos A}=b+c-a-(x+y)=2(s-a)-(x+y) \Leftrightarrow \\
x^{2}+y^{2}-2 x y \cos A=4(s-a)^{2}+4(s-a)(x-y)+x^{2}+y^{2}+2 x y \tag{3}\\
\text { where } x+y<2(s-a) \\
4(s-a)^{2}-4(s-a)(x+y)+2 x y\left(1+\frac{b^{2}+c^{2}-a^{2}}{2 b c}\right)=0 \Leftrightarrow \\
4(s-a)^{2}-4(s-a)(x+y)+\frac{4 x y}{b c} \cdot s(s-a)=0 \\
s-a-x-y+\frac{x y}{b c} \cdot s=0 \\
b(s-c)\left(\frac{y}{b(b-y)}+\frac{1}{b}\right)+c(s-b)\left(\frac{x}{c(c-x)}+\frac{1}{c}\right)=s \\
(s-c) \frac{y}{b-y}+(s-b) \frac{x}{c-x}=s-(s-c)-(s-b)=b+c-s=s-a \tag{4}
\end{gather*}
$$

But B^{\prime}, C^{\prime}-the contact points of the external circumscription circle, then

$$
\begin{equation*}
x=s-b, y=s-c, s-y=s-a, c-x=s-a \tag{5}
\end{equation*}
$$

From (4)+(5) $\Leftrightarrow \frac{(s-c)^{2}}{s-a}+\frac{(s-b)^{2}}{s-a}=s-a \Leftrightarrow(s-b)^{2}+(s-c)^{2}=(s-a)^{2}$

SP.311. If $A \in M_{2}(\mathbb{R})$ such that $\operatorname{det}\left(A^{4}+4 I_{2}\right)=0$. Prove that:

$$
(\operatorname{det} A)^{2}=(\operatorname{Tr} A)^{2}
$$

Proposed by Marian Ursărescu-Romania

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Solution 1 by Mokhtar Khassani-Mostaganem-Algerie

$$
\begin{gathered}
\operatorname{det}\left(A^{4}+4 I_{2}\right)= \\
=\operatorname{det}\left(A-(1+i) I_{2}\right) \operatorname{det}\left(A-(1-i) I_{2}\right) \operatorname{det}\left(A-(-1+i) I_{2}\right) \operatorname{det}\left(A-(-1-i) I_{2}\right)=0 \\
P_{A}(x)=x^{2} \pm 2 x+2=x^{2}-\operatorname{Tr}(A) x+\operatorname{det}(A) \Rightarrow(\operatorname{det} A)^{2}=(\operatorname{Tr} A)^{2}
\end{gathered}
$$

Solution 2 by Ravi Prakash-New Delhi-India

$$
\begin{gathered}
\text { Let } A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \text { we have: } \\
A^{4}+4 I_{2}=A^{4}+4 A^{2}+4 I_{2}-4 A^{2}=\left(A^{2}+2 I_{2}\right)^{2}-(2 A)^{2}= \\
=\left(A^{2}+2 A+2 I_{2}\right)\left(A^{2}-2 A+2 I_{2}\right)= \\
=\left(A-(1+i) I_{2}\right)\left(A-(1-i) I_{2}\right)\left(A-(-1+i) I_{2}\right)\left(A-(-1-i) I_{2}\right) \\
\text { Now, } \operatorname{det}\left(A^{4}+4 I_{2}\right)=
\end{gathered}
$$

$$
\begin{gathered}
=\operatorname{det}\left(A-(1+i) I_{2}\right) \operatorname{det}\left(A-(1-i) I_{2}\right) \operatorname{det}\left(A-(-1+i) I_{2}\right) \operatorname{det}\left(A-(-1-i) I_{2}\right)=0 \\
\Rightarrow \operatorname{det}\left(A-(1+i) I_{2}\right)=\operatorname{det}\left(A-(1-i) I_{2}\right)=\operatorname{det}\left(A-(-1+i) I_{2}\right)= \\
=\operatorname{det}\left(A+(1+i) I_{2}\right)=0
\end{gathered}
$$

Suppose that: $\operatorname{det}\left(A+(1+i) I_{2}\right)=0 \Rightarrow$

$$
(a+1+i)(d+1+i)-b c=0 \Leftrightarrow
$$

$$
a d-b c+(1+i)(a+d)+2 i=0 \Leftrightarrow
$$

$$
\left\{\begin{array} { c }
{ a d - b c + a + d = 0 } \\
{ a + d + 2 = 0 }
\end{array} \Rightarrow \left\{\begin{array}{c}
a+d=-2 \\
a d-b c=2
\end{array} \Rightarrow(\operatorname{det} A)^{2}=(\operatorname{Tr} A)^{2}\right.\right.
$$

Similarly, for the other cases.

SP.312. In $\triangle A B C$ let the point $A^{\prime} \in(B C)$ such that the incircle of $\triangle A A^{\prime} B$ and $\triangle A A^{\prime} C$ have same radius. Prove that:

$$
\sqrt[3]{A A^{\prime} \cdot B B^{\prime} \cdot C C^{\prime}} \geq 3 r
$$

Proposed by Marian Ursărescu-Romania

Solution by proposer

Let: $\boldsymbol{r}_{\boldsymbol{A}}$-the radius of circle inscribed $\triangle \boldsymbol{A} \boldsymbol{A}^{\prime} B$ and $\triangle \boldsymbol{A} \boldsymbol{A}^{\prime} C$.

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{align*}
& S=S_{A B A^{\prime}}+S_{A C A^{\prime}}=s_{A B A^{\prime}} \cdot r_{A}+s_{A C A^{\prime}} \cdot r_{A}=r_{A} \cdot\left(s_{A B A^{\prime}}+s_{A C A^{\prime}}\right)=r_{A} \cdot\left(s+A A^{\prime}\right) ; \\
& \Delta I I_{1} I_{2} \sim \Delta I B C \Rightarrow \frac{I_{1} I_{2}}{B C}=\frac{r-r_{A}}{r}=1-\frac{r_{A}}{r} \Rightarrow \frac{r_{A}}{r}=1-\frac{I_{1} I_{2}}{a} ; \tag{2}
\end{align*}
$$

Let D, E-the points of intersection with sides $B C$ of inscribed circle $I_{1} I_{2} E D$-rectangle,

$$
\begin{align*}
& \text { then: } I_{1} I_{2}=E D=D A^{\prime}+A^{\prime} E=s_{A B A^{\prime}}-c+s_{A C A^{\prime}}-b=s-b-c+A A^{\prime} ; \tag{3}\\
& \text { From (2)+(3) we have: } \frac{r_{A}}{r}=1-\frac{s-b-c-A A^{\prime}}{a}=\frac{s-A A^{\prime}}{a} \Rightarrow r_{A}=\frac{r}{a}\left(s-A A^{\prime}\right) \tag{4}\\
& \qquad \begin{array}{r}
\text { From (1)+(4) } \Rightarrow \frac{r}{a}\left(s-A A^{\prime}\right)\left(s+A A^{\prime}\right)=S \Rightarrow s^{2}-A A^{\prime 2}=a s \\
\Rightarrow A A^{\prime 2}=s^{2}-s a \Rightarrow A A^{\prime}=\sqrt{s(s-a)} \text { and analogous } \\
B B^{\prime}=\sqrt{s(s-b)} ; C C^{\prime}=\sqrt{s(s-c)} \\
A A^{\prime} \cdot B B^{\prime} \cdot C C^{\prime}=s \sqrt{s(s-a)(s-b)(s-c)}=s \cdot S=s^{2} r \geq 27 r^{3} \\
\sqrt[3]{A A^{\prime} \cdot B B^{\prime} \cdot C C^{\prime}} \geq 3 r
\end{array}
\end{align*}
$$

SP.313. Let $x, y, z>0$ such that $x y z=1$.
Find the minimum of the expression:

$$
P=2(x+y+z)+\frac{x}{y^{3}+z^{3}+1}+\frac{y}{z^{3}+x^{3}+1}+\frac{z}{x^{3}+y^{3}+1}
$$

Proposed by Hoang Le Nhat Tung-Hanoi-Vietnam

Solution 1 by Tran Hong-Dong Thap-Vietnam

Let

$$
\begin{aligned}
\Omega & =\frac{x}{y^{3}+z^{3}+1}+\frac{y}{z^{3}+x^{3}+1}+\frac{z}{x^{3}+y^{3}+1} \stackrel{x y z=1}{=} \sum_{c y c} \frac{x}{y^{3}+z^{3}+x y z}= \\
& =\sum_{c y c} \frac{x^{2}}{x y^{3}+x z^{3}+x^{2} y z} \stackrel{\text { Bergstrom }}{\geq} \frac{(x+y+z)^{2}}{\sum x y\left(x^{2}+y^{2}\right)+(x+y+z) x y z}= \\
= & \frac{(x+y+z)^{2}}{\left(x^{2}+y^{2}+z^{2}\right)(x y+y z+z x)}=\frac{(x+y+z)^{2}(x y+y z+z x)}{\left(x^{2}+y^{2}+z^{2}\right)(x y+y z+z x)^{2}} \stackrel{A M-G M}{\geq} \\
= & \frac{(x+y+z)^{2}(x y+y z+z x)}{\frac{\left(x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x\right)^{3}}{27}}=\frac{27(x+y+z)^{2}(x y+y z+z x)}{\left((x+y+z)^{2}\right)^{3}}=
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\begin{gathered}
=\frac{27(x y+y z+z x)}{(x+y+z)^{4}} \stackrel{A M-G M}{\geq} \frac{27 \cdot 3 \sqrt[3]{(x y z)^{2}}}{(x+y+z)^{4}}=\frac{27 \cdot 3 \sqrt[3]{1^{2}}}{(x+y+z)^{4}}=\frac{3^{4}}{(x+y+z)^{4}} \Rightarrow \\
P=2(x+y+z)+\Omega \geq 2(x+y+z)+\left(\frac{3}{x+y+z}\right)^{4}= \\
=2 \cdot 3 \cdot \frac{x+y+z}{3}+\left(\frac{3}{x+y+z}\right)^{4}=6 t+\frac{1}{t^{4}} ;\left(t=\frac{x+y+z}{3} \geq \sqrt[3]{x y z}=1\right)
\end{gathered}
$$

$$
\varphi(t)=6 t+\frac{1}{t^{4}}=t+\cdots+t+\frac{1}{t^{4}} \stackrel{A M-G M}{\geq} 7^{7} \sqrt{t^{6} \cdot \frac{1}{t^{4}}}=7 \cdot \sqrt[7]{t^{2}} \geq 7 \Rightarrow P \geq \varphi(t) \geq 7
$$

$$
P_{\text {Min }}=7 \Leftrightarrow\left\{\begin{array}{c}
x=y=z \\
x y z=1
\end{array} \Leftrightarrow x=y=z=1\right. \text {. }
$$

Solution 2 by proposer

By Cauchy-Schwartz inequality, we have:

$$
\begin{gather*}
\frac{x}{y^{3}+z^{3}+1}+\frac{y}{z^{3}+x^{3}+1}+\frac{z}{x^{3}+y^{3}+1}= \\
=\frac{x}{y^{3}+z^{3}+x y z}+\frac{y}{z^{3}+x^{3}+x y z}+\frac{z}{x^{3}+y^{3}+x y z}= \\
=\frac{x^{2}}{x y^{3}+x z^{3}+x^{2} y z}+\frac{y^{2}}{y z^{3}+y x^{3}+x y^{2} z}+\frac{z^{2}}{z x^{3}+z y^{3}+x y z^{2}} \geq \\
\geq \frac{(x+y+z)^{2}}{\left(x y^{3}+x z^{3}+x^{2} y z\right)+\left(y z^{3}+y x^{3}+x y^{2} z\right)+\left(z x^{3}+z y^{3}+x y z^{2}\right)} \Rightarrow \\
\frac{x}{y^{3}+z^{3}+1}+\frac{y}{z^{3}+x^{3}+1}+\frac{z}{x^{3}+y^{3}+1} \geq \\
\geq \frac{(x+y+z)^{2}}{x y\left(x^{2}+y^{2}\right)+y z\left(y^{2}+z^{2}\right)+z x\left(z^{2}+x^{2}\right)+x y z(x+y+z)} ; \tag{1}
\end{gather*}
$$

Other,

$$
\begin{gathered}
\frac{(x+y+z)^{2}}{x y\left(x^{2}+y^{2}\right)+y z\left(y^{2}+z^{2}\right)+z x\left(z^{2}+x^{2}\right)+x y z(x+y+z)}= \\
=\frac{(x+y+z)^{2}}{(x y+y z+z x)\left(x^{2}+y^{2}+z^{2}\right)} \geq \frac{3}{x^{2}+y^{2}+z^{2}}
\end{gathered}
$$

From (1) we get:

$$
\frac{x}{y^{3}+z^{3}+1}+\frac{y}{z^{3}+x^{3}+1}+\frac{z}{x^{3}+y^{3}+1} \geq \frac{3}{x^{2}+y^{2}+z^{2}} \Rightarrow
$$

ROMANIAN MATHEMATICAL MAGAZINE

$$
\begin{gather*}
P=2(x+y+z)+\frac{\text { www.ssmrmh.ro }}{y^{3}+z^{3}+1}+\frac{y}{z^{3}+x^{3}+1}+\frac{z}{x^{3}+y^{3}+1} \geq \\
\geq 2(x+y+z)+\frac{3}{x^{2}+y^{2}+z^{2}} ;
\end{gather*}
$$

By AM-GM inequality, we have:

$$
\begin{gather*}
x y+y z+z x \geq 3 \sqrt[3]{(x y z)^{2}}=3 \Leftrightarrow 2(x y+y z+z x) \geq 6 \Leftrightarrow \\
\frac{3}{x^{2}+y^{2}+z^{2}}=\frac{3}{(x+y+z)^{2}-2(x y+y z+z x)} \geq \frac{3}{(x+y+z)^{2}-6} \tag{3}
\end{gather*}
$$

From (2),(3) we get:

$$
\begin{equation*}
P \geq 2(x+y+z)+\frac{3}{(x+y+z)^{2}-6}=2 t+\frac{3}{t^{2}-6} ;(t=a+b+c>0) \tag{4}
\end{equation*}
$$

Now, we have:

$$
\begin{gathered}
2 t+\frac{3}{t^{2}-6} \geq 7 \Leftrightarrow \frac{2 t^{3}-12 t+3}{t^{2}-6} \geq 7 \Leftrightarrow 2 t^{3}-12 t+3 \geq 7 t^{2}-42 \Leftrightarrow \\
2 t^{3}-7 t^{2}-12 t+45 \geq 0 \Leftrightarrow(t-3)\left(2 t^{2}-t-15\right) \geq 0 \Leftrightarrow(t-3)^{2}(2 t+5) \geq 0(\text { true })
\end{gathered}
$$

From (4),(5) we get:

$$
P \geq 7 \Rightarrow P_{\operatorname{Min}}=7 . \text { Equality occurs if }
$$

$$
\left\{\begin{array} { c }
{ x , y , z > 0 ; x y z = 1 } \\
{ \frac { x } { y ^ { 3 } + z ^ { 3 } + 1 } = \frac { y } { z ^ { 3 } + x ^ { 3 } + 1 } = \frac { z } { x ^ { 3 } + y ^ { 3 } + 1 } } \\
{ t = y = z } \\
{ t = y + y + z = 3 }
\end{array} \Leftrightarrow \left\{\begin{array}{c}
x=y=z>0 \\
x y z=1
\end{array} \Leftrightarrow x=y=z=1 .\right.\right.
$$

SP. 314 Let $a, b, c>0$ such that $a+b+c=3$. Prove that:

$$
\frac{a^{2}}{b^{4} c \cdot \sqrt[3]{4\left(b^{6}+1\right)}}+\frac{b^{2}}{c^{4} a \cdot \sqrt[3]{4\left(c^{6}+1\right)}}+\frac{c^{2}}{a^{4} b \cdot \sqrt[3]{4\left(a^{6}+1\right)}} \geq \frac{3}{2}
$$

Proposed by Hoang Le Nhat Tung-Hanoi-Vietnam
Solution by proposer

$$
\begin{equation*}
\frac{a^{2}}{b^{4} c \cdot \sqrt[3]{4\left(b^{6}+1\right)}}+\frac{b^{2}}{c^{4} a \cdot \sqrt[3]{4\left(c^{6}+1\right)}}+\frac{c^{2}}{a^{4} b \cdot \sqrt[3]{4\left(a^{6}+1\right)}} \geq \frac{3}{2} \tag{1}
\end{equation*}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\text { We have: } \begin{aligned}
b^{6}+1 & =\left(b^{2}+1\right)\left(b^{4}-b^{2}+1\right)=\left(b^{2}+1\right)\left(\left(b^{2}+1\right)^{2}-(b \sqrt{3})^{2}\right)= \\
& =\left(b^{2}+1\right)\left(b^{2}-b \sqrt{3}+1\right)\left(b^{2}+b \sqrt{3}+1\right)
\end{aligned}
$$

By AM-GM inequality, we have:

$$
\begin{gathered}
\sqrt[3]{4\left(b^{6}+1\right)}=\sqrt[3]{\left(b^{2}+1\right)\left[2(2+\sqrt{3})\left(b^{2}-b \sqrt{3}+1\right)\right]\left[2(2-\sqrt{3})\left(b^{2}+b \sqrt{3}+1\right)\right]} \leq \\
\leq \frac{\left(b^{2}+1\right)+\left[2(2+\sqrt{3})\left(b^{2}-b \sqrt{3}+1\right)\right]+\left[2(2-\sqrt{3})\left(b^{2}+b \sqrt{3}+1\right)\right]}{3}= \\
=\frac{9 b^{2}-12 b+9}{3}=3 b^{2}-4 b+3 \Rightarrow \\
\sqrt[3]{4\left(b^{6}+1\right)} \leq 3 b^{2}-4 b+3
\end{gathered} \begin{gathered}
\frac{1}{\sqrt[3]{4\left(b^{6}+1\right)}} \geq \frac{1}{3 b^{2}-4 b+3} \Leftrightarrow \\
b^{4} c \cdot \sqrt[3]{4\left(b^{6}+1\right)}
\end{gathered} \frac{a^{2}}{b^{4} c\left(3 b^{2}-4 b+3\right)} .
$$

Similarly:

$$
\frac{b^{2}}{c^{4} a \cdot \sqrt[3]{4\left(c^{6}+1\right)}} \geq \frac{b^{2}}{c^{4} a\left(3 c^{2}-4 c+3\right)}
$$

$$
\frac{c^{2}}{a^{4} b \cdot \sqrt[3]{4\left(a^{6}+1\right)}} \geq \frac{c^{2}}{a^{4} b\left(3 a^{2}-4 a+3\right)}
$$

Hence,
$\frac{a^{2}}{b^{4} c \cdot \sqrt[3]{4\left(b^{6}+1\right)}}+\frac{b^{2}}{c^{4} a \cdot \sqrt[3]{4\left(c^{6}+1\right)}}+\frac{c^{2}}{a^{4} b \cdot \sqrt[3]{4\left(a^{6}+1\right)}} \geq$

$$
\begin{equation*}
\geq \frac{a^{2}}{b^{4} c\left(3 b^{2}-4 b+3\right)}+\frac{b^{2}}{c^{4} a\left(3 c^{2}-4 c+3\right)}+\frac{c^{2}}{a^{4} b\left(3 a^{2}-4 a+3\right)} \tag{2}
\end{equation*}
$$

