

ROMANIAN MATHEMATICAL MAGAZINE

SOLUTIONS

Founding Editor DANIEL SITARU

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro Proposed by
Daniel Sitaru - Romania
D.M. Bătinețu-Giurgiu-Romania
Neculai Stanciu-Romania
Marin Chirciu-Romania
George Apostolopoulos- Greece
Daniel Văcaru-Romania
Hoang Le Nhat Tung-Hanoi-Vietnam
Marian Ursărescu-Romania
Florică Anastase-Romania
Octavian Stroe-Romania
Vasile Jiglău-Romania

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
 Solutions by

Daniel Sitaru-Romania,Daniel Văcaru-Romania
D.M. Bătinețu-Giurgiu-Romania,Neculai Stanciu-Romania

Tran Hong-Dong Thap-Vietnam,Mokhtar Khassani-Mostaganem-Algerie Marin Chirciu-Romania,George Apostolopoulos- Greece Hoang Le Nhat Tung-Hanoi-Vietnam,Marian Ursărescu-Romania George Florin Șerban-Romania,Abner Chinga Bazo-Lima-Peru Sergio Esteban-Argentina,Soumava Chakraborty-Kolkata-India Avishek Mitra-West Bengal-India,Adrian Popa-Romania Ertan Yildirim-Turkey,Khaled Abd Imouti-Damascus-Syria Ravi Prakash-New Delhi-India,Remus Florin Stanca-Romania Florică Anastase-Romania,Octavian Stroe-Romania,Florentin VissescuRomania,Marian Dincă-Romania,Samir HajAli-Damascus-Syria Hemn Hsain-Cairo-Egypt,Vasile Jiglău-Romania,Naren Bhandari-Bajura-Nepal

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
JP.316. If $x \in \mathbb{R}_{+}^{*}=(0, \infty), a, b, c$ are the lengths of the sides of $\triangle A B C$, with area F, altitudes $\boldsymbol{h}_{\boldsymbol{a}}, \boldsymbol{h}_{\boldsymbol{b}}, \boldsymbol{h}_{\boldsymbol{c}}$ then:

$$
\frac{6 x-1}{h_{a}^{2}}+\left(\frac{2}{3 x}-1\right) \frac{1}{h_{b}^{2}}+\frac{1}{h_{c}^{2}} \geq \frac{\sqrt{3}}{F}
$$

Proposed by D.M.Bătineţu-Giurgiu, Neculai Stanciu-Romania

Solution by Daniel Văcaru-Romania

$$
\begin{gathered}
\text { We know that } 2 F=a h_{a} \Rightarrow \frac{1}{h_{a}}=\frac{a^{2}}{2 F} \Rightarrow \frac{1}{h_{a}^{2}}=\frac{a^{2}}{4 F^{2}}(\text { and analogs) } \\
\frac{6 x-1}{h_{a}^{2}}+\left(\frac{2}{3 x}-1\right) \frac{1}{h_{b}^{2}}+\frac{1}{h_{c}^{2}}=\frac{(6 x-1) a^{2}+\left(\frac{2}{3 x}-1\right) b^{2}+c^{2}}{4 F^{2}}= \\
=\frac{\left(6 x a^{2}+\frac{2}{3 x} b^{2}\right)+c^{2}-a^{2}-b^{2}}{4 F^{2}} \stackrel{C o s . L a w}{=} \\
=\frac{6 x a^{2}+\frac{2}{3 x} b^{2}+2 a b \cos C}{4 F^{2}} \stackrel{A M-G M}{\geq} \frac{4 a b+2 a b \cos C}{4 F^{2}}=\frac{a b(2+\cos C)}{2 F^{2}}= \\
=\frac{a b\left(1+2 \sin ^{2} \frac{C}{2}\right)}{2 F^{2}}=\frac{a b\left(\cos ^{2} \frac{C}{2}+3 \sin ^{2} \frac{C}{2}\right)}{2 F^{2}} \stackrel{A M-G M}{\geq} \\
\geq \frac{2 a b \sqrt{3 \sin ^{2} \frac{C}{2} \cdot \cos ^{2} \frac{C}{2}}}{2 F^{2}}=\frac{2 \sqrt{3} a b \sin \frac{C}{2} \cos \frac{C}{2}}{2 F^{2}}=\frac{\sqrt{3} a b \sin C}{2 F^{2}}=\frac{\sqrt{3} F}{F^{2}}=\frac{\sqrt{3}}{F}
\end{gathered}
$$

JP.317. In $\triangle A B C$ the following relationship holds:

$$
\left(a^{3}+b^{3}+c^{3}\right)\left(\frac{a}{4 s^{2}-a^{2}}+\frac{b}{4 s^{2}-b^{2}}+\frac{c}{4 s^{2}-c^{2}}\right) \geq \frac{27 \sqrt{3}}{32} \cdot F
$$

Proposed by D.M. Bătinețu Giurgiu, Neculai Stanciu-Romania
Solution 1 by proposers

$$
\left(\sum_{c y c} a^{3}\right) \cdot \sum_{c y c} \frac{a}{4 s^{2}-a^{2}} \stackrel{\text { Radon }}{\geq} \frac{8 s^{3}}{9} \cdot \sum_{c y c} \frac{a}{4 s^{2}-a^{2}}=\frac{8 s^{3}}{9} \cdot \sum_{c y c} \frac{a^{2}}{4 s^{2} a-a^{3}}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{aligned}
& \stackrel{\text { Bergstrom }}{\geq} \frac{8 s^{3}}{9} \cdot \frac{\left(\sum_{c y c} a\right)^{2}}{\sum_{c y c}\left(4 s^{2} a-a^{3}\right)}=\frac{8 s^{3} \cdot 4 s^{2}}{8 s^{3}-\sum_{c y c} a^{3}} \geq \frac{32 s^{5}}{8 s^{3}-\frac{8 s^{3}}{9}}=\frac{32 s^{5} \cdot 9}{8 s^{3} \cdot(9-1)} \\
& \quad=\frac{32 \cdot 9 s^{5}}{64 s^{3}}=\frac{9 s^{2}}{32}=\frac{9}{32} \cdot s \cdot s \stackrel{\text { Mitrinovic }}{\geq} \frac{9 s(3 \sqrt{3} r)}{32}=\frac{27 \sqrt{3}}{32} \cdot s r=\frac{27 \sqrt{3}}{32} \cdot F
\end{aligned}
$$

q.e.d.

$$
\text { Observation: } a^{3}+b^{3}+c^{3} \stackrel{\text { Radon }}{\geq} \frac{(a+b+C)^{3}}{9}=\frac{(2 s)^{3}}{9}=\frac{8 s^{3}}{9}
$$

Solution 2 by Tran Hong-Dong Thap-Vietnam

$$
\begin{align*}
& a^{3}+b^{3}+c^{3} \stackrel{A M-G M}{\geq} 3 \sqrt[3]{(a b c)^{3}}=3 a b c=3 \cdot 4 R r s=12 R r s \\
& \frac{a}{4 s^{2}-a^{2}}+\frac{b}{4 s^{2}-b^{2}}+\frac{c}{4 s^{2}-c^{2}}=\frac{a^{2}}{4 a s^{2}-a^{3}}+\frac{b^{2}}{4 b s^{2}-b^{3}}+\frac{c^{2}}{4 c s^{2}-c^{3}} \stackrel{\text { Bergstrom }}{\geq} \\
& \geq \frac{4 s^{2}}{8 s \cdot s^{2}-2 s\left(s^{2}-6 R r-3 r^{2}\right)}=\frac{2 s}{4 s^{2}-\left(s^{2}-6 R r-3 r^{2}\right)}=\frac{2 s}{3\left(s^{2}+2 R r+r^{2}\right)} \Rightarrow \\
& \left(a^{3}+b^{3}+c^{3}\right)\left(\frac{a}{4 s^{2}-a^{2}}+\frac{b}{4 s^{2}-b^{2}}+\frac{c}{4 s^{2}-c^{2}}\right) \geq \frac{12 R r s \cdot 2 s}{3\left(s^{2}+2 R r+r^{2}\right)}= \\
& =\frac{8 R r s^{2}}{s^{2}+2 R r+r^{2}} \stackrel{(1)}{\geq} \frac{27 \sqrt{3}}{32} F=\frac{27 \sqrt{3}}{32} s r \\
& \text { (1) } \Leftrightarrow 8 \cdot 32 R s \geq 27 \sqrt{3}\left(s^{2}+2 R r+r^{2}\right) \\
& \text { But: } s \leq \frac{3 \sqrt{3}}{2} R \text { (Mitrinovic) } \Rightarrow R \geq \frac{2}{3 \sqrt{3}} s=\frac{6 \sqrt{3}}{27} s \\
& 8 \cdot 32 R s \geq 8 \cdot 32 \cdot \frac{6 \sqrt{3}}{2} s^{2}=\frac{512 \sqrt{3}}{9} s^{2} \geq 27 \sqrt{3}\left(s^{2}+2 R r+r^{2}\right) \Leftrightarrow \\
& 512 s^{2} \geq 243\left(s^{2}+2 R r+r^{2}\right) \Leftrightarrow 269 s^{2} \geq 243\left(2 R r+r^{2}\right) ; \tag{2}
\end{align*}
$$

Other,

$$
s^{2} \geq 16 R r-5 r^{2}(\text { Gerretsen }) \Rightarrow
$$

$$
269 s^{2} \geq 268\left(16 R r-5 r^{2}\right)>243\left(16 R r-5 r^{2}\right) \stackrel{(3)}{>} 243\left(2 R r+r^{2}\right)
$$

(3) $\Leftrightarrow 16 R r-5 r^{2}>2 R r+r^{2} \Leftrightarrow 14 R r>6 r^{2} \Leftrightarrow R>\frac{3}{7} r\left(\right.$ true by $\left.R \geq 2 r>\frac{3}{7} r\right) \Rightarrow$

$$
\Rightarrow(3) \Rightarrow(2) \Rightarrow(1) \text { true. Proved. }
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

Solution 3 by Mokhtar Khassani-Mostaganem-Algerie

$$
\begin{aligned}
& \left(\sum_{c y c} a^{3}\right) \cdot \sum_{c y c} \frac{a}{4 s^{2}-a^{2}}=\left(\sum_{c y c} a \cdot a^{2}\right) \cdot \sum_{c y c} \frac{a}{(2 s-a)(2 s+a)} \stackrel{\substack{\text { Chebyshev's } \\
\text { AM-GM } \\
\geq}}{\geq} \\
& \geq \frac{\left(\sum a\right) \cdot\left(\sum a^{2}\right)}{3} \cdot \sum \frac{a}{\frac{2 s+a+2 s-a}{2}} \geq \frac{2 s \cdot 4 \sqrt{3} S}{3} \cdot \frac{2 s}{4 s^{2}}=\frac{4 \sqrt{3} S}{3}>\frac{27 \sqrt{3} S}{32}
\end{aligned}
$$

JP.318.If $x, y, z \in \mathbb{R}_{+}^{*}=(0, \infty), a, b, c$-are the lengths of the sides of $\triangle A B C$ with area F, altitudes h_{a}, h_{b}, h_{c}, then:

$$
\frac{a^{2}}{(a x+b y+c z) h_{a}}+\frac{b^{2}}{(a x+b y+c z) h_{b}}+\frac{c^{2}}{(a x+b y+c z) h_{c}} \geq \frac{2 \sqrt{3}}{x+y+z}
$$

Proposed by D.M.Bătineţu-Giurgiu,Neculai Stanciu-Romania

Solution 1 by Daniel Văcaru-Romania

$$
\begin{gathered}
\text { We have: } \\
\sum_{c y c}\left(\frac{a^{2}}{(a x+b y+c z) h_{a}}\right)=\sum_{c y c}\left(\frac{a^{3}}{2 F(a x+b y+c z)}\right)= \\
=\frac{1}{2 F} \sum_{c y c}\left(\frac{a^{3}}{a x+b y+c z}\right) \stackrel{\text { Holder }}{\geq} \frac{1}{3 \cdot 2 F}\left(\frac{(a+b+c)^{3}}{\sum(a x+b y+c z)}\right)= \\
=\frac{1}{6 F} \cdot \frac{(a+b+c)^{3}}{(a+b+c)(x+y+z)}=\frac{(a+b+c)^{2}}{6 F(x+y+z)}
\end{gathered}
$$

But we have: $(a+b+c)^{2} \geq 3(a b+b c+c a) \geq 6 F\left(\frac{1}{\sin A}+\frac{1}{\sin B}+\frac{1}{\sin C}\right)$
But $A \rightarrow \frac{1}{\sin A}$ is convexe function, and this is followed (Jensen) by

$$
\begin{gathered}
\frac{1}{\sin A}+\frac{1}{\sin B}+\frac{1}{\sin C} \geq \frac{3}{\sin \left(\frac{A+B+C}{3}\right)}=\frac{6}{\sqrt{3}}=2 \sqrt{3} \\
\text { We obtain: }(a+b+c)^{2} \geq 12 F \sqrt{3}
\end{gathered}
$$

$$
\sum_{c y c}\left(\frac{a^{2}}{(a x+b y+c z) h_{a}}\right) \geq \frac{(a+b+c)^{2}}{6 F(x+y+z)} \geq \frac{12 F \sqrt{3}}{6 F(x+y+z)}=\frac{2 \sqrt{3}}{x+y+z}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

Solution 2 by Marin Chirciu-Romania

Using Hőlder Inequality, we have:

$$
\begin{gathered}
L h s=\sum_{c y c}\left(\frac{a^{2}}{(a x+b y+c z) h_{a}}\right) \geq \sum_{c y c}\left(\frac{a^{2}}{(a x+b y+c z) \frac{2 F}{a}}\right)= \\
=\frac{1}{2 F} \sum_{c y c}\left(\frac{a^{3}}{a x+b y+c z}\right) \geq \frac{1}{2 F} \cdot \frac{\left(\sum a\right)^{3}}{3 \sum(a x+b y+c z)}= \\
=\frac{1}{2 r s} \cdot \frac{(2 s)^{3}}{3\left(\sum x\right)\left(\sum a\right)}=\frac{2 s}{3 r(x+y+z)} \stackrel{(1)}{\geq} \frac{2 \sqrt{3}}{x+y+z}=R h s \\
\text { where (1) } \Leftrightarrow s \geq 3 r \sqrt{3} \text { (Mitrinović). }
\end{gathered}
$$

Equality holds when the triangle is equilateral.
Remark. The problem it can be developed.
If $x, y, z>0 ; n \in \mathbb{N}, n \geq 2$, in $\triangle A B C$ the following relationship holds:

$$
\sum_{c y c} \frac{a^{n}}{(a x+b y+c z) h_{a}} \geq \frac{2 \sqrt{3}}{x+y+z}\left(\frac{2 s}{3}\right)^{n-2}
$$

Proposed by Marin Chirciu-Romania

Solution by proposer

Using Hőlder Inequality, we get:

$$
\begin{gathered}
L h s=\sum_{c y c} \frac{a^{n}}{(a x+b y+c z) h_{a}} \geq \sum_{c y c} \frac{a^{n}}{(a x+b y+c z) \frac{2 F}{a}}= \\
=\frac{1}{2 F} \sum_{c y c} \frac{a^{n+1}}{(a x+b y+c z)} \geq \frac{1}{2 F} \cdot \frac{\left(\sum a\right)^{n+1}}{3^{n-1} \sum(a x+b y+c z)}= \\
=\frac{1}{2 r s} \cdot \frac{(2 s)^{n+1}}{3^{n-1}\left(\sum x\right)\left(\sum a\right)}=\frac{1}{2 r s} \cdot \frac{(2 s)^{n+1}}{3^{n-1}(x+y+z) \cdot 2 s} \stackrel{(1)}{\geq} \frac{2 \sqrt{3}}{x+y+z}\left(\frac{2 s}{3}\right)^{n-2}=R h s \\
\text { where }(1) \Leftrightarrow 3 \geq 3 r \sqrt{3} \text { (Mitrinović). }
\end{gathered}
$$

Equality holds if and only if the triangle is equilateral.

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Note: For $n=2$ we get the Problem JP. 318 from 22-RMM-Autumn Edition 2021, proposed by D.M.Bătinețu-Giurgiu and Neculai Stanciu, Romania.

JP.319. In $\triangle A B C$ the following relationship holds:

$$
\sum_{c y c} a^{3} \sum_{c y c} \frac{a}{4 s^{2}-a^{2}} \geq \frac{3 \sqrt{3}}{2} \cdot S
$$

D.M.Bătinețu-Giurgiu, Neculai Stanciu-Romania

Solution and generalizations by Marin Chirciu-Romania

Lemma.
In $\triangle A B C$ the following relationship holds:

$$
\sum_{c y c} \frac{a}{4 s^{2}-a^{2}} \geq \frac{2 s}{3\left(s^{2}+r^{2}+2 R r\right)}
$$

Proof.
Using Bergstrőm Inequality, we get:

$$
\begin{gathered}
\sum_{c y c} \frac{a}{4 s^{2}-a^{2}}=\sum_{c y c} \frac{a^{2}}{4 s^{2} a-a^{3}} \geq \frac{(a+b+c)^{2}}{\sum\left(4 s^{2} a-a^{3}\right)}=\frac{\sum a^{2}+2 \sum b c}{4 s^{2} \sum a-\sum a^{3}}= \\
=\frac{2\left(s^{2}-r^{2}-4 R r\right)+2\left(s^{2}+r^{2}+2 R r\right)}{4 s^{2} \cdot 2 s-2 s\left(s^{2}-3 r^{2}-6 R r\right)}=\frac{4 s^{2}}{6 s\left(s^{2}+r^{2}+2 R r\right)}=\frac{2 s}{3\left(s^{2}+r^{2}+2 R r\right)}
\end{gathered}
$$

Let's solve the proposed problem.
Using lemma and the identity $\sum a^{3}=2 s\left(s^{2}-3 r^{2}-6 R r\right)$ we get:

$$
\begin{gathered}
L h s=\sum_{c y c} a^{3} \sum_{c y c} \frac{a}{4 s^{2}-a^{2}} \geq 2 s\left(s^{2}-3 r^{2}-6 R r\right) \cdot \frac{2 s}{3\left(s^{2}+r^{2}+2 R r\right)} \stackrel{(1)}{\geq} \frac{3 \sqrt{3}}{2} \cdot S=R h s \\
\text { Where (1) } \Leftrightarrow 8 s\left(s^{2}-3 r^{2}-6 R r\right) \geq 9 \sqrt{3} \cdot r\left(s^{2}+r^{2}+2 R r\right)
\end{gathered}
$$

Which result from Mitrinović Inequality: $s \geq 3 r \sqrt{3}$
We must show that:

$$
8 \cdot 3 r \sqrt{3}\left(s^{2}-3 r^{2}-6 R r\right) \geq 9 \sqrt{3} \cdot r\left(s^{2}+r^{2}+2 R r\right) \Leftrightarrow
$$

$$
8\left(s^{2}-3 r^{2}-6 R r\right) \geq 3\left(s^{2}+r^{2}+2 R r\right) \Leftrightarrow 5 s^{2} \geq 54 R r+27 r^{2} \text { which result from }
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro
 $$
s^{2} \geq 16 R r-5 r^{2}(\text { Gerretsen })
$$
 We must show:

$$
\begin{aligned}
5\left(16 R r-5 r^{2}\right) \geq 54 R r+27 r^{2} \Leftrightarrow & 80 R-25 r \geq 54 R+27 r \Leftrightarrow 26 R \geq 52 r \Leftrightarrow \\
R & \geq 2 r(\text { Euler }) .
\end{aligned}
$$

Equality holds if and only if the triangle is equilateral.
In $\triangle A B C$ the following relationship holds:

$$
\sum_{c y c} a^{4} \sum_{c y c} \frac{a}{4 s^{2}-a^{2}} \geq \frac{9 a b c}{8}
$$

Proposed by Marin Chirciu-Romania

Solution by proposer

Lemma. In $\triangle A B C$ the following relationship holds:

$$
\sum_{c y c} \frac{a}{4 s^{2}-a^{2}} \geq \frac{2 s}{3\left(s^{2}+r^{2}+2 R r\right)}
$$

Proof. Using Bergstrom Inequality, we get:

$$
\begin{gathered}
\sum_{c y c} \frac{a}{4 s^{2}-a^{2}}=\sum_{c y c} \frac{a^{2}}{4 a s^{2}-a^{3}} \geq \frac{(a+b+c)^{2}}{\sum\left(4 a s^{2}-a^{3}\right)}=\frac{\sum a^{2}+2 \sum b c}{4 s^{2} \sum a-\sum a^{3}}= \\
=\frac{2\left(s^{2}-r^{2}-4 R r\right)+2\left(s^{2}+r^{2}+4 R r\right)}{4 s^{2} \cdot 2 s-2 s\left(s^{2}-3 r^{2}-6 R r\right)}=\frac{4 s^{2}}{6 s\left(s^{2}+r^{2}+2 R r\right)}=\frac{2 s}{3\left(s^{2}+r^{2}+2 R r\right)}
\end{gathered}
$$

Let's solve the proposed problem:
Using lemma and the know identity: $\sum a^{4}=2\left[s^{4}-s^{2}\left(8 R r+6 r^{2}\right)+r^{2}(4 R+r)^{2}\right]$ we get:

$$
\begin{aligned}
& L h s=\sum_{c y c} a^{4} \sum_{c y c} \frac{a}{4 s^{2}-a^{2}} \geq 2\left[s^{4}-s^{2}\left(8 R r+6 r^{2}\right)+r^{2}(4 R+r)^{2}\right] \cdot \frac{2 s}{3\left(s^{2}+r^{2}+2 R r\right)} \geq \\
& \text { (1) } \\
& \frac{\geq 9 a b c}{8}=R h d \text { where (1) } \Leftrightarrow \\
& s^{4}-s^{2}\left(8 R r+6 r^{2}\right)+r^{2}(4 R+r)^{2} \geq 27 R r\left(s^{2}+r^{2}+2 R r\right) \Leftrightarrow \\
& s^{2}\left(8 s^{2}-48 r^{2}-91 R r\right)+r^{2}\left(74 R^{2}+37 R r+8 r^{2}\right) \geq 0 .
\end{aligned}
$$

We distinguish the cases:

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
Case 1. If $8 s^{2}-48 r^{2}-91 R r \geq 0$ the inequality is obviously.
Case 2. If $8 s^{2}-48 r^{2}-91 R r<0$ the inequality can be rewritten:
$r^{2}\left(74 R^{2}+37 R r+8 r^{2}\right) \geq s^{2}\left(8 s^{2}-48 r^{2}-91 R r\right)$ which result from Gerretsen
Inequality: $16 R r-5 r^{2} \leq s^{2} \leq 4 R^{2}+4 R r+3 r^{2}$. We must prove that:

$$
\begin{gathered}
r^{2}\left(74 R^{2}+37 R r+8 r^{2}\right) \geq\left(4 R^{2}+4 R r+3 r^{2}\right)\left(91 R r+48 r^{2}-8\left(16 R r-5 r^{2}\right)\right) \Leftrightarrow \\
r\left(74 R^{2}+37 R r+8 r^{2}\right) \geq\left(4 R^{2}+4 R r+3 r^{2}\right)(-37 R+88 r) \Leftrightarrow
\end{gathered}
$$

$74 R^{3}-65 R^{2} r-102 R r^{2}-128 r^{3} \geq 0 \Leftrightarrow(R-2 r)\left(74 R^{2}+86 R r+64 r^{2}\right) \geq 0$ which result from $R \geq 2 r$ (Euler).