By Cauchy-Schwartz inequality, we have:

$$
\begin{aligned}
& \frac{a^{2}}{b^{4} c\left(3 b^{2}-4 b+3\right)}+\frac{b^{2}}{c^{4} a\left(3 c^{2}-4 c+3\right)}+\frac{c^{2}}{a^{4} b\left(3 a^{2}-4 a+3\right)}= \\
& =\frac{\left(\frac{a^{2}}{b^{2}}\right)^{2}}{a^{2} c\left(3 b^{2}-4 b+3\right)}+\frac{\left(\frac{b^{2}}{c^{2}}\right)^{2}}{b^{2} a\left(3 c^{2}-4 c+3\right)}+\frac{\left(\frac{c^{2}}{a^{2}}\right)^{2}}{c^{2} b\left(3 a^{2}-4 a+3\right)} \geq
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

$$
\begin{align*}
& \geq \frac{\text { www.ssmrmh.ro }}{a^{2} c\left(3 b^{2}-4 b+3\right)+b^{2} a\left(3 c^{2}-4 c+3\right)+c^{2} b\left(3 a^{2}-4 a+3\right)}= \\
& =\frac{\left(\frac{a^{2}}{c^{2}}+\frac{b^{2}}{a^{2}}+\frac{c^{2}}{2}\right)^{2}}{3 a b c(a b+b c+c a)-4 a b c(a+b+c)+3\left(a b^{2}+b c^{2}+c a^{2}\right)} \Rightarrow \\
& \frac{\left(a^{2}\right.}{b^{2}}+\frac{b^{2}}{a^{2}}+\frac{c^{2}}{b^{4} c\left(3 b^{2}-4 b+3\right)}+\frac{b^{2}}{c^{4} a\left(3 c^{2}-4 c+3\right)}+\frac{c^{2}}{a^{4} b\left(3 a^{2}-4 a+3\right)} \geq \\
& \geq \frac{\left(\frac{a^{2}}{b^{2}}+\frac{b^{2}}{c^{2}}+\frac{c^{2}}{a^{2}}\right)^{2}}{3 a b c(a b+b c+c a)-4 a b c(a+b+c)+3\left(a b^{2}+b c^{2}+c a^{2}\right)} ;
\end{align*}
$$

By AM-GM inequality, we have:

$$
\begin{gather*}
\frac{a^{2}}{b^{2}}+\frac{b^{2}}{c^{2}}+\frac{c^{2}}{a^{2}}=\frac{\frac{a^{2}}{b^{2}}+\frac{a^{2}}{b^{2}}+\frac{b^{2}}{c^{2}}}{3}+\frac{\frac{b^{2}}{c^{2}}+\frac{b^{2}}{c^{2}}+\frac{c^{2}}{a^{2}}}{3}+\frac{\frac{c^{2}}{a^{2}}+\frac{c^{2}}{a^{2}}+\frac{a^{2}}{b^{2}}}{3} \geq \\
\geq \frac{3 \sqrt[3]{\frac{a^{2}}{b^{2}} \cdot \frac{a^{2}}{b^{2}} \frac{b^{2}}{c^{2}}}}{3}+\frac{3 \sqrt[3]{\frac{b^{2}}{c^{2}} \cdot \frac{b^{2}}{c^{2}} \cdot \frac{c^{2}}{a^{2}}}}{3}+\frac{3 \sqrt[3]{\frac{c^{2}}{a^{2}} \cdot \frac{c^{2}}{a^{2}} \cdot \frac{a^{2}}{b^{2}}}}{3}= \\
=\sqrt[3]{\frac{a^{4}}{b^{2} c^{2}}}+\sqrt[3]{\frac{b^{4}}{c^{2} a^{2}}}+\sqrt[3]{\frac{c^{4}}{a^{2} b^{2}}} \Rightarrow \\
\frac{a^{2}}{b^{2}}+\frac{b^{2}}{c^{2}}+\frac{c^{2}}{a^{2}} \geq \sqrt[3]{\frac{a^{4}}{b^{2} c^{2}}}+\sqrt[3]{\frac{b^{4}}{c^{2} a^{2}}}+\sqrt[3]{\frac{c^{4}}{a^{2} b^{2}}} ; \tag{4}
\end{gather*}
$$

Other, $3=a+b+c \geq 3 \sqrt[3]{a b c} \Leftrightarrow \sqrt[3]{a b c} \leq 1 \Leftrightarrow \sqrt[3]{(a b c)^{2}} \leq 1$; (5)
From (4),(5) we get:

$$
\begin{equation*}
\frac{a^{2}}{b^{2}}+\frac{b^{2}}{c^{2}}+\frac{c^{2}}{a^{2}} \geq \frac{a^{2}+b^{2}+c^{2}}{1} \Leftrightarrow \frac{a^{2}}{b^{2}}+\frac{b^{2}}{c^{2}}+\frac{c^{2}}{a^{2}} \geq a^{2}+b^{2}+c^{2} \tag{6}
\end{equation*}
$$

From (3),(6) we get:

$$
\begin{align*}
& \frac{a^{2}}{b^{4} c\left(3 b^{2}-4 b+3\right)}+\frac{b^{2}}{c^{4} a\left(3 c^{2}-4 c+3\right)}+\frac{c^{2}}{a^{4} b\left(3 a^{2}-4 a+3\right)} \geq \\
\geq & \frac{\left(a^{2}+b^{2}+c^{2}\right)^{2}}{3 a b c(a b+b c+c a)-4 a b c(a+b+c)+3\left(a b^{2}+b c^{2}+c a^{2}\right)} \tag{7}
\end{align*}
$$

Now, we have:

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
$3 a b c(a b+b c+c a) \leq a b c(a+b+c)^{2}=9 a b c=3 a b c(a+b+c) \Rightarrow$

$$
\begin{gathered}
3 a b c(a+b+c)-4 a b c(a+b+c)+3\left(a b^{2}+b c^{2}+c a^{2}\right) \leq \\
\leq-a b c(a+b+c)+3\left(a b^{2}+b c^{2}+c a^{2}\right) \Leftrightarrow \\
3 a b c(a+b+c)-4 a b c(a+b+c)+3\left(a b^{2}+b c^{2}+c a^{2}\right) \leq \\
\leq-a b c(a+b+c)+(a+b+c)\left(a b^{2}+b c^{2}+c a^{2}\right) \Leftrightarrow \\
3 a b c(a+b+c)-4 a b c(a+b+c)+3\left(a b^{2}+b c^{2}+c a^{2}\right) \leq
\end{gathered}
$$

$$
\leq-a b c(a+b+c)+\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right)+\left(a b^{3}+b c^{3}+c a^{3}\right)+a b c(a+b+c)
$$

$$
\begin{gathered}
3 a b c(a+b+c)-4 a b c(a+b+c)+3\left(a b^{2}+b c^{2}+c a^{2}\right) \leq \\
\leq\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right)+\left(a b^{3}+b c^{3}+c a^{3}\right) \Leftrightarrow \\
\frac{\left(a^{2}+b^{2}+c^{2}\right)^{2}}{3 a b c(a b+b c+c a)-4 a b c(a+b+c)+3\left(a b^{2}+b c^{2}+c a^{2}\right)} \geq
\end{gathered}
$$

$$
\begin{equation*}
\geq \frac{\left(a^{2}+b^{2}+c^{2}\right)^{2}}{\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right)+\left(a b^{3}+b c^{3}+c a^{3}\right)} \tag{8}
\end{equation*}
$$

From (7),(8) we get:

$$
\begin{gather*}
\frac{a^{2}}{b^{4} c\left(3 b^{2}-4 b+3\right)}+\frac{b^{2}}{c^{4} a\left(3 c^{2}-4 c+3\right)}+\frac{c^{2}}{a^{4} b\left(3 a^{2}-4 a+3\right)} \geq \\
\geq \frac{\left(a^{2}+b^{2}+c^{2}\right)^{2}}{\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right)+\left(a b^{3}+b c^{3}+c a^{3}\right)} ; \tag{9}
\end{gather*}
$$

We will prove:

$$
\begin{gather*}
\frac{\left(a^{2}+b^{2}+c^{2}\right)^{2}}{\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right)+\left(a b^{3}+b c^{3}+c a^{3}\right)} \geq \frac{3}{2} ; \\
\Leftrightarrow 2\left(a^{2}+b^{2}+c^{2}\right)^{2} \geq 3\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right)+3\left(a b^{3}+b c^{3}+c a^{3}\right) \\
\Leftrightarrow 2\left(a^{4}+b^{4}+c^{4}\right)+\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right) \geq 3\left(a b^{3}+b c^{3}+c a^{3}\right) ; \tag{11}
\end{gather*}
$$

By AM-GM inequality, we have:

$$
\begin{align*}
& a^{2}\left(a^{2}+c^{2}\right)+b^{2}\left(b^{2}+a^{2}\right)+c^{2}\left(c^{2}+b^{2}\right) \geq a^{2} \cdot 2 a c+b^{2} \cdot 2 b c+c^{2} \cdot 2 c b \\
& \quad=2\left(a b^{3}+b c^{3}+c a^{3}\right) \Leftrightarrow \\
& \Leftrightarrow\left(a^{4}+b^{4}+c^{4}\right)+\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right) \geq 2\left(a b^{3}+b c^{3}+c a^{3}\right) \tag{12}
\end{align*}
$$

Other,

$$
a^{4}+b^{4}+c^{4}=\frac{a^{4}+b^{4}+b^{4}+b^{4}}{4}+\frac{b^{4}+c^{4}+c^{4}+c^{4}}{4}+\frac{c^{4}+a^{4}+a^{4}+a^{4}}{4} \geq
$$

$$
\begin{gather*}
\text { ROMANIAN MATHEMATICAL MAGAZINE } \\
\geq \frac{4 \sqrt[4]{a^{4} b^{12}}}{4}+\frac{4 \sqrt[4]{b^{4} c^{12}}}{4}+\frac{4 \sqrt[4]{c^{4} a^{12}}}{4}=a b^{3}+b c^{3}+c a^{3} \Rightarrow \\
a^{4}+b^{4}+c^{4} \geq a b^{3}+b c^{3}+c a^{3} ; \tag{13}\\
\text { From (12),(13) we get: } \\
2\left(a^{4}+b^{4}+c^{4}\right)+\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right) \geq 3\left(a b^{3}+b c^{3}+c a^{3}\right) \Rightarrow(11) \text { is true } \Rightarrow(10)
\end{gather*}
$$

is true.

From (9),(10) we get:

$$
\begin{equation*}
\frac{a^{2}}{b^{4} c\left(3 b^{2}-4 b+3\right)}+\frac{b^{2}}{c^{4} a\left(3 c^{2}-4 c+3\right)}+\frac{c^{2}}{a^{4} b\left(3 a^{2}-4 a+3\right)} \geq \frac{3}{2} \Rightarrow \tag{1}
\end{equation*}
$$

is true and we get the result.
Equality occurs if $\left\{\begin{array}{c}\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}>0 ; a+b+c=3 \\ \boldsymbol{a}=\boldsymbol{b}=\boldsymbol{c}\end{array} \Leftrightarrow \boldsymbol{a}=\boldsymbol{b}=\boldsymbol{c}=\mathbf{1}\right.$.

SP.315. Find:

$$
\Omega=\cos ^{3} \frac{2 \pi}{7} \sin ^{6} \frac{2 \pi}{7} \sin ^{6} \frac{3 \pi}{7}-\cos ^{3} \frac{3 \pi}{7} \sin ^{6} \frac{3 \pi}{7} \sin ^{6} \frac{\pi}{7}-\cos ^{3} \frac{\pi}{7} \sin ^{6} \frac{\pi}{7} \sin ^{6} \frac{2 \pi}{7}
$$

Proposed by Pedro Pantoja-Natal-Brazil

Solution by proposer

The polynomial equation $8 y^{3}+4 y^{2}-4 y-1=0$ have roots equal to

$$
\cos \frac{2 k \pi}{7}, k=1,2,3, . .
$$

We will do the transformation $t=-\frac{x}{1-x}=1-\frac{1}{1-x} ; x=\cos \frac{2 k \pi}{7}, k=1,2,3, \ldots$
Note that $1-\cos \frac{2 k \pi}{7}=2 \sin ^{2} \frac{k \pi}{7}$, then the polynomial equation $8 y^{3}-4 y^{2}-4 y+1=0$ have roots equal to $x=-\cos \frac{2 k \pi}{7},=1,2,3, .$.
The polynomial equation $8(y-1)^{3}-4(y-1)^{2}-4(y-1)+1=0 \Leftrightarrow$ $8 y^{3}-28 y^{2}+28 y-7=0$ have roots equal to $1-\cos \frac{2 k \pi}{7}, k=1,2,3, \ldots$
The polynomial equation $7 y^{3}-28 y^{2}+28 y-8=0$ have roots equal to

ROMANIAN MATHEMATICAL MAGAZINE

$$
\frac{1}{\frac{1}{1-\cos \frac{2 k \pi}{7}}}, k=1,2,3, \ldots
$$

The polynomial equation $7 y^{3}+28 y^{2}+28 y+8=0$ have roots equal to

$$
\frac{-1}{1-\cos \frac{2 k \pi}{7}}, k=1,2,3, \ldots
$$

The polynomial equation $7(y-1)^{3}+28(y-1)^{2}+28(y-1)+8=0 \Leftrightarrow$

$$
7 y^{3}+7 y^{2}-7 y+1=0 \text { have roots } b_{k}=1+\frac{-1}{1-\cos \frac{2 k \pi}{7}}, k=1,2,3, \ldots
$$

$$
\text { Therefore }\left\{\begin{array}{c}
b_{1}+b_{2}+b_{3}=-1 \\
b_{1} b_{2}+b_{2} b_{3}+b_{3} b_{1}=-1 \\
b_{1} b_{2} b_{3}=-\frac{1}{7}
\end{array}\right.
$$

$$
\Rightarrow b_{1}^{2}+b_{2}^{2}+b_{3}^{2}=(-1)^{2}-2 \cdot(-1)=3 \text { and }
$$

$$
b_{1}^{3}+b_{2}^{3}+b_{3}^{3}-3 b_{1} b_{2} b_{3}=\left(b_{1}+b_{2}+b_{3}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}-b_{1} b_{2}-b_{2} b_{3}-b_{3} b_{1}\right) \Rightarrow
$$

$$
b_{1}^{3}+b_{2}^{3}+b_{3}^{3}=-\frac{25}{7}
$$

$$
\text { Hence, } \frac{\cos ^{32 \pi} \frac{7}{7}}{\sin ^{3} \frac{\pi}{7}}+\frac{\cos ^{3} \frac{4 \pi}{7}}{\sin ^{3} \frac{2 \pi}{7}}+\frac{\cos ^{3} \frac{6 \pi}{7}}{\sin ^{3} \frac{3 \pi}{7}}=\frac{25}{56}
$$

Because $\sin \frac{\pi}{7} \sin \frac{2 \pi}{7} \sin \frac{3 \pi}{7}=\frac{\sqrt{7}}{8}$ we have:

$$
\Omega=\cos ^{3} \frac{2 \pi}{7} \sin ^{6} \frac{2 \pi}{7} \sin ^{6} \frac{3 \pi}{7}-\cos ^{3} \frac{3 \pi}{7} \sin ^{6} \frac{3 \pi}{7} \sin ^{6} \frac{\pi}{7}-\cos ^{3} \frac{\pi}{7} \sin ^{6} \frac{\pi}{7} \sin ^{6} \frac{2 \pi}{7}=
$$

$$
=\frac{1225}{2^{21}}
$$

UP.301. If $S_{n}=\sum_{k=1}^{n} 3^{k-1} \cdot \sin ^{3} \frac{\pi}{3^{k+1}}$ and $I=\pi \int_{\frac{1}{\sqrt{3}}}^{1} \frac{x}{\tan ^{-1} x} d x$ then find:

$$
\Omega=\lim _{n \rightarrow \infty}\left([I] \cdot S_{n}\right)^{n} ;[*]-\boldsymbol{G I F}
$$

Proposed by Florică Anastase-Romania

Solution 1 by Adrian Popa-Romania

$$
\sin 3 x=3 \sin x-4 \sin ^{3} x \Rightarrow 4 \sin ^{3} x=3 \sin x-\sin 3 x \Rightarrow \sin ^{3} x=\frac{3 \sin x-\sin 3 x}{4}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{aligned}
& S_{n}=\sum_{k=1}^{n} 3^{k-1} \cdot \sin ^{3} \frac{\pi}{3^{k+1}}=\frac{1}{4} \cdot \sum_{k=1}^{n} 3^{k-1}\left(3 \sin \frac{\pi}{3^{k+1}}-\sin \frac{\pi}{3^{k}}\right)= \\
= & \frac{1}{4} \cdot \sum_{k=1}^{n}\left(3^{k} \sin \frac{\pi}{3^{k+1}}-3^{k-1} \sin \frac{\pi}{3^{k}}\right)=\frac{1}{4} \cdot\left(3^{n} \sin \frac{\pi}{3^{n+1}}-\sin \frac{\pi}{3}\right)= \\
& =\frac{1}{4} \cdot\left(\frac{\sin \frac{\pi}{3^{n+1}}}{\frac{1}{3^{n+1}}} \cdot \frac{1}{3}-\frac{\sqrt{3}}{2}\right)=\frac{\pi}{12} \cdot \frac{\sin \frac{\pi}{3^{n+1}}}{\frac{\pi}{3^{n+1}}}-\frac{\sqrt{3}}{8} \xrightarrow[n \rightarrow \infty]{12}-\frac{\pi}{8}
\end{aligned}
$$

$$
\text { Now, } \frac{1}{\sqrt{3}}<x<1 \Rightarrow \frac{\pi}{6}<\tan ^{-1} x<\frac{\pi}{4} \Rightarrow \frac{4}{\pi}<\frac{1}{\tan ^{-1} x}<\frac{6}{\pi} \Rightarrow \frac{4 x}{\pi}<\frac{x}{\tan ^{-1} x}<\frac{6 x}{\pi}
$$

$$
\begin{gathered}
\int_{\frac{1}{\sqrt{3}}}^{1} \frac{4 x}{\pi} d x<\int_{\frac{1}{\sqrt{3}}}^{1} \frac{x}{\tan ^{-1} x} d x<\int_{\frac{1}{\sqrt{3}}}^{1} \frac{6 x}{\pi} d x \Leftrightarrow \\
\left.\frac{4}{\pi} \cdot \frac{x^{2}}{2}\right|_{\frac{1}{\sqrt{3}}} ^{1}<\int_{\frac{1}{\sqrt{3}}}^{1} \frac{x}{\tan ^{-1} x} d x<\left.\frac{6}{\pi} \cdot \frac{x^{2}}{2}\right|_{\frac{1}{\sqrt{3}}} ^{1} \Leftrightarrow \\
\frac{2}{\pi}\left(1-\frac{1}{3}\right)<\int_{\frac{1}{\sqrt{3}}}^{\tan ^{1}} \frac{x}{4} d x<\frac{3}{\pi}\left(1-\frac{1}{3}\right) \Leftrightarrow \\
\\
\Omega=I<2 \Rightarrow[I]=1 \\
\lim _{n \rightarrow \infty}\left([I] \cdot S_{n}\right)^{n}= \\
\lim _{n \rightarrow \infty}\left(\frac{\pi}{12}-\frac{\sqrt{3}}{8}\right)^{n}=0 ; \frac{\pi}{12}-\frac{\sqrt{3}}{8}<1
\end{gathered}
$$

Solution 2 by Kamel Benaicha-Algiers-Algerie

$$
I=\pi \int_{\frac{1}{\sqrt{3}}}^{1} \frac{x}{\tan ^{-1} x} d x
$$

Let be the function $f:\left[\frac{1}{\sqrt{3}}, 1\right] \rightarrow \mathbb{R}, f(x)=\frac{x}{\tan ^{-1} x} ; f^{\prime}(x)=\frac{\left(1+x^{2}\right) \tan ^{-1} x-x^{2}}{\left(1+x^{2}\right)\left(\tan ^{-1} x\right)^{2}}$

$$
\begin{gathered}
g(x)=\left(1+x^{2}\right) \tan ^{-1} x-x^{2} \Rightarrow g^{\prime}(x)=2 x\left(\tan ^{-1} x-1\right)+1 \\
\frac{\pi}{6} \leq \tan ^{-1} x \Rightarrow \frac{2}{\sqrt{3}}\left(\frac{\pi}{6}-1\right)+1 \leq g^{\prime}(x) \Rightarrow
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
g^{\prime}(x)=1-\frac{2}{\sqrt{3}}+\frac{\pi}{3 \sqrt{3}}=\frac{3 \sqrt{3}+\pi-6}{3 \sqrt{3}}>\frac{3+\frac{9}{2}-6}{3 \sqrt{3}}=\frac{1}{2 \sqrt{3}}>0 \\
\therefore g \nearrow \Rightarrow g(x) \geq \frac{\pi}{2}-1>0 \Rightarrow f^{\prime}(x)>0 \Rightarrow f \nearrow x \in\left[\frac{1}{\sqrt{3}}, 1\right] \Rightarrow \\
\frac{6}{\pi \sqrt{3}}<f(x)<\frac{4}{\pi} \\
\frac{6}{\sqrt{3}}\left(1-\frac{1}{\sqrt{3}}\right) \leq \pi \int_{\frac{1}{\sqrt{3}}}^{t^{2}} \frac{x}{2 n^{-1} x} d x \leq 4\left(1-\frac{1}{\sqrt{3}}\right) \\
-\frac{1}{\sqrt{3}}<-\frac{2}{3} \Rightarrow 4-\frac{4}{\sqrt{3}}<\frac{4}{3} \Rightarrow\left[4-\frac{4}{\sqrt{3}}\right] \leq 1,\left[2-\frac{1}{\sqrt{3}}\right]=1 \Rightarrow[I]=1 \\
\sin ^{3} x=\frac{1}{2}(\sin x-\sin x \cdot \cos 2 x)=\frac{1}{2}\left(\sin x-\frac{1}{2}(\sin 3 x-\sin x)\right)= \\
=\frac{1}{4}(3 \sin x-\sin 3 x)
\end{gathered}
$$

$$
S_{n}=\sum_{k=1}^{n} 3^{k-1} \cdot \sin ^{3} \frac{\pi}{3^{k+1}}=\frac{1}{4} \cdot \sum_{k=1}^{n} 3^{k-1}\left(3 \sin \frac{\pi}{3^{k+1}}-\sin \frac{\pi}{3^{k}}\right)=
$$

$$
=\frac{1}{4} \cdot \sum_{k=1}^{n}\left(3^{k} \sin \frac{\pi}{3^{k+1}}-3^{k-1} \sin \frac{\pi}{3^{k}}\right)=\frac{1}{4} \cdot\left(3^{n} \sin \frac{\pi}{3^{n+1}}-\sin \frac{\pi}{3}\right)=
$$

$$
=\frac{1}{4} \cdot\left(3^{n} \sin \frac{\pi}{3^{n+1}}-\frac{\sqrt{3}}{2}\right)
$$

$$
\Omega=\lim _{n \rightarrow \infty}\left([I] \cdot S_{n}\right)^{n}=\lim _{n \rightarrow \infty}\left(S_{n}\right)^{n}=\lim _{n \rightarrow \infty}\left(\frac{1}{4} \cdot\left(3^{n} \sin \frac{\pi}{3^{n+1}}-\frac{\sqrt{3}}{2}\right)\right)^{n}=
$$

$$
=\lim _{n \rightarrow \infty} \frac{1}{4^{n}} \cdot e^{n \cdot \log \left(3^{n} \sin \frac{\pi}{3^{n+1}} \frac{\sqrt{3}}{2}\right)}
$$

$\lim _{n \rightarrow \infty}\left(3^{n} \sin \frac{\pi}{3^{n+1}}-\frac{\sqrt{3}}{2}\right) \stackrel{t=\frac{1}{3^{n+1}}}{=} \frac{1}{3} \cdot \lim _{t \rightarrow 0^{+}} \frac{\sin \pi t}{t}-\frac{\sqrt{3}}{2}=\frac{\pi}{3}-\frac{\sqrt{3}}{2}<1 \Rightarrow$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\lim _{n \rightarrow \infty} n \cdot \log \left(3^{n} \sin \frac{\pi}{3^{n+1}}-\frac{\sqrt{3}}{2}\right)=-\infty
$$

So,

$$
\Omega=\lim _{n \rightarrow \infty}\left([I] \cdot S_{n}\right)^{n}=\lim _{n \rightarrow \infty} \frac{1}{4^{n}} \cdot e^{n \cdot \log \left(3^{n} \sin \frac{\pi}{3^{n+1}}-\frac{\sqrt{3}}{2}\right)}=0
$$

UP.302. Let $x, y, z>0$ real numbers such that $x+y+z=\frac{3}{x y z}$
Find the minimum of value expression:

$$
Q=\left(2 x^{2}-x y+2 y^{2}\right)\left(2 y^{2}-y z+2 z^{2}\right)\left(2 z^{2}-z x+2 x^{2}\right)
$$

Proposed by Hoang Le Nhat Tung-Hanoi-Vietnam

Solution 1 by Tran Hong-Dong Thap-Vietnam

$$
\begin{gathered}
\text { For any } x, y, z>0 \text { we have: } 2 x^{2}-x y+2 y^{2} \geq \frac{3(x+y)^{2}}{4} \Leftrightarrow \\
4\left(2 x^{2}-x y+2 y^{2}\right) \geq 3(x+y)^{2} \Leftrightarrow 8 x^{2}+8 y^{2}-4 x y \geq 3\left(x^{2}+2 x y+y^{2}\right) \Leftrightarrow \\
5 x^{2}+5 y^{2}-10 x y \geq 0 \Leftrightarrow 5(x-y)^{2} \geq 0(\text { true } \forall x, y>0) \\
\text { Similarly: } 2 y^{2}-y z+2 z^{2} \geq \frac{3(y+z)^{2}}{4} ; 2 z^{2}-z x+2 x^{2} \geq \frac{3(z+x)^{2}}{4} \\
Q=\left(2 x^{2}-x y+2 y^{2}\right)\left(2 y^{2}-y z+2 z^{2}\right)\left(2 z^{2}-z x+2 x^{2}\right) \\
\geq \frac{27}{16}((x+y)(y+z)(z+x))^{2}=P \\
\text { Let } \Omega=(x+y)(y+Z)(z+x)=(x+y+z)(x y+y z+z x)-x y z ; \\
x+y+z=\frac{3}{x y z} \Rightarrow 3=(x+y+z) x y z \stackrel{A M-G M}{\leq}(x+y+z) \cdot \frac{(x+y+z)^{3}}{27}= \\
=\frac{(x+y+z)^{4}}{27} \Rightarrow 81 \leq(x+y+z)^{4} \Rightarrow x+y+z \geq 3 \\
(x y+y z+z x)^{2} \geq 3 x y z(x+y+z)=3 \cdot \frac{3}{x+y+z} \cdot(x+y+z)=9 \Rightarrow \\
x y+y z+z x \geq 3 . \text { So, } \\
\Omega=(x+y+z)(x y+y z+z x)-x y z \geq 3(x+y+z)-\frac{3}{x+y+z}{ }^{x+y+z \geq 3} \geq
\end{gathered}
$$

$$
\begin{aligned}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
& \qquad \begin{array}{c}
\text { www.ssmrmh.ro } \\
\geq \mathbf{9}-\frac{\mathbf{3}}{\mathbf{3}}=\mathbf{8} \Rightarrow \boldsymbol{Q} \geq \boldsymbol{P} \geq \frac{\mathbf{2 7}}{\mathbf{6 4}} \cdot \mathbf{8}^{2}=\mathbf{2 7} \\
\boldsymbol{Q}_{\text {Min }}
\end{array}=\mathbf{2 7} \Leftrightarrow\left\{\begin{array}{c}
x=y=z \\
x+y+z=\frac{\mathbf{x}}{\boldsymbol{x} \boldsymbol{y z}}
\end{array} \Leftrightarrow \boldsymbol{x}=\boldsymbol{y}=\mathbf{z = 1}\right.
\end{aligned}
$$

Solution 2 by Michael Sterghiou-Greece

$$
\begin{gather*}
x+y+z=\frac{3}{x y z} ;(c) \\
Q=\left(2 x^{2}-x y+2 y^{2}\right)\left(2 y^{2}-y z+2 z^{2}\right)\left(2 z^{2}-z x+2 x^{2}\right) \tag{1}
\end{gather*}
$$

Let $(p, q, r)=\left(\sum_{c y c} x, \sum_{c y c} x y, \prod_{c y c} x\right)$ from (c) we can easily to show that

$$
p \geq 3, q \geq 3, r \leq 1
$$

$$
\left[\because \frac{3}{r}=p \geq 3 \sqrt[3]{r} \Rightarrow r \leq 3, \text { so } p=\frac{3}{r} \geq 3 \text { and } q^{2} \geq 3 p r=9 \Rightarrow q \geq 3\right]
$$

As $x y \leq \frac{x^{2}+y^{2}}{2}$ and analogs then (1) reduces to the stronger

$$
\begin{equation*}
Q \geq \frac{27}{8} \cdot \prod_{c y c}\left(x^{2}+y^{2}\right)=\frac{27}{8} \cdot\left[\left(\sum_{c y c} x^{2}\right) \cdot\left(\sum_{c y c} x^{2} y^{2}\right)-r^{2}\right] \tag{2}
\end{equation*}
$$

But $\sum_{c y c} x^{2}=p^{2}-2 q, \sum_{c y c} x^{2} y^{2}=q^{2}-2 p r \stackrel{(c)}{=} q^{2}-6$ and $r^{2}=\frac{3}{p^{2}}$

So, (2) reduces to:

$$
\frac{27}{8} \cdot\left[\left(p^{2}-2 q\right)\left(q^{2}-6\right)-\frac{9}{p^{2}}\right]=\frac{27}{8} \cdot f(p, q)
$$

Now, $f(p, q) \geq 8$ as we will show. This is equivalent to:
$p^{2}\left(p^{2}-2 q\right)\left(q^{2}-6\right)-8 p^{2} \geq 9$ or $p^{2}\left[\left(p^{2}-2 q\right)\left(q^{2}-6\right)-8\right] \geq 9$ or as $p^{2} \geq 9$ to the stronger $\left(p^{2}-2 q\right)\left(q^{2}-6\right)-8 \geq 1$ which reduces to:

$$
(q-3)\left(q^{2}+3 q+3\right) \geq 0 \text { which is true. }
$$

Equality for $x=y=z=1$ and $Q \geq \frac{27}{8} \cdot f(p, q) \geq \frac{27}{8} \cdot 8=27$. Done!
Solution 3 by proposer
We have:

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
2 x^{2}-x y+2 y^{2}=\frac{5}{4}\left(x^{2}-2 x y+y^{2}\right)+\frac{3}{4}(x+y)^{2}=\frac{5}{4}(x-y)^{2}+\frac{3}{4}(x+y)^{2} \\
\geq \frac{3}{4}(x+y)^{2} \Rightarrow 2 x^{2}-x y+2 y^{2} \geq \frac{3}{4}(x+y)^{2}
\end{gathered}
$$

Similarly: $2 y^{2}-y z+2 z^{2} \geq \frac{3}{4}(y+z)^{2} ; 2 z^{2}-z x+2 x^{2} \geq \frac{3}{4}(z+x)^{2}$. Hence,

$$
\begin{gather*}
Q=\left(2 x^{2}-x y+2 y^{2}\right)\left(2 y^{2}-y z+2 z^{2}\right)\left(2 z^{2}-z x+2 x^{2}\right) \geq \\
\geq \frac{3}{4}(x+y)^{2} \cdot \frac{3}{4}(y+z)^{2} \cdot \frac{3}{4}(z+x)^{2} \Rightarrow Q \geq \frac{27}{64} \cdot(x+y)^{2}(y+z)^{2}(z+x)^{2} \tag{1}
\end{gather*}
$$

We have $\forall x, y, z>0$

$$
\begin{gather*}
x(y-z)^{2}+y(z-x)^{2}+z(x-y)^{2} \geq 0 \Leftrightarrow \\
x^{2} y+x y^{2}+y^{2} z+y z^{2}+z^{2} x+x z^{2} \geq 6 x y z \Leftrightarrow \\
9\left(x^{2} y+x y^{2}+y^{2} z+y z^{2}+z^{2} x+x z^{2}+2 x y z\right) \geq \\
\geq 8\left(x^{2} y+x y^{2}+y^{2} z+y z^{2}+z^{2} x+x z^{2}+3 x y z\right) \Leftrightarrow \\
9(x+y)(y+z)(z+x) \geq 8(x+y+z)(x y+y z+z x) \Leftrightarrow \\
(x+y)(y+z)(z+x) \geq \frac{8(x+y+z)(x y+y z+z x)}{9} ; \tag{2}
\end{gather*}
$$

From (1),(2) we get:

$$
\begin{gather*}
Q \geq \frac{27\left(\frac{8(x+y+z)(x y+y z+z x)}{9}\right)^{2}}{27}=\frac{27 \cdot 8^{2}(x+y+z)^{2}(x y+y z+z x)^{2}}{9^{2} \cdot 64} \Leftrightarrow \\
Q \geq \frac{(x+y+z)^{2}(x y+y z+z x)^{2}}{3} ; \tag{3}
\end{gather*}
$$

Because $x+y+z=\frac{3}{x y z} \Rightarrow 3=(x+y+z) x y z \leq \frac{(x y+y z+z x)^{2}}{3} \Leftrightarrow$

$$
\begin{equation*}
(x y+y z+z x)^{2} \geq 9 \Leftrightarrow x y+y z+z x \geq 3 \tag{4}
\end{equation*}
$$

$$
\left(\text { using } a b c(a+b+c) \leq \frac{(a b+b c+c a)^{2}}{3}\right)
$$

$$
\begin{equation*}
\Rightarrow(x+y+z)^{2} \geq 3(x y+y z+z x) \geq 3 \cdot 3=9 \Rightarrow x+y+z \geq 3 \tag{5}
\end{equation*}
$$

From (3),(4),(5) we get:

$$
Q \geq \frac{(x+y+z)^{2}(x y+y z+z x)^{2}}{3} \geq \frac{3^{2} \cdot 3^{2}}{3}=27 \Rightarrow Q \geq 27 \Rightarrow Q_{M i n}=27
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
Equality holds if $\left\{\begin{array}{l}x=y=z>0 \\ x+y+z=\frac{3}{x y z}\end{array} \Leftrightarrow\left\{\begin{array}{c}x=y=z>0 \\ 3 x=\frac{3}{x^{3}}\end{array} \Leftrightarrow x=y=z=1\right.\right.$.
Hence, the minimum of value Q is 27 for $x=y=z=1$.

UP. 303. Let be $\left(I_{n}\right)_{n \geq 1}, I_{n}=\int_{1}^{a^{2}} \frac{d x}{x(1+\sqrt{x})^{n}} ; a \in \mathbb{R}, a \geq 2$;

$$
\begin{gathered}
\Omega(\boldsymbol{a})=\lim _{n \rightarrow \infty}\left(1+I_{n}\right) \cdot \sum_{k=1}^{n} \frac{a^{k}-2^{k}}{k \cdot(2 a)^{k}} . \text { Then prove: } \\
\frac{a-2}{4 a} \leq \Omega(\boldsymbol{a}) \leq \frac{\boldsymbol{a}-1}{\boldsymbol{a}+1}
\end{gathered}
$$

Proposed by Florică Anastase-Romania

Solution by Adrian Popa-Romania

$$
\begin{aligned}
& I_{n}=\int_{1}^{a^{2}} \frac{d x}{x(1+\sqrt{x})^{n}} \stackrel{t=\sqrt{x}}{=} \int_{1}^{a} \frac{2 t d t}{t^{2}(1+t)^{n}}=2 \int_{1}^{a} \frac{d t}{t(1+t)^{n}} \stackrel{1+t=u}{=} 2 \int_{2}^{a+1} \frac{d u}{(u-1) u^{n}}= \\
& =2 \int_{2}^{a+1}\left(\frac{1}{u-1}-\frac{1}{u}-\frac{1}{u^{2}}-\cdots-\right) d u=2 \int_{2}^{a+1}\left(\frac{1}{u-1}-\frac{1}{u} \cdot \frac{\frac{1}{u^{n}}-1}{\frac{1}{u}-1}\right) d u= \\
& =2 \int_{2}^{a+1}\left(\frac{1}{u-1}+\frac{1}{u} \cdot \frac{u}{1-u}\right) d u=2 \int_{2}^{a+1}\left(\frac{1}{u-1}+\frac{1}{1-u}\right) d u=0 \Rightarrow I_{n} \rightarrow 0 \\
& \sum_{k=1}^{n} \frac{a^{k}-2^{k}}{k \cdot(2 a)^{k}}=\sum_{k=1}^{n}\left(\frac{1}{k \cdot 2^{k}}-\frac{1}{k \cdot a^{k}}\right)=\sum_{k=1}^{n}\left(\frac{\frac{1}{2^{k}}}{k}-\frac{\frac{1}{a^{k}}}{k}\right) \\
& \text { Let be the sum: } \\
& 1+x+x^{2}+\cdots+x^{n-1}=\frac{-1}{x-1}=\frac{1}{1-x} ;\left(x \in(0,1), x^{n} \rightarrow 0\right) \mid \int \Leftrightarrow \\
& x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\cdots+\frac{x^{n}}{n}=-\log (1-x) \Rightarrow \sum_{k=1}^{n} \frac{x^{k}}{k}=-\log (1-x) \\
& \text { Therefore, }
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www．ssmrmh．ro

$$
\begin{gathered}
\sum_{k=1}^{n} \frac{a^{k}-2^{k}}{k \cdot(2 a)^{k}}=\sum_{k=1}^{n}\left(\frac{\frac{1}{2^{k}}}{k}-\frac{\frac{1}{a^{k}}}{k}\right)=-\log \frac{1}{2}+\log \left(1-\frac{1}{a}\right)=\log \frac{2(a-1)}{a} \\
\text { So, } \Omega(a)=\log \frac{2(a-1)}{a} \\
\text { We must show: } \frac{a-2}{4 a} \leq \Omega(a) \leq \frac{a-1}{a+1}
\end{gathered}
$$

Case 1）Let be the function $f(a)=\log \frac{2(a-1)}{a}-\frac{a-2}{4 a} ; a \in[2, \infty)$

$$
\begin{gather*}
f^{\prime}(a)=\frac{a+1}{2 a^{2}(a-1)}>0, \forall a>2 \Rightarrow f(a) \nearrow[2, \infty) \Rightarrow f(a) \geq f(2)=0, \forall a \in[2, \infty) \\
 \tag{1}\\
\Rightarrow \log \frac{2(a-1)}{a} \geq \frac{a-2}{4 a}, \forall a \in[2, \infty) ;
\end{gather*}
$$

Case 2）Let be the function $g(a)=\log \frac{2(a-1)}{a}-\frac{a-1}{a+1}, a \in[2, \infty)$

$$
g^{\prime}(a)=\frac{-a^{2}+4 a+1}{a(a-1)(a+1)^{2}} ; g(a)=0 \Leftrightarrow a_{1}=2+\sqrt{5} ;(a>2) ; g\left(a_{1}\right)<0
$$

a	2	a_{1}
$g^{\prime}(a)$	$+++++0---------$	
$g(a)$	$-\frac{1}{3}$ ノノノ $\quad g\left(a_{1}\right) \downarrow \searrow \searrow$	$(\log 2-1)$

We get，$g(a)<0, \forall a \in[2, \infty) ;(2)$
From（1），（2）we get：$\frac{a-2}{4 a} \leq \Omega(a) \leq \frac{a-1}{a+1}$

UP．304．Let $\left(a_{n}\right)_{n \geq 1}$ sequence of real numbers such that

$$
a_{n}=\prod_{k=1}^{n}\left(2 \sin \frac{k \pi}{2 n}\right), n \in \mathbb{N}, n>0
$$

Find：

$$
\Omega=\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{n} \frac{2-n a_{k} \cdot a_{n}}{a_{k}}\right)
$$

Proposed by Florică Anastase－Romania

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Solution 1 by Sergio Esteban-Argentina

By complex numbers we can deduce that:

$$
\begin{gathered}
\frac{x^{2 n}-1}{x^{2}-1}=\prod_{k=1}^{n}\left(x^{2}-2 \cos \left(\frac{k \pi}{n} x\right)+1\right) \stackrel{x=1}{\Rightarrow} \\
\lim _{x \rightarrow 1} \frac{x^{2 n}-1}{x^{2}-1}=\prod_{k=1}^{n} 2\left(1-\cos \left(\frac{k \pi}{n}\right)\right) \rightarrow \\
n=\prod_{k=1}^{n-1} 2^{2} \sin ^{2} \frac{k \pi}{2 n} \rightarrow n=2^{2(n-1)} \prod_{k=1}^{n-1} \sin ^{2} \frac{k \pi}{2 n}=\left(2^{n-1} \prod_{k=1}^{n-1} \sin \frac{k \pi}{n}\right)^{2} \rightarrow \\
2^{n-1} \prod_{k=1}^{n-1} \sin \frac{k \pi}{n}=\sqrt{n} \leftrightarrow \prod_{k=1}^{n-1} \sin \frac{k \pi}{n}=\frac{\sqrt{n}}{2^{n-1}} \\
\text { Then, } x_{n}=2^{n} \cdot \prod_{k=1}^{n-1} \sin \frac{k \pi}{n}=2^{n} \cdot \frac{\sqrt{n}}{2^{n-1}}=2 \sqrt{n}
\end{gathered}
$$

(ii) $\Omega=\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{n} \frac{2-n a_{k} \cdot a_{n}}{a_{k}}\right)=\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{n} \frac{2}{x_{k}}-\sum_{k=1}^{n} 2 n \sqrt{n}\right)=\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{n} \frac{2}{x_{k}}-2 n^{2} \sqrt{n}\right)$
(iii) Notice that $\sum_{k=1}^{n}\left(\frac{1}{k}\right)^{\frac{1}{p}}$ represent the lower Darboux sum of $f(x)=x^{-\frac{1}{p}}$ on $[0, n]$, while

$$
\frac{p}{p-1} n^{1-\frac{1}{p}}=\int_{0}^{n} x^{-\frac{1}{p}} d x \rightarrow
$$

$$
\sum_{k=1}^{n}\left(\frac{1}{k}\right)^{\frac{1}{p}}<\frac{p}{p-1} n^{1-\frac{1}{p}} \text { for all integers } 1 \leq n \text { and any real number } p>1
$$

Another way to prove is by induction.