Equality holds if and only if the triangle is equilateral.
In $\triangle A B C$ the following relationship holds:

$$
\sum_{c y c} a^{2} \sum_{c y c} \frac{a}{4 s^{2}-a^{2}} \geq \frac{3 S}{2 R}
$$

Proposed by Marin Chirciu-Romania

Solution by proposer

Lemma. In $\triangle A B C$ the following relationship holds:

$$
\sum_{c y c} \frac{a}{4 s^{2}-a^{2}} \geq \frac{2 s}{3\left(s^{2}+r^{2}+2 R r\right)}
$$

Proof. Using Bergstrom Inequality, we get:

$$
\begin{gathered}
\sum_{c y c} \frac{a}{4 s^{2}-a^{2}}=\sum_{c y c} \frac{a^{2}}{4 a s^{2}-a^{3}} \geq \frac{(a+b+c)^{2}}{\sum\left(4 a s^{2}-a^{3}\right)}=\frac{\sum a^{2}+2 \sum b c}{4 s^{2} \sum a-\sum a^{3}}= \\
=\frac{2\left(s^{2}-r^{2}-4 R r\right)+2\left(s^{2}+r^{2}+4 R r\right)}{4 s^{2} \cdot 2 s-2 s\left(s^{2}-3 r^{2}-6 R r\right)}=\frac{4 s^{2}}{6 s\left(s^{2}+r^{2}+2 R r\right)}=\frac{2 s}{3\left(s^{2}+r^{2}+2 R r\right)}
\end{gathered}
$$

Let's solve the proposed problem:
Using lemma and the know identity: $\sum a^{2}=2\left(s^{2}-r^{2}-4 R r\right)$ we get:

$$
\begin{gathered}
L h s=\sum_{c y c} a^{2} \sum_{c y c} \frac{a}{4 s^{2}-a^{2}} \geq 2\left(s^{2}-r^{2}-4 R r\right) \cdot \frac{2 s}{3\left(s^{2}+r^{2}+2 R r\right)} \stackrel{(1)}{\geq} \frac{3 S}{2 R}=R h d \\
\text { where (1) } \Leftrightarrow 8 R\left(s^{2}-r^{2}-4 R r\right) \geq 9 r\left(s^{2}+r^{2}+2 R r\right) \Leftrightarrow
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
$s^{2}(8 R-9 r) \geq r\left(32 R^{2}+26 R r+9 r^{2}\right)$ which result from Gerretsen Inequality:
$s^{2} \geq 16 R r-5 r^{2}$. We must show that:

$$
\begin{gathered}
\left(16 R r-5 r^{2}\right)(8 R-9 r) \geq r\left(32 R^{2}+26 R r+9 r^{2}\right) \Leftrightarrow 16 R^{2}-35 R r+6 r^{2} \geq 0 \Leftrightarrow \\
(R-2 r)(16 R-3 r) \geq 0 \text { which result from } R \geq 2 r(\text { Euler }) .
\end{gathered}
$$

Equality holds if and only if the triangle is equilateral.
In $\triangle A B C$ the following relationship holds:

$$
\sum_{c y c} a \sum_{c y c} \frac{a}{4 s^{2}-a^{2}} \geq \frac{9}{8}
$$

Proposed by Marin Chirciu-Romania

Solution by proposer

Using Bergstrom Inequality, we get:

$$
\begin{gathered}
\sum_{c y c} \frac{a}{4 s^{2}-a^{2}}=\sum_{c y c} \frac{a^{2}}{4 a s^{2}-a^{3}} \geq \frac{(a+b+c)^{2}}{\sum\left(4 a s^{2}-a^{3}\right)}=\frac{\sum a^{2}+2 \sum b c}{4 s^{2} \sum a-\sum a^{3}}= \\
=\frac{2\left(s^{2}-r^{2}-4 R r\right)+2\left(s^{2}+r^{2}+4 R r\right)}{4 s^{2} \cdot 2 s-2 s\left(s^{2}-3 r^{2}-6 R r\right)}=\frac{4 s^{2}}{6 s\left(s^{2}+r^{2}+2 R r\right)}=\frac{2 s}{3\left(s^{2}+r^{2}+2 R r\right)}
\end{gathered}
$$

Let's solve the proposed problem:
Using lemma and the know identity: $\sum a=2 s$ we get:

$$
L h s=\sum_{c y c} a \sum_{c y c} \frac{a}{4 s^{2}-a^{2}} \geq 2 s \cdot \frac{2 s}{3\left(s^{2}+r^{2}+2 R r\right)} \stackrel{(1)}{\geq} \frac{9}{8}=R h d
$$

where (1) $\Leftrightarrow 32 s^{2} \geq 27\left(s^{2}+r^{2}+2 R r\right) \Leftrightarrow 5 s^{2} \geq 27\left(r^{2}+2 R r\right)$, which result from Gerretsen Inequality: $s^{2} \geq 16 R r-5 r^{2}$.

We must show that:

$$
5\left(16 R r-5 r^{2}\right) \geq 27\left(r^{2}+2 R r\right) \Leftrightarrow R \geq 2 r(\text { Euler })
$$

Equality if and only if the triangle is equilateral.

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
JP.320. If in $\triangle A B C, D \in(B C), E \in(C A), F \in(A B)$ such that
$A D \cap B E \cap C F=\{M\}$, then:

$$
\left(\frac{M D^{2}}{M A^{2}}+\frac{M E^{2}}{M B^{2}}+\frac{M F^{2}}{M C^{2}}\right)\left(a^{8}+b^{8}+c^{8}\right) \geq 64 S^{2}
$$

where S-area of $\triangle A B C$.

D.M. Bătinețu-Giurgiu, Daniel Sitaru-Romania

Solution 1 by Tran Hong-Dong Thap-Vietnam

$$
\text { Let } S=[A B C] ; S_{1}=[M B C] ; S_{2}=[M A C] ; S_{3}=[M A B]
$$

$$
\Delta A H D \sim \Delta M H D \Rightarrow \frac{M A}{M D}=\frac{M A+M D}{M D}-1=\frac{A D}{M D}-1=\frac{A K \cdot B C}{M H \cdot B C}-1=\frac{S}{S_{1}}-1=\frac{S-S_{1}}{S_{1}}
$$

$$
\Rightarrow \frac{M D}{M A}=\frac{S_{1}}{S-S_{1}}=\frac{S}{S-S_{1}}-1(\text { and analogs })
$$

$$
\Omega=\frac{M D}{M A}+\frac{M E}{M B}+\frac{M F}{M C}=S\left(\frac{1}{S-S_{1}}+\frac{1}{S-S_{2}}+\frac{1}{S-S_{3}}\right)-3 \stackrel{\text { Bergstrom }}{\geq}
$$

$$
\geq S \cdot \frac{(1+1+1)^{2}}{3 S-\left(S_{1}+S_{2}+S_{3}\right)}-3=\frac{9 S}{2 S}-3=\frac{3}{2}
$$

$$
\frac{M D^{2}}{M A^{2}}+\frac{M E^{2}}{M B^{2}}+\frac{M F^{2}}{M C^{2}} \geq \frac{1}{3}\left(\frac{M D}{M A}+\frac{M E}{M B}+\frac{M F}{M C}\right)^{2}=\frac{1}{3} \cdot\left(\frac{3}{2}\right)^{2}=\frac{3}{4}
$$

$$
\left(\frac{M D^{2}}{M A^{2}}+\frac{M E^{2}}{M B^{2}}+\frac{M F^{2}}{M C^{2}}\right)\left(a^{8}+b^{8}+c^{8}\right) \geq \frac{3}{4}\left(a^{8}+b^{8}+c^{8}\right) \stackrel{A M-G M}{\geq} \frac{3}{4} \cdot 3 \sqrt[3]{(a b c)^{8}}=
$$

ROMANIAN MATHEMATICAL MAGAZINE

$$
\begin{gathered}
\text { www.ssmrmh.ro } \\
=\frac{9}{4} \sqrt[3]{(4 R r s)^{8}} \stackrel{(*)}{\geq} 64 S^{4}=64(r s)^{4} \\
(*) \Leftrightarrow\left(\frac{9}{4}\right)^{3} \cdot(4 R r s)^{8} \geq 64^{3} \cdot(s r)^{12} \Leftrightarrow 9^{3} \cdot 4^{5} \cdot R^{8} \geq 4^{9} \cdot(s r)^{4} \Leftrightarrow \\
9^{3} \cdot R^{8} \geq(4 s r)^{4} \Leftrightarrow 3^{6} \cdot R^{8} \geq(4 s r)^{4}
\end{gathered}
$$

Which is true because:

$$
\begin{gathered}
s \leq \frac{3 \sqrt{3}}{2} R(\text { Mitrinovic }) ; r \leq \frac{R}{2}(\text { Euler }) \Rightarrow s r \leq \frac{3 \sqrt{3} R^{2}}{4} \Rightarrow 4 s r \leq 3 \sqrt{3} R^{2} \Leftrightarrow \\
(4 s r)^{4} \leq\left(3 \sqrt{3} R^{2}\right)^{4}=3^{4} \cdot 3^{2} \cdot R^{8}=3^{6} \cdot R^{8}
\end{gathered}
$$

Solution 2 by proposers

$$
\begin{gather*}
\left(\sum_{c y c}\left(\frac{M D}{M A}\right)^{2}\right) \cdot\left(\sum_{c y c} a^{8}\right) \stackrel{c-B-S}{\geq}\left(\sum_{c y c} \frac{M D}{M A} \cdot a^{4}\right)^{2} \tag{1}\\
\text { Let: } x=[M B C], y=[M C A], z=[M A B] \text { then }
\end{gather*}
$$

$$
[M A B]=\frac{M A \cdot B U}{2},[M A D]=\frac{M D \cdot B U}{2},[M C A]=\frac{M A \cdot C V}{2},[M C D]=\frac{M D \cdot C V}{2}
$$

$$
\frac{[M B D]}{[M A B]}=\frac{M D}{M A}=\frac{[M C D]}{[M C A]}=\frac{[M B D]+[M C D]}{z+y}=\frac{[M B C]}{y+z}=\frac{x}{y+z} \text { and analogs. }
$$

$$
\begin{equation*}
\sum_{c y c} \frac{M D}{M A} \cdot a^{4}=\sum_{c y c} \frac{x}{y+z} \cdot a^{4} \stackrel{?}{\geq} 8 S^{2} \tag{2}
\end{equation*}
$$

From (1), (2) we get

$$
\left(\frac{M D^{2}}{M A^{2}}+\frac{M E^{2}}{M B^{2}}+\frac{M F^{2}}{M C^{2}}\right)\left(a^{8}+b^{8}+c^{8}\right) \geq 64 S^{2}
$$

JP.321.If $x, y, z>0$ such that $x^{2}+y^{2}+z^{2} \leq 12$ then

$$
\sqrt{\left(x^{3}+1\right)\left(y^{3}+1\right)\left(z^{3}+1\right)} \leq 27
$$

Proposed by George Apostolopoulos- Greece

Lemma.

$$
\text { If } x>0 \text { then } \sqrt{x^{3}+1} \leq \frac{x^{2}+2}{2}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Proof: Using AM-GM inequality, we have:

$$
\sqrt{x^{3}+1}=\sqrt{(x+1)\left(x^{2}-x+1\right)} \leq \frac{(x+1)+\left(x^{2}-x+1\right)}{2}=\frac{x^{2}+2}{2}
$$

Equality holds when $(x+1)=\left(x^{2}-x+1\right) \Leftrightarrow x=2$.
Let's solve the proposed problem.
Using lemma, we get:

$$
\begin{aligned}
& \text { Lhs }=\sqrt{\left(x^{3}+1\right)\left(y^{3}+1\right)\left(z^{3}+1\right)} \leq \frac{x^{2}+2}{2} \cdot \frac{y^{2}+2}{2} \cdot \frac{z^{2}+2}{2}= \\
& =\frac{\left(x^{2}+2\right)\left(y^{2}+2\right)\left(z^{2}+2\right)}{8}= \\
& =\frac{x^{2} y^{2} z^{2}+2\left(x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2}\right)+4\left(x^{2}+y^{2}+z^{2}\right)+8}{8} \leq
\end{aligned}
$$

$$
\leq \frac{64+2 \cdot 48+4 \cdot 12+8}{8}=27=R h s, \text { which result from: }
$$

$$
x^{2}+y^{2}+z^{2} \leq 12, x^{2} y^{2} z^{2} \leq\left(\frac{x^{2}+y^{2}+z^{2}}{3}\right)^{3} \leq\left(\frac{12}{3}\right)^{3}=64 \text { and }
$$

$$
x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2} \leq \frac{\left(x^{2}+y^{2}+z^{2}\right)^{2}}{3}=\frac{12^{2}}{3}=48
$$

Equality holds when $x=y=z=2$.
Remark. The inequality it can be developed.

$$
\begin{aligned}
& \text { If } x, y, z>0 \text { such that } x^{2}+y^{2}+z^{2} \leq 12 \text { then } \\
& \qquad \sqrt[3]{27\left(x^{3}+1\right)\left(y^{3}+1\right)\left(z^{3}+1\right)} \leq 27
\end{aligned}
$$

Proposed by Marin Chirciu-Romania

Solution by proposer

Lemma.

$$
\text { If } x>0 \text { then } \sqrt[3]{3\left(x^{3}+1\right)} \leq \frac{x^{2}+5}{3}
$$

Proof: Using AM-GM inequality, we have:

$$
\sqrt[3]{3\left(x^{3}+1\right)}=\sqrt[3]{3(x+1)\left(x^{2}-x+1\right)}=\frac{3+(x+1)+\left(x^{2}-x+1\right)}{3}=\frac{x^{2}+5}{3}
$$

Equality holds when: $3=(x+1)=\left(x^{2}-x+1\right) \Leftrightarrow x=2$.

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
Let's solve the proposed problem. Using lemma, we get:

$$
\begin{gathered}
\text { Lhs }=\sqrt[3]{27\left(x^{3}+1\right)\left(y^{3}+1\right)\left(z^{3}+1\right)} \leq \frac{x^{2}+5}{3} \cdot \frac{y^{2}+5}{3} \cdot \frac{z^{2}+5}{3}= \\
=\frac{\left(x^{2}+5\right)\left(y^{2}+5\right)\left(z^{2}+5\right)}{27}= \\
=\frac{x^{2} y^{2} z^{2}+5\left(x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2}\right)+25\left(x^{2}+y^{2}+z^{2}\right)+125}{27} \leq \\
\leq \frac{64+5 \cdot 48+25 \cdot 12+125}{27}=27=R h s
\end{gathered}
$$

which result from:

$$
\begin{gathered}
x^{2}+y^{2}+z^{2} \leq 12, x^{2} y^{2} z^{2} \leq\left(\frac{x^{2}+y^{2}+z^{2}}{3}\right)^{3} \leq\left(\frac{12}{3}\right)^{3}=64 \text { and } \\
x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2} \leq \frac{\left(x^{2}+y^{2}+z^{2}\right)^{2}}{3}=\frac{12^{2}}{3}=48
\end{gathered}
$$

Equality holds when $x=y=z=2$.

$$
\text { If } x, y, z>0 \text { such that } x^{2}+y^{2}+z^{2} \leq 12 \text { then }
$$

$$
\sqrt[4]{729\left(x^{3}+1\right)\left(y^{3}+1\right)\left(z^{3}+1\right)} \leq 27
$$

Proposed by Marin Chirciu-Romania

Solution by proposer

Lemma.

$$
\text { If } x>0 \text { then } \sqrt[4]{9\left(x^{3}+1\right)} \leq \frac{x^{2}+8}{4}
$$

Proof: Using AM-GM inequality, we have:
$\sqrt[4]{9\left(x^{3}+1\right)}=\sqrt[4]{9(x+1)\left(x^{2}-x+1\right)} \leq \frac{3+3+(x+1)+\left(x^{2}-x+1\right)}{4}=\frac{x^{2}+8}{4}$, equality holds when:

$$
3=(x+1)=\left(x^{2}-x+1\right) \Leftrightarrow x=2
$$

Let's solve the proposed problem.
Using lemma, we get:

$$
\begin{gathered}
\text { Lhs }=\sqrt[4]{729\left(x^{3}+1\right)\left(y^{3}+1\right)\left(z^{3}+1\right)} \leq \\
\leq \frac{x^{2}+8}{4} \cdot \frac{y^{2}+8}{4} \cdot \frac{y^{2}+8}{4}=\frac{\left(x^{2}+8\right)\left(y^{2}+8\right)\left(z^{2}+8\right)}{64}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
=\frac{x^{2} y^{2} z^{2}+8\left(x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2}\right)+64\left(x^{2}+y^{2}+z^{2}\right)+512}{64} \leq \\
\leq \frac{64+8 \cdot 48+64 \cdot 12+512}{64}=27=R h s
\end{gathered}
$$

which result from:

$$
\begin{aligned}
x^{2}+y^{2}+z^{2} \leq 12, x^{2} y^{2} z^{2} \leq\left(\frac{x^{2}+y^{2}+z^{2}}{3}\right)^{3} \leq\left(\frac{12}{3}\right)^{3}=64 \text { and } \\
x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2} \leq \frac{\left(x^{2}+y^{2}+z^{2}\right)^{2}}{3}=\frac{12^{2}}{3}=48
\end{aligned}
$$

Equality holds when $x=y=z=2$.
Remark. The inequality it can be generalizated.
If $x, y, z>0$ such that $x^{2}+y^{2}+z^{2} \leq 12$ and $n \in \mathbb{N}, n \geq 2$ then

$$
\sqrt[n]{3^{3(n-2)}\left(x^{3}+1\right)\left(y^{3}+1\right)\left(z^{3}+1\right)} \leq 27
$$

Proposed by Marin Chirciu-Romania

Solution by proposer

Lemma.

$$
\begin{aligned}
& \text { If } x>0 \text { and } n \in \mathbb{N}, n \geq 2 \text { then } \\
& \sqrt[n]{3^{n-2}\left(x^{3}+1\right)} \leq \frac{x^{2}+3 n-4}{n}
\end{aligned}
$$

Proof: Using AM-GM inequality, we have:

$$
\begin{gathered}
\sqrt[n]{3^{n-2}\left(x^{3}+1\right)}=\sqrt[n]{3^{n-2}(x+1)\left(x^{2}-x+1\right)} \leq \\
\leq \frac{3+3+\cdots+3+(x+1)+\left(x^{2}-x+1\right)}{n}= \\
=\frac{x^{2}+3(n-2)+2}{n}=\frac{x^{2}+3 n-4}{n}
\end{gathered}
$$

Equality holds when: $3=(x+1)=\left(x^{2}-x+1\right) \Leftrightarrow x=2$.
Let's solve the proposed problem.
Using lemma, we get:

$$
L h s=\sqrt[n]{3^{3(n-2)}\left(x^{3}+1\right)\left(y^{3}+1\right)\left(z^{3}+1\right)} \leq
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
\leq \frac{x^{2}+3 n-4}{n} \cdot \frac{y^{2}+3 n-4}{n} \cdot \frac{z^{2}+3 n-4}{n}= \\
=\frac{\left(x^{2}+3 n-4\right)\left(y^{2}+3 n-4\right)\left(z^{2}+3 n-4\right)}{n^{3}}= \\
=\frac{x^{2} y^{2} z^{2}+(3 n-4)\left(x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2}\right)+(3 n-4)^{2}\left(x^{2}+y^{2}+z^{2}\right)+(3 n-4)^{3}}{n^{3}} \leq \\
\leq \frac{64+(3 n-4) \cdot 48+(3 n-4)^{2} \cdot 12+(3 n-4)^{3}}{n^{3}}= \\
=\frac{[4+(3 n-4)]^{3}}{n^{3}}=\frac{(3 n)^{3}}{n^{3}}=27=R h s
\end{gathered}
$$

which result from:

$$
\begin{gathered}
x^{2}+y^{2}+z^{2} \leq 12, x^{2} y^{2} z^{2} \leq\left(\frac{x^{2}+y^{2}+z^{2}}{3}\right)^{3} \leq\left(\frac{12}{3}\right)^{3}=64 \text { and } \\
x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2} \leq \frac{\left(x^{2}+y^{2}+z^{2}\right)^{2}}{3}=\frac{12^{2}}{3}=48
\end{gathered}
$$

Equality holds when $x=y=z=2$.

Note.

For $n=2$ we get JP. 321 din 22-RMM-Autumn Edition 2021, Proposed by George

Apostolopoulos-Greece.

Solution 2 by Daniel Văcaru-Romania

We have:

$$
\begin{aligned}
& \sqrt{x^{3}+1}=\sqrt{(x+1)\left(x^{2}-x+1\right)} \stackrel{A M-G M}{\leq} \frac{(x+1)+\left(x^{2}-x+1\right)}{2}=\frac{x^{2}+2}{2} \Rightarrow \\
& \sqrt{\left(x^{3}+1\right)\left(y^{3}+1\right)\left(z^{3}+1\right)} \leq \frac{\left(x^{2}+2\right)\left(y^{2}+2\right)\left(z^{2}+2\right)}{8}= \\
&=\frac{x^{2} y^{2} z^{2}+2\left(x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2}\right)+4\left(x^{2}+y^{2}+z^{2}\right)+8}{8} \Rightarrow \\
& 3 \sqrt[3]{x^{2} y^{2} z^{2}} \leq x^{2}+y^{2}+z^{2} \Rightarrow 3 \sqrt[3]{x^{2} y^{2} z^{2}} \leq 12 \Rightarrow x^{2} y^{2} z^{2} \leq 64 \text { and } \\
& 3\left(x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2}\right) \leq\left(x^{2}+y^{2}+z^{2}\right)^{2} \Rightarrow x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2} \leq 48
\end{aligned}
$$

We obtain that:

$$
\sqrt{\left(x^{3}+1\right)\left(y^{3}+1\right)\left(z^{3}+1\right)} \leq \frac{x^{2} y^{2} z^{2}+2\left(x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2}\right)+4\left(x^{2}+y^{2}+z^{2}\right)+8}{8}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\leq \frac{64+2 \cdot 48+4 \cdot 12+8}{8}=8+12+6+1=27
$$

If $x, y, z>0 ; a>0$ such that $x^{2}+y^{2}+z^{2} \leq a$ then find the maximum

$$
\text { of } E(x, y, z)=\sqrt{\left(x^{3}+1\right)\left(y^{3}+1\right)\left(z^{3}+1\right)}
$$

Proposed by Daniel Văcaru-Romania

Solution by proposer

$$
\begin{align*}
& \sqrt{x^{3}+1}=\sqrt{(x+1)\left(x^{2}-x+1\right)} \stackrel{A M-G M}{\leq} \frac{(x+1)+\left(x^{2}-x+1\right)}{2}=\frac{x^{2}+2}{2} \Rightarrow \\
& \sqrt{\left(x^{3}+1\right)\left(y^{3}+1\right)\left(z^{3}+1\right)} \leq \frac{\left(x^{2}+2\right)\left(y^{2}+2\right)\left(z^{2}+2\right)}{8}= \\
& =\frac{x^{2} y^{2} z^{2}+2\left(x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2}\right)+4\left(x^{2}+y^{2}+z^{2}\right)+8}{8} \Rightarrow \\
& 3 \sqrt[3]{x^{2} y^{2} z^{2}} \leq x^{2}+y^{2}+z^{2} \Rightarrow 3 \sqrt[3]{x^{2} y^{2} z^{2}} \leq a \Rightarrow x^{2} y^{2} z^{2} \leq \frac{a^{3}}{27} ;(1) \text { and } \\
& 3\left(x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2}\right) \leq\left(x^{2}+y^{2}+z^{2}\right)^{2} \Rightarrow x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2} \leq \frac{a^{2}}{3} ; \tag{2}
\end{align*}
$$

We obtain that:

$$
\begin{aligned}
& \sqrt{\left(x^{3}+1\right)\left(y^{3}+1\right)\left(z^{3}+1\right)} \leq \frac{x^{2} y^{2} z^{2}+2\left(x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2}\right)+4\left(x^{2}+y^{2}+z^{2}\right)+8}{8} \\
& \leq \frac{\frac{a^{3}}{27}+2 \cdot \frac{a^{2}}{3}+4 \cdot a+8}{8}=\frac{a^{3}+18 a^{2}+108 a}{216}+1
\end{aligned}
$$

JP. 322 Let $a, b, c>0$ such that $a+b+c=6$. Prove that:

$$
\left(a^{3}+b^{3}+c^{3}+12\right)\left(\frac{a^{2}}{\sqrt{a^{3}+1}}+\frac{b^{2}}{\sqrt{b^{3}+1}}+\frac{c^{2}}{\sqrt{c^{3}+1}}\right) \geq 144
$$

Proposed by George Apostolopoulos-Messolonghi-Greece

Solution by proposer

We have: $a^{2}(a-2)^{2} \geq 0 \Leftrightarrow a^{4}-4 a^{3}+4 a^{2} \geq 0 \Leftrightarrow\left(a^{4}+4 a^{2}+4\right)-4\left(a^{3}+1\right) \geq 0$

$$
\Leftrightarrow 4\left(a^{3}+1\right) \leq\left(a^{2}+2\right)^{2} \text {. So } 2 \sqrt{a^{3}+1} \leq a^{2}+2 \Leftrightarrow
$$

ROMANIAN MATHEMATICAL MAGAZINE

$$
\frac{1}{2 \sqrt{a^{3}+1}} \geq \frac{1}{a^{2}+2} \Leftrightarrow \frac{a^{2}}{\sqrt{a^{3}+1}} \geq 2 \cdot \frac{a^{2}}{a^{2}+2}
$$