So, put $p=2$ and by (ii) $\Omega<\lim _{n \rightarrow \infty}\left(2 \sqrt{n}-2 n^{2} \sqrt{n}\right)=-\infty$

Solution by proposer

Let: $x_{k}, k=1,2, . ., 2 n$ the roots of the unity.

$$
x_{k}=\cos \frac{k \pi}{2 n}+i \sin \frac{k \pi}{2 n}, k=1,2, \ldots, 2 n
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
x^{2 n}-1=\prod_{k=1}^{2 n}\left(x-x_{k}\right) \stackrel{x_{1,2}= \pm 1-\text { roots }}{\cong}\left(x^{2}-1\right) \prod_{k=1}^{n-1}\left(x-x_{k}\right)\left(x-\overline{x_{k}}\right) \\
=\left(x^{2}-1\right) \prod_{k=1}^{n-1}\left(x^{2}-2 x \cos \frac{k \pi}{n}+1\right) \\
\Rightarrow x^{2 n-2}+x^{2 n-4}+\cdots+x^{2}+1=\prod_{k=1}^{n-1}\left(x^{2}-2 x \cos \frac{k \pi}{n}+1\right) \stackrel{x=1}{\Longrightarrow} \\
n=\prod_{k=1}^{n-1}\left(2-2 \cos \frac{k \pi}{n}\right)=\prod_{k=1}^{n-1}\left(4 \sin ^{2} \frac{k \pi}{2 n}\right) \\
n=2^{2(n-1)} \cdot \sin ^{2} \frac{\pi}{2 n} \cdot \sin ^{2} \frac{2 \pi}{2 n} \cdot \ldots \cdot \sin ^{2} \frac{(n-1) \pi}{2 n} \\
2^{n-1} \cdot \sin \frac{\pi}{2 n} \cdot \sin \frac{2 \pi}{2 n} \cdot \ldots \cdot \sin \frac{(n-1) \pi}{2 n}=\sqrt{n} \Rightarrow a_{n}=2 \sqrt{n} \\
\sum_{k=1}^{n} \frac{2-n a_{k} \cdot a_{n}}{a_{k}}=\sum_{k=1}^{n} \frac{2}{a_{k}}-n^{2} a_{n}=\sum_{k=1}^{n} \frac{1}{\sqrt{k}}-2 n^{2} \sqrt{n} \\
=\left(\sum_{k=1}^{n} \frac{1}{\sqrt{k}}-2 \sqrt{n}\right)+2 \sqrt{n}-2 n^{2} \sqrt{n} \\
b_{n}=\sum_{k=1}^{n} \frac{1}{\sqrt{k}}-2 \sqrt{n}-\text { loachimescu sequence. } \\
b_{n+1}-b_{n}=-2 \sqrt{n+1}+2 \sqrt{n}+\frac{1}{2 \sqrt{n+1}}<-2(\sqrt{n+1}-\sqrt{n})+2(\sqrt{n+1}-\sqrt{n})=0 \\
\Rightarrow\left(b_{n}\right)_{n \geq 1}-\text { decreasing } \Rightarrow b_{n}<b_{1}=-1
\end{gathered}
$$

$$
\text { From } \sqrt{k+1}-\sqrt{k}=\frac{1}{\sqrt{k+1}+\sqrt{k}}<\frac{1}{2 \sqrt{k}}, k>0 \Rightarrow
$$

$$
\sqrt{n+1}-1<\frac{1}{2} \sum_{k=1}^{n} \frac{1}{\sqrt{k}}
$$

$$
\Rightarrow-2<-2 \sqrt{n+1}+\sum_{k=1}^{n} \frac{1}{\sqrt{k}} \leq-2 \sqrt{n}+\sum_{k=1}^{n} \frac{1}{\sqrt{k}}=b_{n}<b_{1}=1
$$

$$
\Rightarrow b_{n} \in(-2,-1)
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\Omega=\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{n} \frac{2-n a_{k} \cdot a_{n}}{a_{k}}\right)=\lim _{n \rightarrow \infty}((\underbrace{\sum_{k=1}^{n} \frac{1}{\sqrt{k}}-2 \sqrt{n}}_{=c})+2 \sqrt{n}\left(1-n^{2}\right))=-\infty
$$

UP.305. Let $\left(a_{n}\right)_{n \geq 1}, a_{1}=e, a_{n}=e^{n} a_{n-1}^{n}$ and $\left(b_{n}\right)_{n \geq 1}$ such that:

$$
\left(1+\frac{1}{n}\right)^{n+b_{n}}=\prod_{k=1}^{n}\left(1+\frac{1}{\log a_{k}}\right)
$$

Find: $\Omega=\lim _{n \rightarrow \infty} b_{n}$

Proposed by Florică Anastase-Romania

Solution 1 by Sergio Esteban-Argentina

Noticed that: $\log \left(a_{n}\right)=n\left(\log \left(a_{n-1}\right)+1\right)$

$$
\begin{gathered}
u_{2}=\log a_{2}=2(1+1)=2!\left(\frac{1}{0!}+\frac{1}{1!}\right)=4 \\
u_{3}=\log a_{3}=3(4+1)=3!\left(\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}\right)=15 \\
u_{4}=\log a_{4}=3(15+1)=3!\left(\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}\right)=64
\end{gathered}
$$

$$
u_{n}=\log a_{n}=n!\cdot \sum_{k=0}^{n-1} \frac{1}{k!}
$$

Now, if $q_{n}=\sum_{k=0}^{n-1} \frac{1}{k!} \Rightarrow \frac{q_{n}}{q_{n+1}}=1+\frac{1}{n!q_{n-1}}$ but $n!q_{n-1}=u_{n} \Rightarrow \frac{q_{n}}{q_{n+1}}=1+\frac{1}{u_{n}} \Rightarrow$

$$
q_{n}=q_{0} \prod_{k=1}^{n} \frac{q_{k}}{q_{k-1}}=\prod_{k=1}^{n}\left(1+\frac{1}{u_{k}}\right)
$$

Finally,

$$
\left(1+\frac{1}{n}\right)^{n+b_{n}}=\sum_{k=0}^{n} \frac{1}{k!} \Rightarrow b_{n}=\frac{\log \left(\sum_{k=0}^{n} \frac{1}{k!}\right)}{\log \left(1+\frac{1}{n}\right)}-n
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\Omega=\lim _{n \rightarrow \infty} b_{n}=\frac{1}{2}
$$

Solution 2 by Adrian Popa-Romania

$$
\begin{gathered}
a_{1}=e ; a_{n}=\left(e a_{n-1}\right)^{n} \Rightarrow \log a_{n}=\log \left(e a_{n-1}\right)^{n}=n \log \left(e a_{n-1}\right) \Rightarrow \\
1+\frac{1}{\log a_{k}}=\frac{1+\log a_{k}}{\log a_{k}}=\frac{\log e+\log a_{k}}{\log a_{k}}=\frac{\log \left(e a_{k}\right)}{\log a_{k}} \Rightarrow \\
\prod_{k=1}^{n}\left(1+\frac{1}{\log a_{k}}\right)=\prod_{k=1}^{n} \frac{\log \left(e a_{k}\right)}{\log a_{k}}=\frac{\log \left(e a_{n}\right)}{n!} \\
a_{1}=e ; a_{2}=e^{2} \cdot e^{2}=e^{2+2 \cdot 1} ; a_{3}=e^{3+2 \cdot 3+1 \cdot 2 \cdot 3}
\end{gathered}
$$

Applying Mathematical Induction we get:

$$
\begin{gathered}
a_{n}=e^{n+(n-1) n+(n-2)(n-1) n+\cdots+1 \cdot 2 \cdot 3 \cdots n}=e^{n!+\frac{n!}{1!}+\frac{n!}{2!}+\cdots+\frac{n!}{(n-2)!}+\frac{n!}{(n-1)!}}=e^{n!\left(\frac{1}{(0!}+\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{(n-1)!}\right)} \\
\frac{\log \left(e a_{n}\right)}{n!}=\frac{\log \left(e \cdot e^{n!\left(\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{(n-1)!}\right)}\right)}{n!}=\frac{\log e+\log \left(e^{n!\left(\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{(n-1)!}\right)}\right)}{n!}= \\
=\frac{1+n!\left(\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{(n-1)!}\right)}{n!}=\frac{1}{n!}+\left(\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{(n-1)!}\right)= \\
=\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{(n-1)!}+\frac{1}{n!} \\
\left(1+\frac{1}{n}\right)^{n+b_{n}}=\prod_{k=1}^{n}\left(1+\frac{1}{\log a_{k}}\right) \Rightarrow \\
\left(\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n+b_{n}}=\lim _{n \rightarrow \infty}\left(\frac{1}{\left.\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{(n-1)!}+\frac{1}{n!}\right) \stackrel{\circ}{\log }}=\right.\right. \\
\left(n+b_{n}\right) \log \left(1+\frac{1}{n}\right)=1 \Rightarrow b_{n}=\frac{1}{\log \left(1+\frac{1}{n}\right)}-n \\
\Omega=\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} \frac{1-n \log \left(1+\frac{1}{n}\right)}{\log \left(1+\frac{1}{n}\right)}=\lim _{x \rightarrow \infty} \frac{1-x \log \left(1+\frac{1}{x}\right)}{\log \left(1+\frac{1}{x}\right)}=
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

$$
\stackrel{L^{\prime} H}{=} \lim _{x \rightarrow \infty} \frac{-\log \left(1+\frac{1}{x}\right)+\frac{1}{x+1}}{-\frac{1}{x(x+1)}} \stackrel{L^{\prime} H}{=} \lim _{x \rightarrow \infty} \frac{1}{x(x+1)^{2}} \cdot \frac{x^{2}(x+1)^{2}}{2 x+1}=\frac{1}{2}
$$

Finally,

$$
\Omega=\lim _{n \rightarrow \infty} b_{n}=\frac{1}{2}
$$

Solution by proposer

$$
\begin{gather*}
a_{n}=e^{n} a_{n-1}^{n} \Leftrightarrow \log a_{n}=n+n \log a_{n-1}=n\left(1+\log a_{n-1}\right) \\
L e t: x_{n}=\log a_{n} ; x_{1}=1 \Rightarrow x_{n}=n\left(1+x_{n-1}\right), x_{1}=1 \\
1+x_{k}=k\left(1+x_{k-1}\right)+1 \Rightarrow \frac{1+x_{k}}{k!}-\frac{1+x_{k-1}}{(k-1)!}=\frac{1}{k!} \Rightarrow \\
\frac{1+x_{n}}{n!}=1+\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{n!}=E_{n} \\
\prod_{k=1}^{n}\left(1+\frac{1}{\log a_{k}}\right)=\prod_{k=1}^{n}\left(1+\frac{1}{x_{k}}\right)=\prod_{k=1}^{n}\left(\frac{1}{k+1} \cdot \frac{x_{k+1}}{x_{k}}\right)=\frac{x_{n+1}}{(n+1)!}=\frac{1+x_{n}}{n!} \\
\lim _{n \rightarrow \infty} \prod_{k=1}^{n}\left(1+\frac{1}{\log a_{k}}\right)=\lim _{n \rightarrow \infty} \frac{1+x_{n}}{n!}=e \\
\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty}\left(\frac{\log \left(1+\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{n!}\right)}{\log \left(1+\frac{1}{n}\right)}-n\right) \\
=\lim _{n \rightarrow \infty}\left(\frac{\log \left(1+\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{n!}\right)-1}{\log \left(1+\frac{1}{n}\right)}+\frac{1}{\log \left(1+\frac{1}{n}\right)}-n\right) ;(1) \tag{1}\\
\lim \left(\frac{\log \left(1+\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{n!}\right)-1}{\log \left(1+\frac{1}{n}\right)}\right) \frac{\operatorname{lcs-s}}{=} \lim _{n \rightarrow \infty} \frac{\log \left(1+\frac{1}{1+\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{n!}}\right)}{\log \left(1-\frac{1}{(n+1)^{2}}\right)}
\end{gather*}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gather*}
\log \left(1+\frac{\frac{1}{(n+1)!}}{1+\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{n!}}\right)^{n^{2}} \tag{2}\\
=\lim _{n \rightarrow \infty} \frac{\log \left(1-\frac{1}{(n+1)^{2}}\right)^{n^{2}}}{}=0 \\
\lim _{n \rightarrow \infty}\left(\frac{1}{\log \left(1+\frac{1}{n}\right)}-n\right)=\lim _{x \rightarrow 0}\left(\frac{1}{\log (1+x)}-\frac{1}{x}\right)=\frac{1}{2}
\end{gather*}
$$

From (1) $+(2)+(3)$ we have:

$$
\Omega=\lim _{n \rightarrow \infty} b_{n}=\frac{1}{2}
$$

UP.306. Let $\left(x_{n}\right)_{n \geq 1}, x_{0}=2, x_{n}=n\left(x_{n-1}-(n-1)!-2\right)-2$
Find:

$$
\Omega=\lim _{n \rightarrow \infty} \frac{\sqrt[n]{1+2 n-\sum_{k=1}^{n} x_{k}}}{n}
$$

Proposed by Florică Anastase-Romania

Solution 1 by Samir HajAli-Damascus-Syria

$$
\begin{gathered}
x_{0}=2, x_{n}=n\left(x_{n-1}-(n-1)!-2\right)-2 \\
x_{1}=x_{0}-1-2-2=-3 \\
x_{2}=2\left(x_{1}-1-2\right)-2=-14 \\
x_{3}=3\left(x_{2}-2-2\right)-2=-56
\end{gathered}
$$

Thus $x_{n} \xrightarrow[n \rightarrow \infty]{\longrightarrow}-\infty$ then $-x_{n}>0, \forall n \geq 1$ therefore,

$$
\begin{gathered}
1+2 n-\sum_{k=1}^{n} x_{k}>0 \\
\Omega=\lim _{n \rightarrow \infty} \frac{\sqrt[n]{1+2 n-\sum_{k=1}^{n} x_{k}}}{n}=\lim _{n \rightarrow \infty} \sqrt[n]{\frac{1+2 n-\sum_{k=1}^{n} x_{k}}{n^{n}}}= \\
\stackrel{C-D^{\prime} A}{=} \lim _{n \rightarrow \infty} \frac{1+2(n+1)-\sum_{k=1}^{n+1} x_{k}}{(n+1)^{n+1}} \cdot \frac{n^{n}}{1+2 n-\sum_{k=1}^{n} x_{k}}=
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

Let put: $y_{n}=\frac{n!}{2-x_{n}}$, clearly $y_{n}>0, \forall n \geq 1$ and let prove that:

$$
-x_{n}>(n+1)!
$$

$$
\text { For } n=1:-x_{1}=3>2!=2
$$

$$
\text { Suppose: }-x_{n}>(n+1)!\text { then }
$$

$$
\begin{gathered}
-x_{n+1}=-(n+1)\left(x_{n}-n!-2\right)+2=-(n+1) x_{n}+(n+1)!+2(n+1)+2> \\
>(n+1)(n+1)!+(n+1)!+2(n+1)+2>(n+2)! \\
\text { Then: } y_{n}=\frac{n!}{2-x_{n}} \leq \frac{n!}{-x_{n}}<\frac{n!}{(n+1)!}=\frac{1}{n+1} \\
0 \leq \lim _{n \rightarrow \infty} y_{n} \leq \lim _{n \rightarrow \infty} \frac{1}{n+1}=0 \Rightarrow y_{n} \rightarrow 0
\end{gathered}
$$

Hence,

$$
\Omega=\frac{1}{e} \cdot \lim _{n \rightarrow \infty} \frac{\Omega_{n}}{n+1}=\frac{1}{e} \cdot \lim _{n \rightarrow \infty}(1+\underbrace{\frac{4}{(n+1)\left(2-x_{n}\right)}}_{\rightarrow 0}+y_{n})=\frac{1}{e}
$$

Solution 2 by Remus Florin Stanca-Romania

$$
x_{n}=n\left(x_{n-1}-(n-1)!-2\right)-2 \left\lvert\, \cdot \frac{1}{n!} \Rightarrow \frac{x_{n}}{n!}=\frac{x_{n-1}}{(n-1)!}-1-\frac{2}{(n-1)!}-\frac{2}{n!}\right.
$$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)^{n} \cdot \frac{1+2(n+1)-\sum_{k=1}^{n+1} x_{k}}{(n+1)\left(1+2 n-\sum_{k=1}^{n} x_{k}\right)}= \\
& =\frac{1}{e} \cdot \lim _{n \rightarrow \infty} \frac{1}{n+1} \cdot \underbrace{\frac{1+2(n+1)-\sum_{k=1}^{n+1} x_{k}}{1+2 n-\sum_{k=1}^{n} x_{k}}}_{\Omega_{n}} \\
& \lim _{n \rightarrow \infty} \Omega_{n}=\lim _{n \rightarrow \infty} \frac{1+2(n+1)-\sum_{k=1}^{n+1} x_{k}}{1+2 n-\sum_{k=1}^{n} x_{k}} \stackrel{L C-S}{=} \lim _{n \rightarrow \infty} \frac{2-x_{n+1}}{2-x_{n}}= \\
& =\lim _{n \rightarrow \infty} \frac{2-(n+1)\left(x_{n}-n!-2\right)+2}{2-x_{n}}=\lim _{n \rightarrow \infty} \frac{2-x_{n}+n\left(2-x_{n}\right)+4+(n+1)!}{2-x_{n}}= \\
& =\lim _{n \rightarrow \infty}\left(n+1+\frac{4}{2-x_{n}}+\frac{(n+1)!}{2-x_{n}}\right) \text { then: } \\
& \Omega=\frac{1}{e} \cdot \lim _{n \rightarrow \infty} \frac{\Omega_{n}}{n+1}=\frac{1}{e} \cdot \lim _{n \rightarrow \infty}(1+\underbrace{\frac{4}{(n+1)\left(2-x_{n}\right)}}_{\rightarrow 0}+\frac{n!}{2-x_{n}})
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

 www.ssmrmh.ro$$
\begin{gathered}
\sum_{k=1}^{n}\left(\frac{x_{k}}{k!}-\frac{x_{k-1}}{(k-1)!}\right)=\sum_{k=1}^{n}\left(-1-\frac{2}{(k-1)!}-\frac{2}{k!}\right)=-n-2 \sum_{k=1}^{n} \frac{1}{(k-1)!}-2 \sum_{k=1}^{n} \frac{1}{k!} \Rightarrow \\
\frac{x_{n}}{n!}-2=-n-2-2 \sum_{k=1}^{n} \frac{1}{k!}-2 \sum_{k=1}^{n} \frac{1}{k!} \Rightarrow \frac{x_{n}}{n!}=-n-4 \sum_{k=1}^{n} \frac{1}{k!} \Rightarrow \\
\Omega=\lim _{n \rightarrow \infty} \frac{\sqrt[n]{1+2 n-\sum_{k=1}^{n} x_{k}}}{n}=\lim _{n \rightarrow \infty} \sqrt[n]{\frac{1+2 n-\sum_{k=1}^{n} x_{k}}{n^{n}}}= \\
\stackrel{C-D^{\prime} A}{=} \lim _{n \rightarrow \infty} \frac{1+2(n+1)-\sum_{k=1}^{n+1} x_{k}}{(n+1)^{n+1}} \cdot \frac{n^{n}}{1+2 n-\sum_{k=1}^{n} x_{k}}= \\
=\frac{1}{e} \cdot \lim _{n \rightarrow \infty} \frac{1}{n}\left(1+\frac{2-x_{n+1}}{2 n+1-\sum_{k=1}^{n} x_{k}}\right)=\frac{1}{e} \cdot \lim _{n \rightarrow \infty} \frac{1}{n} \cdot \frac{2-x_{n+1}}{2 n+1-\sum_{k=1}^{n} x_{k}} \stackrel{L \cdot c-s}{=} \\
=\frac{1}{e} \cdot \lim _{n \rightarrow \infty} \frac{2 x_{n+2}-x_{n+3}-x_{n+1}}{4 n-(n+1) x_{n+2}+n x_{n+1}-x_{n+2}}= \\
=\frac{1}{e} \cdot \lim _{n \rightarrow \infty} \frac{2 x_{n+2}-x_{n+3}-x_{n+1}}{4 n-(n+2) x_{n+2}+x_{n+2}}=
\end{gathered}
$$

$$
=\frac{1}{e} \cdot \lim _{n \rightarrow \infty} \frac{2 x_{n+2}-(n+3) x_{n+2}+(n+3)!+2 n+8-\frac{x_{n+2}+2}{n+2}-(n+1)!-2}{4 n-(n+2) x_{n+2}+\frac{n}{n+2}\left(x_{n+2}+2\right)+(n+1)!+2 n}=
$$

$$
=\frac{1}{e} \cdot \lim _{n \rightarrow \infty} \frac{\left(-n^{2}-3 n-3\right) x_{n+2}+(n+2)(n+3)!+(2 n+6)(n+2)-(n+2)!}{6 n^{2}+14 n+(n+2)!+\left(-n^{3}-3 n-4\right) x_{n+2}}=
$$

$$
\begin{equation*}
=\frac{1}{e} \cdot \lim _{n \rightarrow \infty} \frac{\frac{\left(-n^{2}-3 n-3\right) x_{n+2}}{(n+2)!}+(n+2)(n+3)+\frac{(2 n+6)(n+2)}{(n+2)!}-1}{\frac{6 n^{2}+14 n}{(n+2)!}+1+\frac{\left(-n^{3}-3 n-4\right) x_{n+2}}{(n+2)!}} \tag{1}
\end{equation*}
$$

Let: $\frac{x_{n+2}}{(n+2)!}=-n-2-4 \sum_{k=1}^{n} \frac{1}{k!}=x \Rightarrow \lim _{n \rightarrow \infty} x=-\infty \stackrel{(1)}{\Rightarrow}$
$\Omega=\lim _{n \rightarrow \infty} \frac{\frac{(n+2)(n+3)}{x\left(-n^{2}-3 n-3\right)}+\frac{(2 n+6)(n+2)}{(n+2)!x\left(-n^{2}-3 n-3\right)}+\frac{1}{x\left(-n^{2}-3 n-3\right)}}{\frac{-n^{2}-3 n-4}{-n^{2}-3 n-3}+\frac{1}{x\left(-n^{2}-3 n-3\right)}+\frac{6 n^{2}+14 n}{x\left(-n^{2}-3 n-3\right)(n+2)!}}=\frac{1}{e}$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
UP.307. Let $\left(a_{n}\right)_{n \geq 1}, a_{n} \in(0, \infty)$ be sequence of real numbers such that $a_{1}=\sqrt{a}, a>0, a_{n+1}^{2}=n \cdot a_{n}+1$ then find:

$$
\Omega=\lim _{n \rightarrow \infty} \frac{a_{n}}{n^{3}} \int_{0}^{1} \sqrt[n]{\frac{x^{2 n}+1}{x^{n}+1}}, n \in \mathbb{N}, n \geq 2
$$

Proposed by Florică Anastase-Romania

Solution 1 by proposer

$$
\begin{gathered}
a_{1}=\sqrt{a}, a>0 ; a_{n+1}^{2}=n \cdot a_{n}+1 \\
\text { Let: } a_{n+1}^{2}=x_{n+1}>0 \Rightarrow x_{1}=a>0, a_{n+1}=\sqrt{x_{n+1}} ; \\
x_{n+1}=n \cdot \sqrt{x_{n}}+1 \\
\text { How } x_{n+1}=n \cdot \sqrt{x_{n}}+1>1 \Rightarrow x_{n}>1, \forall n \geq 2, n \in \mathbb{N} \text { then } \\
n \cdot \sqrt{x_{n}}<x_{n+1}<(n+1) \sqrt{x_{n}}, \forall n \geq 2 \Leftrightarrow \\
\log n+\frac{1}{2} \log x_{n}<\log x_{n+1}<\log (n+1)+\frac{1}{2} \log x_{n} \Leftrightarrow \\
2^{n+1} \log n+2^{n} \log x_{n}<2^{n+1} \log x_{n+1}<2^{n+1} \log (n+1)+2^{n} \log x_{n} \\
2^{n+1} \log n<2^{n+1} \log x_{n+1}-2^{n} \log x_{n}<2^{n+1} \log (n+1)
\end{gathered}
$$

Let: $y_{n}=2^{n} \log x_{n} \Rightarrow 2^{n+1} \log n<y_{n+1}-y_{n}<2^{n+1} \log (n+1)$ and summing, we get:

$$
\begin{gathered}
\sum_{k=3}^{n} 2^{k} \log (k-1)<y_{n}-y_{2}<\sum_{k=3}^{n} 2^{k} \log k \\
\frac{y_{2}}{2^{n}}+\frac{1}{2^{n}} \sum_{k=3}^{n} 2^{k} \log (k-1)-2 \log n<\log \left(\frac{x_{n}}{n^{2}}\right)<\frac{y_{2}}{2^{n}}+\frac{1}{2^{n}} \sum_{k=3}^{n} 2^{k} \log k-2 \log n \\
\lim _{n \rightarrow \infty}\left(\frac{1}{2^{n}} \sum_{k=3}^{n} 2^{k} \log (k-1)-2 \log n\right)=\lim _{n \rightarrow \infty} \frac{1}{2^{n}}\left(\sum_{k=3}^{n} 2^{k} \log k-2^{n+1} \log n\right) \stackrel{L . C-\text { Stolz }}{=} \\
=\lim _{n \rightarrow \infty} \frac{2^{n+1} \log n-2^{n+2} \log (n+1)+2^{n+1} \log n}{2^{n+1}-2^{n}}=4 \lim _{n \rightarrow \infty} \log \left(\frac{n+1}{n}\right)=0 ;(1) \\
\text { Analogously, }
\end{gathered}
$$

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{2^{n}} \sum_{k=3}^{n} 2^{k} \log k-2 \log n\right)=0
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
From (1),(2) we get: $\lim _{n \rightarrow \infty} \log \left(\frac{x_{n}}{n^{2}}\right)=0 \Rightarrow \lim _{n \rightarrow \infty}\left(\frac{x_{n}}{n^{2}}\right)=\lim _{n \rightarrow \infty}\left(\frac{a_{n}^{2}}{n^{2}}\right)=1 \Rightarrow \lim _{n \rightarrow \infty}\left(\frac{a_{n}}{n}\right)=1$

Now,

$$
\begin{align*}
& \frac{x^{2 n}+1}{x^{n}+1}>\sqrt{2}-1 \Leftrightarrow x^{2 n}-(\sqrt{2}-1) x^{n}+2-\sqrt{2}>0 ; t=x^{n}>0 \Rightarrow \\
& t^{2}-(\sqrt{2}-1) t+2-\sqrt{2}>0, \Delta_{t}=-5+2 \sqrt{2}<0 \Rightarrow \\
& \sqrt{2}-1<\int_{0}^{1} \sqrt[n]{\frac{x^{2 n}+1}{x^{n}+1}} d x ; \tag{3}\\
& \sqrt[n]{\frac{x^{2 n}+1}{x^{n}+1}}=\sqrt[n]{\left(x^{2 n}+1\right) \cdot \underbrace{1 \cdot 1 \ldots .1}_{(n-2)} \cdot \frac{1}{x^{n}+1}} \stackrel{A M-G M}{\leq} \frac{\left(x^{2 n}+1\right)+n-2+\frac{1}{x^{n}+1}}{n} \Leftrightarrow \\
& \sqrt[n]{\frac{x^{2 n}+1}{x^{n}+1}} \leq \frac{1}{n}\left(x^{2 n}+n-1+\frac{1}{x^{n}+1}\right) \\
& \int_{0}^{1} \sqrt[n]{\frac{x^{2 n}+1}{x^{n}+1}} d x \leq \frac{1}{n} \int_{0}^{1} x^{2 n} d x+\frac{n-1}{n}+\frac{1}{n} \underbrace{\int_{0}^{1} \frac{1}{x^{n}+1}}_{\leq 1} \leq \frac{1}{n(2 n+1)}+1 \text {; (4) } \tag{4}
\end{align*}
$$

From (3),(4) we have:

$$
\begin{gathered}
\sqrt{2}-1<\int_{0}^{1} \sqrt[n]{\frac{x^{2 n}+1}{x^{n}+1}} d x<\frac{1}{n(2 n+1)}+1 \Leftrightarrow \\
(\sqrt{2}-1) \frac{a_{n}}{n} \cdot \frac{1}{n^{2}}<\frac{a_{n}}{n^{3}} \int_{0}^{1} \sqrt[n]{\frac{x^{2 n}+1}{x^{n}+1}} d x<\frac{a_{n}}{n} \cdot \frac{1}{n^{2}}\left(\frac{1}{n(2 n+1)}+1\right) \\
\text { So, } \Omega=\lim _{n \rightarrow \infty} \frac{a_{n}}{n^{3}} \int_{0}^{1} \sqrt[n]{\frac{x^{2 n}+1}{x^{n}+1}}=0
\end{gathered}
$$

Solution 2 by proposer

$$
a_{1}=\sqrt{a}, a>0 ; a_{n+1}^{2}=n \cdot a_{n}+1
$$

Let: $a_{n+1}^{2}=x_{n+1}>0 \Rightarrow x_{1}=a>0, a_{n+1}=\sqrt{x_{n+1}}$;

$$
x_{n+1}=n \cdot \sqrt{x_{n}}+1
$$

How $\boldsymbol{x}_{\boldsymbol{n}+\boldsymbol{1}}=\boldsymbol{n} \cdot \sqrt{\boldsymbol{x}_{\boldsymbol{n}}}+\mathbf{1}>1 \Rightarrow \boldsymbol{x}_{\boldsymbol{n}}>1, \forall n \geq 2, \boldsymbol{n} \in \mathbb{N}$ then

$$
n \cdot \sqrt{x_{n}}<x_{n+1}<(n+1) \sqrt{x_{n}}, \forall n \geq 2 \Leftrightarrow
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
\log n+\frac{1}{2} \log x_{n}<\log x_{n+1}<\log (n+1)+\frac{1}{2} \log x_{n} \Leftrightarrow \\
2^{n+1} \log n+2^{n} \log x_{n}<2^{n+1} \log x_{n+1}<2^{n+1} \log (n+1)+2^{n} \log x_{n} \\
2^{n+1} \log n<2^{n+1} \log x_{n+1}-2^{n} \log x_{n}<2^{n+1} \boldsymbol{l o g}(n+1)
\end{gathered}
$$

Let: $y_{n}=2^{n} \log x_{n} \Rightarrow 2^{n+1} \log n<y_{n+1}-y_{n}<2^{n+1} \log (n+1)$ and summing, we get:

$$
\begin{gathered}
\sum_{k=3}^{n} 2^{k} \log (k-1)<y_{n}-y_{2}<\sum_{k=3}^{n} 2^{k} \log k \\
\frac{y_{2}}{2^{n}}+\frac{1}{2^{n}} \sum_{k=3}^{n} 2^{k} \log (k-1)-2 \log n<\log \left(\frac{x_{n}}{n^{2}}\right)<\frac{y_{2}}{2^{n}}+\frac{1}{2^{n}} \sum_{k=3}^{n} 2^{k} \log k-2 \log n \\
\lim _{n \rightarrow \infty}\left(\frac{1}{2^{n}} \sum_{k=3}^{n} 2^{k} \log (k-1)-2 \log n\right)=\lim _{n \rightarrow \infty} \frac{1}{2^{n}}\left(\sum_{k=3}^{n} 2^{k} \log k-2^{n+1} \log n\right) \stackrel{L . C-\text { Stolz }}{=} \\
=\lim _{n \rightarrow \infty} \frac{2^{n+1} \log n-2^{n+2} \log (n+1)+2^{n+1} \log n}{2^{n+1}-2^{n}}=4 \lim _{n \rightarrow \infty} \log \left(\frac{n+1}{n}\right)=0 ;(1) \\
\text { Analogously, }
\end{gathered}
$$

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{2^{n}} \sum_{k=3}^{n} 2^{k} \log k-2 \log n\right)=0
$$

From (1),(2) we get: $\lim _{n \rightarrow \infty} \log \left(\frac{x_{n}}{n^{2}}\right)=0 \Rightarrow \lim _{n \rightarrow \infty}\left(\frac{x_{n}}{n^{2}}\right)=\lim _{n \rightarrow \infty}\left(\frac{a_{n}^{2}}{n^{2}}\right)=1 \Rightarrow \lim _{n \rightarrow \infty}\left(\frac{a_{n}}{n}\right)=1$
Now, let be the function:

$$
f:[0,1] \rightarrow \mathbb{R}, f(x)=\frac{x^{2 n}+1}{x^{n}+1} ; f^{\prime}(x)=\frac{n x^{n-1}\left(x^{2 n}+2 x^{n}-1\right)}{\left(x^{n}+1\right)^{2}}
$$

x	0	$\sqrt[n]{\sqrt{2}-1}$	1
$\boldsymbol{f}^{\prime}(x)$	-	$-----0+++++++$	
$\boldsymbol{f}(x)$	1	\searrow	$2(\sqrt{2}-1)$

We have: $2(\sqrt{2}-1) \leq f(x) \leq 1 ; \forall x \in[0,1] \Rightarrow$

$$
\sqrt[n]{2(\sqrt{2}-1)}<\sqrt[n]{\frac{x^{2 n}+1}{x^{n}+1}}<1 ; \forall x \in[0,1] \Rightarrow
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
\frac{a_{n}}{n} \cdot \frac{1}{n^{2}} \sqrt[n]{2(\sqrt{2}-1)}<\frac{a_{n}}{n^{3}} \cdot \sqrt[n]{\frac{x^{2 n}+1}{x^{n}+1}}<\frac{a_{n}}{n} \cdot \frac{1}{n^{2}} ; \forall x \in[0,1] \Rightarrow \\
\frac{a_{n}}{n} \cdot \frac{1}{n^{2}} \sqrt[n]{\frac{2}{\sqrt{2}+1}}<\frac{a_{n}}{n^{3}} \int_{0}^{1} \sqrt[n]{\frac{x^{2 n}+1}{x^{n}+1}<\frac{a_{n}}{n} \cdot \frac{1}{n^{2}} ; \forall x \in[0,1]} \\
\text { So }, \Omega
\end{gathered}=\lim _{n \rightarrow \infty} \frac{a_{n}}{n^{3}} \int_{0}^{1} \sqrt[n]{\frac{x^{2 n}+1}{x^{n}+1}}=0 \quad l
$$

UP.308. Find:

$$
\Omega=\lim _{n \rightarrow \infty} \frac{\log \left(\sum_{k=0}^{n}(n+k)\binom{n+k}{k}\right)}{\sqrt[n]{n!}}
$$

Proposed by Marian Ursărescu-Romania

Solution 1 by Daniel Văcaru-Romania

We have:

$$
\begin{gathered}
\sum_{k=0}^{n}(n+k)\binom{n+k}{k}=\frac{n(2 n+3)\binom{2 n+1}{n}}{n+2} \\
\Omega=\lim _{n \rightarrow \infty} \frac{\log \left(\sum_{k=0}^{n}(n+k)\binom{n+k}{k}\right)}{\sqrt[n]{n!}}=\lim _{n \rightarrow \infty} \frac{\log \left(\frac{n(2 n+3)\binom{2 n+1}{n}}{n+2}\right)}{\sqrt[n]{n!}} \stackrel{\text { S-Cesaro }}{=} \\
=\lim _{n \rightarrow \infty} \frac{\log \left(\frac{(n+1)(2 n+5)\binom{2 n+3}{n+1}}{n+3}\right)-\log \left(\frac{n(2 n+3)\binom{2 n+1}{n}}{n+2}\right)}{\sqrt[n+1]{(n+1)!}-\sqrt[n]{n!}}= \\
=\lim _{n \rightarrow \infty} \frac{\log \left(\frac{(n+1)(n+2)(2 n+5)\binom{2 n+3}{n+1}}{n(n+3)(2 n+3)\binom{n+1}{n}}\right)}{\sqrt[n+1]{(n+1)!}-\sqrt[n]{n!}}
\end{gathered}
$$

We have:

$$
\lim _{n \rightarrow \infty} \frac{(n+1)(n+2)(2 n+5)\binom{2 n+3}{n+1}}{n(n+3)(2 n+3)\binom{2 n+1}{n}}=\lim _{n \rightarrow \infty} \frac{\binom{2 n+3}{n+1}}{\binom{2 n+1}{n}}=
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro
 $$
=\lim _{n \rightarrow \infty} \frac{(2 n+3)!n!(n+1)!}{(2 n+1)!(n+1)!(n+2)!}=\lim _{n \rightarrow \infty} \frac{(2 n+2)(2 n+3)}{(n+1)(n+2)}=4
$$

On the other hand,

$$
\begin{gathered}
\lim _{n \rightarrow \infty}(\sqrt[n+1]{(n+1)!}-\sqrt[n]{n!})=\lim _{n \rightarrow \infty} \frac{\sqrt[n+1]{(n+1)!}-\sqrt[n]{n!}}{(n+1)-n} \stackrel{s-\text { Cesaro }}{=} \\
=\lim _{n \rightarrow \infty} \frac{\sqrt[n]{n!}}{n}=\lim _{n \rightarrow \infty} \sqrt[n]{\frac{n!}{n^{n}}} \stackrel{c-D^{\prime} A}{=} \lim _{n \rightarrow \infty} \frac{(n+1)!n^{n}}{n!(n+1)^{n+1}}=\lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)^{n}=\frac{1}{e} \\
\quad \text { We obtain: } \Omega=\frac{\log 4}{\frac{1}{e}}=\text { elog } 4=\log 4^{e}
\end{gathered}
$$

Solution 2 by Sergio Esteban-Argentina

First, we calculate:

$$
\omega_{n}=\sum_{k=0}^{n}(n+k)\binom{n+k}{k}=n \sum_{k=0}^{n}\binom{n+k}{k}+\sum_{k=0}^{n} k\binom{n+k}{k}
$$

We will use the following fundamental properties of the binomial coefficients:

$$
\begin{aligned}
& \text { i) } \quad k\binom{n}{k}=(n-k+1)\binom{n}{k-1} \\
& \text { ii) } \quad\binom{n}{0}+\binom{n+1}{1}+\binom{n+2}{2}+\cdots+\binom{n+k}{k}=\binom{n+k+1}{k} \\
& \text { Then, by (ii) and (i) we get: } \\
& \omega_{n}=n\binom{2 n+1}{n}+\sum_{k=0}^{n} k\binom{n+k}{k}=n\binom{2 n+1}{n}+(n+1) \sum_{k=0}^{n}\binom{n+k}{k-1}= \\
& =n\binom{2 n+1}{n}+(n+1)\binom{2 n+1}{n-1}=\frac{(2 n+1)!}{(n-1)!(n+1)!}\left(1+\frac{n+1}{n+2}\right)
\end{aligned}
$$

Now,

$$
\Omega=\lim _{n \rightarrow \infty} \frac{\log \left(\sum_{k=0}^{n}(n+k)\binom{n+k}{k}\right)}{\sqrt[n]{n!}}=\lim _{n \rightarrow \infty} \frac{\log \left(\frac{2(2 n+1)!}{(n-1)!(n+1)!}\right)}{\sqrt[n]{n!}}
$$

By Stirling's approximation:

$$
\lim _{n \rightarrow \infty} \frac{\log \left(\frac{2(2 n+1)!}{(n-1)!(n+1)!}\right)}{\sqrt[n]{n!}}=
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
$=\lim _{n \rightarrow \infty} \frac{\log 2+(2 n+1) \log (2 n+1)-(2 n+1)-(n-1) \log (n-1)+(n-1)-(n+1) \log (n+1)+(n+1)}{\frac{n}{e}}$

$$
\begin{gathered}
=\lim _{n \rightarrow \infty} \frac{e}{n} \log \left(\frac{(2 n+1)^{2 n+1}}{(n-1)^{n-1}(n+1)^{n+1}}\right)= \\
=\lim _{n \rightarrow \infty} \frac{e}{n} \log \left(\frac{(2 n+1)^{2}}{(n-1)(n+1)} \sqrt[n]{\frac{(2 n+1)(n-1)}{n+1}}\right)^{n}=e \log 4 \\
\Omega=e \log 4=\log 4^{e}
\end{gathered}
$$

UP.309.In acute $\triangle \mathrm{ABC}$ the altitudes $\mathrm{AA}^{\prime}, \mathrm{BB}^{\prime}, \mathrm{CC}^{\prime}$ intersect at all second times the determined circle by the points $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}, \mathrm{C}^{\prime}$ in $\mathrm{A}^{\prime \prime}, \mathrm{B}^{\prime \prime}, \mathrm{C}^{\prime \prime}$.