Similarly:

$$
\frac{b^{2}}{\sqrt{b^{3}+1}} \geq 2 \cdot \frac{b^{2}}{b^{2}+2} \text { and } \frac{c^{2}}{\sqrt{c^{3}+1}} \geq 2 \cdot \frac{c^{2}}{c^{2}+2}
$$

Adding up these three inequalities, we have:

$$
\frac{a^{2}}{\sqrt{a^{3}+1}}+\frac{b^{2}}{\sqrt{b^{3}+1}}+\frac{c^{2}}{\sqrt{c^{3}+1}} \geq 2\left(\frac{a^{2}}{a^{2}+2}+\frac{b^{2}}{b^{2}+2}+\frac{c^{2}}{c^{2}+2}\right)
$$

Using the Cauchy-Schwartz inequality, we get:

$$
\begin{equation*}
\frac{a^{2}}{\sqrt{a^{3}+1}}+\frac{b^{2}}{\sqrt{b^{3}+1}}+\frac{c^{2}}{\sqrt{c^{3}+1}} \geq 2 \cdot \frac{(a+b+c)^{2}}{\left(a^{2}+b^{2}+c^{2}\right)+6}=\frac{72}{\left(a^{2}+b^{2}+c^{2}\right)+6} \tag{*}
\end{equation*}
$$

Now, we know that $a^{3}+b^{3} \geq a b(a+b), b^{3}+c^{3} \geq b c(b+c), c^{3}+a^{3} \geq c a(c+a)$

$$
\begin{gathered}
\text { So, } 2\left(a^{3}+b^{3}+c^{3}\right) \geq a b(a+b)+b c(b+c)+c a(c+a) \text { or } \\
2\left(a^{3}+b^{3}+c^{3}\right)+\left(a^{3}+b^{3}+c^{3}\right) \geq \\
\geq a^{2} b+a b^{2}+b^{2} c+b c^{2}+c^{2} a+c a^{2}+\left(a^{3}+b^{3}+c^{3}\right) \Leftrightarrow \\
3\left(a^{3}+b^{3}+c^{3}\right) \geq a^{2}(a+b+c)+b^{2}(a+b+c)+c^{2}(a+b+c), \text { namely } \\
3\left(a^{3}+b^{3}+c^{3}\right) \geq\left(a^{2}+b^{2}+c^{2}\right)(a+b+c)
\end{gathered}
$$

Since $a+b+c=6$ so $a^{2}+b^{2}+c^{2} \leq \frac{a^{3}+b^{3}+c^{3}}{2}$. The inequality $\left(^{*}\right)$ becomes:

$$
\begin{gathered}
\frac{a^{2}}{\sqrt{a^{3}+1}}+\frac{b^{2}}{\sqrt{b^{3}+1}}+\frac{c^{2}}{\sqrt{c^{3}+1}} \geq \frac{72}{\frac{a^{3}+b^{3}+c^{3}}{2}+6} \Leftrightarrow \\
\left(a^{3}+b^{3}+c^{3}+12\right)\left(\frac{a^{2}}{\sqrt{a^{3}+1}}+\frac{b^{2}}{\sqrt{b^{3}+1}}+\frac{c^{2}}{\sqrt{c^{3}+1}}\right) \geq 144
\end{gathered}
$$

Equality holds when $a=b=c=2$

JP.323. If $a, b, c>0$ such that $a^{2}+b^{2}+c^{2}=12$ then:

$$
\frac{a^{4}}{\sqrt{a^{3}+1}}+\frac{b^{4}}{\sqrt{b^{3}+1}}+\frac{c^{4}}{\sqrt{c^{3}+1}} \geq 16
$$

Proposed by George Apostolopoulos- Greece

ROMANIAN MATHEMATICAL MAGAZINE

 www.ssmrmh.ro
Solution 1 by Marin Chirciu-Romania

$$
\text { 1) } \frac{a^{4}}{\sqrt{a^{3}+1}}+\frac{b^{4}}{\sqrt{b^{3}+1}}+\frac{c^{4}}{\sqrt{c^{3}+1}} \geq 16
$$

Lemma.

$$
\text { 2) If } a>0 \text { then } \sqrt{a^{3}+1} \leq \frac{a^{2}+2}{2}
$$

Proof: Using means inequality, we have:

$$
\begin{aligned}
\sqrt{a^{3}+1}= & \sqrt{(a+1)\left(a^{2}-a+1\right)} \leq \frac{(a+1)+\left(a^{2}-a+1\right)}{2}=\frac{a^{2}+2}{2} \\
& \text { Equality for }(a+1)=\left(a^{2}-a+1\right) \Leftrightarrow a=2
\end{aligned}
$$

Let's solve the proposed problem.
Using lemma, we get:

$$
L H S=\sum \frac{a^{4}}{\sqrt{a^{3}+1}} \geq \sum \frac{a^{4}}{\frac{a^{2}+2}{2}}=2 \sum \frac{a^{4}}{a^{2}+2} \geq 2 \frac{\left(\sum a^{2}\right)^{2}}{\sum\left(a^{2}+2\right)}=16=R H D
$$

Equality holds when $a=b=c=2$.
Remark: The inequality it can be developed:

1) If $a, b, c>=0$ such that $a^{2}+b^{2}+c^{2}=12$ then

$$
\frac{a^{4}}{\sqrt[3]{3\left(a^{3}+1\right)}}+\frac{b^{4}}{\sqrt[3]{3\left(b^{3}+1\right)}}+\frac{c^{4}}{\sqrt[3]{3\left(c^{3}+1\right)}} \geq 16
$$

Proposed by Marin Chirciu-Romania

Solution by proposer

Lemma.
2) If $a>0$ then $\sqrt[3]{3\left(a^{3}+1\right)} \leq \frac{a^{2}+5}{2}$

Proof: Using means inequality, we have:
$\sqrt[3]{3\left(a^{3}+1\right)}=\sqrt[3]{3(a+1)\left(a^{2}-a+1\right)} \leq \frac{3+(a+1)+\left(a^{2}-a+1\right)}{3}=\frac{a^{2}+5}{3}$ with equality for $3=(a+1)=\left(a^{2}-a+1\right)$.

Let's solve the proposed problem.
Using lemma, we have:

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{aligned}
& L H S=\sum \frac{a^{4}}{\sqrt[3]{3\left(a^{3}+1\right)}} \geq \sum \frac{a^{4}}{\frac{a^{2}+5}{3}}=3 \sum \frac{a^{4}}{a^{2}+5} \geq 3 \frac{\left(\sum a^{2}\right)^{2}}{\sum\left(a^{2}+5\right)}=3 \cdot \frac{12^{2}}{12+15}=16 \\
& =\text { RHD. }
\end{aligned}
$$

Equality holds if and only if $\boldsymbol{a}=\boldsymbol{b}=\boldsymbol{c}=\mathbf{2}$.
3) If $a, b, c>0$ such that $a^{2}+b^{2}+c^{2}=12$ then

$$
\frac{a^{4}}{\sqrt[4]{9\left(a^{3}+1\right)}}+\frac{b^{4}}{\sqrt[4]{9\left(b^{3}+1\right)}}+\frac{c^{4}}{\sqrt[4]{9\left(c^{3}+1\right)}} \geq 16
$$

Proposed by Marin Chirciu-Romania

Solution by proposer

Lemma.
4) If $a>0$ then $\sqrt[4]{9\left(a^{3}+1\right)} \leq \frac{a^{2}+8}{4}$

Proof: Using means inequality, we have:

$$
\begin{aligned}
& \sqrt[4]{9\left(a^{3}+1\right)}=\sqrt[4]{3 \cdot 3 \cdot(a+1)\left(a^{2}-a+1\right)} \leq \\
& \leq \frac{3+3+(a+1)+\left(a^{2}-a+1\right)}{4}=\frac{a^{2}+8}{4}
\end{aligned}
$$

Equlity holds when $3=(a+1)=\left(a^{2}-a+1\right) \Leftrightarrow a=2$.
Let's solve the proposed problem.

Using lemma, we have:

$$
\begin{gathered}
L H S=\sum \frac{a^{4}}{\sqrt[4]{9\left(a^{3}+1\right)}} \geq \sum \frac{a^{4}}{\frac{a^{2}+8}{4}}=4 \sum \frac{a^{4}}{a^{2}+8}=4 \cdot \frac{12^{2}}{12+2}=16=R H D \\
\text { Equality holds when } a=b=c=2 .
\end{gathered}
$$

Remark: The inequality it can be developed.
5) If $a, b, c>0$ such that $a^{2}+b^{2}+c^{2}=12$ and $n \in \mathbb{N}, n=2$ then

$$
\frac{a^{4}}{\sqrt[n]{3^{n-2}\left(a^{3}+1\right)}}+\frac{b^{4}}{\sqrt[n]{3^{n-2}\left(b^{3}+1\right)}}+\frac{c^{4}}{\sqrt[n]{3^{n-2}\left(c^{3}+1\right)}} \geq 16
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

Solution by proposer

Lemma.

6) If $a>0$ and $n \in \mathbb{N}, n \geq 2$ then $\sqrt[n]{3^{n-2}\left(a^{3}+1\right)} \leq \frac{a^{2}+3 n-4}{n}$

Proof: Using means inequality, we have

$$
\begin{gathered}
\sqrt[n]{3^{n-2}\left(a^{3}+1\right)}=\sqrt[n]{3 \cdot 3 \cdot \ldots \cdot 3(a+1)\left(a^{2}-a+1\right)} \leq \\
\leq \frac{3+3+\cdots+3+(a+1)+\left(a^{2}-a+1\right)}{n}=\frac{a^{2}+3(n-2)+2}{n} \\
=\frac{a^{2}+3 n-4}{n}
\end{gathered}
$$

Equality holds when $3=(a+1)=\left(a^{2}-a+1\right) \Leftrightarrow a=2$.
Let's solve the proposed problem.
Using lemma, we get:

$$
\begin{aligned}
L H S= & \sum \frac{a^{4}}{\sqrt[n]{3^{n-2}\left(a^{3}+1\right)}} \geq \sum \frac{a^{4}}{\frac{a^{2}+3 n-4}{n}}=n \sum \frac{a^{4}}{a^{2}+3 n-4} \geq \\
& \geq n \cdot \frac{\left(\sum a^{2}\right)^{2}}{\sum\left(a^{2}+3 n-4\right)}=n \cdot \frac{12^{2}}{12+3(3 n-4)}=R H S .
\end{aligned}
$$

Equality holds if and only if $a=b=c=2$.
Note.
For $\boldsymbol{n}=2$ we get JP. 323 from 22-RMM-Autumn Edition 2021, Proposed by George Apostolopoulos, Greece.

Solution 2 by Daniel Văcaru-Romania

We have:

$$
\begin{gathered}
\sqrt{a^{3}+1}=\sqrt{(a+1)\left(a^{2}-a+1\right)} \leq \frac{(a+1)+\left(a^{2}-a+1\right)}{2}=\frac{a^{2}+2}{2} \\
\text { Therefore, }
\end{gathered}
$$

$$
\begin{aligned}
\frac{a^{4}}{\sqrt{a^{3}+1}}+\frac{b^{4}}{\sqrt{b^{3}+1}}+ & \frac{c^{4}}{\sqrt{c^{3}+1}} \geq 2\left(\frac{a^{4}}{a^{2}+2}+\frac{b^{4}}{b^{2}+2}+\frac{c^{4}}{c^{2}+2}\right) \stackrel{\text { Bergstrom }}{\geq} \\
& \geq 2\left(\frac{\left(a^{2}+b^{2}+c^{2}\right)^{2}}{a^{2}+b^{2}+c^{2}+6}\right)=16
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
JP.324. Let $x, y, z>0$ such that $x^{4}+y^{4}+z^{4}=3$. Find the maximum value of expression:

$$
P=\sqrt{\frac{y z}{7-2 x}}+\sqrt{\frac{z x}{7-2 y}}+\sqrt{\frac{x y}{7-2 z}}
$$

Proposed by Hoang Le Nhat Tung-Hanoi-Vietnam
Solution by proposer

$$
\begin{gathered}
\text { Let } x^{4}+y^{4}+z^{4}=3 \text {, and by AM-GM inequality, we have: } \\
7-2 x=3-2 x+4=x^{4}+y^{4}+z^{4}-2 x+4= \\
=\left(x^{4}-2 x^{2}+1\right)+\left(x^{2}-2 x+1\right)+x^{2}+\left(x^{2}+\left(y^{4}+z^{4}+1+1\right)+1+1\right)= \\
=\left(x^{2}-1\right)^{2}+(x-1)^{2}+x^{2}+\left(y^{4}+z^{4}+1+1\right) \geq x^{2}+4 \sqrt[4]{\left(y^{4} \cdot z^{4} \cdot 1 \cdot 1\right)}=x^{2}+4 y z \\
\Rightarrow 7-2 x \geq x^{2}+4 y z \Leftrightarrow \frac{1}{7-2 x} \leq \frac{1}{x^{2}+4 y z} \Leftrightarrow \frac{y z}{7-2 x} \leq \frac{y z}{x^{2}+4 y z} \Leftrightarrow \\
\sqrt{\frac{y z}{7-2 x}} \leq \sqrt{\frac{y z}{x^{2}+4 y z}} \\
\text { Similarly: }
\end{gathered}
$$

$$
\sqrt{\frac{z x}{7-2 y}} \leq \sqrt{\frac{z x}{y^{2}+4 z x}} \text { and } \sqrt{\frac{x y}{7-2 z}} \leq \sqrt{\frac{x y}{z^{2}+4 x y}}
$$

Hence

$$
\begin{gather*}
P=\sqrt{\frac{y z}{7-2 x}}+\sqrt{\frac{z x}{7-2 y}}+\sqrt{\frac{x y}{7-2 z}} \leq \sqrt{\frac{y z}{x^{2}+4 y z}}+\sqrt{\frac{z x}{y^{2}+4 z x}}+\sqrt{\frac{x y}{z^{2}+4 x y}} \leq \\
\leq \sqrt{3\left(\frac{y z}{x^{2}+4 y z}+\frac{z x}{y^{2}+4 z x}+\frac{x y}{z^{2}+4 x y}\right)} ; \tag{1}
\end{gather*}
$$

By Cauchy-Schwartz inequality, we have:

$$
\begin{align*}
& \frac{x^{2}}{x^{2}+4 y z}+\frac{y^{2}}{y^{2}+4 z x}+\frac{z^{2}}{z^{2}+4 x y} \geq \frac{(x+y+z)^{2}}{x^{2}+4 y z+y^{2}+4 z x+z^{2}+4 x y} \Leftrightarrow \\
& \frac{x^{2}}{x^{2}+4 y z}+\frac{y^{2}}{y^{2}+4 z x}+\frac{z^{2}}{z^{2}+4 x y} \geq \frac{(x+y+z)^{2}}{(x+y+z)^{2}+2(x y+y z+z x)} ; \tag{2}
\end{align*}
$$

$$
\begin{align*}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
& \text { www.ssmrmh.ro } \\
& \text { Using inequality: } x y+y z+z x \leq \frac{(x+y+z)^{2}}{3} \stackrel{(2)}{\Rightarrow} \\
& \begin{array}{c}
x^{2} \\
x^{2}+4 y z
\end{array} \frac{y^{2}}{y^{2}+4 z x}+\frac{z^{2}}{z^{2}+4 x y} \geq \frac{(x+y+z)^{2}}{(x+y+z)^{2}+2 \cdot \frac{(x+y+z)^{2}}{3}}= \\
& =\frac{3(x+y+z)^{2}}{5(x+y+z)^{2}}=\frac{3}{5} \Leftrightarrow \\
& \left(1-\frac{x^{2}}{x^{2}+4 y z}\right)+\left(1-\frac{y^{2}}{y^{2}+4 z x}\right)+\left(1-\frac{z^{2}}{z^{2}+4 x y}\right) \leq 3-\frac{3}{5}=\frac{12}{5} \Leftrightarrow \\
& \frac{4 y z}{x^{2}+4 y z}+\frac{4 z x}{y^{2}+4 z x}+\frac{4 x y}{z^{2}+4 x y} \leq \frac{12}{5} \Leftrightarrow \\
& \frac{y z}{x^{2}+4 y z}+\frac{z x}{y^{2}+4 z x}+\frac{x y}{z^{2}+4 x y} \leq \frac{3}{5} ; \tag{3}
\end{align*}
$$

From (1),(3) we get: $P \leq \sqrt{3 \cdot \frac{3}{5}}=\frac{3}{\sqrt{5}} \Rightarrow \boldsymbol{P}_{\operatorname{Max}}=\frac{3}{\sqrt{5}}$ and equality occurs if and only if

$$
\left\{\begin{array}{c}
x, y, z>0 ; x^{4}+y^{4}+z^{4}=3 \\
x-1=y-1=z-1 \\
x=y=z
\end{array} \Leftrightarrow x=y=z=1 .\right.
$$

The maximum value of expression P is $\frac{3}{\sqrt{5}}$ for $x=y=z=1$.

JP.325. Let be a triangle $A B C, A^{\prime}, B^{\prime}, C^{\prime}$ the middles of the arches $\widehat{B C}, \widehat{C A}, \widehat{A B}$ made with the circumcircle. Prove that:

$$
\frac{A B \cdot B C \cdot C A}{A^{\prime} B^{\prime} \cdot B^{\prime} C^{\prime} \cdot C^{\prime} A^{\prime}} \leq \sqrt{\cos \left(\frac{A-B}{2}\right) \cos \left(\frac{B-C}{2}\right) \cos \left(\frac{C-A}{2}\right)}
$$

Proposed by Marian Ursărescu-Romania

Solution 1 by Daniel Văcaru-Romania

By geometric consideration, we obtain $A^{\prime} B^{\prime}=2 R \cos \frac{A}{2}($ and analogs). Then

$$
\frac{A B \cdot B C \cdot C A}{A^{\prime} B^{\prime} \cdot B^{\prime} C^{\prime} \cdot C^{\prime} A^{\prime}}=8 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
Again by geometry, $\cos \frac{B-C}{2}=\frac{h_{a}}{w_{a}} ; w_{a}=\frac{2 b c}{b+c} \cos \frac{A}{2} ; h_{a}=\frac{b c}{2 R} ; \cos \frac{A}{2}=\sqrt{\frac{s(s-a)}{b c}}$

$$
\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}=\frac{r}{4 R} ; \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}=\frac{s}{4 R}
$$

Then

$$
\begin{aligned}
\prod_{c y c} \cos \left(\frac{A-B}{2}\right)=\prod_{c y c} \frac{h_{a}}{w_{a}} & =\prod_{c y c} \frac{b+c}{4 R \cos \frac{A}{2}}=\frac{\prod(b+c)}{(4 R)^{3} \prod \cos \frac{A}{2}} \geq \frac{8 a b c}{(4 R)^{2} s}= \\
& =\frac{2 r}{R}=8 \prod_{c y c} \sin \frac{A}{2}
\end{aligned}
$$

But all $\cos \left(\frac{A-B}{2}\right) \leq 1 \Rightarrow \prod_{c y c} \cos \left(\frac{A-B}{2}\right) \leq 1 \Rightarrow \prod_{c y c} \cos \left(\frac{A-B}{2}\right) \leq \sqrt{\prod_{c y c} \cos \left(\frac{A-B}{2}\right)}$
Therefore, we have:

$$
8 \prod_{c y c} \sin \frac{A}{2} \leq \prod_{c y c} \cos \left(\frac{A-B}{2}\right) \leq \sqrt{\prod_{c y c} \cos \left(\frac{A-B}{2}\right)}
$$

which is our inequality.

Solution 2 by proposer

$$
m\left(\widehat{A B^{\prime}}\right)=B, m\left(\widehat{A C^{\prime}}\right)=C \Rightarrow m\left(B^{\prime} A^{\prime} C^{\prime}\right)=\frac{\pi-A}{2}
$$

Applying sinus theorem, we have:

$$
\begin{equation*}
\frac{B^{\prime} C^{\prime}}{\sin \left(B^{\prime} A^{\prime} C^{\prime}\right)}=2 R \Rightarrow B^{\prime} C^{\prime}=2 R \sin \left(\frac{\pi-A}{2}\right)=2 R \cos \frac{A}{2} \tag{1}
\end{equation*}
$$

$$
\begin{align*}
\stackrel{(1)}{\Rightarrow} A^{\prime} B^{\prime} \cdot B^{\prime} C^{\prime} \cdot C^{\prime} A^{\prime} & =8 R^{3} \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2} \tag{2}\\
A^{\prime} B^{\prime} \cdot B^{\prime} C^{\prime} \cdot C^{\prime} A^{\prime} & =8 R^{3} \sin A \sin B \sin C \tag{3}
\end{align*}
$$

From (2), (3) $\Rightarrow \frac{A B \cdot B C \cdot A C}{A^{\prime} B^{\prime} \cdot B^{\prime} C^{\prime} \cdot C^{\prime} A^{\prime}}=\frac{\sin A \sin B \sin C}{\cos \frac{\sin }{2} \cos \frac{B}{2} \cos \frac{C}{2}}=\frac{8 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}}{2}$;
From (4) we must show: $8 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} \leq \sqrt{\cos \left(\frac{A-B}{2}\right) \cos \left(\frac{B-C}{2}\right) \cos \left(\frac{C-A}{2}\right)}$;
But: $\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}=\frac{r}{4 R}$; (6) and $\cos \left(\frac{A-B}{2}\right) \cos \left(\frac{B-C}{2}\right) \cos \left(\frac{C-A}{2}\right)=\frac{s^{2}+r^{2}+2 R r}{8 R^{2}}$;
From (5), (6), (7) we must show that: $\frac{4 r^{2}}{R^{2}} \leq \frac{s^{2}+r^{2}+2 R r}{8 R^{2}} \Leftrightarrow 32 r^{2} \leq s^{2}+r^{2}+2 R r$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro
 $\Leftrightarrow s^{2} \geq 31 r^{2}-2 R r ;$

From $s^{2} \geq 16 R r-5 r^{2}$; (9) we get: $31 r^{2}-2 R r \leq 16 R r-5 r^{2} \Leftrightarrow 18 R r \geq 36 r^{2} \Leftrightarrow$ $R \geq 2 r$ (Euler).