Prove that:

$$
(2 r)^{2 s} \geq\left(A^{\prime} A^{\prime \prime}\right)^{a} \cdot\left(B^{\prime} B^{\prime \prime}\right)^{b} \cdot\left(C^{\prime} C^{\prime \prime}\right)^{c}
$$

Proposed by Marian Ursărescu-Romania

Solution 1 by Adrian Popa-Romania

$$
\begin{gathered}
A^{"} \in(A H), B^{"} \in(B H), C^{"} \in(C H) ; A A^{\prime \prime}=A " H ; B B^{\prime \prime}=B^{\prime \prime} H ; C C^{\prime \prime}=C " H \\
(2 r)^{2 s} \geq\left(A^{\prime} A^{\prime \prime}\right)^{a} \cdot\left(B^{\prime} B^{\prime \prime}\right)^{b} \cdot\left(C^{\prime} C^{\prime \prime}\right)^{c} \\
A^{\prime} A=A^{\prime} H+H A=A^{\prime} H+\frac{A H}{2}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
$\Delta A C^{\prime} H\left(\widehat{C}=90^{\circ}\right): \cos \widehat{C^{\prime} A H}=\frac{A C^{\prime}}{A H} \Rightarrow A H=\frac{A C^{\prime}}{\cos \left(90^{\circ}-B\right)}=\frac{A C^{\prime}}{\sin B}$
$\Delta A C^{\prime} C\left(\widehat{C}^{\prime}=90^{\circ}\right): \cos A=\frac{A C^{\prime}}{b} \Rightarrow A C^{\prime}=b \cos A=2 R \sin B \cos A \Rightarrow$
$A H=\frac{2 R \sin B \cos A}{\sin B}=2 R \cos A \Rightarrow H A^{\prime \prime}=R \cos A$ (and analogous)

$$
H B^{\prime \prime}=R \cos B ; H C^{\prime \prime}=R \cos C
$$

$S_{B H C}=\frac{B H \cdot H C \cdot \sin H}{2}=\frac{B H \cdot C H \cdot \sin A}{2}=\frac{2 R \cos B \cdot 2 R \cos C \cdot \sin A}{2}=$ $=2 R^{2} \cos B \cos C \sin A ;(1)$
$\left(\therefore \widehat{H}=\widehat{B H A}^{\prime}+\widehat{A^{\prime} H C}=90^{\circ}-\left(90^{\circ}-\widehat{C}\right)+90^{\circ}-\left(90^{\circ}-\widehat{B}\right)=\widehat{B}+\widehat{C}=90^{\circ}-\widehat{A}\right)$

$$
S_{B H C}=\frac{H A^{\prime} \cdot a}{2}=\frac{2 R \sin A \cdot H A^{\prime}}{2}
$$

From (1), (2) $\Rightarrow 2 R^{2} \cos B \cos C \sin A=R \sin A \cdot H A^{\prime} \Rightarrow H A^{\prime}=2 R \cos B \cos C$

$$
\text { So, } A^{\prime} A^{\prime \prime}=R(\cos A+\cos B \cos C)
$$

$$
\left(A^{\prime} A^{\prime \prime}\right)^{a} \cdot\left(B^{\prime} B^{\prime \prime}\right)^{b} \cdot\left(C^{\prime} C^{\prime \prime}\right)^{c} \stackrel{A M-G M}{\leq}\left(\frac{a \cdot A^{\prime} A^{\prime \prime}+b \cdot B^{\prime} B^{\prime \prime}+c \cdot C^{\prime} C^{\prime \prime}}{a+b+c}\right)^{a+b+c} \stackrel{(1)}{\leq}(2 r)^{2 s}
$$

We must show that:

$$
\frac{a \cdot A^{\prime} A^{\prime \prime}+b \cdot B^{\prime} B^{\prime \prime}+c \cdot C^{\prime} C^{\prime \prime}}{2 s} \leq 2 r
$$

$a \cdot A^{\prime} A^{\prime \prime}=2 R \sin A \cdot R(\cos A+\cos B \cos C)=2 R^{2}(\sin A \cos A+\sin A \cos B \cos C)$

$$
\begin{gathered}
\therefore \sin A \cos B \cos C=\sin A \cdot \frac{\cos (B+C)+\cos (B-C)}{2}= \\
=\frac{\sin (B+C) \cos (B+C)+\sin (B+C) \cos (B-C)}{2}= \\
=\frac{\frac{\sin 2(B+C)}{2}+\frac{\sin 2 B+\sin 2 C}{2}}{2}=\frac{-\sin A+\sin 2 B+\sin 2 C}{4}
\end{gathered}
$$

$a \cdot A^{\prime} A^{\prime \prime}+b \cdot B^{\prime} B^{\prime \prime}+c \cdot C^{\prime} C^{\prime \prime}=R^{2}\left(\sum_{c y c} \sin 2 A+\frac{-\sin A+\sin 2 B+\sin 2 C}{4}\right)=$

$$
=\frac{3}{2} R^{2} \sum_{c y c} \sin 2 A ;(3)
$$

ROMANIAN MATHEMATICAL MAGAZINE

$$
\begin{gather*}
\text { www.ssmrmh.ro } \\
\sum_{c y c} \sin 2 A=2 \sin (A+B) \cos (A-B)+2 \sin C \cos C= \\
=2 \sin C(\cos (A-B)-\cos (A+B))=2 \sin C \cdot 2 \sin A \sin B= \\
=4 \sin A \sin B \sin C=\frac{a b c}{2 R^{3}}=\frac{4 R r s}{2 R^{3}}=\frac{2 r s}{R^{2}} ;(4) \tag{4}
\end{gather*}
$$

From (3), (4) we have:

$$
\frac{3}{2} R^{2} \sum_{c y c} \sin 2 A=\frac{3}{2} R^{2} \cdot \frac{2 r s}{R^{2}}=\frac{3 r s}{2 s}=\frac{3 r}{2}<2 r
$$

Solution 2 by proposer

$$
\begin{gather*}
\frac{A A^{\prime \prime}}{A A^{\prime}}=\frac{A A^{\prime \prime} \cdot A A^{\prime}}{A A^{\prime 2}} \tag{1}\\
A A^{\prime \prime} \cdot A A^{\prime}=\rho(A)=A \Omega^{2}-\frac{R^{2}}{4}
\end{gather*}
$$

From (1) $+(2) \Rightarrow A A^{\prime \prime} \cdot A A^{\prime}=\frac{b^{2}+c^{2}-a^{2}}{4} \Rightarrow A A^{\prime}=h_{a}=2 R \cdot \sin B \cdot \sin C$

$$
\begin{equation*}
\text { From }(1)+(2)+(3) \Rightarrow \tag{3}
\end{equation*}
$$

$$
\begin{gather*}
\frac{A A^{\prime \prime}}{A A^{\prime}}=\frac{b^{2}+c^{2}-a^{2}}{16 R^{2} \cdot \sin ^{2} B \cdot \sin ^{2} C}=\frac{2 b c \cdot \cos A}{16 R^{2} \cdot \sin ^{2} B \cdot \sin ^{2} C}=\frac{4 R^{2} \cdot \cos A \cdot \sin B \cdot \sin C}{8 R^{2} \cdot \sin ^{2} B \cdot \sin ^{2} C}= \\
=\frac{2 b c \cdot \cos A}{2 \sin B \cdot \sin C} \\
\text { Therefore }
\end{gathered} \quad \begin{gathered}
\sum \frac{A A^{\prime \prime}}{A A^{\prime}}=\frac{1}{2} \underbrace{\sum \frac{\cos A}{\sin B \sin C}=1 \Rightarrow \sum \frac{A A^{\prime \prime}}{\frac{2 S}{a}}=1 \Rightarrow \sum a \cdot A A^{\prime \prime}=2 S}_{1} \begin{array}{c}
\Rightarrow \sum a\left(h_{a}-A^{\prime} A^{\prime \prime}\right)=2 S \Rightarrow \sum a h_{a}-\sum a \cdot A^{\prime} A^{\prime \prime}=2 S \\
\Rightarrow \sum a \cdot A^{\prime} A^{\prime \prime}=4 S \Rightarrow \sum \frac{a \cdot A^{\prime} A^{\prime \prime}}{a+b+c}=\frac{4 S}{2 s}=\frac{4 s r}{2 s}=2 r \quad(4)
\end{array}
\end{gather*}
$$

Applying weighted AM-GM inequality, we have:

$$
\begin{gathered}
2 r=\sum \frac{a}{a+b+c} \cdot A^{\prime} A^{\prime \prime} \geq\left(A^{\prime} A^{\prime \prime}\right)^{a / 2 s} \cdot\left(B^{\prime} B^{\prime \prime}\right)^{b / 2 s} \cdot\left(C^{\prime} C^{\prime \prime}\right)^{c / 2 s} \\
\text { So: }(2 r)^{2 s} \geq\left(A^{\prime} A^{\prime \prime}\right)^{a} \cdot\left(B^{\prime} B^{\prime \prime}\right)^{b} \cdot\left(C^{\prime} C^{\prime \prime}\right)^{c}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
UP.310. Let $x, y, z>0$ real numbers such that $x+y+z=3$. Prove that:

$$
3(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}+1) \geq 4(x y+y z+z x)
$$

Hence, find the minimum value of expression:

$$
P=\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}+\frac{3(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z})}{8}
$$

Proposed by Hoang Le Nhat Tung-Hanoi-Vietnam

Solution 1 by Tran Hong-Dong Thap-Vietnam

By AM-GM inequality, we have:

$$
\begin{gathered}
\sqrt[3]{a}+\sqrt[3]{a}+\sqrt[3]{a}+a^{2}+a^{2} \geq 5 \sqrt[5]{(\sqrt[3]{a})^{3} \cdot a^{2} \cdot a^{2}}=5 \sqrt[5]{a^{5}}=5 a \Leftrightarrow \\
3 \sqrt[3]{a}+2 a^{2} \geq 5 a \Leftrightarrow 3 \sqrt[3]{a} \geq 5 a-2 a^{2}
\end{gathered}
$$

$$
\text { Similarly: } 3 \sqrt[3]{b} \geq 5 b-2 b^{2} ; 3 \sqrt[3]{c} \geq 5 c-2 c^{2}
$$

Therefore,

$$
\begin{gathered}
3(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}) \geq 5(a+b+c)-2\left(a^{2}+b^{2}+c^{2}\right) \Leftrightarrow \\
3(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}) \geq 15-2\left(a^{2}+b^{2}+c^{2}\right) ;(\therefore a+b+c=3) \Leftrightarrow \\
3(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}+1) \geq 18-2\left(a^{2}+b^{2}+c^{2}\right) \stackrel{a+b+c=3}{=} \\
=2(a+b+c)^{2}-2\left(a^{2}+b^{2}+c^{2}\right) \Leftrightarrow \\
3(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}+1) \geq 2\left(a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c a\right)-2\left(a^{2}+b^{2}+c^{2}\right) \Leftrightarrow \\
3(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}) \geq 4(a b+b c+c a)-3 \\
\text { Choose: } a=x ; b=y ; c=z(x, y, z>0, x+y+z=3) \text { we have: }
\end{gathered}
$$

$$
\begin{gathered}
3(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}) \geq 4(x y+y z+z x)-3 ; \quad(*) \Leftrightarrow \\
3(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}+1) \geq 4(x y+y z+z x) \\
\text { Now, } \Omega \frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=\frac{x^{2}}{x(y+z)}+\frac{y^{2}}{y(z+x)}+\frac{z^{2}}{z(x+y)} \geq
\end{gathered}
$$

$$
\stackrel{\text { Bergstrom }}{\geq} \frac{(x+y+z)^{2}}{2(x y+y z+z x)}=\frac{3^{2}}{2(x y+y z+z x)}=\frac{9}{2(x y+y z+z x)}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
P=\Omega+\frac{3(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z})}{8} \geq \frac{9}{2(x y+y z+z x)}+\frac{3(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z})}{8} \stackrel{(*)}{\geq} \\
\geq \frac{9}{2(x y+y z+z x)}+\frac{4(x y+y z+z x)-3}{8}=\frac{9}{2(x y+y z+z x)}+\frac{x y+y z+z x}{2}-\frac{3}{8} \geq \\
\stackrel{A M-G M}{\geq} 2 \sqrt{\frac{9}{2(x y+y z+z x)} \cdot \frac{x y+y z+z x}{2}}-\frac{3}{8}=2 \sqrt{\frac{9}{4}}-\frac{3}{8}=3-\frac{3}{8}=\frac{21}{8} \\
\text { Hence } P \geq \frac{21}{8} \text { and } P_{\text {Min }}=\frac{21}{8} \Leftrightarrow\left\{\begin{array}{c}
x=y=z \\
x+y+z=3
\end{array} \Leftrightarrow x=y=z=1 .\right.
\end{gathered}
$$

Solution 2 by proposer

By AM-GM inequality, we have:

$$
\begin{gathered}
\sqrt[3]{x}+\sqrt[3]{x}+\sqrt[3]{x}+x^{2}+x^{2} \geq 5 \sqrt[5]{\sqrt[3]{x} \cdot \sqrt[3]{x} \cdot \sqrt[3]{x} \cdot x^{2} \cdot x^{2}}=5 \sqrt[5]{x^{5}}=5 x \Leftrightarrow \\
3 \sqrt[3]{x}+2 x^{2} \geq 5 x \Leftrightarrow 3 \sqrt[3]{x} \geq 5 x-2 x^{2} \\
\text { Similarly }: 3 \sqrt[3]{y} \geq 5 y-2 y^{2} ; 3 \sqrt[3]{z} \geq 5 z-2 z^{2}
\end{gathered}
$$

Therefore, $3(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}) \geq 5(x+y+z)-2\left(x^{2}+y^{2}+z^{2}\right) \Leftrightarrow$

$$
3(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}) \geq 5(x+y+z)-2\left[(x+y+z)^{2}-2(x y+y z+z x)\right] \Leftrightarrow
$$

$$
3(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}) \geq 5 \cdot 3-2\left[\left(3^{2}-2(x y+y z+z x)\right] \Leftrightarrow\right.
$$

$$
3(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}) \geq 4(x y+y z+z x)-3 \Leftrightarrow
$$

$$
\begin{equation*}
3(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}+1) \geq 4(x y+y z+z x) \tag{1}
\end{equation*}
$$

By Cauchy-Schwartz inequality, we have:

$$
\begin{gather*}
\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=\frac{x^{2}}{x(y+z)}+\frac{y^{2}}{y(z+x)}+\frac{z^{2}}{z(x+y)} \geq \frac{(x+y+z)^{2}}{x(y+z)+y(z+x)+z(x+y)} \\
\text { Hence, } P=\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}+\frac{3(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z})}{8} \geq \\
\geq \frac{(x+y+z)^{2}}{2(x y+y z+z x)}+\frac{3(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z})}{8}=\frac{9}{2(x y+y z+z x)}+\frac{3(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z})}{8} ;(2) \\
\text { From (1): } 3(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}+1) \geq 4(x y+y z+z x) \Rightarrow \\
3(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}) \geq 4(x y+y z+z x)-3 ; \tag{3}
\end{gather*}
$$

From (2),(3) and AM-GM inequality, we have:

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
P \geq \frac{9}{2(x y+y z+z x)}+\frac{4(x y+y z+z x)-3}{8}=\frac{1}{2}\left(\frac{9}{x y+y z+z x}+(x y+y z+z x)\right)-\frac{3}{8} \\
\geq \frac{1}{2} \cdot 2 \sqrt{\frac{9}{x y+y z+z x} \cdot(x y+y z+z x)}-\frac{3}{8}=\frac{1}{2} \cdot 2 \cdot 3-\frac{3}{8}=3-\frac{3}{8}=\frac{21}{8} \\
P \geq \frac{21}{8} \Rightarrow P_{\text {Min }}=\frac{21}{8} . \text { Equality occurs if } \\
\left\{\begin{array}{c}
x, y, z>0 ; x+y+z=3 \\
\sqrt[3]{x}=x^{2} ; \sqrt[3]{y}=y^{2} ; \sqrt[3]{z}=z^{2} \\
x=y=z>0 \\
x y+y z+z x=3
\end{array} \Leftrightarrow x=y=z=1 .\right.
\end{gathered}
$$

UP.311. Find:

$$
\lim _{n \rightarrow \infty} \sqrt[3]{n^{2}}\left(\frac{\sqrt[3]{(n+1)^{2}}}{\sqrt[3 n+3]{(n+1)!}}-\frac{\sqrt[3]{n^{2}}}{\sqrt[3 n]{n!}}\right)
$$