JP. 326 In acute $\triangle A B C, A D, B E, C F$-altitudes and H-othocenter. Prove that:

$$
\frac{H A}{H D}+\frac{H B}{H E}+\frac{H C}{H F} \geq 2\left(\left(\frac{R}{r}\right)^{2}-1\right)
$$

Proposed by Marian Ursărescu-Romania
Solution 1 by George Florin Șerban-Romania

$$
\begin{gathered}
\sin \widehat{H B D}=\sin \left(\frac{\pi}{2}-C\right)=\cos C=\frac{D H}{B H}=\frac{D H}{2 R \cos B} \Rightarrow D H=2 R \cos B \cos C \\
\\
\sum_{c y c} \frac{H A}{H D}=\sum_{c y c} \frac{2 R \cos A}{2 R \cos B \cos C}=\sum_{c y c} \frac{\cos A}{\cos B \cos C}=\frac{1}{\cos A \cos B \cos C} \cdot \sum_{c y c} \cos ^{2} A= \\
= \\
\frac{\sum_{c y c} \cos ^{2} A}{\prod_{c y c} \cos A}=\frac{\frac{6 R^{2}+4 R r+r^{2}-s^{2}}{2 R^{2}}}{\frac{s^{2}-(2 R+r)^{2}}{4 R^{2}}}=\frac{12 R^{2}+8 R r+2 r^{2}-2 s^{2}(1)}{s^{2}-(2 R+r)^{2}} 2\left(\left(\frac{R}{r}\right)^{2}-1\right)=\frac{2 R^{2}-2 r^{2}}{r^{2}}
\end{gathered}
$$

$$
(1) \Leftrightarrow 12 R^{2} r^{2}+8 R r^{3}+2 r^{4}-2 s^{2} r^{2} \geq\left(2 R^{2}-2 r^{2}\right) s^{2}-(2 R+r)^{2}\left(2 R^{2}-2 r^{2}\right) \Leftrightarrow
$$

$$
12 R^{2} r^{2}+8 R r^{3}+2 r^{4}+(2 R+r)^{2}\left(2 R^{2}-2 r^{2}\right) \stackrel{(2)}{\geq} s^{2}\left(2 R^{2}-2 r^{2}+2 r^{2}\right)=2 R^{2} s^{2}
$$

$$
2 R^{2} s^{2} \stackrel{\text { Gerretsen }}{\leq} 2 R^{2}\left(4 R^{2}+4 R r+3 r^{2}\right) \stackrel{(3)}{\leq} 12 R^{2} r^{2}+8 R r^{3}+2 r^{4}+(2 R+r)^{2}\left(2 R^{2}-2 r^{2}\right)
$$

$$
\text { For } k=\frac{R}{r} \geq 2 \text { we get: }
$$

$$
2 k^{2}\left(4 k^{2}+4 k+3\right) \leq 12 k^{2}+8 k+2+(2 k+1)^{2}\left(2 k^{2}-2\right) \Leftrightarrow
$$

$$
4 k^{4}+4 k^{3}+3 k^{2} \leq 4 k^{4}+4 k^{3}+3 k^{2}(\text { true }) \Rightarrow(3) \text { true } \Rightarrow(2) \text { true } \Rightarrow(1) \text { true }
$$

Solution 2 by proposer

In any $\triangle A B C$ we have: $\frac{H A}{H D}+\frac{H B}{H E}+\frac{H C}{H F}=\operatorname{tanAtan} B+\tan B \tan C+\operatorname{tanCtan} A-3$;

$$
\begin{equation*}
\text { But: } \operatorname{tanAtan} B+\operatorname{tanBtan} C+\operatorname{tanCtan} A=\frac{s^{2}-r^{2}-4 R r}{s^{2}-(2 R+r)^{2}} \tag{1}
\end{equation*}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro
 From (1), (2) \Rightarrow

$$
\frac{H A}{H D}+\frac{H B}{H E}+\frac{H C}{H F}=\frac{s^{2}-r^{2}-4 R r}{s^{2}-(2 R+r)^{2}}-3=\frac{s^{2}-r^{2}-4 R r-3 s^{2}+12 R^{2}+12 R r+3 r^{2}}{s^{2}-(2 R+r)^{2}}=
$$

$$
=\frac{12 R^{2}+8 R r+2 r^{2}-2 s^{2}}{s^{2}-(2 R+r)^{2}}
$$

From: $s^{2} \leq 4 R^{2}+4 R r+3 r^{2}$ (Gerretsen); (4)
From (3), (4) we have:

$$
\begin{aligned}
\frac{H A}{H D}+\frac{H B}{H E}+\frac{H C}{H F} \geq & \frac{12 R^{2}+8 R r+2 r^{2}-8 R^{2}-8 R r-6 r^{2}}{4 R^{2}+4 R r+3 r^{2}-4 R^{2}-4 R r-r^{2}} \Rightarrow \\
& \frac{H A}{H D}+\frac{H B}{H E}+\frac{H C}{H F} \geq \frac{4 R^{2}-4 r^{2}}{2 r^{2}}=2\left(\left(\frac{R}{r}\right)^{2}-1\right)
\end{aligned}
$$

JP. 327 Let $A B C$ be a triangle with inradius r and circumradius R. Prove that:

$$
\sin ^{2} A \cdot \cos \frac{B}{2}+\sin ^{2} B \cdot \cos \frac{C}{2}+\sin ^{2} C \cdot \cos \frac{A}{2} \leq 3 \sqrt{3}\left(\frac{1}{2}-\frac{r^{3}}{R^{3}}\right)
$$

Proposed by George Apostolopoulos-Messolonghi-Greece

Solution 1 by Marian Ursărescu-Romania

We must show that:

$$
\begin{gathered}
\left(1-\cos ^{2} A\right) \cdot \cos \frac{B}{2}+\left(1-\cos ^{2} B\right) \cdot \cos \frac{C}{2}+\left(1-\cos ^{2} C\right) \cdot \cos \frac{A}{2} \leq 3 \sqrt{3}\left(\frac{1}{2}-\frac{r^{3}}{R^{3}}\right) \Leftrightarrow \\
\cos \frac{A}{2}+\cos \frac{B}{2}+\cos \frac{C}{2}-\left(\cos ^{2} A \cdot \cos \frac{B}{2}+\cos ^{2} B \cdot \cos \frac{C}{2}+\cos ^{2} C \cdot \cos \frac{A}{2}\right) \leq \frac{3 \sqrt{3}}{2}-\frac{3 \sqrt{3} r^{3}}{R^{3}} ;(1) \\
\text { But } \cos \frac{A}{2}+\cos \frac{B}{2}+\cos \frac{C}{2} \leq \frac{3 \sqrt{3}}{2}(\text { R. Kooistra }) ;(2) \\
\text { From (1),(2) we must show that: }
\end{gathered}
$$

$$
\begin{gather*}
\cos ^{2} A \cdot \cos \frac{B}{2}+\cos ^{2} B \cdot \cos \frac{C}{2}+\cos ^{2} C \cdot \cos \frac{A}{2} \geq \frac{3 \sqrt{3} r^{3}}{R^{3}} \tag{3}\\
\frac{\cos ^{2} A}{\cos \frac{B}{2}}+\frac{\cos ^{2} B}{\frac{1}{\cos \frac{C}{2}}}+\frac{\cos ^{2} C}{\frac{1}{\cos \frac{A}{2}}} \stackrel{B e r g s t r o m}{\geq} \frac{(\cos A+\cos B+\cos C)^{2}}{\frac{1}{\cos \frac{A}{2}}+\frac{1}{\cos \frac{B}{2}}+\frac{1}{\cos \frac{C}{2}}} \tag{4}
\end{gather*}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
From (3),(4) we must show that:

$$
\begin{gathered}
\frac{(\cos A+\cos B+\cos C)^{2}}{\frac{1}{\cos \frac{A}{2}}+\frac{1}{\cos \frac{B}{2}}+\frac{1}{\cos \frac{C}{2}} \geq \frac{\sqrt{3} r^{3}}{R^{3}} \Leftrightarrow} \begin{array}{c}
\left(1+\frac{R}{r}\right)^{2} \geq \frac{3 \sqrt{3} r^{3}}{R^{3}}\left(\frac{1}{\cos \frac{A}{2}}+\frac{1}{\cos \frac{B}{2}}+\frac{1}{\cos \frac{C}{2}}\right)
\end{array},=\text {, }
\end{gathered}
$$

$$
\begin{equation*}
\text { But: } \frac{1}{\cos \frac{A}{2}}+\frac{1}{\cos \frac{B}{2}}+\frac{1}{\cos \frac{C}{2}}=\frac{a^{2}+b^{2}+c^{2}}{2 S} ; \tag{6}
\end{equation*}
$$

Because: $2 S\left(\frac{1}{\cos \frac{A}{2}}+\frac{1}{\cos \frac{B}{2}}+\frac{1}{\cos \frac{C}{2}}\right)=\sum_{c y c} \frac{b c \sin A}{\cos \frac{A}{2}}=2 \sum_{c y c} b \operatorname{csin} \frac{A}{2} \Leftrightarrow$

$$
\sum_{c y c} a^{2} \geq 2 \sum_{c y c} b c \cdot \sin \frac{A}{2} \Leftrightarrow
$$

$$
a^{2}-2 a\left(b \cdot \sin \frac{C}{2}+c \cdot \sin \frac{B}{2}\right)+b^{2}+c^{2}-2 b c \cdot \sin \frac{A}{2} \geq 0, \text { true because }
$$

$$
\Delta=-4\left(b \cdot \cos \frac{C}{2}-c \cdot \cos \frac{B}{2}\right)^{2} \leq 0
$$

From (6) we have:

$$
\begin{equation*}
\sum_{c y c} \frac{1}{\cos \frac{A}{2}} \leq \frac{a^{2}+b^{2}+c^{2}}{2 S}=\frac{2\left(s^{2}-r^{2}-4 R r\right)}{2 s r} \stackrel{\text { Gurretsen }}{\leq} \frac{9 R^{2}}{2 s r} \stackrel{\text { Mitrinovic }}{\leq} \frac{9 R^{2}}{2 \cdot 3 \sqrt{3} r^{2}}=\frac{3 R^{2}}{2 \sqrt{3} r^{2}} \tag{7}
\end{equation*}
$$

From (5),(6) we must show:

$$
\begin{gathered}
\left(1+\frac{r}{R}\right)^{2} \geq \frac{3 \sqrt{3} r^{3}}{R^{3}} \cdot \frac{3 R^{2}}{2 \sqrt{3} r^{2}} \Leftrightarrow\left(1+\frac{r}{R}\right)^{2} \geq \frac{9 r}{2 R} \Leftrightarrow 1+\frac{2 r}{R}+\frac{r^{2}}{R^{2}} \geq \frac{9 r}{2 R} \Leftrightarrow \\
2 R^{2}+4 R r+2 r^{2} \geq 9 R r \Leftrightarrow(R-2 r)(2 R-r) \geq 0 \text { true by } R \geq 2 r(\text { Euler })
\end{gathered}
$$

Solution 2 by proposer
We have:

$$
\begin{gathered}
\sin ^{2} A \cdot \cos \frac{B}{2}+\sin ^{2} B \cdot \cos \frac{C}{2}+\sin ^{2} C \cdot \cos \frac{A}{2}= \\
=\left(1-\cos ^{2} A\right) \cdot \cos \frac{B}{2}+\left(1-\cos ^{2} B\right) \cdot \cos \frac{C}{2}+\left(1-\cos ^{2} C\right) \cdot \cos \frac{A}{2}=
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

$$
=\left(\cos \frac{A}{2}+\cos \frac{B}{2}+\cos \frac{C}{2}\right)-\left(\frac{\cos ^{2} A}{\sec \frac{B}{2}}+\frac{\cos ^{2} B}{\sec \frac{C}{2}}+\frac{\cos ^{2} C}{\sec \frac{A}{2}}\right)
$$

It is well-known that in any triangle $A B C$ holds:

$$
\cos \frac{A}{2}+\cos \frac{B}{2}+\cos \frac{C}{2} \leq \frac{3 \sqrt{3}}{2}
$$

So, $\sin ^{2} A \cdot \cos \frac{B}{2}+\sin ^{2} B \cdot \cos \frac{C}{2}+\sin ^{2} C \cdot \cos \frac{A}{2} \leq \frac{3 \sqrt{3}}{2}-\left(\frac{\cos ^{2} A}{\sec \frac{B}{2}}+\frac{\cos ^{2} B}{\sec \frac{C}{2}}+\frac{\cos ^{2} C}{\sec ^{\frac{A}{2}}}\right)$
Using the Cauchy-Schwartz inequality, we have:

$$
\frac{\cos ^{2} A}{\sec \frac{B}{2}}+\frac{\cos ^{2} B}{\sec \frac{C}{2}}+\frac{\cos ^{2} C}{\sec \frac{A}{2}} \geq \frac{(\cos A+\cos B+\cos C)^{2}}{\sec \frac{A}{2}+\sec \frac{B}{2}+\sec \frac{C}{2}}
$$

We know that $\cos A+\cos B+\cos C=1+\frac{r}{R}, R \geq 2 r$ (Euler) and $s \geq 3 \sqrt{3} r$, where
s-denotes the semiperimeter of the triangle $A B C$. So,
$\sin ^{2} A \cdot \cos \frac{B}{2}+\sin ^{2} B \cdot \cos \frac{C}{2}+\sin ^{2} C \cdot \cos \frac{A}{2} \leq \frac{3 \sqrt{3}}{2}-\frac{\left(1+\frac{r}{R}\right)^{2}}{\sec \frac{A}{2}+\sec \frac{B}{2}+\sec \frac{C}{2}} ;(*)$

Also, we have:

$$
\begin{gathered}
\left(\cos \frac{A}{2}-\cos \frac{B}{2}\right)^{2}+\left(\cos \frac{B}{2}-\cos \frac{C}{2}\right)^{2}+\left(\cos \frac{C}{2}-\cos \frac{A}{2}\right)^{2} \geq 0 \Leftrightarrow \\
\cos ^{2} \frac{A}{2}+\cos ^{2} \frac{B}{2}+\cos ^{2} \frac{C}{2} \geq \cos \frac{A}{2} \cos \frac{B}{2}+\cos \frac{B}{2} \cos \frac{C}{2}+\cos \frac{C}{2} \cos \frac{A}{2} \Leftrightarrow \\
\frac{\cos ^{2} \frac{A}{2}+\cos ^{2} \frac{B}{2}+\cos ^{2} \frac{C}{2}}{\cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}} \geq \frac{1}{\cos \frac{A}{2}}+\frac{1}{\cos \frac{B}{2}}+\frac{1}{\cos \frac{C}{2}} \Leftrightarrow \\
\frac{\cos \frac{A}{2}}{\cos \frac{B}{2} \cos \frac{C}{2}}+\frac{\cos \frac{B}{2}}{\cos \frac{C}{2} \cos \frac{A}{2}}+\frac{\cos \frac{C}{2}}{\cos \frac{A}{2} \cos \frac{B}{2}} \geq \sec \frac{A}{2}+\sec \frac{B}{2}+\sec \frac{C}{2} \Leftrightarrow \\
\frac{\sin \left(\frac{B}{2}+\frac{C}{2}\right)}{\cos \frac{B}{2} \cos \frac{C}{2}}+\frac{\sin \left(\frac{C}{2}+\frac{A}{2}\right)}{\cos \frac{C}{2} \cos \frac{A}{2}}+\frac{\sin \left(\frac{A}{2}+\frac{B}{2}\right)}{\cos \frac{A}{2} \cos \frac{B}{2}} \geq \sec \frac{A}{2}+\sec \frac{B}{2}+\sec \frac{C}{2} \Leftrightarrow
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{aligned}
& \begin{array}{l}
\frac{\sin \frac{B}{2} \cos \frac{C}{2}+\cos \frac{B}{2} \sin \frac{C}{2}}{\cos \frac{B}{2} \cos \frac{C}{2}}+\frac{\sin \frac{C}{2} \cos \frac{A}{2}+\cos \frac{C}{2} \sin \frac{A}{2}}{\cos \frac{C}{2} \cos \frac{A}{2}}+\frac{\sin \frac{A}{2} \cos \frac{B}{2}+\cos \frac{A}{2} \sin \frac{B}{2}}{\cos \frac{A}{2} \cos \frac{B}{2}} \geq \\
\geq \sec \frac{A}{2}+\sec \frac{B}{2}+\sec \frac{C}{2} \Leftrightarrow \\
\left(\tan \frac{B}{2}+\tan \frac{C}{2}\right)+\left(\tan \frac{C}{2}+\tan \frac{A}{2}\right)+\left(\tan \frac{A}{2}+\tan \frac{B}{2}\right) \geq \sec \frac{A}{2}+\sec \frac{B}{2}+\sec \frac{C}{2} \Leftrightarrow \\
\sec \frac{A}{2}+\sec \frac{B}{2}+\sec \frac{C}{2} \leq 2\left(\tan \frac{A}{2}+\tan \frac{B}{2}+\tan \frac{C}{2}\right)
\end{array}
\end{aligned}
$$

So, the inequality (*) gives:

$$
\begin{gathered}
\sin ^{2} A \cdot \cos \frac{B}{2}+\sin ^{2} B \cdot \cos \frac{C}{2}+\sin ^{2} C \cdot \cos \frac{A}{2} \leq \frac{3 \sqrt{3}}{2}-\frac{\left(1+\frac{r}{R}\right)^{2}}{2\left(\tan \frac{A}{2}+\tan \frac{B}{2}+\tan \frac{C}{2}\right)} \\
\text { We know that: } \tan \frac{A}{2}+\tan \frac{B}{2}+\tan \frac{C}{2}=\frac{4 R+r}{s} \text {. So, }
\end{gathered}
$$

$$
\begin{gathered}
\sin ^{2} A \cdot \cos \frac{B}{2}+\sin ^{2} B \cdot \cos \frac{C}{2}+\sin ^{2} C \cdot \cos \frac{A}{2} \leq \frac{3 \sqrt{3}}{2}-\frac{\frac{(R+r)^{2}}{R^{2}}}{2 \cdot \frac{4 R+r}{S}}= \\
=\frac{3 \sqrt{3}}{2}-\frac{s(R+r)^{2}}{2 R^{2} \cdot(4 R+r)}=3 \sqrt{3}\left(\frac{1}{2}-\frac{r^{3}}{R^{3}}\right)
\end{gathered}
$$

Equality holds if and only if the triangle $A B C$ is equilateral.

JP. 328 In $\triangle A B C$ the following relationship holds:

$$
4 \leq \sec ^{2} \frac{A}{2}+\sec ^{2} \frac{B}{2}+\sec ^{2} \frac{C}{2} \leq \frac{2 R}{r}
$$

Proposed by George Apostolopoulos-Greece

Solution 1 by Marin Chirciu-Romania

$$
\begin{equation*}
4 \leq \sec ^{2} \frac{A}{2}+\sec ^{2} \frac{B}{2}+\sec ^{2} \frac{C}{2} \leq \frac{2 R}{r} \tag{1}
\end{equation*}
$$

Lemma:

In $\triangle A B C$ the following relationship holds:

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro
 $$
\begin{equation*} \sec ^{2} \frac{A}{2}+\sec ^{2} \frac{B}{2}+\sec ^{2} \frac{C}{2}=1+\left(\frac{4 R+r}{s}\right)^{2} \tag{2} \end{equation*}
$$

Proof: We have:

$$
\begin{gathered}
\sum \sec ^{2} \frac{A}{2}=\sum \frac{1}{\cos ^{2} \frac{A}{2}}=\sum \frac{b c}{s(s-a)}=\frac{s^{2}+(4 R+r)^{2}}{s^{2}}=1+\left(\frac{4 R+r}{s}\right)^{2} \text { which result from: } \\
\sum \frac{b c}{s-a}=\frac{s^{2}+(4 R+r)^{2}}{s} \Leftrightarrow \sum \frac{b c}{s(s-a)}=\frac{s^{2}+(4 R+r)^{2}}{s^{2}}
\end{gathered}
$$

Using lemma, LHS the inequality can be written:

$$
1+\left(\frac{4 R+r}{s}\right)^{2} \geq 4 \Leftrightarrow 4 R+r \geq s \sqrt{s} \text { (Doucet inequality) }
$$

Equality holds if and only if the triangle is equilateral.
Using lemma, RHS the inequality can be written
$1+\left(\frac{4 R+r}{s}\right)^{2} \leq \frac{2 R}{r} \Leftrightarrow s^{2}(2 R-r) \geq r(4 R+r)^{2}$ which result from
$s^{2} \geq 16 R r-5 r^{2}$ (Gerretsen inequality)
We must show that:

$$
\begin{gathered}
\left(16 R r-5 r^{2}\right)(2 R-r) \geq r(4 R+r)^{2} \Leftrightarrow 8 R^{2}-17 R r+2 r^{2} \geq 0 \\
\Leftrightarrow(R-2 r)(8 R-r) \geq 0 \text { true from } R \geq 2 r(\text { Euler })
\end{gathered}
$$

Equality holds if and only in the triangle is equilateral.
Remark:
In $\triangle A B C$ the following relationship holds:

$$
\begin{equation*}
5-\frac{2 r}{R} \leq \sec ^{2} \frac{A}{2}+\sec ^{2} \frac{B}{2}+\sec ^{2} \frac{C}{2} \leq 1+\frac{3 R}{2 r} \tag{3}
\end{equation*}
$$

Proposed by Marin Chirciu-Romania
For LHS of the inequality we have:
Using Lemma, we get:
$1+\left(\frac{4 R+r}{s}\right)^{2}=1+\frac{(4 R+r)^{2}}{s^{2}} \geq 1+\frac{(4 R+r)^{2}}{\frac{R(4 R+r)^{2}}{2(2 R-r)}}=1+\frac{2(2 R-r)}{R}=5-\frac{2 r}{R}$ which result from
Blundon-Gerretsen: $s^{2} \leq \frac{R(4 R+r)^{2}}{2(2 R-r)}$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
Equality holds if and only if the triangle is equilateral.
For RHS of the inequality we have:
Using lemma the inequality becomes:

$$
1+\left(\frac{4 R+r}{s}\right)^{2} \leq 1+\frac{3 R}{2 r} \Leftrightarrow \frac{(4 R+r)^{2}}{s^{2}} \leq \frac{3 R}{2 r} \Leftrightarrow 3 R s^{2} \geq 2 r(4 R+r)^{2}
$$

which result from Gerretsen inequality: $s^{2} \geq 16 R r-5 r^{2}$.
We must show that:

$$
\begin{gathered}
3 R\left(16 R r-5 r^{2}\right) \geq 2 r(4 R+r)^{2} \Leftrightarrow 16 R^{2}-31 R r-2 r^{2} \geq 0 \Leftrightarrow(R-2 r)(16 R+r) \geq \\
0 \text { true by } R \geq 2 r(\text { Euler }) .
\end{gathered}
$$

Equality holds if and only if the triangle is equilateral.
Remark: The inequality (3) is much stronger that the inequality (1).
In $\triangle A B C$ the following relationship holds:

$$
4 \leq 5-\frac{2 r}{R} \leq \sec ^{2} \frac{A}{2}+\sec ^{2} \frac{B}{2}+\sec ^{2} \frac{C}{2} \leq 1+\frac{3 R}{2 r} \leq \frac{2 R}{r}
$$

Proposed by Marin Chirciu-Romania

Solution by Marin Chirciu-Romania

See the inequality (3) and Euler inequality $R \geq 2 r$
Equality holds if and only if the triangle is equilateral.

Solution 2 by Daniel Văcaru-Romania

We have:

$$
\begin{gathered}
\sec ^{2} \frac{A}{2}+\sec ^{2} \frac{B}{2}+\sec ^{2} \frac{C}{2}=\sum_{c y c}\left(1+\tan ^{2} \frac{A}{2}\right) \geq 3+\sum_{c y c} \tan \frac{A}{2} \tan \frac{B}{2}=3+1=4 \\
\text { On the other hand, we have: } \\
\sum_{c y c} \sec ^{2} \frac{A}{2}=1+\frac{(4 R+r)^{2}}{s^{2}} \underset{\text { Gerretsen }}{\leq} 1+\frac{(4 R+r)^{2}}{16 R r-5 r^{2}}=\frac{16 R^{2}+24 R r-4 r^{2}}{16 R r-5 r^{2}} \\
\text { We prove that: }
\end{gathered}
$$

$$
\frac{16 R^{2}+24 R r-4 r^{2}}{16 R r-5 r^{2}} \leq \frac{2 R}{r} \Leftrightarrow 8 R^{2}+12 R r-2 r^{2} \leq 16 R^{2}-5 R r \Leftrightarrow
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro
 $$
8 R^{2}-17 R r+2 r^{2} \geq 0 \Leftrightarrow 8\left(\frac{R}{r}\right)^{2}-17 \frac{R}{r}+2 \geq 0
$$

We obtain:

$\frac{R}{r} \in\left(-\infty, \frac{1}{8}\right] \cup[2, \infty)$. But $R \geq 2 r($ Euler $) \Rightarrow \frac{R}{r} \geq 2$, which proves the required inequality.

JP.329.In $\triangle A B C$ the following relationship holds:

$$
6 \sqrt{3} \cdot r \leq \frac{m_{a}}{\cos \frac{A}{2}}+\frac{m_{b}}{\cos \frac{B}{2}}+\frac{m_{c}}{\cos \frac{C}{2}} \leq \frac{3 \sqrt{6}}{2} \cdot R \sqrt{\frac{R}{r}}
$$

Proposed by George Apostolopoulos-Messolonghi-Greece

Solution 1 by Marin Chirciu-Romania

$$
6 \sqrt{3} \cdot r \leq \frac{m_{a}}{\cos \frac{A}{2}}+\frac{m_{b}}{\cos \frac{B}{2}}+\frac{m_{c}}{\cos \frac{C}{2}} \leq \frac{3 \sqrt{6}}{2} \cdot R \sqrt{\frac{R}{r}} ;(1)
$$

Lemma 1.

1) In $\triangle A B C$ the following relationship holds:

$$
\sum \frac{m_{a}}{\cos \frac{A}{2}} \geq \frac{27 R r}{s}
$$

Proof: Using AM-GM inequality, we have:

$$
\sum \frac{m_{a}}{\cos s_{2}^{A}} \geq 3 \sqrt[3]{\Pi \frac{m_{a}}{\cos \frac{A}{2}}}=3 \sqrt[3]{\frac{m_{a} m_{b} m_{c}}{\cos _{\frac{1}{2}}^{A} \cos \frac{B}{2} \cos \frac{C}{2}}} \geq 3 \sqrt[3]{\frac{r s^{2}}{\frac{s}{4 R}}}=3 \sqrt[3]{4 R r s} \stackrel{(2)}{\geq} \frac{27 R r}{s}, \text { where }
$$

(1) result from $m_{a} m_{b} m_{c} \geq r s^{2}$ and $m_{a} \geq \sqrt{s(s-a)} ; \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}=\frac{s}{4 R}$.

Inequality (2) $\Leftrightarrow 3 \sqrt[3]{4 R r s} \geq \frac{27 R r}{s} \Leftrightarrow 2 s^{2} \geq 27 \operatorname{Rr}$ (Coṣniṭă-Turtoiu, 1965),
true from Gerretsen $s^{2} \geq 16 R r-5 r^{2}$ and Euler $R \geq 2 r$.
Equality holds if and only if the triangle s equilateral.

Lemma 2.

2) In $\triangle A B C$ the following relationship holds:

ROMANIAN MATHEMATICAL MAGAZINE

$$
\sum \frac{m_{a}}{\cos \frac{A}{2}} \leq \frac{3 R(4 R+r)}{s}
$$

Proof: The triplets: $\left(\boldsymbol{m}_{a}, \boldsymbol{m}_{b}, \boldsymbol{m}_{\boldsymbol{c}}\right)$ and $\left(\frac{1}{\cos \frac{A}{2}}, \frac{1}{\cos \frac{B}{2}}, \frac{1}{\cos \frac{C}{2}}\right)$ are inversely ordered.

With Chebyshev's inequality, we get:

$\sum \frac{m_{a}}{\cos \frac{A}{2}}=\frac{1}{3}\left(\sum m_{a}\right)\left(\sum \frac{1}{\cos \frac{A}{2}}\right) \stackrel{(3)}{\leq} \frac{1}{3}(4 R+r) \cdot \frac{9 R}{S}=\frac{3 R(4 R+r)}{S}$,
where (3) result from $\sum m_{a}=4 R+r ; \sum \frac{1}{\cos \frac{A}{2}} \leq \frac{9 R}{s}$ true from lemma 3)

Lemma 3.

In $\triangle A B C$ the following relationship holds:

$$
\frac{1}{\cos \frac{A}{2}}+\frac{1}{\cos \frac{B}{2}}+\frac{1}{\cos \frac{C}{2}} \leq \frac{9 R}{s}
$$

Proof:
Using the inequality $\frac{1}{x}+\frac{1}{y}+\frac{1}{z} \leq \frac{(x+y+z)^{2}}{3 x y z}$ for $x=\cos \frac{A}{2} ; y=\cos \frac{B}{2} ; z=\cos \frac{C}{2}$ we have:

$$
\frac{1}{\cos \frac{A}{2}}+\frac{1}{\cos \frac{B}{2}}+\frac{1}{\cos \frac{C}{2}} \leq \frac{\left(\cos \frac{A}{2}+\cos \frac{B}{2}+\cos \frac{C}{2}\right)^{2}}{3 \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}} \leq \frac{\left(\frac{3 \sqrt{3}}{2}\right)^{2}}{3 \cdot \frac{S}{4 R}}=\frac{\frac{27}{4}}{\frac{3 s}{4 R}}=\frac{9 R}{s}
$$

Equality holds if and only if the triangle is equilateral.
Let's solve the proposed problem.
Using the abrove lemma's we get:

$$
\frac{27 R r}{s} \leq \sum \frac{m_{a}}{\cos \frac{A}{2}} \leq \frac{3 R(4 R+r)}{S}
$$

For LHS of the inequality, we get:
Using lemma 1 we have: $\sum \frac{m_{a}}{\cos \frac{A}{2}} \geq \frac{27 R r}{s} \stackrel{(4)}{\geq} 6 \sqrt{3} \cdot r$, where (4) $\Leftrightarrow \frac{27 R r}{s} \geq 6 \sqrt{3} \cdot r$
$\Leftrightarrow R s \geq 6 \sqrt{3} \cdot r^{2}$ true by Mitrinovic: $s \geq 3 \sqrt{3} \cdot r$ and Euler: $R \geq 2 r$.

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
Equality holds if and only if the triangle is equilateral.
For the RHS of the inequality, we get:
Using lemma 2) we have:

$$
\sum \frac{m_{a}}{\cos \frac{A}{2}} \leq \frac{3 R(4 R+r)}{S} \stackrel{(5)}{\leq} \frac{3 \sqrt{6}}{2} \cdot R \sqrt{\frac{R}{r}}
$$

where $(5) \Leftrightarrow \frac{3 R(4 R+r)}{s} \leq \frac{3 \sqrt{6}}{2} \cdot R \sqrt{\frac{R}{r}} \Leftrightarrow 2 r(4 R+r)^{2} \leq 3 R s^{2}$ which result from
Gerretsen inequality: $s^{2} \geq 16 R r-5 r^{2} \geq \frac{r(4 R+r)^{2}}{R+r}$. We must show that:

$$
2 r(4 R+r)^{2} \leq 3 R \cdot \frac{r(4 R+r)^{2}}{R+r} \Leftrightarrow R \geq 2 r(\text { Euler })
$$

Equality holds if and only if the triangle is equilateral.
Remark: The inequality can be much stronger:
3) In $\triangle A B C$ the following relationship holds:

$$
\frac{27 R r}{s} \leq \frac{m_{a}}{\cos \frac{A}{2}}+\frac{m_{b}}{\cos \frac{B}{2}}+\frac{m_{c}}{\cos \frac{C}{2}} \leq \frac{3 R(4 R+r)}{s}
$$

Proposed by Marin Chirciu-Romania

Solution by proposer

See up lemma's.
Equality holds if and only if the triangle is equilateral.
Remark: The inequalities (4) are much strongers than (1)
4) In $\triangle \mathrm{ABC}$ the following relationship hods:

$$
6 \sqrt{3} \cdot r \leq \frac{27 R r}{s} \leq \sum \frac{m_{a}}{\cos \frac{A}{2}} \leq \frac{3 R(4 R+r)}{s} \leq \frac{3 \sqrt{6}}{2} \cdot R \sqrt{\frac{R}{r}}
$$

Proposed by Marin Chirciu-Romania

Solution by proposer

See the up proof's

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro
 Equality holds if and only if the triangle is equilateral

Remark: In the same class of problems:
5) In $\triangle A B C$ the following relationship holds:

$$
\frac{9 R}{2} \leq m_{a} \sin \frac{A}{2}+m_{b} \sin \frac{B}{2}+m_{c} \sin \frac{C}{2} \leq \frac{4 R+r}{2}
$$

Proposed by Marin Chirciu-Romania
Solution by proposer
We demonstrate the helpful results:
Lemma 1.
6) In $\triangle A B C$ the following relationship holds:

$$
\sum m_{a} \sin \frac{A}{2} \geq \frac{9 r}{2}
$$

Proof:
Using AM-GM inequality, we have:
$\sum m_{a} \sin \frac{A}{2} \geq 3 \sqrt[3]{\Pi m_{a} \sin \frac{A}{2}}=3 \sqrt[3]{m_{a} m_{b} m_{c} \Pi \sin \frac{A}{2}} \stackrel{(1)}{\geq} \sqrt[3]{r s^{2} \cdot \frac{r}{4 R}}=3 \sqrt[3]{\frac{r^{2} s^{2}}{4 R}} \stackrel{(2)}{\geq} \frac{9 r}{2}$ where
(1) result from $m_{a} m_{b} m_{c} \geq r s^{2}$, which result from

$$
m_{a} \geq \sqrt{s(s-a)} \text { and } \Pi \sin \frac{A}{2}=\frac{r}{4 R}
$$

The inequality (2) $\Leftrightarrow 3 \sqrt{\frac{r^{2} s^{2}}{4 R}} \leq \frac{9 r}{2} \Leftrightarrow 2 s^{2} \geq 27 R r$,
(Coṣniṭă-Turtoiu, 1965), true from Gerretsen $s^{2} \geq 16 R r-5 r^{2}$ and Euler $R \geq 2 r$.
Equality holds if and only if the triangle is equilateral.

Lemma 2.

7) In $\triangle A B C$ the following relationship holds:

$$
\begin{aligned}
& \sum m_{a} \sin \frac{A}{2} \leq \frac{4 R+r}{2} \\
& \text { Proposed by Marin Chirciu-Romania }
\end{aligned}
$$

Solution by proposer

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
Proof: The triplets: $\left(\boldsymbol{m}_{a}, \boldsymbol{m}_{b}, \boldsymbol{m}_{c}\right)$ and $\left(\frac{1}{\sin \frac{A}{2}}, \frac{1}{\sin \frac{B}{2}}, \frac{1}{\sin \frac{C}{2}}\right)$ are inversely ordered.
With Chebyshev's Inequality, we get:

$$
\sum m_{a} \sin \frac{A}{2} \leq \frac{1}{3} \sum m_{a} \sum \sin \frac{A}{2} \stackrel{(3)}{\leq} \frac{1}{3}(4 R+r) \cdot \frac{3}{2}=\frac{4 R+r}{2}
$$

where (3) result from $\sum m_{a} \leq 4 R+r$ and $\sum \sin \frac{A}{2} \leq \frac{3}{2}$ true from Jensen inequality for
concave function $t \rightarrow \sin t$ on $(0, \pi)$.
Let's solve the proposed problem.
Using the up lemma's, we get:

$$
\frac{9 r}{2} \leq \sum m_{a} \sin \frac{A}{2} \leq \frac{4 R+r}{2}
$$

Equality holds if and only if the triangle is equilateral.
8) In $\triangle A B C$ the following relationship holds:

$$
3 \sqrt{3} \cdot r \leq m_{a} \tan \frac{A}{2}+m_{b} \tan \frac{B}{2}+m_{c} \tan \frac{C}{2} \leq \frac{(4 R+r)^{2}}{3 s}
$$

Proposed by Marin Chirciu-Romania

Solution by proposer

We demonstrate the helpful results:

Lemma 1.

9) In $\triangle A B C$ the following relationship holds

$$
\sum m_{a} \tan \frac{A}{2} \geq 3 \sqrt{3} \cdot r
$$

Proposed by Marin Chirciu-Romania

Solution by proposer

Proof: Using AM-GM inequality, we have:

$$
\begin{gathered}
\sum m_{a} \tan \frac{A}{2} \geq 3 \sqrt[3]{\Pi m_{a} \tan \frac{A}{2}}=3 \sqrt[3]{m_{a} m_{b} m_{c} \Pi \tan \frac{A}{2}} \stackrel{(1)}{\geq}_{\geq}^{\geq} \sqrt[3]{r s^{2} \cdot \frac{r}{s}}=3 \sqrt[3]{r^{2} s} \stackrel{(2)}{\geq} 3 \sqrt{3} \cdot r, \\
\text { where (1) result from } m_{a} m_{b} m_{c} \geq r s^{2} \text { and } \Pi \tan \frac{A}{2}=\frac{r}{s}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

The inequality (2) $\Leftrightarrow 3 \sqrt[3]{r^{2} s} \geq 3 \sqrt{3} \cdot r \Leftrightarrow s \geq 3 \sqrt{3} \cdot r$ (Mitrinović)
Equality holds if and only if the triangle is equilateral.

Lemma 2.

10) In $\triangle A B C$ the following relationship holds

$$
\sum m_{a} \tan \frac{A}{2} \leq \frac{(4 R+r)^{2}}{3 s}
$$

Proof: The triplets: $\left(\boldsymbol{m}_{a}, \boldsymbol{m}_{b}, \boldsymbol{m}_{\boldsymbol{c}}\right)$ and $\left(\tan \frac{A}{2}, \tan \frac{B}{2}, \tan \frac{C}{2}\right)$ are inversely ordered.
With Chebyshev's inequality, we get:

$$
\begin{aligned}
\sum m_{a} \tan \frac{A}{2} \leq \frac{1}{3} \sum m_{a} \sum \tan \frac{A}{2} \stackrel{(3)}{\leq} \frac{1}{3}(4 R+r) \frac{(4 R+r)}{s}=\frac{(4 R+r)^{2}}{3 s} \\
\text { where (3) result from } \sum m_{a} \leq 4 R+r \text { and } \sum \tan \frac{A}{2}=\frac{4 R+r}{s}
\end{aligned}
$$

Let's solve the proposed problem.
Using the up lemma's, we get: $3 \sqrt{3} \cdot r \leq \sum m_{a} \tan \frac{A}{2} \leq \frac{(4 R+r)^{2}}{3 s}$
Equality if and only if the triangle is equilateral.

Solution 2 by Daniel Văcaru-Romania

By CBS we have:

$$
\begin{gathered}
\frac{m_{a}}{\cos \frac{A}{2}}+\frac{m_{b}}{\cos \frac{B}{2}}+\frac{m_{c}}{\cos \frac{C}{2}} \leq \sqrt{\sum_{c y c} m_{a}^{2}} \cdot \sqrt{\sum_{c y c} \sec ^{2} \frac{A}{2}}=\sqrt{\frac{3}{4} \sum_{c y c} a^{2}} \cdot \sqrt{\sum_{c y c} \sec ^{2} \frac{A}{2}}= \\
=R \sqrt{3} \cdot \sqrt{\sum_{c y c} \sin ^{2} A} \cdot \sqrt{\sum_{c y c} \sec ^{2} \frac{A}{2}}
\end{gathered}
$$

But $\sum_{c y c} \operatorname{Sin}^{2} A \leq \frac{9}{4} \Rightarrow \sqrt{\sum_{c y c} \operatorname{Sin}^{2} A} \leq \frac{3}{2} ;$ (1) and $\sum_{c y c} \operatorname{Sec}^{2} \frac{A}{2} \leq \frac{2 R}{r} \Rightarrow$

$$
\begin{equation*}
\sqrt{\sum_{c y c} \sec ^{2} \frac{A}{2}} \leq \sqrt{\frac{2 R}{r}} \tag{2}
\end{equation*}
$$

It follows that

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
$\frac{m_{a}}{\cos _{\frac{A}{2}}}+\frac{m_{b}}{\cos \frac{B}{2}}+\frac{m_{c}}{\cos \frac{C}{2}} \leq R \sqrt{3} \cdot \sqrt{\sum_{c y c} \sin ^{2} A} \cdot \sqrt{\sum_{c y c} \sec ^{2} \frac{A}{2}} \stackrel{(1),(2)}{\leq} R \sqrt{3} \cdot \frac{3}{2} \cdot \sqrt{\frac{2 R}{r}}=\frac{3 \sqrt{6}}{2} \cdot R \sqrt{\frac{2 R}{r}}$ Again, we have: $\frac{m_{a}}{\cos \frac{A}{2}} \frac{\sqrt{2\left(b^{2}+c^{2}\right)-a^{2}}}{2 \cos \frac{A}{2}}=\frac{\sqrt{b^{2}+c^{2}+2 b c \cdot \cos A}}{2 \cos \frac{A}{2}} \stackrel{A M-G M}{\geq} \frac{\sqrt{2 b c+2 b c \cdot \cos A}}{2 \cos \frac{A}{2}}=\sqrt{b c}$

We obtain:

$$
\begin{gathered}
\sum_{c y c} \frac{m_{a}}{\cos \frac{A}{2}} \geq \sum_{c y c} \sqrt{b c}=\sqrt{a b c} \sum_{c y c} \frac{1}{\sqrt{a}} \stackrel{a \rightarrow \frac{1}{\sqrt{a}}-\text { convex }}{\geq} \sqrt{a b c} \cdot \frac{3}{\sqrt{\frac{a+b+c}{3}}}= \\
=\sqrt{4 R r s} \cdot \frac{3 \sqrt{3}}{\sqrt{2 s}}=\sqrt{2 R r} \cdot 3 \sqrt{3} \stackrel{\text { Euler }}{\geq} \sqrt{4 r^{2}} \cdot 3 \sqrt{3}=6 \sqrt{3} r .
\end{gathered}
$$

In conclusion, we have, indeed,

$$
6 \sqrt{3} \cdot r \leq \frac{m_{a}}{\cos \frac{A}{2}}+\frac{m_{b}}{\cos \frac{B}{2}}+\frac{m_{c}}{\cos \frac{C}{2}} \leq \frac{3 \sqrt{6}}{2} \cdot R \sqrt{\frac{R}{r}}
$$

JP.330. Let $a, b, c>0$ such that $a b c=1$. Find the maximum value of the expression:

$$
P=\sqrt{\frac{a b}{a^{5}+b^{3}-2 a+6}}+\sqrt{\frac{b c}{b^{5}+c^{3}-2 b+6}}+\sqrt{\frac{c a}{c^{5}+a^{3}-2 c+6}}
$$

Proposed by Hoang Le Nhat-Hanoi-Vietnam

Solution 1 by Tran Hong-Dong Thap-Vietnam

$$
\begin{aligned}
& \text { For } a>0 \text { we have: } a^{5}-a^{3}-2 a+2 \geq 0 \Leftrightarrow a^{3}\left(a^{2}-1\right)-2(a-1) \geq 0 \Leftrightarrow \\
&(a-1)\left(a^{4}-a^{3}-2\right) \geq 0 \Leftrightarrow(a-1)\left(a^{4}-1 a^{3}-1\right) \geq 0 \Leftrightarrow \\
&(a-1)^{2}\left[(a+1)\left(a^{2}+1\right)+a^{2}+a+1\right] \geq 0(\text { true } \forall a>0)
\end{aligned}
$$

Equality for $a=1$. So, we have:

$$
\begin{aligned}
a^{5}-2 a+2 \geq a^{3} & \Rightarrow a^{5}+b^{3}-2 a+6 \geq a^{3}+b^{3}+4=a^{3}+b^{3}+1+3 \stackrel{A M-G M}{\geq} \\
& \geq 3 \sqrt[3]{a^{3} \cdot b^{3}}+3=3 a b+3=3(a b+1)
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\Rightarrow a^{5}+b^{3}-2 a+6 \geq 3(a b+1)
$$

Similarly: $a^{5}+b^{3}-2 a+6 \geq 3(b c+1)$ and $c^{5}+a^{3}-2 c+6 \geq 3(a c+1)$
Therefore,

$$
\begin{aligned}
P=\sum_{c y c} \sqrt{\frac{a b}{a^{5}+b^{3}-2 a+6}} & \leq \sum_{c y c} \sqrt{\frac{a b}{3(a b+1)}} \stackrel{a b c=1}{=} \frac{1}{\sqrt{3}} \cdot \sum_{c y c} \sqrt{\frac{a b c}{a b c+c}}= \\
& =\frac{1}{\sqrt{3}} \cdot \sum_{c y c} \sqrt{\frac{1}{a+1}}
\end{aligned}
$$

Now, because $a b c=1$ let $a=\frac{x}{y}, b=\frac{y}{z}, c=\frac{z}{x} ;(x, y, z>0)$

$$
\begin{gathered}
\Omega=\left(\sum_{c y c} \sqrt{\frac{1}{a+1}}\right)^{2}=\left(\sum_{c y c} \sqrt{\frac{1}{\frac{x}{y}+1}}\right)^{2}=\left(\sum_{c y c} \sqrt{\frac{y}{x+y}}\right)^{2}= \\
=\left(\sum_{c y c} \sqrt{\frac{y}{(x+y)(y+z)}} \cdot \sqrt{y+z}\right)^{2} \stackrel{B c s}{\leq}\left(\sum_{c y c} \frac{y}{(x+y)(y+z)}\right)\left(\sum_{c y c}(y+z)\right)= \\
=2\left(\sum_{c y c} x\right)\left(\sum_{c y c} \frac{y}{(x+y)(y+z)}\right)=\frac{4(x+y+z)(x y+y z+z x)}{(x+y)(y+z)(z+x)}
\end{gathered}
$$

On the other hand,

$$
\begin{gathered}
9(x+y)(y+z)(z+x)-8(x+y+z)(x y+y z+z x)= \\
=x(y-z)^{2}+y(z-x)^{2}+z(x-y)^{2} \geq 0 \Rightarrow \\
9(x+y)(y+z)(z+x) \geq 8(x+y+z)(x y+y z+z x) \Rightarrow \\
\frac{(x+y+z)(x y+y z+z x)}{(x+y)(y+z)(z+x)} \leq \frac{9}{8}
\end{gathered}
$$

So, we have:

$$
\begin{aligned}
\Omega \leq \frac{4 \cdot 9}{8} & =\frac{9}{2} \Rightarrow\left(\sum_{c y c} \sqrt{\frac{1}{a+1}}\right)^{2} \leq \frac{9}{2} \Rightarrow \sum_{c y c} \sqrt{\frac{1}{a+1}} \leq \frac{3}{\sqrt{2}} \Rightarrow \\
P & \leq \frac{1}{\sqrt{3}} \cdot \sum_{c y c} \sqrt{\frac{1}{a+1}} \leq \frac{1}{\sqrt{3}} \cdot \frac{3}{\sqrt{2}}=\frac{3}{\sqrt{6}}=\frac{\sqrt{6}}{2} \Rightarrow
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

$$
P_{\min }=\frac{\sqrt{6}}{2} \Leftrightarrow\left\{\begin{array}{c}
a b c=1 \\
a=b=c>0
\end{array} a=b=c=1\right.
$$

Solution 2 by proposer

$$
\begin{aligned}
& \text { We have: } a^{5}-a^{3}-2 a+2=a^{4}(a-1)+a^{3}(a-1)-2(a-1)= \\
& =(a-1)\left(a^{4}+a^{3}-2\right)=(a-1)\left[a^{3}(a-1)+2 a^{2}(a-1)+2 a(a-1)+2(a-1)\right]= \\
& =(a-1)^{2}\left(a^{3}+2 a^{2}+2 a+2\right) \geq 0, \forall a>0 \\
& \Rightarrow a^{5}+b^{3}-2 a+6 \geq 0 \Rightarrow a^{5}+b^{3}-2 a+6 \geq\left(a^{3}+b^{3}+1\right)+3 \stackrel{C B S}{\geq} 3 \cdot a b \cdot a+3 \\
& =3(a b+1) \\
& \frac{a b}{a^{5}+b^{3}-2 a+6} \leq \frac{a b}{3(a b+1)} \Leftrightarrow \sqrt{\frac{a b}{a^{5}+b^{3}-2 a+6}} \leq \sqrt{\frac{a b}{3(a b+1)}}=\frac{1}{\sqrt{3}} \cdot \frac{1}{\sqrt{1+\frac{1}{a b}}} \\
& \text { Similarly: } \\
& \sqrt{\frac{b c}{a^{5}+b^{3}-2 a+6}} \leq \frac{1}{\sqrt{3}} \cdot \frac{1}{\sqrt{1+\frac{1}{b c}}} \\
& \sqrt{\frac{c a}{c^{5}+a^{3}-2 c+6}} \leq \frac{1}{\sqrt{3}} \cdot \frac{1}{\sqrt{1+\frac{1}{c a}}} \\
& \text { Hence, } \\
& P=\sqrt{\frac{a b}{a^{5}+b^{3}-2 a+6}}+\sqrt{\frac{b c}{a^{5}+b^{3}-2 a+6}}+\sqrt{\frac{c a}{c^{5}+a^{3}-2 c+6}} \leq \\
& \leq \frac{1}{\sqrt{3}}\left(\frac{1}{\sqrt{1+\frac{1}{a b}}}+\frac{1}{\sqrt{1+\frac{1}{b c}}}+\frac{1}{\sqrt{1+\frac{1}{c a}}}\right)
\end{aligned}
$$

Let: $\frac{1}{a b}=x, \frac{1}{b c}=y, \frac{1}{c a}=z ;(x, y, z>0)$, because $a b c=1 \Rightarrow x y z=1$ and hence

$$
P \leq \frac{1}{\sqrt{3}}\left(\frac{1}{\sqrt{x+y}}+\frac{1}{\sqrt{y+z}}+\frac{1}{\sqrt{z+x}}\right)
$$

Because $x y z=1$, let $x=\frac{m}{n}, y=\frac{n}{p}, z=\frac{p}{m} ;(m, n, p>0)$ and hence

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{equation*}
P \leq \frac{1}{\sqrt{3}}\left(\frac{1}{\sqrt{1+\frac{m}{n}}}+\frac{1}{\sqrt{1+\frac{n}{p}}}+\frac{1}{\sqrt{1+\frac{p}{m}}}\right)=\frac{1}{\sqrt{3}}\left(\sqrt{\frac{n}{m+n}}+\sqrt{\frac{p}{p+n}}+\sqrt{\frac{m}{m+p}}\right) \tag{1}
\end{equation*}
$$

By C.B.S. we have:

$$
\begin{gather*}
\left(\sqrt{\frac{n}{m+n}}+\sqrt{\frac{p}{p+n}}+\sqrt{\frac{m}{m+p}}\right)^{2}= \\
=\left(\sqrt{\frac{n}{(n+m)(n+p)}} \cdot \sqrt{n+p}+\sqrt{\frac{p}{(p+n)(p+m)}} \sqrt{p+m}+\sqrt{\frac{m}{(m+p)(m+n)}} \cdot \sqrt{m+n}\right)^{2}= \\
\begin{array}{c}
\text { BCS }\left(\frac{n}{(n+m)(n+p)}+\frac{p}{(p+m)(p+n)}+\frac{m}{(m+n)(m+p)}\right)(n+p+p+m+m+n) \\
=2(m+n+p) \cdot \frac{n(m+p)+p(m+n)+m(n+p)}{(m+n)(n+p)(p+m)}= \\
=\frac{4(m n+n p+p m)(m+n+p)}{(m+n)(n+p)(p+m)} ;
\end{array}
\end{gather*}
$$

By AM-GM inequality, we have:

$$
\begin{gathered}
\quad(\boldsymbol{m}+\boldsymbol{n}+\boldsymbol{p})(\boldsymbol{m} n+\boldsymbol{n} \boldsymbol{p}+\boldsymbol{p m})=(\boldsymbol{m}+\boldsymbol{n})(n+\boldsymbol{p})(\boldsymbol{p}+\boldsymbol{m})+\boldsymbol{m} \boldsymbol{n} \boldsymbol{p} \leq \\
\leq(\boldsymbol{m}+\boldsymbol{n})(n+\boldsymbol{p})(\boldsymbol{p}+\boldsymbol{m})+\frac{(\boldsymbol{m}+\boldsymbol{n})(n+\boldsymbol{p})(\boldsymbol{p}+\boldsymbol{m})}{\mathbf{8}}=\frac{9(\boldsymbol{m}+\boldsymbol{n})(n+\boldsymbol{p})(p+\boldsymbol{m})}{\mathbf{8}}
\end{gathered}
$$

$$
\text { Then } \frac{(m n+n p+p m)(m+n+p)}{(m+n)(n+p)(p+m)} \leq \frac{9}{8} \text { and from (2) we get: }
$$

$$
\begin{gathered}
\left(\sqrt{\frac{n}{m+n}}+\sqrt{\frac{p}{p+n}}+\sqrt{\frac{m}{m+p}}\right)^{2} \leq 4 \cdot \frac{9}{8}=\frac{9}{2} \\
(1) \Rightarrow P \leq \frac{1}{\sqrt{3}}\left(\sqrt{\frac{n}{m+n}}+\sqrt{\frac{p}{p+n}}+\sqrt{\frac{m}{m+p}}\right) \leq \frac{1}{\sqrt{3}} \cdot \frac{3}{\sqrt{2}}=\frac{\sqrt{6}}{2} \Rightarrow P_{\min }=\frac{\sqrt{6}}{2}
\end{gathered}
$$

Equality occurs if: $\boldsymbol{m}=\boldsymbol{n}=\boldsymbol{p} \Leftrightarrow \boldsymbol{a}=\boldsymbol{b}=\boldsymbol{c}=\mathbf{1}$.