Proposed by D.M.Bătineţu-Giurgiu,Neculai Stanciu-Romania
Solution 1 by Marian Ursărescu-Romania

$$
\begin{gather*}
L=\lim _{n \rightarrow \infty} \sqrt[3]{n^{2}}\left(\frac{\sqrt[3]{(n+1)^{2}}}{\sqrt[3 n+3]{(n+1)!}}-\frac{\sqrt[3]{n^{2}}}{\sqrt[3 n]{n!}}\right)=\lim _{n \rightarrow \infty} \sqrt[3]{n^{2}} \cdot \frac{\sqrt[3]{n^{2}}}{\sqrt[3 n]{n!}}\left(\frac{\sqrt[3]{(n+1)^{2}}}{\sqrt[3 n+3]{(n+1)!}} \cdot \frac{\sqrt[3 n]{n!}}{\sqrt[3]{n^{2}}}-1\right)= \\
=\lim _{n \rightarrow \infty} n \cdot \frac{\sqrt[3]{n}}{\sqrt[3 n]{n!}}\left(\frac{\sqrt[3]{(n+1)^{2}}}{\sqrt[3 n+3]{(n+1)!}} \cdot \frac{\sqrt[3 n]{n!}}{\sqrt[3]{n^{2}}}-1\right) ;(1) \tag{1}\\
\lim _{n \rightarrow \infty} \frac{\sqrt[3]{n}}{\sqrt[3 n]{n!}}=\lim _{n \rightarrow \infty} \sqrt[3]{\frac{n}{\sqrt[n]{n!}}}=\sqrt[3]{\lim _{n \rightarrow \infty} \frac{n}{\sqrt[n]{n!}}} \sqrt[c-D^{\prime} A]{=} A^{\lim _{n \rightarrow \infty}} \frac{(n+1)^{n+1}}{(n+1)!} \cdot \frac{n!}{n^{n}}= \\
=\sqrt[3]{\lim _{n \rightarrow \infty}\left(\frac{n+1}{n}\right)^{n}}=\sqrt[3]{e} ;(2) \\
\lim _{n \rightarrow \infty} n \cdot\left(\frac{\sqrt[3]{(n+1)^{2}}}{\sqrt[3 n+3]{(n+1)!}} \cdot \frac{\sqrt[3 n]{n!}}{\sqrt[3]{n^{2}}}-1\right)=
\end{gather*}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
=\lim _{n \rightarrow \infty} n \cdot\left(\frac{e^{\log \left(\frac{\sqrt[3]{(n+1)^{2}}}{\sqrt[3 n+3]{(n+1)!}} \cdot \sqrt[3 n]{n^{n}!}\right)}-1}{\log \left(\frac{\sqrt[3]{(n+1)^{2}}}{\sqrt[3 n+3]{(n+1)!}} \cdot \sqrt[3 n]{\sqrt[3]{n^{2}!}}\right)}\right) \log \left(\frac{\sqrt[3]{(n+1)^{2}}}{\sqrt[3 n+3]{(n+1)!}} \cdot \frac{\sqrt[3 n]{n!}}{\sqrt[3]{n^{2}}}\right)=
$$

$$
=\lim _{n \rightarrow \infty} n \cdot \log \left(\frac{\sqrt[3]{(n+1)^{2}}}{\sqrt[3 n+3]{(n+1)!}} \cdot \sqrt[3 n]{\sqrt[3]{n^{2}}}\right)=\lim _{n \rightarrow \infty} \log \left[\left(\sqrt[3]{\left(\frac{n+1}{n}\right)^{2}}\right)^{n} \cdot \sqrt[3]{\frac{n!}{(\sqrt[n+1]{(n+1)!})^{n}}}\right]=
$$

$$
=\frac{1}{3} \lim _{n \rightarrow \infty} \log \left[\left(1+\frac{1}{n}\right)^{2 n} \cdot \frac{n!}{(n+1)!} \cdot \sqrt[n+1]{(n+1)!}\right]=
$$

$$
=\frac{1}{\mathbf{3}} \lim _{n \rightarrow \infty} \log \left(e^{2} \cdot \frac{\sqrt[n+1]{(n+1)!}}{n+1}\right)=\frac{1}{\mathbf{3}} \lim _{n \rightarrow \infty} \log \left(e^{2} \cdot \frac{\sqrt[n]{n!}}{n}\right) \stackrel{(2)}{=}
$$

$$
\begin{equation*}
\frac{1}{3} \log \left(e^{2} \cdot \frac{1}{e}\right)=\frac{1}{3} \log e=\frac{1}{3} \tag{3}
\end{equation*}
$$

From (1), (2), (3) we get

$$
L=\lim _{n \rightarrow \infty} \sqrt[3]{n^{2}}\left(\frac{\sqrt[3]{(n+1)^{2}}}{\sqrt[3 n+3]{(n+1)!}}-\frac{\sqrt[3]{n^{2}}}{\sqrt[3 n]{n!}}\right)=\frac{\sqrt[3]{e}}{3}
$$

Solution 2 by Hemn Hsain-Uzbekistan

$$
\begin{gathered}
n!\cong\left(\frac{n}{e}\right)^{n} \Rightarrow \sqrt[3 n]{n!} \cong \sqrt[3]{\frac{n}{e}} ;(n+1)!\cong\left(\frac{n+1}{e}\right)^{n+1} \Rightarrow \sqrt[3 n+3]{(n+1)!} \cong \sqrt[3]{\frac{n+1}{e}} \\
\begin{aligned}
& L=\lim _{n \rightarrow \infty} \sqrt[3]{n^{2}}\left(\frac{\sqrt[3]{(n+1)^{2}}}{\sqrt[3 n+3]{(n+1)!}}-\frac{\sqrt[3]{n^{2}}}{\sqrt[3 n]{n!}}\right)=\sqrt[3]{e} \lim _{n \rightarrow \infty} \sqrt[3]{n^{2}}(\sqrt[3]{n+1}-\sqrt[3]{n})= \\
&=\sqrt[3]{e} \lim _{n \rightarrow \infty}\left[\sqrt[3]{n^{2}}(\sqrt[3]{n+1}-\sqrt[3]{n}) \cdot \frac{\sqrt[3]{(n+1)^{2}}+\sqrt[3]{n(n+1)}+\sqrt[3]{n^{2}}}{\sqrt[3]{(n+1)^{2}}+\sqrt[3]{n(n+1)}+\sqrt[3]{n^{2}}}\right]= \\
&=\sqrt[3]{e} \lim _{n \rightarrow \infty}\left[\sqrt[3]{n^{2}} \cdot \frac{n+1-n}{\sqrt[3]{(n+1)^{2}}+\sqrt[3]{n(n+1)}+\sqrt[3]{n^{2}}}\right]= \\
&=\sqrt[3]{e} \lim _{n \rightarrow \infty} \frac{\sqrt[3]{n^{2}}}{\sqrt[3]{(n+1)^{2}}+\sqrt[3]{n(n+1)}+\sqrt[3]{n^{2}}}=\frac{\sqrt[3]{e}}{3}
\end{aligned}
\end{gathered}
$$

Solution 3 by Kaushik Mahanta-India

By Stirling's approximation, we know:

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{equation*}
\lim _{n \rightarrow \infty}(n+1)!=\sqrt{2 \pi}\left(\frac{n+1}{e}\right)^{n+1} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n!=\sqrt{2 \pi}\left(\frac{n}{e}\right)^{n} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{\frac{1}{n}}=1 \tag{3}
\end{equation*}
$$

$\lim _{n \rightarrow \infty}\left[n^{\frac{2}{3}} \cdot\left(\frac{(n+1)^{\frac{2}{3}}}{((n+1)!)^{\frac{1}{3 n+3}}}-\frac{n^{\frac{2}{3}}}{(n!)^{\frac{1}{3 n}}}\right)\right] \stackrel{(1),(2)}{=}$
$=\lim _{n \rightarrow \infty}\left[n^{\frac{2}{3}} \cdot\left(\frac{(n+1)^{\frac{2}{3}}}{(2 \pi(n+1))^{\frac{1}{2 \cdot 3(n+1)}} \cdot\left(\frac{n+1}{e}\right)^{\frac{n+1}{3(n+1)}}}-\frac{n^{\frac{2}{3}}}{(2 \pi n)^{\frac{1}{2 \cdot 3 n}} \cdot\left(\frac{n}{e}\right)^{\frac{n}{3 n}}}\right)\right]=$ $=\lim _{n \rightarrow \infty}\left[n^{\frac{2}{3}} \cdot\left(\frac{(n+1)^{\frac{2}{3}}}{(2 \pi(n+1))^{\frac{1}{6(n+1)}} \cdot\left(\frac{n+1}{e}\right)^{\frac{1}{3}}}-\frac{n^{\frac{2}{3}}}{(2 \pi n)^{\frac{1}{6 n}} \cdot\left(\frac{n}{e}\right)^{\frac{1}{3}}}\right)\right]=$ $\left(\therefore \lim _{n \rightarrow \infty}(2 \pi(n+1))^{\frac{1}{6(n+1)}}=1 ; \lim _{n \rightarrow \infty}(2 \pi n)^{\frac{1}{6 n}}=1\right)$
$=\lim _{n \rightarrow \infty}\left[n^{\frac{2}{3}}\left(\frac{(n+1)^{\frac{2}{3}}}{(n+1)^{\frac{1}{3}}} \cdot e^{\frac{1}{3}}-\frac{n^{\frac{2}{3}}}{n^{\frac{1}{3}}} \cdot e^{\frac{1}{3}}\right)\right]=e^{\frac{1}{3}} \lim _{n \rightarrow \infty}\left[n^{\frac{2}{3}}\left((n+1)^{\frac{1}{3}}-n^{\frac{1}{3}}\right)\right]=$ $=e^{\frac{1}{3}} \lim _{n \rightarrow \infty}\left[n^{\frac{2}{3}}\left(\frac{\left((n+1)^{\frac{1}{3}}-n^{\frac{1}{3}}\right)\left((n+1)^{\frac{2}{3}}+n^{\frac{2}{3}}+(n(n+1))^{\frac{1}{3}}\right)}{(n+1)^{\frac{2}{3}}+n^{\frac{2}{3}}+(n(n+1))^{\frac{1}{3}}}\right)\right]=$
$=e^{\frac{1}{3}} \lim _{n \rightarrow \infty} \frac{n^{\frac{2}{3}}(n+1-n)}{(n+1)^{\frac{2}{3}}+n^{\frac{2}{3}}+(n(n+1))^{\frac{1}{3}}}=e^{\frac{1}{3}} \lim _{n \rightarrow \infty} \frac{n^{\frac{2}{3}}(n+1-n)}{n^{\frac{2}{3}}\left[\left(1+\frac{1}{n}\right)^{\frac{2}{3}}+1+\left(1+\frac{1}{n}\right)^{\frac{1}{3}}\right]}=\frac{e^{\frac{1}{3}}}{3}$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
UP.312. If $m \in \mathbb{R}_{+}=[0, \infty)$ and $a b, x, y, z \in \mathbb{R}_{+}^{*}=(0, \infty)$, then:
$\frac{x^{m+1}}{(a x+b z)^{m+1} \cdot \sec ^{2 m} \frac{\pi}{18}}+\frac{y^{m+1}}{(a z+b x)^{m+1} \cdot \csc ^{2 m} \frac{\pi}{9}}+\frac{z^{m+1}}{(a x+b y)^{m+1} \cdot \csc ^{2 m} \frac{2 \pi}{9}} \geq \frac{3}{4^{m} \cdot(a+b)^{m+1}}$

Proposed by D.M.Bătineţu-Giurgiu, Neculai Stanciu-Romania

Solution by Daniel Văcaru-Romania

By generalized Radon Inequality, we have:

$$
\begin{gather*}
\frac{x^{m+1}}{(a x+b z)^{m+1} \cdot \sec ^{2 m} \frac{\pi}{18}}+\frac{y^{m+1}}{(a z+b x)^{m+1} \cdot \csc ^{2 m} \frac{\pi}{9}}+\frac{z^{m+1}}{(a x+b y)^{m+1} \cdot \csc ^{2 m} \frac{2 \pi}{9}}= \\
=\frac{\left(\frac{x}{a y+b z}\right)^{m+1}}{\left(\sec ^{2} \frac{\pi}{18}\right)^{m}}+\frac{\left(\frac{y}{a z+b x}\right)^{m+1}}{\left(\csc ^{2} \frac{\pi}{9}\right)^{m}}+\frac{\left(\frac{z}{a x+b y}\right)^{m+1}}{\left(c s c^{2} \frac{2 \pi}{9}\right)^{m}} \stackrel{g \cdot R \cdot i}{\geq} \\
\geq \frac{\left(\frac{x}{a y+b z}+\frac{y}{a z+b x}+\frac{z}{a x+b y}\right)^{m+1}}{\left(\sec ^{2} \frac{\pi}{18}+\csc ^{2} \frac{\pi}{9}+c s c^{2} \frac{2 \pi}{9}\right)^{m}} ; \text { (1) } \tag{1}\\
\text { But: } \frac{x}{a y+b z}+\frac{y}{a z+b x}+\frac{z}{a x+b y}=\frac{x^{2}}{a y x+b z x}+\frac{y^{2}}{a z y+b x y}+\frac{z^{2}}{a x z+b y z} \geq \\
B e r g s t r o m \tag{2}\\
\geq \quad \frac{(x+y+z)^{2}}{(a+b)(x y+y z+z x)} \geq \frac{3}{a+b} ; \quad \text { (2) } \tag{3}\\
\text { And } \sec ^{2} \frac{\pi}{18}+\csc ^{2} \frac{\pi}{9}+c s c^{2} \frac{2 \pi}{9}=12 ; \text { (3) }
\end{gather*}
$$

From (1), (2), (3) we get:

$$
\frac{x^{m+1}}{(a x+b z)^{m+1} \cdot \sec ^{2 m} \frac{\pi}{18}}+\frac{y^{m+1}}{(a z+b x)^{m+1} \cdot \csc ^{2 m} \frac{\pi}{9}}+
$$

$$
+\frac{z^{m+1}}{(a x+b y)^{m+1} \cdot \csc ^{2 m} \frac{2 \pi}{9}} \stackrel{(1)}{\geq} \frac{\left(\frac{x}{a y+b z}+\frac{y}{a z+b x}+\frac{z}{a x+b y}\right)^{m+1}}{\left(\sec ^{2} \frac{\pi}{18}+\csc ^{2} \frac{\pi}{9}+\csc ^{2} \frac{2 \pi}{9}\right)^{m}} \geq
$$

$$
\stackrel{(2),(3)}{\geq} \frac{\left(\frac{3}{a+b}\right)^{m+1}}{12^{m}}=\frac{3}{4^{m} \cdot(a+b)^{m+1}}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

UP.313. Let be $\left(a_{n}\right)_{n \geq 1},\left(b_{n}\right)_{n \geq 1}, a_{n}, b_{n} \in \mathbb{R}_{+}^{*}=(0, \infty), \forall n \in \mathbb{N}^{*}$,

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \frac{a_{n}}{\sqrt[n]{n!}}=a \in \mathbb{R}_{+}^{*}, b_{n}=\prod_{n=1}^{\infty} a_{n} . \text { Find: } \\
\lim _{n \rightarrow \infty}\left(\sqrt[n+1]{b_{n+1}}-\sqrt[n]{b_{n}}\right)
\end{gathered}
$$

Proposed by D.M.Bătineţu-Giurgiu, Neculai Stanciu-Romania

Solution by Adrian Popa-Romania

$$
\begin{aligned}
& \text { Let be } x_{n}=\sqrt[n]{b_{n}} \Rightarrow \lim _{n \rightarrow \infty}\left(\sqrt[n+1]{b_{n+1}}-\sqrt[n]{b_{n}}\right)=\lim _{n \rightarrow \infty}\left(x_{n+1}-x_{n}\right) \\
& \text { 1) } \lim _{n \rightarrow \infty} \frac{x_{n}}{n}=\lim _{n \rightarrow \infty} \frac{\sqrt[n]{b_{n}}}{n}=\lim _{n \rightarrow \infty} \sqrt[n]{\frac{b_{n}}{n^{n}}} \stackrel{c-D^{\prime} A}{=} \lim _{n \rightarrow \infty} \frac{b_{n+1}}{(n+1)^{n+1}} \cdot \frac{n^{n}}{b_{n}}= \\
& =\lim _{n \rightarrow \infty} \frac{a_{1} \cdot a_{2} \cdot \ldots \cdot a_{n} \cdot a_{n+1} \cdot n^{n}}{a_{1} \cdot a_{2} \cdot \ldots \cdot a_{n} \cdot(n+1)^{n+1}}=\lim _{n \rightarrow \infty} \frac{a_{n+1}}{n+1} \cdot\left(\frac{n}{n+1}\right)^{n}=\frac{1}{e} \lim _{n \rightarrow \infty} \frac{a_{n+1}}{n+1}
\end{aligned}
$$

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{n}=\lim _{n \rightarrow \infty} \frac{a_{n}}{\sqrt[n]{n!}} \cdot \frac{\sqrt[n]{n!}}{n}=a \lim _{n \rightarrow \infty} \sqrt[n]{\frac{n!}{n^{n}}} \stackrel{c-D^{\prime} A}{=} a \lim _{n \rightarrow \infty} \frac{(n+1)!}{(n+1)^{n+1}} \cdot \frac{n^{n}}{n!}=a \lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)^{n}=\frac{a}{e}
$$

$$
\text { 2) } \lim _{n \rightarrow \infty} \frac{x_{n+1}}{x_{n}}=\lim _{n \rightarrow \infty} \frac{\sqrt[n+1]{b_{n+1}}}{\sqrt[n]{b_{n}}}=\lim _{n \rightarrow \infty} \frac{\sqrt[n+1]{b_{n+1}}}{n+1} \cdot \frac{n}{\sqrt[n]{b_{n}}} \cdot \frac{n+1}{n}=\frac{a}{e^{2}} \cdot \frac{e^{2}}{a} \cdot 1=1
$$

$$
\text { 3) } \lim _{n \rightarrow \infty}\left(\frac{x_{n+1}}{x_{n}}\right)^{n}=\lim _{n \rightarrow \infty}\left(\frac{\sqrt[n+1]{b_{n+1}}}{\sqrt[n]{b_{n}}}\right)^{n}=\lim _{n \rightarrow \infty} \frac{b_{n+1}^{\frac{n}{n+1}}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{\left(a_{1} \cdot a_{2} \cdot \ldots \cdot a_{n} \cdot a_{n+1}\right)^{\frac{n}{n+1}}}{a_{1} \cdot a_{2} \cdot \ldots \cdot a_{n}}=
$$

$$
\begin{aligned}
&= \lim _{n \rightarrow \infty} \frac{a_{n+1}^{n+1}}{\left(a_{1} \cdot a_{2} \cdot \ldots \cdot a_{n}\right)^{\frac{1}{n+1}}}=\lim _{n \rightarrow \infty} \frac{\sqrt[n+1]{\frac{a_{n+1}^{n+1}}{(n+1)!} \cdot \frac{\sqrt[n+1]{(n+1)!}}{\sqrt[n+1]{a_{n+1}}}}}{\frac{\sqrt[n+1]{b_{n+1} \cdot a_{n+1}}}{\sqrt[n+1]{a_{n+1}}}}= \\
&=\lim _{n \rightarrow \infty} \frac{\sqrt[n+1]{\frac{a_{n+1}^{n+1}}{(n+1)!} \cdot \frac{\sqrt[n+1]{(n+1)!}}{\sqrt[n+1]{a_{n+1}}}}}{\frac{\sqrt[n+1]{b_{n+1}}}{n+1} \cdot \frac{n+1}{\sqrt[n+1]{a_{n+1}}}}=a \lim _{n \rightarrow \infty} \sqrt[n+1]{\frac{(n+1)!}{b_{n+1}}}=a \lim _{n \rightarrow \infty} \sqrt[n]{\frac{n!}{b_{n}}} c \frac{-D^{\prime}}{=} A
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
=a \lim _{n \rightarrow \infty} \frac{(n+1)!}{b_{n+1}} \cdot \frac{b_{n}}{n!}=a \lim _{n \rightarrow \infty} \frac{n}{a_{n}} \stackrel{(1)}{=} a \cdot \frac{a}{e}=\frac{a^{2}}{e} \\
\lim _{n \rightarrow \infty}\left(\sqrt[n+1]{b_{n+1}}-\sqrt[n]{b_{n}}\right)=\frac{a}{e^{2}} \log \frac{a}{e^{2}}=\frac{a}{e^{2}}(2 \log a-1)
\end{gathered}
$$

UP.314. If $\left(a_{n}\right)_{n \geq 1},\left(b_{n}\right)_{n \geq 1}$ are sequences of strictly positive real numbers such that:

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \frac{a_{n}}{(2 n-1)!!}=a>0 ; \lim _{n \rightarrow \infty} \frac{b_{n}}{(2 n-1)!!}=b>0 . \text { Then find: } \\
\Omega=\lim _{n \rightarrow \infty}\left(\sqrt[n+1]{(2 n+1)!!}-\sqrt[2 n]{a_{n} \cdot b_{n}}\right)
\end{gathered}
$$

Proposed by D.M.Bătineţu-Giurgiu, Daniel Sitaru-Romania

Solution 1 by Marian Ursăraescu-Romania

$$
\begin{align*}
& L=\lim _{n \rightarrow \infty}\left(\sqrt[n+1]{(2 n+1)!!}-\sqrt[2 n]{a_{n} \cdot b_{n}}\right)= \\
& =\lim _{n \rightarrow \infty}(\sqrt[n+1]{(2 n+1)!!}-\sqrt[n]{(2 n-1)!!})+\lim _{n \rightarrow \infty}\left(\sqrt[n]{(2 n-1)!!}-\sqrt[2 n]{a_{n} \cdot b_{n}}\right) ; \\
& L_{1}=\lim _{n \rightarrow \infty}(\sqrt[n+1]{(2 n+1)!!}-\sqrt[n]{(2 n-1)!!})=\lim _{n \rightarrow \infty} \frac{\sqrt[n]{(2 n-1)!!}}{n} \cdot n\left(\frac{\sqrt[n+1]{(2 n+1)!!}}{\sqrt[n]{(2 n-1)!!}}-1\right) ; \text { (2) } \\
& \lim _{n \rightarrow \infty} \frac{\sqrt[n]{(2 n-1)!!}}{n}=\lim _{n \rightarrow \infty} \sqrt[n]{\frac{(2 n-1)!!}{n^{n}}} \stackrel{c-D^{\prime} A}{=} \lim _{n \rightarrow \infty} \frac{(2 n+1)!!}{(n+1)^{n+1}} \cdot \frac{n^{n}}{(2 n-1)!!}= \\
& =\lim _{n \rightarrow \infty} \frac{2 n+1}{n+1} \cdot\left(\frac{n}{n+1}\right)^{n}=\frac{2}{e} \text {; } \tag{3}\\
& \lim _{n \rightarrow \infty} n\left(\frac{\sqrt[n+1]{(2 n+1)!!}}{\sqrt[n]{(2 n-1)!!}}-1\right)=\lim _{n \rightarrow \infty} n \cdot \frac{e^{\log \left(\frac{\sqrt[n+1]{(2 n+1)!!}}{\sqrt[n]{(2 n-1)!!}}-1\right.}}{\log \left(\frac{\sqrt[n+1]{(2 n+1)!!}}{\sqrt[n]{(2 n-1)!!}}\right)} \cdot \log \left(\frac{\sqrt[n+1]{(2 n+1)!!}}{\sqrt[n]{(2 n-1)!!}}\right)= \\
& =\lim _{n \rightarrow \infty} \log \left(\frac{\sqrt[n+1]{(2 n+1)!!}}{\sqrt[n]{(2 n-1)!!}}\right)^{n}=\lim _{n \rightarrow \infty} \log \left(\frac{(\sqrt[n+1]{(2 n+1)!!})^{n}}{(2 n-1)!!}\right)=
\end{align*}
$$

> ROMANIAN MATHEMATICAL MAGAZINE $=\log \left(\sqrt\left[{\left.\lim _{n \rightarrow \infty} \frac{2 n+1}{\sqrt[n+1]{(2 n+1)!!}}\right)=\boldsymbol{\operatorname { l o g }}\left(\lim _{n \rightarrow \infty} \frac{2 n-1}{\sqrt[n]{(2 n-1)!!}}\right) \stackrel{(3)}{=} \boldsymbol{\operatorname { l o g } e}=1 ;(4}\right)\right]{L_{2}=\lim _{n \rightarrow \infty}\left(\sqrt[n]{(2 n-1)!!}-\sqrt[2 n]{a_{n} \cdot b_{n}}\right)=\lim _{n \rightarrow \infty} \frac{\sqrt[2 n]{a_{n} \cdot b_{n}}}{n} \cdot\left(\frac{\sqrt[n]{(2 n-1)!!}}{\sqrt[2 n]{a_{n} \cdot b_{n}}}-1\right) ;}$ $\lim _{n \rightarrow \infty} \frac{\sqrt[2 n]{a_{n} \cdot b_{n}}}{n}=\lim _{n \rightarrow \infty} \sqrt[2 n]{\frac{a_{n} \cdot b_{n}}{n^{2 n}}}=\lim _{n \rightarrow \infty} \sqrt[n]{\frac{n_{n} \cdot b_{n}}{n^{2 n}}}=\sqrt{\lim _{n \rightarrow \infty} \sqrt[n]{\frac{a_{n} \cdot b_{n}}{n^{2 n}}}}=$ $c-{ }_{=}^{=} A \sqrt{\lim _{n \rightarrow \infty} \frac{a_{n+1} \cdot b_{n+1}}{(n+1)^{2 n+2} \cdot \frac{n^{2 n}}{a_{n} \cdot b_{n}}}}=$
$=\sqrt{\lim _{n \rightarrow \infty} \frac{a_{n+1}}{(2 n+1)!!} \cdot \frac{b_{n+1}}{(2 n+1)!!} \cdot \frac{(2 n-1)!!}{a_{n}} \cdot \frac{(2 n-1)!!}{b_{n}} \cdot \frac{(2 n+1)^{2}}{(n+1)^{2}} \cdot\left(\frac{n}{n+1}\right)^{2 n}}=$ $=\sqrt{a \cdot b \cdot \frac{1}{a} \cdot \frac{1}{b} \cdot 4 \cdot \frac{1}{e^{2}}}=\frac{2}{e} ;$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n\left(\frac{\sqrt[n]{(2 n-1)!!}}{\sqrt[2 n]{a_{n} \cdot b_{n}}}-1\right)=\lim _{n \rightarrow \infty} n\left(\frac{e^{\log \left(\frac{\sqrt[n]{(2 n-1)!!}}{2 n \sqrt[n]{a_{n} \cdot b_{n}}}\right)}-1}{\log \left(\frac{\sqrt[n]{(2 n-1)!!}}{\sqrt[2 n]{a_{n} \cdot b_{n}}}\right)}\right) \log \left(\frac{\sqrt[n]{(2 n-1)!!}}{\sqrt[2 n]{a_{n} \cdot b_{n}}}\right)= \tag{6}
\end{equation*}
$$

$$
=\lim _{n \rightarrow \infty} n \log \left(\frac{\sqrt[2 n]{((2 n-1)!!)^{2}}}{\sqrt[2 n]{a_{n} \cdot b_{n}}}\right)=\lim _{n \rightarrow \infty} n \log \left(\sqrt[2 n]{\frac{((2 n-1)!!)^{2}}{a_{n} \cdot b_{n}}}\right)=
$$

$$
\begin{equation*}
=\frac{1}{2} \lim _{n \rightarrow \infty} \log \left(\frac{(2 n-1)!!}{a_{n}} \cdot \frac{(2 n-1)!!}{b_{n}}\right)=\frac{1}{2} \log \left(\frac{1}{a b}\right)=-\frac{1}{2} \log (a b) ;(\tag{7}
\end{equation*}
$$

$$
\text { From }(1),(2), \ldots,(7) \text { we have: }
$$

$$
L=\frac{2}{e}-\frac{2}{e} \log \sqrt{a b}=\frac{2}{e} \log \left(\frac{e}{\sqrt{a b}}\right)
$$

Solution 2 by proposers

$$
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{n \cdot a_{n}}=\lim _{n \rightarrow \infty} \frac{a_{n+1}}{(2 n+1)!!} \cdot \frac{(2 n-1)!!}{a_{n}} \cdot \frac{2 n+1}{n}=a \cdot \frac{1}{a} \cdot 2=2 \text { and similarly } \lim _{n \rightarrow \infty} \frac{b_{n+1}}{n \cdot b_{n}}=2
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

So, $\lim _{n \rightarrow \infty} \frac{\sqrt[n]{a_{n}}}{n}=\lim _{n \rightarrow \infty} \sqrt[n]{\frac{a_{n}}{n^{n}}} \stackrel{c-D^{\prime} A}{=} \lim _{n \rightarrow \infty} \frac{a_{n+1}}{(n+1)^{n+1}} \cdot \frac{n^{n}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{a_{n+1}}{n \cdot a_{n}} \cdot\left(\frac{n}{n+1}\right)^{n+1}=\frac{2}{e}$ and similarly

$$
\lim _{n \rightarrow \infty} \frac{\sqrt[n]{b_{n}}}{n}=\frac{2}{e}
$$

Let: $v_{n}=\frac{\sqrt[n+1]{(2 n+1)!!}}{\sqrt[2 n]{a_{n} \cdot b_{n}}}, \forall n \geq 2$

$$
\begin{gathered}
\lim _{n \rightarrow \infty} v_{n}=\lim _{n \rightarrow \infty} \frac{\sqrt[n+1]{(2 n+1)!!}}{n+1} \cdot \frac{n}{\sqrt[2 n]{a_{n} \cdot b_{n}}} \cdot \frac{n+1}{n}=\lim _{n \rightarrow \infty} \frac{\sqrt{n}}{\sqrt[2 n]{a_{n}}} \cdot \frac{\sqrt{n}}{\sqrt[2 n]{b_{n}}} \cdot \frac{\sqrt[n]{(2 n-1)!!}}{n} \\
=\sqrt{\frac{e}{2}} \cdot \sqrt{\frac{e}{2}} \cdot \lim _{n \rightarrow \infty} \sqrt[n]{\frac{(2 n-1)!!}{n^{n}}} \stackrel{c-D^{\prime} A}{=} \frac{e}{2} \cdot \lim _{n \rightarrow \infty} \frac{(2 n+1)!!}{(n+1)^{n+1}} \cdot \frac{n^{n}}{(2 n-1)!!} \\
\quad=\frac{e}{2} \cdot \lim _{n \rightarrow \infty} \frac{2 n+1}{n+1} \cdot\left(\frac{n}{n+1}\right)^{n}=\frac{e}{2} \cdot 2 \cdot e \cdot \frac{1}{e}=1
\end{gathered}
$$

$$
\lim _{n \rightarrow \infty} \frac{v_{n}-1}{\log v_{n}}=1 \text { and } \lim _{n \rightarrow \infty} v_{n}^{n}=\lim _{n \rightarrow \infty} \frac{(2 n+1)!!}{\sqrt{a_{n} \cdot b_{n}}} \cdot \frac{1}{\sqrt[n+1]{(2 n+1)!!}}=\lim _{n \rightarrow \infty} \frac{(2 n-1)!!}{\sqrt{a_{n} \cdot b_{n}}} \cdot \frac{2 n+1}{n+1} \cdot \frac{n+1}{\sqrt[n+1]{(2 n+1)!!}}=
$$

$$
=\lim _{n \rightarrow \infty} \sqrt{\frac{(2 n-1)!!}{a_{n}}} \cdot \sqrt{\frac{(2 n-1)!!}{b_{n}}} \cdot 2 \cdot \lim _{n \rightarrow \infty} \frac{n}{\sqrt[n]{(2 n-1)!!}}=\frac{1}{\sqrt{a}} \cdot \frac{1}{\sqrt{b}} \cdot 2 \cdot \lim _{n \rightarrow \infty} \sqrt[n]{\frac{n^{n}}{(2 n-1)!!}}
$$

$$
\stackrel{c-D^{\prime} A}{=} \frac{2}{\sqrt{a b}} \cdot \lim _{n \rightarrow \infty} \frac{(n+1)^{n+1}}{(2 n+1)!!} \cdot \frac{(2 n-1)!!}{n^{n}}=\frac{2}{\sqrt{a b}} \cdot \lim _{n \rightarrow \infty} \frac{n+1}{2 n+1} \cdot\left(\frac{n+1}{n}\right)^{n}=\frac{2}{\sqrt{a b}} \cdot \frac{1}{2} \cdot e=\frac{e}{\sqrt{a b}}
$$

Let: $B_{n}=\sqrt[n+1]{(2 n+1)!!}-\sqrt[2 n]{a_{n} \cdot b_{n}}=\sqrt[2 n]{a_{n} \cdot b_{n}} \cdot\left(v_{n}-1\right)=\sqrt[2 n]{a_{n} \cdot b_{n}} \cdot \frac{v_{n}-1}{\log v_{n}} \cdot \log v_{n}$

$$
\begin{gathered}
=\frac{\sqrt[2 n]{a_{n} \cdot b_{n}}}{n} \cdot \frac{v_{n}-1}{\log v_{n}} \cdot \log v_{n}^{n}=\sqrt{\frac{\sqrt[n]{a_{n}}}{n} \cdot \frac{\sqrt[n]{b_{n}}}{n}} \cdot \frac{v_{n}-1}{\log v_{n}} \cdot \log v_{n}^{n}, \forall n \geq 2 \\
\lim _{n \rightarrow \infty} B_{n}=\sqrt{\frac{2}{e} \cdot \frac{2}{e}} \cdot 1 \cdot \log \frac{e}{\sqrt{a b}}=\frac{2}{e} \cdot\left(1-\frac{1}{2} \log (a b)\right)=\frac{1}{e} \cdot(2-\log a-\log b)
\end{gathered}
$$

UP.315. If $\left(a_{n}\right)_{n \geq 1},\left(b_{n}\right)_{n \geq 1}$ are strictly positive real numbers such that $\lim _{n \rightarrow \infty} \frac{a_{n}}{n!}=a>0, \lim _{n \rightarrow \infty} \frac{b_{n}}{(2 n-1)!!}=b>0$ then find:

$$
\lim _{n \rightarrow \infty}\left(\sqrt[n+1]{(n+1)!(2 n+1)!!}-\sqrt[n]{a_{n} \cdot b_{n}}\right) \cdot \frac{1}{n}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

Solution by proposer

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{a_{n+1}}{n \cdot a_{n}}=\lim _{n \rightarrow \infty} \frac{a_{n+1}}{(n+1)!} \cdot \frac{n!}{a_{n}} \cdot \frac{n+1}{n}=a \cdot \frac{1}{a} \cdot 1=1 \text { and similary } \\
& \lim _{n \rightarrow \infty} \frac{b_{n+1}}{n \cdot b_{n}}=\lim _{n \rightarrow \infty} \frac{b_{n+1}}{(2 n+!)!!} \cdot \frac{(2 n-1)!!}{b_{n}} \cdot \frac{2 n+1}{n}=b \cdot \frac{1}{b} \cdot 2=2 \text {, so } \\
& \lim _{n \rightarrow \infty} \frac{\sqrt[n]{a_{n}}}{n}=\lim _{n \rightarrow \infty} \sqrt[n]{\frac{a_{n}}{n^{n}}} \stackrel{C-D^{\prime} A}{=} \lim _{n \rightarrow \infty} \frac{a_{n+1}}{(n+1)^{n+1}} \cdot \frac{n^{n}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{a_{n+1}}{n \cdot a_{n}} \cdot\left(\frac{n}{n+1}\right)^{n+1}=1 \cdot \frac{1}{e}=\frac{1}{e} \\
& \lim _{n \rightarrow \infty} \frac{\sqrt[n]{b_{n}}}{n}=\lim _{n \rightarrow \infty} \sqrt[n]{\frac{b_{n}}{n^{n}}} \stackrel{C-D^{\prime} A}{=} \lim _{n \rightarrow \infty} \frac{b_{n+1}}{(n+1)^{n+1}} \cdot \frac{n^{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{b_{n+1}}{n \cdot b_{n}} \cdot\left(\frac{n}{n+1}\right)^{n+1}=2 \cdot \frac{1}{e}=\frac{2}{e} \\
& \text { Let: } u_{n}=\frac{\sqrt[n+1]{(n+1)!(2 n+1)!!}}{\sqrt[n]{a_{n} \cdot b_{n}}}, \forall n \geq 2 \text { then } \\
& \lim _{n \rightarrow \infty} u_{n}=\lim _{n \rightarrow \infty} \frac{n}{\sqrt[n]{a_{n}}} \cdot \frac{n}{\sqrt[n]{b_{n}}} \cdot \frac{\sqrt[n+1]{(n+1)!}}{n+1} \cdot \frac{\sqrt[n+1]{(2 n+1)!!}}{n+1} \cdot\left(\frac{n+1}{n}\right)^{2} \\
& =e \cdot \frac{e}{2} \cdot \lim _{n \rightarrow \infty} \sqrt[n]{\frac{n!}{n^{n}}} \cdot \lim _{n \rightarrow \infty} \sqrt[n]{\frac{(2 n-1)!!}{n^{n}}} \stackrel{C-D^{\prime} A}{=} \frac{e^{2}}{2} \cdot \lim _{n \rightarrow \infty} \frac{(n+1)!}{(n+1)^{n+1}} \cdot \frac{n^{n}}{n!} \cdot \frac{(2 n+!)!!}{(n+1)^{n+1}} \cdot \frac{n^{n}}{(2 n-1)!!} \\
& =\frac{e^{2}}{2} \cdot \lim _{n \rightarrow \infty}\left(\left(\frac{n}{n+1}\right)^{n} \cdot \frac{2 n+1}{n+1} \cdot\left(\frac{n}{n+1}\right)^{n}\right)=\frac{e^{2}}{2} \cdot \frac{1}{e} \cdot 2 \cdot \frac{1}{e}=1 \Rightarrow \lim _{n \rightarrow \infty} \frac{u_{n}-1}{\log u_{n}}=1 \\
& \lim _{n \rightarrow \infty} u_{n}^{n}=\lim _{n \rightarrow \infty} \frac{(n+1)!\cdot(2 n+1)!!}{a_{n} \cdot b_{n}} \cdot \frac{1}{\sqrt[n+1]{(n+1)!(2 n+1)!!}} \\
& =\lim _{n \rightarrow \infty} \frac{n!}{a_{n}} \cdot \frac{(2 n-1)!!}{b_{n}} \cdot \frac{n+1}{\sqrt[n+1]{(n+1)!}} \cdot \frac{2 n+1}{n+1} \cdot \frac{n+1}{\sqrt[n+1]{(2 n+1)!!}} \\
& =\frac{1}{a} \cdot \frac{1}{b} \cdot e \cdot 2 \cdot \lim _{n \rightarrow \infty} \sqrt[n]{\frac{n^{n}}{(2 n-1)!!}} \stackrel{c-D^{\prime} A}{=} \frac{2 e}{a b} \cdot \lim _{n \rightarrow \infty} \frac{(n+1)^{n+1}}{(2 n+1)!!} \cdot \frac{(2 n-1)!!}{n^{n}} \\
& =\frac{2 e}{a b} \cdot \lim _{n \rightarrow \infty} \frac{n+1}{2 n+1} \cdot\left(\frac{n+1}{n}\right)^{n}=\frac{2 e}{a b} \cdot \frac{1}{2} \cdot e=\frac{e^{2}}{a b} .
\end{aligned}
$$

Let: $B_{n}=\left(\sqrt[n+1]{(n+1)!(2 n+1)!!}-\sqrt[n]{a_{n} \cdot b_{n}}\right) \cdot \frac{1}{n}=\frac{\sqrt[n]{a_{n} \cdot b_{n}}}{n} \cdot\left(u_{n}-1\right)$

$$
\begin{gathered}
=\frac{\sqrt[n]{a_{n}}}{n} \cdot \sqrt[n]{b_{n}} \cdot \frac{u_{n}-1}{\log u_{n}} \cdot \log u_{n}=\frac{\sqrt[n]{a_{n}}}{n} \cdot \frac{\sqrt[n]{b_{n}}}{n} \cdot \frac{u_{n}-1}{\log u_{n}} \cdot \log u_{n}^{n}, \forall n \geq 2 \\
\text { So, } \lim _{n \rightarrow \infty} B_{n}=\frac{1}{e} \cdot \frac{2}{e} \cdot 1 \cdot \log e=\frac{2}{e^{2}}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

It's nice to be important but more important it's to be nice. At this paper works a TEAM.

This is RMM TEAM.
To be continued!
Daniel Sitaru