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

SP.316. In any $\triangle A B C$ the following relationship holds:

$$
\sum_{c y c} \sqrt{\left(\frac{a}{s-a}\right)^{m+1}}+3 m \geq 3(m+1) \sqrt{2}, m \in \mathbb{N}
$$

Proposed by D.M.Bătinețu-Giurgiu, Daniel Sitaru-Romania

Solution 1 by Marin Chirciu-Romania

Firstly, we prove that:

Lemma:

In any $\triangle A B C$ the following relationship holds:

$$
\sum_{c y c} \sqrt{\left(\frac{a}{s-a}\right)^{m+1}} \geq 3 \cdot 2^{m+1}, m \in \mathbb{N}
$$

Proof: Using the means inequality, we get:

$$
\begin{gathered}
\sum_{c y c} \sqrt{\left(\frac{a}{s-a}\right)^{m+1}} \geq 3 \sqrt[3]{\prod\left(\frac{a}{s-a}\right)^{m+1}}=3 \sqrt[3]{\left[\frac{a b c}{\prod(s-a)}\right]^{m+1}}=3 \sqrt[3]{\left(\frac{4 R r s}{r^{2} s}\right)^{m+1}}= \\
=3 \sqrt[3]{\left(\frac{4 R}{r}\right)^{m+1}} \stackrel{\text { Euler }}{\geq} 3 \sqrt[3]{\left(\frac{4 \cdot 2 r}{r}\right)^{m+1}}=3 \sqrt[3]{8^{m+1}}=2^{m+1}
\end{gathered}
$$

Using lemma, we must show that:
$3 \cdot 2^{m+1}+3 m \geq 3(m+1) \sqrt{2} \Leftrightarrow 2^{m+1}+m \geq(m+1) \sqrt{2}$
We can prove with mathematical induction after $m \in \mathbb{N}$.
Let be the proposition: $P(m): 2^{m+1}+m \geq(m+1) \sqrt{2}$.
We have: $P(0): 2 \geq \sqrt{2}$ true.
Suppose: $P(k): 2^{k+1}+k \geq(k+1) \sqrt{2}$ and we prove that $P(k+1)$ is true.

$$
P(k): 2^{k+1}+k \geq(k+1) \sqrt{2} \Rightarrow P(k+1): 2^{k+2}+k+1 \geq(k+2) \sqrt{2} \Leftrightarrow k \sqrt{2} \geq k-1
$$ true for all $k \in \mathbb{N}$.Proved

Solution 2 by Daniel Văcaru-Romania

We could write LHS as:

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gather*}
\sum_{c y c} \sqrt{\left(\frac{a}{s-a}\right)^{m+1}}+3 m=\sum_{c y c}\left(\sqrt{\left(\frac{a}{s-a}\right)^{m+1}}+m\right)= \\
=\sum_{c y c}(\sqrt{\left(\frac{a}{s-a}\right)^{m+1}}+\underbrace{1+1+\cdots+1}_{m-t i m e s})^{A M-G M}(m+1) \sum_{c y c} \sqrt{\frac{a}{s-a}}{ }^{A M-G M} \geq \\
=3(m+1)^{\frac{6}{\frac{a b c}{(s-a)(s-b)(s-c)}}} ; \tag{1}
\end{gather*}
$$

But:

$$
\begin{gather*}
\frac{a b c}{(s-a)(s-b)(s-c)}=\frac{a b c}{s^{3}-s^{2}(a+b+c)+s(a b+b c+c a)-a b c}= \\
=\frac{a b c}{s^{3}-2 s+s\left(s^{2}+r^{2}+4 R r\right)-a b c}=\frac{a b c}{s^{3}-2 s^{3}+s^{3}+s r^{2}+4 R r s-4 R r s}= \\
=\frac{a b c}{s r^{2}}=\frac{4 R S}{S r}=\frac{4 R}{S r} \stackrel{\text { Euler }}{\geq} 8 \Rightarrow \sqrt[6]{\frac{a b c}{(s-a)(s-b)(s-c)} \geq \sqrt{2} ;} \tag{2}
\end{gather*}
$$

From (1) and (2) we obtain:

$$
\sum_{c y c} \sqrt{\left(\frac{a}{s-a}\right)^{m+1}}+3 m \geq 3(m+1) \sqrt{2}, m \in \mathbb{N}
$$

SP.317. If $a, b, c, d, e \in \mathbb{R}_{+}^{*}=(0, \infty)$ and $a^{2}+b^{2}+c^{2}+d^{2}=e^{2}$, then

$$
(a+c)(b+d) \leq e^{2}
$$

Proposed by D.M. Bătineţu-Giurgiu, Daniel Sitaru-Romania

Solution 1 by Daniel Văcaru-Romania

We have:

$$
\begin{gathered}
a+c \stackrel{A M-Q M}{\leq} \sqrt{2\left(a^{2}+c^{2}\right)} ;(1) \text { and } b+d \stackrel{A M-Q M}{\leq} \sqrt{2\left(b^{2}+d^{2}\right)} ; ~(2) \\
\text { Multiplying (1) and (2), we obtain } \\
(a+c)(b+d) \leq \sqrt{2\left(a^{2}+c^{2}\right)\left(b^{2}+d^{2}\right)} \stackrel{G M-A M}{\leq}\left(a^{2}+c^{2}\right)+\left(b^{2}+d^{2}\right)=e^{2} \Rightarrow \\
(a+c)(b+d) \leq e^{2}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

Solution 2 by Daniel Văcaru-Romania

We have:

$$
\begin{gathered}
(a+c)(b+d)=a b+a d+b c+c d \stackrel{G M-A M}{\leq} \frac{a^{2}+c^{2}}{2}+\frac{a^{2}+d^{2}}{2}+\frac{c^{2}+d^{2}}{2}+\frac{c^{2}+b^{2}}{2}= \\
=a^{2}+b^{2}+c^{2}+d^{2}=e^{2}
\end{gathered}
$$

Solution 3 by Abner Chinga Bazo-Lima-Peru

$$
\begin{aligned}
& a^{2}+b^{2} \geq 2 a b, \text { equality occurs when } a=b \\
& a^{2}+d^{2} \geq 2 a d, \text { equality occurs when } a=d \\
& b^{2}+c^{2} \geq 2 b c, \text { equality occurs when } b=c \\
& c^{2}+d^{2} \geq 2 c d, \text { equality occurs when } c=d \\
& \text { Therefore }
\end{aligned}
$$

$$
\begin{gathered}
2\left(a^{2}+b^{2}+c^{2}+d^{2}\right) \geq 2(a b+a d+b c+c d) \\
a^{2}+b^{2}+c^{2}+d^{2} \geq(a+c)(b+d) \\
(a+c)(b+d) \leq e^{2} ; a^{2}+b^{2}+c^{2}+d^{2}=e^{2}
\end{gathered}
$$

Equality occurs when $a=b=c=d$

Solution 2 by proposers

$$
\begin{gathered}
\text { Let be the matrix } A=\left(\begin{array}{llll}
a & b & c & d \\
d & a & b & c
\end{array}\right) \text { and } A^{t}=\left(\begin{array}{cc}
a & d \\
b & a \\
c & b \\
d & c
\end{array}\right) \text {, then } \\
A \cdot A^{t}=\left(\begin{array}{llll}
a & b & c & d \\
d & a & b & c
\end{array}\right) \cdot\left(\begin{array}{cc}
a & d \\
b & a \\
c & b \\
d & c
\end{array}\right)=\left(\begin{array}{cc}
a^{2}+b^{2}+c^{2}+d^{2} & a d+b a+c b+d c \\
d a+a b+b c+c d & a^{2}+b^{2}+c^{2}+d^{2}
\end{array}\right)= \\
=\left(\begin{array}{cc}
e^{2} & (a+c)(b+d) \\
(a+c)(b+d) & e^{2}
\end{array}\right) \Rightarrow \operatorname{det}\left(A \cdot A^{t}\right) \\
=e^{4}-(a+c)^{2}(b+d)^{2},(1)
\end{gathered}
$$

From Cauchy-Binet, we have: $\operatorname{det}\left(A \cdot A^{t}\right) \geq 0 \stackrel{(1)}{\Rightarrow} e^{4}-(a+c)^{2}(b+d)^{2} \geq 0$

$$
\Leftrightarrow e^{4} \geq(a+c)^{2}(b+d)^{2} \Leftrightarrow(a+c)(b+d) \leq e^{2}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
SP.318. If $x, y \in \mathbb{R}_{+}^{*}=(0, \infty)$ and in triangle $A B C, a, b, c$ are the lengths of the sides, $\boldsymbol{h}_{\boldsymbol{a}}, \boldsymbol{h}_{\boldsymbol{b}}, \boldsymbol{h}_{\boldsymbol{c}}$ are the lengths of the altitudes, then

$$
\frac{(2 x-y) x a}{h_{a}}+\frac{(2 y-x) y b}{h_{b}}+\frac{x y c}{h_{c}} \geq 2 \sqrt{3} x y
$$

Proposed by D.M.Bătineţu-Giurgiu, Daniel Sitaru-Romania

Solution 1 by Daniel Văcaru-Romania

$$
\begin{gathered}
\text { We have } \frac{a}{h_{a}}=\frac{a^{2}}{2 F} \text { (and analogs) } \\
\frac{(2 x-y) x a}{h_{a}}+\frac{(2 y-x) y b}{h_{b}}+\frac{x y c}{h_{c}}=\frac{(2 x-y) x a^{2}+(2 y-x) y b^{2}+x y c^{2}}{2 F} \stackrel{C o s . L a w}{=} \\
=\frac{2\left(x^{2} a^{2}+y^{2} b^{2}\right)+x y\left(c^{2}-a^{2}-b^{2}\right)}{2 F}=\frac{x^{2} a^{2}+y^{2} b^{2}-a b x y \cos C}{F} \stackrel{A M-G M}{\geq} \\
\geq \frac{2 x y a b-x y a b \cos C}{F}=\frac{x y a b(2-\cos C)}{F}= \\
=\frac{x y a b\left(3 \sin ^{2} \frac{C}{2}+\cos ^{2} \frac{C}{2}\right)}{F} \stackrel{A M-G M}{\geq 2 x y a b \sqrt{3 \sin ^{2} \frac{C}{2} \cos ^{2} \frac{C}{2}}} \underset{F}{F} \\
=\frac{x y a b \cdot 2 \sin \frac{C}{2} \cos \frac{C}{2} \sqrt{3}}{F}=\frac{x y a b \cdot \sin C \sqrt{3}}{F}=2 \sqrt{3} x y
\end{gathered}
$$

Solution 2 by Marin Chirciu-Romania

$$
\begin{gathered}
\text { Using } \frac{a}{h_{a}}=\frac{a^{2}}{2 F} \text { (and analogs) we get: } \\
\text { Lhs }=\frac{(2 x-y) x a}{h_{a}}+\frac{(2 y-x) y b}{h_{b}}+\frac{x y c}{h_{c}}=\frac{(2 x-y) x a^{2}+(2 y-x) y b^{2}+x y c^{2}}{2 F}= \\
==\frac{2\left(x^{2} a^{2}+y^{2} b^{2}\right)+x y\left(c^{2}-a^{2}-b^{2}\right)}{2 F} \stackrel{A M-G M}{\geq} \frac{2 \cdot 2 x y a b+x y\left(c^{2}-a^{2}-b^{2}\right)}{2 F} \\
=\frac{x y\left(4 a b+c^{2}-a^{2}-b^{2}\right)}{2 F} \stackrel{(1)}{\geq} 2 \sqrt{3} x y=R h s
\end{gathered}
$$

Where (1) $\Leftrightarrow \frac{x y\left(4 a b+c^{2}-a^{2}-b^{2}\right)}{2 F} \geq 2 \sqrt{3} x y \Leftrightarrow\left(4 a b+c^{2}-a^{2}-b^{2}\right) \geq 4 F \sqrt{3} \Leftrightarrow$

$$
\left(4 a b+c^{2}-a^{2}-b^{2}\right)^{2} \geq 16 F^{2} \cdot 3 \Leftrightarrow
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\left(4 a b+c^{2}-a^{2}-b^{2}\right)^{2} \stackrel{(2)}{\geq}\left(2 \sum_{c y c} b^{2} c^{2}-\sum_{c y c} a^{4}\right) \cdot 3 \Leftrightarrow
$$

$$
\begin{gathered}
\left(4 a b+c^{2}-a^{2}-b^{2}\right)^{2} \geq 3\left(2 a^{2} b^{2}+2 b^{2} c^{2}+2 c^{2} a^{2}-a^{4}-b^{4}-c^{4}\right) \Leftrightarrow \\
c^{4}-2 c^{2}\left(a^{2}+b^{2}-2 a b\right)+\left(a^{2}+b^{2}-2 a b\right)^{2}+a^{4}+b^{4}+3 a^{2} b^{2}-2 a b\left(a^{2}+b^{2}\right) \geq 0 \Leftrightarrow \\
c^{4}-2 c^{2}\left(a^{2}+b^{2}-2 a b\right)+\left(a^{2}+b^{2}-2 a b\right)^{2} \geq 0 \Leftrightarrow \\
{\left[c^{2}-\left(a^{2}+b^{2}-2 a b\right)\right]^{2} \geq 2}
\end{gathered}
$$

Equality holds if $c^{2}=a^{2}+b^{2}-2 a b$.

SP.319. If $\left(H_{n}\right)_{n \geq 1}, H_{n}=\sum_{k=1}^{n} \frac{1}{k}$, then find:

$$
\Omega=\lim _{n \rightarrow \infty} e^{-H_{n}} \cdot \sum_{k=1}^{n} \frac{e^{H_{k}}}{\sqrt[k]{k!}}
$$

Proposed by D.Bătineţu Giurgiu-Romania

Solution by Sergio Esteban-Argentina

By Stolz-Cesaro theorem:

$$
\begin{gathered}
\Omega=\lim _{n \rightarrow \infty} e^{-H_{n}} \cdot \sum_{k=1}^{n} \frac{e^{H_{k}}}{\sqrt[k]{k!}}=\lim _{n \rightarrow \infty} \frac{1}{e^{H_{n}}} \cdot \sum_{k=1}^{n} \frac{e^{H_{k}}}{\sqrt[k]{k!}}= \\
=\lim _{n \rightarrow \infty} \frac{e^{H_{n+1}}}{\left(e^{H_{n+1}}-e^{H_{n}}\right) \sqrt[n+1]{(n+1)!}} \stackrel{H_{n+1}=H_{n}+\frac{1}{n+1}}{=} \lim _{n \rightarrow \infty} \frac{e^{H_{n}+\frac{1}{n+1}}}{e^{H_{n}\left(e^{\frac{1}{n+1}}-1\right)} \sqrt[n+1]{(n+1)!}}= \\
=\lim _{n \rightarrow \infty} \frac{1}{\left(e^{\frac{1}{n+1}}-1\right) \sqrt[n+1]{(n+1)!}}=\lim _{n \rightarrow \infty} \frac{1}{\left(\frac{e^{\frac{1}{n+1}-1}}{\frac{1}{n+1}}\right) \cdot \frac{1}{n+1} \cdot \sqrt[n+1]{(n+1)!}}
\end{gathered}
$$

By Stirling's approximation:

$$
\Omega=\lim _{n \rightarrow \infty} \frac{n+1}{\sqrt[n+1]{(n+1)!}}=\lim _{n \rightarrow \infty} \frac{n+1}{\sqrt[2(n+1)]{\sqrt{2 \pi(n+1)} \frac{n+1}{e}}}=e
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
SP.320. If $x \in \mathbb{R}_{+}^{*}=(0, \infty)$ and in $\triangle A B C, a, b, c$-are lengths of the sides, $\boldsymbol{h}_{\boldsymbol{a}}, \boldsymbol{h}_{\boldsymbol{b}}, \boldsymbol{h}_{\boldsymbol{c}}$-are lengths of the altitudes, then:

$$
\frac{(6 x-1) a}{h_{a}}+\frac{\left(\frac{2}{3 x}-1\right) b}{h_{b}}+\frac{c}{h_{c}} \geq 2 \sqrt{3}
$$

Proposed by D.M. Bătineţu-Giurgiu-Romania

Solution 1 by Marian Ursărescu-Romania

We must show that:

$$
\begin{align*}
& \frac{(6 x-1) a^{2}}{a \cdot h_{a}}+\frac{\left(\frac{2}{3 x}-1\right) b^{2}}{b \cdot h_{b}}+\frac{c^{2}}{c \cdot h_{c}} \geq 2 \sqrt{3} \Leftrightarrow \\
& (6 x-1) a^{2}+\left(\frac{2}{3 x}-1\right) b^{2}+c^{2} \geq 4 \sqrt{3} S \tag{1}
\end{align*}
$$

Theorem: If $\boldsymbol{m}_{1}, \boldsymbol{m}_{2}, \boldsymbol{m}_{\mathbf{3}} \in \mathbb{R}$ such that $\boldsymbol{m}_{\mathbf{1}}+\boldsymbol{m}_{\mathbf{2}}>0, \boldsymbol{m}_{\mathbf{2}}+\boldsymbol{m}_{\mathbf{3}}>0, \boldsymbol{m}_{\mathbf{3}}+\boldsymbol{m}_{\mathbf{1}}>0$ and

$$
\begin{gathered}
m_{1} m_{2}+m_{2} m_{3}+m_{3} m_{1}>0 \text { then } \\
m_{1} a^{2}+m_{2} b^{2}+m_{3} c^{2} \geq 4 S \sqrt{m_{1} m_{2}+m_{2} m_{3}+m_{3} m_{1}}
\end{gathered}
$$

Proof: Let $\sqrt{m_{1} m_{2}+m_{2} m_{3}+m_{3} m_{1}}=m$, from $2 S=b c \sin A$ and cosines law, we have:

$$
\begin{gathered}
2 b c\left(m \cdot \sin A+m_{1} \cdot \cos A\right) \leq b^{2}\left(m_{1}+m_{2}\right)+c^{2}\left(m_{1}+m_{3}\right) \Leftrightarrow \\
\frac{b}{2 c}\left(m_{1}+m_{2}\right)+\frac{c}{2 b}\left(m_{1}+m_{3}\right)-\left(m \cdot \sin A+m_{1} \cdot \cos A\right) \geq 0 ;(i) \\
\text { But: } \frac{b}{2 c}\left(m_{1}+m_{2}\right)+\frac{c}{2 b}\left(m_{1}+m_{3}\right) \geq \sqrt{\left(m_{1}+m_{2}\right)\left(m_{1}+m_{3}\right)} ; \quad(i i) \text { and } \\
m \cdot \sin A+m_{1} \cdot \cos A \leq \sqrt{m^{2}+m_{1}^{2}} ;(i i i)
\end{gathered}
$$

From (i),(ii),(iii) we have:

$$
\begin{gathered}
m_{1} a^{2}+m_{2} b^{2}+m_{3} c^{2} \geq 4 S \sqrt{m_{1} m_{2}+m_{2} m_{3}+m_{3} m_{1}} \\
\text { In our case: } m_{1}=6 x-1, m_{2}=\frac{2}{3 x}-1, m_{3}=1 \\
m_{1}+m_{2}=2\left(3 x-\frac{1}{3 x}\right)-3>0 ; m_{1}+m_{3}=6 x>0 ; m_{2}+m_{3}=\frac{2}{3 x}>0 \\
\text { and } m_{1} m_{2}+m_{2} m_{3}+m_{3} m_{1}=3>0 \Rightarrow
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

$$
\begin{gathered}
\text { www.ssmrmh.ro } \\
(6 x-1) a^{2}+\left(\frac{2}{3 x}-1\right) b^{2}+c^{2} \geq 4 \sqrt{3} S
\end{gathered}
$$

Solution 2 by proposer
Let be F - area of the $\triangle A B C$.Then:

$$
\begin{gather*}
\begin{array}{r}
U=(6 x-1) \cdot \frac{a}{h_{a}}+\left(\frac{2}{3 x}-1\right) \cdot \frac{b}{h_{b}}+\frac{c}{h_{c}}=\frac{6 x-1}{a h_{a}} \cdot a^{2}+\left(\frac{2}{3 x}-1\right) \cdot \frac{b^{2}}{b h_{b}}+\frac{c^{2}}{c h_{c}} \\
=\frac{1}{2 F} \cdot\left((6 x-1) a^{2}+\left(\frac{2}{3 x}-1\right) b^{2}+c^{2}\right)=\frac{1}{2 F} \cdot V, \\
\text { Where } V=(6 x-1) a^{2}+\left(\frac{2}{3 x}-1\right) b^{2}+c^{2},
\end{array} \\
\text { By Oppenheimer inequality, we have: } \tag{1}\\
v a^{2}+u b^{2}+w c^{2} \geq 4 \sqrt{v u+u w+w v} \cdot F, \forall u, v, w \epsilon \mathbb{R}, \tag{2}\\
\text { If in }(0) \text { we let: } u=6 x-1, v=\frac{2}{3 x}-1, w=1, \text { we get: } \\
=4 \cdot \sqrt{\frac{12 x-2-18 x^{2}+3 x+18 x^{2}-3 x+2-3 x}{3 x}} \cdot F=4 \cdot \sqrt{\frac{9 x}{3 x}} \cdot F=4 \sqrt{3 x} F, \tag{0}
\end{gather*}
$$

From (1), (2), (3) we have: $U \geq \frac{1}{2 F} \cdot 4 \sqrt{3} F=2 \sqrt{3}$

SP.321. Let a, b, c be the lengths of the sides of a triangle with circumradius R and iradius r. Prove that:

$$
\frac{a^{2}}{b^{2}}+\frac{b^{2}}{c^{2}}+\frac{c^{2}}{a^{2}}-4\left(\frac{a^{2}+b^{2}}{b^{2}+c^{2}}+\frac{b^{2}+c^{2}}{c^{2}+a^{2}}+\frac{c^{2}+a^{2}}{a^{2}+b^{2}}\right)+12\left(\frac{R}{2 r}\right)^{2} \geq 3
$$

Proposed by George Apostolopoulos-Messolonghi-Greece
Solution 1 by proposer
We know that:

$$
\frac{1}{a^{2}+b^{2}} \leq \frac{1}{4}\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}\right) \Rightarrow \frac{c^{2}+a^{2}}{a^{2}+b^{2}} \leq \frac{1}{4}\left(1+\frac{c^{2}}{a^{2}}+\frac{a^{2}}{b^{2}}+\frac{c^{2}}{b^{2}}\right) \text { and similarly }
$$

ROMANIAN MATHEMATICAL MAGAZINE

$$
\frac{a^{2}+b^{2}}{b^{2}+c^{2}} \leq \frac{1}{4}\left(1+\frac{a^{2}}{b^{2}}+\frac{b^{2}}{c^{2}}+\frac{a^{2}}{c^{2}}\right) \text { and } \frac{b^{2}+c^{2}}{c^{2}+a^{2}} \leq \frac{1}{4}\left(1+\frac{b^{2}}{c^{2}}+\frac{c^{2}}{a^{2}}+\frac{b^{2}}{a^{2}}\right)
$$

Adding up these inequalities, we have:

$$
\begin{gathered}
\frac{a^{2}+b^{2}}{b^{2}+c^{2}}+\frac{b^{2}+c^{2}}{c^{2}+a^{2}}+\frac{c^{2}+a^{2}}{a^{2}+b^{2}} \\
\leq \frac{1}{4}\left(\left(\frac{a^{2}}{b^{2}}+\frac{b^{2}}{a^{2}}\right)+\left(\frac{b^{2}}{c^{2}}+\frac{c^{2}}{b^{2}}\right)+\left(\frac{c^{2}}{a^{2}}+\frac{a^{2}}{c^{2}}\right)+\frac{a^{2}}{b^{2}}+\frac{b^{2}}{c^{2}}+\frac{c^{2}}{a^{2}}+3\right)
\end{gathered}
$$

Also we know that:

$$
\frac{a}{b}+\frac{b}{a} \leq \frac{R}{r}, \frac{b}{c}+\frac{c}{b} \leq \frac{R}{r}, \frac{c}{a}+\frac{a}{c} \leq \frac{R}{r}
$$

So,

$$
\frac{a^{2}}{b^{2}}+\frac{b^{2}}{a^{2}} \leq \frac{R^{2}}{r^{2}}-2, \frac{b^{2}}{c^{2}}+\frac{c^{2}}{b^{2}} \leq \frac{R^{2}}{r^{2}}-2, \frac{c^{2}}{a^{2}}+\frac{a^{2}}{c^{2}} \leq \frac{R^{2}}{r^{2}}-2
$$

Now,

$$
\begin{aligned}
& \frac{a^{2}+b^{2}}{b^{2}+c^{2}}+\frac{b^{2}+c^{2}}{c^{2}+a^{2}}+\frac{c^{2}+a^{2}}{a^{2}+b^{2}} \leq \frac{1}{4}\left(3 \cdot \frac{R^{2}}{r^{2}}-6+\frac{a^{2}}{b^{2}}+\frac{b^{2}}{c^{2}}+\frac{c^{2}}{a^{2}}+3\right) \\
& \quad 4\left(\frac{a^{2}+b^{2}}{b^{2}+c^{2}}+\frac{b^{2}+c^{2}}{c^{2}+a^{2}}+\frac{c^{2}+a^{2}}{a^{2}+b^{2}}\right) \leq 3 \cdot \frac{R^{2}}{r^{2}}+\frac{a^{2}}{b^{2}}+\frac{b^{2}}{c^{2}}+\frac{c^{2}}{a^{2}}-3 \\
& \frac{a^{2}}{b^{2}}+\frac{b^{2}}{c^{2}}+\frac{c^{2}}{a^{2}}-4\left(\frac{a^{2}+b^{2}}{b^{2}+c^{2}}+\frac{b^{2}+c^{2}}{c^{2}+a^{2}}+\frac{c^{2}+a^{2}}{a^{2}+b^{2}}\right)+12\left(\frac{R}{2 r}\right)^{2} \geq 3
\end{aligned}
$$

Equality holds if and only if the triangle is equilateral.

Solution 2 by Soumava Chakraborty-Kolkata-India

$$
\begin{array}{r}
\frac{x}{y}+\frac{y}{z}+\frac{z}{x} \geq \frac{x+y}{y+z}+\frac{y+z}{z+x}+\frac{z+x}{x+y} \Leftrightarrow \frac{x+y}{y}+\frac{y+z}{z}+\frac{z+x}{x}-\frac{x+y}{y+z}-\frac{y+z}{z+x}-\frac{z+x}{x+y} \geq 3 \\
\Leftrightarrow \frac{z(x+y)}{y(y+z)}+\frac{x(y+z)}{z(z+x)}+\frac{y(z+x)}{x(x+y)} \geq 3 \rightarrow \text { true } \\
\because \frac{z(x+y)}{y(y+z)}+\frac{x(y+z)}{z(z+x)}+\frac{y(z+x)}{x(x+y)} \stackrel{A}{m}^{A-G} 3 \sqrt[3]{\frac{z(x+y)}{y(y+z)} \cdot \frac{x(y+z)}{z(z+x)} \cdot \frac{y(z+x)}{x(x+y)}}=3
\end{array}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$\therefore \frac{x}{y}+\frac{y}{z}+\frac{z}{x} \geq \frac{x+y}{y+z}+\frac{y+z}{z+x}+\frac{z+x}{x+y}$ and choosing $x=a^{2}, y=b^{2}, z=c^{2}$, we get $: \frac{a^{2}}{\mathbf{b}^{2}}+\frac{\mathbf{b}^{2}}{\mathbf{c}^{2}}+\frac{\mathbf{c}^{2}}{a^{2}} \geq \frac{a^{2}+\mathbf{b}^{2}}{\mathbf{b}^{2}+\mathbf{c}^{2}}+\frac{\mathbf{b}^{2}+\mathbf{c}^{2}}{\mathbf{c}^{2}+\boldsymbol{a}^{2}}+\frac{\mathbf{c}^{2}+\boldsymbol{a}^{2}}{a^{2}+\mathbf{b}^{2}}$
$\stackrel{?}{\sim} 3+4\left(\frac{a^{2}+b^{2}}{b^{2}+c^{2}}+\frac{b^{2}+c^{2}}{c^{2}+a^{2}}+\frac{c^{2}+a^{2}}{a^{2}+b^{2}}\right)-12\left(\frac{R}{2 r}\right)^{2}$
$\Leftrightarrow \frac{a^{2}+\mathbf{b}^{2}}{\mathbf{b}^{2}+\mathbf{c}^{2}}+\frac{\mathbf{b}^{2}+\mathbf{c}^{2}}{\mathbf{c}^{2}+a^{2}}+\frac{\mathbf{c}^{2}+a^{2}}{a^{2}+\mathbf{b}^{2}}+1 \stackrel{?}{\dot{\sim}} \frac{\mathbf{R}^{2}}{\mathbf{r}^{2}}$
$\Leftrightarrow \frac{a^{2}+b^{2}+\mathbf{c}^{2}-\mathbf{c}^{2}}{\mathbf{b}^{2}+\mathbf{c}^{2}}+\frac{\mathbf{b}^{2}+\mathbf{c}^{2}+a^{2}-a^{2}}{\mathbf{c}^{2}+a^{2}}+\frac{\mathbf{c}^{2}+a^{2}+b^{2}-b^{2}}{a^{2}+b^{2}}+1 \stackrel{?}{\sim} \frac{\mathbf{R}^{2}}{\mathbf{r}^{2}}$
$\Leftrightarrow\left(\sum a^{2}\right) \sum \frac{1}{\mathbf{b}^{2}+\mathbf{c}^{2}}+1 \underset{(\mathbf{1})}{\stackrel{?}{<}} \frac{\mathbf{R}^{2}}{\mathbf{r}^{2}}+\frac{\boldsymbol{a}^{2}}{\mathbf{c}^{2}+\boldsymbol{a}^{2}}+\frac{\mathbf{b}^{2}}{\boldsymbol{a}^{2}+\mathbf{b}^{2}}+\frac{\mathbf{c}^{2}}{\mathbf{b}^{2}+\mathbf{c}^{2}}$
Now, $\frac{\mathbf{R}^{2}}{\mathbf{r}^{2}}+\frac{\boldsymbol{a}^{2}}{\mathbf{c}^{2}+\boldsymbol{a}^{2}}+\frac{\mathbf{b}^{2}}{a^{2}+\mathbf{b}^{2}}+\frac{\mathbf{c}^{2}}{\mathbf{b}^{2}+\mathbf{c}^{2}} \stackrel{\text { Bergstrom }}{\geq} \frac{\mathbf{R}^{2}}{\mathbf{r}^{2}}+\frac{(\boldsymbol{a}+\mathbf{b}+\mathbf{c})^{2}}{2 \sum \boldsymbol{a}^{2}} \stackrel{\text { Leibnitz }}{\geq} \frac{\mathbf{R}^{2}}{\mathbf{r}^{2}}$ $+\frac{2 s^{2}}{9 R^{2}} \stackrel{\text { Gerretsen }}{\geq} \frac{\mathbf{R}^{2}}{\mathbf{r}^{2}}+\frac{27 R r+5 R r-10 r^{2}}{9 R^{2}}$ $\stackrel{\text { Euler }}{\geq} \frac{\mathbf{R}^{2}}{\mathbf{r}^{2}}+\frac{\mathbf{2 7 R r}+10 \mathbf{r}^{2}-10 \mathbf{r}^{2}}{9 \mathbf{R}^{2}}=\frac{\mathbf{R}^{2}}{\mathbf{r}^{2}}+\frac{3 \mathbf{r}}{\mathbf{R}}$
$\Rightarrow \frac{\mathbf{R}^{2}}{\mathbf{r}^{2}}+\frac{\boldsymbol{a}^{2}}{\mathbf{c}^{2}+\boldsymbol{a}^{2}}+\frac{\mathbf{b}^{2}}{\boldsymbol{a}^{2}+\mathbf{b}^{2}}+\frac{\mathbf{c}^{2}}{\mathbf{b}^{2}+\mathbf{c}^{2}} \stackrel{(i)}{\stackrel{(2)}{ }} \frac{\mathbf{R}^{3}+3 \mathbf{r}^{3}}{\mathbf{R r}^{2}}$
$\left(\sum a^{2}\right) \sum \frac{1}{b^{2}+c^{2}}+1 \stackrel{\text { Leibnitz }}{\leq} 9 R^{2} \sum \frac{1}{b^{2}+c^{2}}+1 \stackrel{A-G}{\approx} 9 R^{2} \sum \frac{1}{2 b c}+1$

$$
=9 \mathrm{R}^{2}\left(\frac{2 \mathrm{~s}}{8 \mathrm{Rrs}}\right)+1 \Rightarrow\left(\sum a^{2}\right) \sum \frac{1}{\mathrm{~b}^{2}+\mathrm{c}^{2}}+1 \stackrel{(i i)}{\stackrel{(c)}{\leq}} \frac{9 \mathrm{R}+4 \mathrm{r}}{4 \mathrm{r}}
$$

(i), (ii) \Rightarrow in order to prove (1), it suffices to prove : $\frac{R^{3}+3 r^{3}}{R^{2}} \geq \frac{9 R+4 r}{4 r}$

$$
\Leftrightarrow 4 R^{3}+12 r^{3} \geq 9 R^{2} r+4 R^{2}
$$

$\Leftrightarrow 4 t^{3}-9 t^{2}-4 t+12 \geq 0\left(\right.$ where $\left.t=\frac{R}{r}\right) \Leftrightarrow(t-2)((t-2)(4 t+7)+8) \geq 0$
\rightarrow true $\because \mathrm{t} \xrightarrow{\aleph} 2 \Rightarrow(1)$ is true

$$
\begin{gathered}
\text { ROMANIAN MATHEMATICAL MAGAZINE } \\
\therefore \frac{\boldsymbol{a}^{2}}{\mathbf{b}^{2}}+\frac{\mathbf{b}^{2}}{\mathbf{c}^{2}}+\frac{\mathbf{c}^{2}}{\boldsymbol{a}^{2}} \geq \mathbf{3}+\mathbf{4}\left(\frac{\boldsymbol{a}^{2}+\mathbf{b}^{2}}{\mathbf{b}^{2}+\mathbf{c}^{2}}+\frac{\mathbf{b}^{2}+\mathbf{c}^{2}}{\mathbf{c}^{2}+\boldsymbol{a}^{2}}+\frac{\mathbf{c}^{2}+\boldsymbol{a}^{2}}{\boldsymbol{a}^{2}+\mathbf{b}^{2}}\right)-\mathbf{1 2}\left(\frac{\mathbf{R}}{\mathbf{2} \mathbf{r}}\right)^{2} \\
\Rightarrow \frac{\boldsymbol{a}^{2}}{\mathbf{b}^{2}}+\frac{\mathbf{b}^{2}}{\mathbf{c}^{2}}+\frac{\mathbf{c}^{2}}{\boldsymbol{a}^{2}}-\mathbf{4}\left(\frac{\boldsymbol{a}^{2}+\mathbf{b}^{2}}{\mathbf{b}^{2}+\mathbf{c}^{2}}+\frac{\mathbf{b}^{2}+\mathbf{c}^{2}}{\mathbf{c}^{2}+\boldsymbol{a}^{2}}+\frac{\mathbf{c}^{2}+\boldsymbol{a}^{2}}{\boldsymbol{a}^{2}+\mathbf{b}^{2}}\right)+\mathbf{1 2}\left(\frac{\mathbf{R}}{2 \mathbf{r}}\right)^{2} \geq \mathbf{3} \text { (Proved) }
\end{gathered}
$$

SP. 322 Let a, b, c be the lengths of the sides of a triangle with circumradius R and iradius r. Prove that:

$$
\frac{2 r}{R} \leq \frac{a^{2}}{b^{2}+b c+c^{2}}+\frac{b^{2}}{c^{2}+c a+a^{2}}+\frac{c^{2}}{a^{2}+a b+b^{2}} \leq \frac{R^{2}}{2 r^{2}}-1
$$

Proposed by George Apostolopoulos-Greece
Solution 1 by Avishek Mitra-West Bengal-India

$$
\begin{gathered}
\sum_{c y c} \frac{a^{2}}{b^{2}+b c+c^{2}} \stackrel{\text { Bergstrom }}{\geq} \frac{(a+b+c)^{2}}{2\left(a^{2}+b^{2}+c^{2}\right)+a b+b c+c a} \stackrel{\sum x^{2} \geq \Sigma x y}{\geq} \frac{4 s^{2}}{3\left(a^{2}+b^{2}+c^{2}\right)}= \\
=\frac{4 s^{2}}{6\left(s^{2}-4 R r-r^{2}\right)}
\end{gathered}
$$

We need to show: $\frac{4 s^{2}}{6\left(s^{2}-4 R r-r^{2}\right)} \geq \frac{2 r}{R} \Leftrightarrow s^{2}(R-3 r)+12 R r^{2}+3 r^{3} \geq 0$

$$
\text { From } s^{2} \geq 16 R r-5 r^{2}(\text { Gerretsen }) \text { we need to show that: }
$$

$$
\begin{gathered}
\left(16 R r-5 r^{2}\right)(R-3 r)+12 R r^{2}+3 r^{3} \geq 0 \Leftrightarrow 16 R^{2}-41 R r+18 r^{2} \geq 0 \Leftrightarrow \\
(R-2 r)(16 R-9 r) \geq 0(\text { true }) R \geq 2 r(\text { Euler }) .
\end{gathered}
$$

Now,

$$
\sum_{c y c} \frac{a^{2}}{b^{2}+b c+c^{2}} \stackrel{A M-G M}{\leq} \sum_{c y c} \frac{a^{2}}{2 b c+b c}=\frac{1}{3} \sum_{c y c} \frac{a^{2}}{b c}=\frac{1}{3 a b c} \sum_{c y c} a^{3}=
$$

$$
=\frac{3 a b c+\sum a^{3}-3 a b c}{3 a b c}=\frac{3 a b c+\left(\sum a\right)\left(\sum a^{2}-\sum a b\right)}{3 a b c}=
$$

$$
=\frac{12 R r s+2 s\left(2 s^{2}-8 R r-2 r^{2}-s^{2}-r^{2}-4 R r\right)}{3 a b c}=
$$

$$
=\frac{2 s\left(s^{2}-6 R r-3 r^{2}\right)}{12 R r s}=\frac{2\left(s^{2}-6 R r-3 r^{2}\right)}{12 R r} \stackrel{\text { Gerretsen }}{\leq}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\leq \frac{4 R^{2}+4 R r+3 r^{2}-6 R r-3 r^{2}}{6 R r}=\frac{2 R-r}{3 r}
$$

Need to show:

$$
\begin{gathered}
\frac{2 R-r}{3 r} \leq \frac{R^{2}}{2 r^{2}}-1=\frac{R^{2}-2 r^{2}}{2 r^{2}} \Leftrightarrow 4 R r-2 r^{2} \leq 3 R^{2}-6 r^{2} \Leftrightarrow \\
3 R^{2}-4 R r-4 r^{2} \geq 0 \Leftrightarrow(R-2 r)(3 R+2 r) \geq 0 \text { (true) } R \geq 2 r \text { (Euler). } \\
\text { Proved. }
\end{gathered}
$$

Solution 2 by Adrian Popa-Romania

$$
\begin{aligned}
& b^{2}+b c+c^{2} \stackrel{A M-G M}{\geq} 2 b c+b c=3 b c \Rightarrow \sum_{c y c} \frac{a^{2}}{b^{2}+b c+c^{2}} \leq \sum_{c y c} \frac{a^{2}}{2 b c+b c}= \\
& =\sum_{c y c} \frac{a^{3}}{3 a b c}=\frac{a^{3}+b^{3}+c^{3}}{3 a b c}=\frac{2 s\left(s^{2}-3 r^{2}-6 R r\right)}{3 a b c}=\frac{2 s^{3}-6 s r^{2}}{12 R r s}-1 \stackrel{(1)}{\leq} \frac{R^{2}}{2 r^{2}}-1 \\
& \text { (1) } \Leftrightarrow \frac{s^{3}-3 s r^{2}}{6 R r s} \leq \frac{R^{2}}{2 r^{2}} \Leftrightarrow \frac{s^{2}-3 r^{2}}{3 R} \leq \frac{R^{2}}{r} \Leftrightarrow s^{2} r-3 r^{3} \leq 3 R^{3} \\
& \therefore s^{2} \leq 4 R^{2}+4 R r+3 r^{2}(\text { Gerretsen }) \\
& s^{2} r-3 r^{3} \leq\left(4 R^{2}+4 R r+3 r^{2}\right) r-3 r^{3} \leq 3 R^{3} \Leftrightarrow 3\left(\frac{R}{r}\right)^{2}-\frac{4 R}{r}-4 \geq 0 \text { true from } \\
& R \geq 2 r(\text { Euler }) \\
& \sum_{c y c} \frac{a^{2}}{b^{2}+b c+c^{2}} \geq \sum_{c y c} \frac{2 a^{2}}{3\left(b^{2}+c^{2}\right)} \geq \frac{2}{3} \cdot \frac{(a+b+c)^{2}}{2\left(a^{2}+b^{2}+c^{2}\right)}=\frac{4 s^{2}}{3\left(a^{2}+b^{2}+c^{2}\right)} \stackrel{(2)}{\geq} \frac{2 r}{R} \\
& \text { (2) } \Leftrightarrow 2 s^{2} R \geq 3 r\left(2 s^{2}-8 R r-2 r^{2}\right) \Leftrightarrow \\
& (3 r-R) s^{2} \stackrel{\text { Gerretsen }}{\leq}(3 r-R)\left(4 R^{2}+4 R r+3 r^{2}\right)=12 R^{2} r-4 R^{3}+12 R r^{2}-4 R^{2} r+ \\
& +9 r^{3}-3 r^{2} R \stackrel{(3)}{\leq} 12 R r^{2}+3 r^{3} s^{2} \\
& \text { (3) } \Leftrightarrow 4 R^{3}-8 R^{2} r+3 R r^{2}-6 r^{3} \geq 0 \Leftrightarrow(R-2 r)\left(4 R^{2}+3 r^{2}\right) \geq 0 \text { true from } \\
& R \geq 2 r \text { (Euler). Proved. }
\end{aligned}
$$

Solution 3 by Ertan Yildirim-Turkey
Lemma 1. $a^{3}+b^{3}+c^{3}=2 s\left(s^{2}-3 r^{2}-6 R r\right)$
Lemma 2. $2 s^{2} \geq 27 R r$
Lemma 3. $a^{2}+b^{2}+c^{2} \leq 9 R^{2}$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
$R h s: \sum_{c y c} \frac{a^{2}}{b^{2}+b c+c^{2}} \stackrel{A M-G M}{\leq} \sum_{c y c} \frac{a^{2}}{2 b c+b c}=\sum_{c y c} \frac{a^{2}}{3 b c}=\sum_{c y c} \frac{a^{3}}{3 a b c}=\frac{1}{3 a b c} \sum_{c y c} a^{3}=$

$$
\begin{gathered}
=\frac{1}{3 \cdot 4 R r s} \cdot 2 s\left(s^{2}-3 r^{2}-6 R r\right)=\frac{1}{6 R r} \cdot\left(s^{2}-3 r^{2}-6 R r\right) \stackrel{(1)}{\leq} \frac{R^{2}}{2 r^{2}}-1 \\
(1) \Leftrightarrow s^{2}-3 r^{2}-6 R r \leq \frac{3 R^{3}}{r}-6 R r \Leftrightarrow s^{2} \leq 3 r^{2}+\frac{3 R^{3}}{r}
\end{gathered}
$$

$$
s^{2} \stackrel{\text { Gerretsen }}{\leq} 4 R^{2}+4 R r+3 r^{2} \stackrel{(2)}{\leq} 3 r^{2}+\frac{3 R^{3}}{r}
$$

$$
\text { (2) } \Leftrightarrow 4\left(\frac{R}{r}\right)^{2}+4\left(\frac{R}{r}\right) \leq 3\left(\frac{R}{r}\right)^{3} \text { let } t=\frac{R}{r} \Rightarrow 4 t^{2}+4 t \leq 3 t^{2} \Leftrightarrow
$$

$$
0 \leq t\left(3 t^{2}-4 t-4\right)=t(3 t+2)(t-2) \Rightarrow t=\frac{R}{r} \geq 2(t r u e) R \geq 2 r(\text { Euler })
$$

Lhs: $\sum_{c y c} \frac{a^{2}}{b^{2}+b c+c^{2}} \stackrel{\text { Bergstrom }}{\geq} \frac{(a+b+c)^{2}}{2\left(a^{2}+b^{2}+c^{2}\right)+a b+b c+c a} \stackrel{\sum x^{2} \geq \sum x y}{\geq} \frac{4 s^{2}}{3\left(a^{2}+b^{2}+c^{2}\right)}=$

$$
\begin{aligned}
\geq & \frac{4 s^{2}}{3 \cdot 9 R^{2}} \stackrel{(3)}{\geq} \frac{2 r}{R} \\
(3) \Leftrightarrow & 2 s^{2} \geq 27 R r(\text { true })
\end{aligned}
$$

Solution 4 by proposer

$$
\begin{gathered}
\text { We have: }(a-b)^{2} \geq 0 \Leftrightarrow a^{2}+b^{2}-2 a b \geq 0 \Leftrightarrow \\
2 a^{2}+4 a b+4 b^{2}-3 a^{2}-3 b^{2}-6 a b \geq 0 \Leftrightarrow\left(a^{2}+a b+b^{2}\right) \geq \frac{3}{4}(a+b)^{2} \Leftrightarrow \\
\frac{1}{a^{2}+a b+b^{2}} \leq \frac{4}{3} \cdot \frac{1}{(a+b)^{2}} . \text { Also we know that: } \frac{1}{(a+b)^{2}} \leq \frac{1}{8} \cdot\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}\right)
\end{gathered}
$$

$$
\text { So, } \frac{1}{a^{2}+a b+b^{2}} \leq \frac{1}{6} \cdot\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}\right) \Leftrightarrow \frac{c^{2}}{a^{2}+a b+b^{2}} \leq \frac{1}{6} \cdot\left(\frac{c^{2}}{a^{2}}+\frac{c^{2}}{b^{2}}\right) \text { similarly } \frac{b^{2}}{c^{2}+c a+a^{2}} \leq \frac{1}{6} \cdot\left(\frac{b^{2}}{c^{2}}+\frac{b^{2}}{a^{2}}\right)
$$

$$
\text { and } \frac{a^{2}}{b^{2}+b c+c^{2}} \leq \frac{1}{6} \cdot\left(\frac{a^{2}}{b^{2}}+\frac{a^{2}}{c^{2}}\right)
$$

Adding up these inequalities, we have:

$$
\begin{aligned}
\frac{a^{2}}{b^{2}+b c+c^{2}} & +\frac{b^{2}}{c^{2}+c a+a^{2}}+\frac{c^{2}}{a^{2}+a b+b^{2}} \\
& \leq \frac{1}{6} \cdot\left(\left(\frac{a^{2}}{b^{2}}+\frac{a^{2}}{c^{2}}\right)+\left(\frac{b^{2}}{c^{2}}+\frac{b^{2}}{a^{2}}\right)+\left(\frac{c^{2}}{a^{2}}+\frac{c^{2}}{b^{2}}\right)\right)
\end{aligned}
$$

Now, will prove that: $\frac{a}{b}+\frac{b}{a} \leq \frac{R}{r}$.

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
Consider the supstitutions $a=y+z, b=z+x, c=x+y$, where x, y, z are positive real numbers.

We know that: $\frac{R}{r}=\frac{a b c}{4(s-a)(s-b)(s-c)}$, where $s=\frac{a+b+c}{2}$ is the semiperimeter.

$$
\text { So, } \frac{R}{r}=\frac{(x+y)(y+z)(z+x)}{4 x y z} \text {. We have: }
$$

$\frac{1}{(z+x)^{2}}+\frac{1}{(y+z)^{2}} \leq \frac{1}{4 z x}+\frac{1}{4 y z}=\frac{x+y}{4 x y z}$ and multiplying by $(z+x)(y+z)$ both sides, we have

$$
\frac{y+z}{z+x}+\frac{z+x}{y+z} \leq \frac{(x+y)(y+z)(z+x)}{4 x y z}, \text { namely } \frac{a}{b}+\frac{b}{a} \leq \frac{R}{r}, \text { similarly } \frac{b}{c}+\frac{c}{b} \leq \frac{R}{r} \text { and } \frac{a}{c}+\frac{c}{a} \leq \frac{R}{r} .
$$

$$
\text { So, } \frac{a^{2}}{b^{2}}+\frac{a^{2}}{c^{2}} \leq \frac{R^{2}}{r^{2}}-2, \text { then }
$$

$$
\frac{a^{2}}{b^{2}+b c+c^{2}}+\frac{b^{2}}{c^{2}+c a+a^{2}}+\frac{c^{2}}{a^{2}+a b+b^{2}} \leq \frac{1}{6} \cdot\left(\left(\frac{R^{2}}{r^{2}}-2\right)+\left(\frac{R^{2}}{r^{2}}-2\right)+\left(\frac{R^{2}}{r^{2}}-2\right)\right)=\frac{R^{2}}{2 r^{2}}-1 .
$$

Now, using Cauchy-Rogers inequality, we have:

$$
\begin{aligned}
\frac{a^{2}}{b^{2}+b c+c^{2}} & +\frac{b^{2}}{c^{2}+c a+a^{2}}+\frac{c^{2}}{a^{2}+a b+b^{2}} \geq \frac{(a+b+c)^{2}}{2\left(a^{2}+b^{2}+c^{2}\right)+(a b+b c+c a)} \\
& \geq \frac{4 S^{2}}{2\left(a^{2}+b^{2}+c^{2}\right)+a^{2}+b^{2}+c^{2}}=\frac{2\left(2 S^{2}\right)}{3\left(a^{2}+b^{2}+c^{2}\right)}
\end{aligned}
$$

We know that: $2 S^{2} \geq \mathbf{2 7 R r}$ and $a^{2}+b^{2}+c^{2} \geq 9 R^{2}$. So,

$$
\frac{a^{2}}{b^{2}+b c+c^{2}}+\frac{b^{2}}{c^{2}+c a+a^{2}}+\frac{c^{2}}{a^{2}+a b+b^{2}} \geq \frac{2 r}{R}
$$

Equality holds if the triangle is equilateral.

Solution 5 and generalization by Marin Chirciu-Romania

For LHS using Bergtrom inequality, we have:

$$
\begin{aligned}
& \sum_{c y c} \frac{a^{2}}{b^{2}+b c+c^{2}} \stackrel{\text { Bergstrom }}{\geq} \frac{\left(\sum a\right)^{2}}{\sum\left(b^{2}+b c+c^{2}\right)}=\frac{4 s^{2}}{2 \cdot 2\left(s^{2}-r^{2}-4 R r\right)+s^{2}+r^{2}+4 R r}= \\
&=\frac{4 s^{2}}{5 s^{2}-3 r^{2}-12 R r} \\
& \geq \frac{(1)}{\geq}
\end{aligned}
$$

Where (1) $\Leftrightarrow 2 R s^{2} \geq r\left(5 s^{2}-3 r^{2}-12 R r\right) \Leftrightarrow s^{2}(2 R-5 r)+3 r^{2}(4 R+r) \geq 0$
We distinguish the cases:
(I) If $2 R-5 r \geq 0$ inequality is obviously.
(II) If $2 R-5 r<0$ inequality it can be written as: $3 r^{2}(4 R+r) \geq s^{2}(5 r-2 R)$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
Which follows from $s^{2} \leq 4 R^{2}+4 R r+3 r^{2}$ (Gerretsen).
It remains to prove that $3 r^{2}(4 R+r) \geq\left(4 R^{2}+4 R r+3 r^{2}\right)(5 r-2 R) \Leftrightarrow$ $4 R^{3}-6 R^{2} r-R r^{2}-12 r^{3} \geq 0 \Leftrightarrow(R-2 r)\left(4 R^{2}+2 R r+3 r^{2}\right) \geq 0$ which is true from

$$
R \geq 2 r(\text { Euler })
$$

Equality holds if and only if triangle is equilateral.
For RHD we have:

$$
\begin{gathered}
\sum_{c y c} \frac{a^{2}}{b^{2}+b c+c^{2}} \stackrel{A M-G M}{\leq} \sum_{c y c} \frac{a^{2}}{2 b c+b c}=\frac{1}{3} \cdot \sum_{c y c} \frac{a^{2}}{b c}=\frac{1}{3} \cdot \frac{s^{2}-3 r^{2}-6 R r}{2 R r}= \\
=\frac{s^{2}-3 r^{2}-6 R r}{6 R r} \stackrel{(2)}{\leq} \frac{R^{2}}{2 r^{2}}-1
\end{gathered}
$$

Where (2) $\Leftrightarrow \frac{s^{2}-3 r^{2}-6 R r}{6 R r} \leq \frac{R^{2}}{2 r^{2}}-1 \Leftrightarrow r\left(s^{2}-3 r^{2}-6 R r\right) \leq 3 R\left(R^{2}-2 r^{2}\right)$
Which follows from $s^{2} \leq 4 R^{2}+4 R r+3 r^{2}$ (Gerretsen).
It remains to prove that

$$
r\left(4 R^{2}+4 R r+3 r^{2}-3 r^{2}-6 R r\right) \leq 3 R\left(R^{2}-2 r^{2}\right) \Leftrightarrow
$$

$3 R^{2}-4 R r-4 r^{2} \geq 0 \Leftrightarrow(R-2 r)(3 R+2 r) \geq 0$ which is true from $R \geq 2 r($ Euler $)$
Equality holds if and only if triangle is equilateral.
Remark. The inequality it can be developed.
In $\triangle A B C$ the following relationship holds:

$$
\frac{6 r}{(\lambda+2) R} \leq \sum_{c y c} \frac{a^{2}}{b^{2}+\lambda b c+c^{2}} \leq \frac{3}{\lambda+2}\left(\frac{R^{2}}{2 r^{2}}-1\right), \quad \lambda>-2
$$

Proposed by Marin Chirciu-Romania

Solution by proposer

For LHS using Bergtrom inequality, we have:

$$
\begin{gathered}
\sum_{c y c} \frac{a^{2}}{b^{2}+\lambda b c+c^{2}} \stackrel{\text { Bergstrom }}{\geq} \frac{\left(\sum a\right)^{2}}{\sum\left(b^{2}+\lambda b c+c^{2}\right)}=\frac{4 s^{2}}{2 \sum a^{2}+\lambda \sum b c}= \\
=\frac{4 s^{2}}{2 \cdot 2\left(s^{2}-r^{2}-4 R r\right)+\lambda\left(s^{2}+r^{2}+4 R r\right)}=\frac{4 s^{2}}{(\lambda+4) s^{2}+(\lambda-4) r^{2}+(4 \lambda-16) R r} \stackrel{(1)}{\geq}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
$\stackrel{(1)}{\geq} \frac{6 r}{(\lambda+2) R}$ where (1) \Leftrightarrow

$$
\begin{gathered}
\frac{4 s^{2}}{(\lambda+4) s^{2}+(\lambda-4) r^{2}+(4 \lambda-16) R r} \geq \frac{6 r}{(\lambda+2) R} \Leftrightarrow \\
2(\lambda+2) R s^{2} \geq 3 r\left[(\lambda+4) s^{2}+(\lambda-4) r^{2}+(4 \lambda-16) R r\right] \Leftrightarrow \\
s^{2}[2(\lambda+2) R-3(\lambda+4) r]+3 r^{2}[(4-\lambda) r+(16-4 \lambda R] \geq 0
\end{gathered}
$$

We distinguish the cases:
(I) If $2(\lambda+2) R-3(\lambda+4) r \geq 0$ inequality is obviously.
(II) If $2(\lambda+2) R-3(\lambda+4) r \leq 0$ the inequality it can be written as:

$$
\begin{gathered}
3 r^{2}\left[(4-\lambda) r+(16-4 \lambda R] \geq s^{2}[3(\lambda+4) r-2(\lambda+2) R]\right. \text { which follows from } \\
s^{2} \leq 4 R^{2}+4 R r+3 r^{2}(\text { Gerretsen })
\end{gathered}
$$

It remains to prove that
$3 r^{2}\left[(4-\lambda) r+(16-4 \lambda R] \geq\left(4 R^{2}+4 R r+3 r^{2}\right)[3(\lambda+4) r-2(\lambda+2) R] \Leftrightarrow\right.$
$(4 \lambda+8) R^{3}-(2 \lambda+16) R^{2} r+(-9 \lambda+6) R r^{2}-(6 \lambda+12) r^{3} \geq 0 \Leftrightarrow$
$(R-2 r)\left[(4 \lambda+8) R^{2}+6 \lambda R r+(3 \lambda+6) r^{2}\right] \geq 0$ which follows from $R \geq 2 r(E u l e r)$

$$
\text { and }\left[(4 \lambda+8) R^{2}+6 \lambda R r+(3 \lambda+6) r^{2}\right]>0
$$

Equality holds if and only if triangle is equilateral.
For RHD we have:

$$
\begin{gathered}
\sum_{c y c} \frac{a^{2}}{b^{2}+\lambda b c+c^{2}} \stackrel{A M-G M}{\leq} \sum_{c y c} \frac{a^{2}}{2 b c+\lambda b c}=\frac{1}{2+\lambda} \cdot \sum_{c y c} \frac{a^{2}}{b c}=\frac{1}{2+\lambda} \cdot \frac{s^{2}-3 r^{2}-6 R r}{2 R r}= \\
=\frac{s^{2}-3 r^{2}-6 R r}{2(2+\lambda) R r} \stackrel{(2)}{\leq} \frac{3}{\lambda+2}\left(\frac{R^{2}}{2 r^{2}}-1\right)
\end{gathered}
$$

Where (2) $\Leftrightarrow \frac{s^{2}-3 r^{2}-6 R r}{6 R r} \leq \frac{R^{2}}{2 r^{2}}-1 \Leftrightarrow r\left(s^{2}-3 r^{2}-6 R r\right) \leq 3 R\left(R^{2}-2 r^{2}\right)$
Which follows from $s^{2} \leq 4 R^{2}+4 R r+3 r^{2}$ (Gerretsen).
It remains to prove that

$$
r\left(4 R^{2}+4 R r+3 r^{2}-3 r^{2}-6 R r\right) \leq 3 R\left(R^{2}-2 r^{2}\right) \Leftrightarrow
$$

$3 R^{2}-4 R r-4 r^{2} \geq 0 \Leftrightarrow(R-2 r)(3 R+2 r) \geq 0$ which is true from $R \geq 2 r(E u l e r)$
Equality holds if and only if triangle is equilateral.
Note:

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
For $\lambda=1$ we get the Problem SP. 322 from 22-RMM-Autumn Edition 2021, proposed by George Apostolopoulos-Greece.

SP.323. Let be $z_{A}, z_{B}, z_{C} \in \mathbb{C}^{*}$, different in pairs such that

$$
\begin{aligned}
& \left|z_{A}\right|=\left|z_{B}\right|=\left|z_{C}\right|=1 \text {. If }\left|z_{A}-z_{B}-z_{C}\right|+\left|z_{B}-z_{C}-z_{A}\right|+ \\
& +\left|z_{C}-z_{A}-z_{B}\right|=6 \text {, then } \Delta A B C \text { is an equilateral triangle. }
\end{aligned}
$$

Proposed by Marian Ursărescu-Romania

Solution 1 by Khaled Abd Imouti-Damascus-Syria

$$
\begin{gathered}
\left|z_{A}\right|=\left|z_{B}\right|=\left|z_{C}\right|=1 \\
\left|z_{A}-z_{B}-z_{C}\right|+\left|z_{B}-z_{C}-z_{A}\right|+\left|z_{C}-z_{A}-z_{B}\right|=6 ; \quad(*)
\end{gathered}
$$

We know that: $z_{G}=\frac{z_{A}+z_{B}+z_{C}}{3}$ then relation (*) is written as:

$$
\begin{gather*}
6=\left|2 z_{A}-3 z_{G}\right|+\left|2 z_{B}-3 z_{G}\right|+\left|2 z_{C}-3 z_{G}\right|^{\text {CBS }} \leq \\
\leq \sqrt{3} \cdot \sqrt{\left|2 z_{A}-3 z_{G}\right|^{2}+\left|2 z_{B}-3 z_{G}\right|^{2}+\left|2 z_{C}-3 z_{G}\right|^{2} ; ~(1)} \\
\left|2 z_{A}-3 z_{G}\right|=\left(2 z_{A}-3 z_{G}\right) \cdot\left(2 \overline{z_{A}}-3 \overline{z_{G}}\right)=4-6 z_{A} \overline{z_{G}}-6 z_{G} \overline{z_{A}}+9 z_{G} \overline{z_{G}} \\
\text { So, } l_{1}=\left|2 z_{A}-3 z_{G}\right|^{2}+\left|2 z_{B}-3 z_{G}\right|^{2}+\left|2 z_{C}-3 z_{G}\right|^{2}= \\
=12-6\left(z_{A}+z_{B}+z_{C}\right) \overline{z_{G}}-6\left(\overline{z_{A}}+\overline{z_{B}}+\overline{z_{C}}\right) z_{G}+27 z_{G} \overline{z_{G}}= \\
=12-18 z_{G} \overline{z_{G}}-18 z_{G} \overline{z_{G}}+27 z_{G} \overline{z_{G}}=12-9 z_{G} \overline{z_{G}} \\
\Rightarrow l_{1}=12-9\left|z_{G}\right|^{2} ;(2) \tag{2}
\end{gather*}
$$

From (1),(2) we have: $6 \leq \sqrt{3} \cdot \sqrt{12-9\left|z_{G}\right|^{2}} \Leftrightarrow$

$$
36 \leq 3\left(12-9\left|z_{G}\right|^{2}\right) \Leftrightarrow 12 \leq 12-9\left|z_{G}\right|^{2} \Leftrightarrow 0 \leq-9\left|z_{G}\right|^{2} \Leftrightarrow\left|z_{G}\right|=0 \Leftrightarrow G=O
$$ So, triangle $A B C$ is equilateral.

Solution 2 by proposer
Let $A\left(z_{1}\right), B\left(z_{2}\right), C\left(z_{3}\right), \triangle A B C \subset C(0,1)$ and Ω - the middle of $O H$-(Euler point)

$$
\begin{gather*}
z_{\Omega}=\frac{z_{O}+z_{H}}{2}=\frac{z_{1}+z_{2}+z_{3}}{2} \Rightarrow A \Omega=\left|z_{A}-z_{\Omega}\right|=\left|z_{1}-\frac{z_{1}+z_{2}+z_{3}}{2}\right|=\frac{\left|z_{1}-z_{2}-z_{3}\right|}{2} \\
\left|z_{1}-z_{2}-z_{3}\right|+\left|z_{2}-z_{1}-z_{3}\right|+\left|z_{3}-z_{1}-z_{2}\right|=6 \Leftrightarrow \\
A \Omega+B \Omega+C \Omega=3 ;(1) \tag{1}
\end{gather*}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
Let $A^{\prime}-$ midle of $B C \Rightarrow \Omega A^{\prime 2}=\frac{2\left(B \Omega^{2}+C \Omega^{2}\right)-a^{2}}{4} \Rightarrow R^{2}=2\left(B \Omega^{2}+C \Omega^{2}\right)-a^{2}$ and analogs.

$$
\begin{aligned}
& A \Omega^{2}+B \Omega^{2}+C \Omega^{2}=\frac{3 R^{2}+a^{2}+b^{2}+c^{2}}{4} \leq \frac{3 R^{2}+9 R^{2}}{4} \leq 3 R^{2} \\
& \text { But: }(A \Omega+B \Omega+C \Omega)^{2} \leq 3\left(A \Omega^{2}+B \Omega^{2}+C \Omega^{2}\right) \leq 9 R^{2} ;
\end{aligned}
$$

From (1), (2) equality when the $\triangle A B C$ is equilateral.

SP.324. Find all functions $f:(0,+\infty) \rightarrow \mathbb{R}$ such that:

$$
f(x y) \leq x f(x)+y f(y) \leq \log (x y), \forall x, y>0
$$

Proposed by Marian Ursărescu-Romania
Solution 1 by Ravi Prakash-New Delhi-India

$$
\begin{gathered}
f(x y) \leq x f(x)+y f(y) \leq \log (x y), \forall x, y>0 ;(1) \\
\text { Take } x=y=1 \Rightarrow f(1) \leq 1 \cdot f(1)+1 \cdot f(1) \leq \log 1 \\
f(1) \leq 2 f(1) \leq 0 \Rightarrow f(1) \geq 0 \text { or } f(1) \leq 0
\end{gathered}
$$

$$
\text { Put } y=\frac{1}{x} \text { in (1) we get: } f(1) \leq x f(x)+\frac{1}{x} f\left(\frac{1}{x}\right) \leq \log 1 \Leftrightarrow
$$

$$
0 \leq x f(x)+\frac{1}{x} f\left(\frac{1}{x}\right) \leq 0 \Leftrightarrow f(x)=-\frac{1}{x^{2}} \log \left(\frac{1}{x}\right)
$$

$$
\begin{equation*}
\text { In (1) put } y=1 \text { to obtain: } f(x) \leq x f(x) \leq \log x, \forall x>0 \tag{2}
\end{equation*}
$$

$$
\begin{gather*}
\text { Replace } x \leftrightarrow \frac{1}{x} \text { in (2) we get: } f\left(\frac{1}{x}\right) \leq \frac{1}{x} f\left(\frac{1}{x}\right) \leq \log \left(\frac{1}{x}\right) \Leftrightarrow \\
-x^{2} f(x) \leq-x f(x) \leq-\log x \Leftrightarrow \\
\log x \leq x f(x) \leq x^{2} f(x), x>0 ; \tag{3}
\end{gather*}
$$

From (2) and (3) we get:

$$
x f(x)=\log x \Rightarrow f(x)=\frac{\log x}{x} ; \forall x>0
$$

Solution 2 by Remus Florin Stanca-Romania

$$
\begin{gather*}
f(x y) \leq x f(x)+y f(y) \leq \log (x y), \forall x, y>0 \\
\text { Let } y=\frac{1}{x} \Rightarrow f(1) \leq x f(x)+\frac{f\left(\frac{1}{x}\right)}{x} \leq 0 ; \tag{1}
\end{gather*}
$$

Let $x=1 \Rightarrow f(1) \leq 2 f(1) \leq 0 \Rightarrow f(1) \geq 0$ and $f(1) \leq 0 \Rightarrow f(1)=0 \stackrel{(1)}{\Rightarrow}$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{equation*}
0 \leq x f(x)+\frac{f\left(\frac{1}{x}\right)}{x} \leq 0 \Rightarrow x f(x)+\frac{f\left(\frac{1}{x}\right)}{x}=0 \Rightarrow f\left(\frac{1}{x}\right)=-x^{2} f(x) ; \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\text { Put } \frac{1}{y} \rightarrow y \Rightarrow(x y) \leq x f(x)-\frac{y^{2} f(y)}{y} \leq \log \left(\frac{x}{y}\right) \Rightarrow f\left(\frac{x}{y}\right) \leq x f(x)-y f(y) \leq \log \left(\frac{x}{y}\right) ;(3 \tag{3}
\end{equation*}
$$

$$
\begin{gather*}
\text { Put } \left.\begin{array}{rl}
x \rightarrow \frac{1}{x} \Rightarrow \frac{f\left(\frac{1}{x}\right)}{x}+y f(y) \leq \log \left(\frac{y}{x}\right) \stackrel{(2)}{\Rightarrow} y f(y)-x f(x) \leq \log \left(\frac{y}{x}\right) \stackrel{\cdot(-1)}{\Longrightarrow} \\
x f(x)-y f(y) \geq \log \left(\frac{x}{y}\right) ;
\end{array}\right)
\end{gather*}
$$

From (3),(4) we get $x f(x)-y f(y)=\log \left(\frac{x}{y}\right)$ and for $y=1$ we have:

$$
x f(x)-f(1)=\log x \Rightarrow x f(x)=\log x \Rightarrow f(x)=\frac{\log x}{x}, \forall x>0
$$

Solution 3 by Khaled Abd Imouti-Damascus-Syria

$$
\begin{gathered}
f(x y) \leq x f(x)+y f(y) \leq \log (x y), \forall x, y>0 \Leftrightarrow \\
f(x y) \leq x f(x)+y f(y) \leq \boldsymbol{\operatorname { l o g } x} x+\log y, \forall x, y>0 \Leftrightarrow \\
x f(x)-\log x \leq-y f(y)+\log y \\
x(x)-\log x \leq-(y f(y)-\operatorname{lof} y)
\end{gathered}
$$

Suppose $F(x)=\boldsymbol{x f}(\boldsymbol{x})-\boldsymbol{\operatorname { l o g } x} ; \boldsymbol{F}(y)=\boldsymbol{y} f(y)-\log y, \forall x, y>0 \Rightarrow F(x) \leq-F(y) \Rightarrow$ $F(x)+F(y) \leq 0, \forall x, y>0$
For $x=y: 2 F(x) \leq 0 \Rightarrow F(x) \leq 0 ; \quad(i)$
For $x=y=1: f(1) \leq 2 f(1) \leq f(0) \Rightarrow f(1)=0$. So, $f(1)=0 \Rightarrow F(1)=0$.
$x f(x)-\log x \leq 0 \Rightarrow f(x) \leq \frac{\log x}{x} ;$
$F(x)=x f(x)-\log x \Rightarrow \frac{F(x)}{x}=f(x)-\frac{\log x}{x}$
$f(x y) \leq x f(x)+y f(y) \leq \boldsymbol{l o g}(x y), \forall x, y>0$
For $y=1: \quad f(x) \leq x f(x) \leq \boldsymbol{l o g} x, \forall x>0$
$f\left(\frac{1}{x}\right) \leq \frac{1}{x} f\left(\frac{1}{x}\right) \leq-\log x \Leftrightarrow f(x)-\frac{\log x}{x} \geq f(x)+\frac{1}{x^{2}} f\left(\frac{1}{x}\right) ;$

$$
\begin{equation*}
f\left(x \cdot \frac{1}{x}\right) \leq x f(x)+\frac{1}{x} f\left(\frac{1}{x}\right) \Leftrightarrow 0 \leq x f(x)+\frac{1}{x^{2}} f\left(\frac{1}{x}\right) ; \tag{ii}
\end{equation*}
$$

From (ii),(iii) we have $f(x)-\frac{\log x}{x} \geq 0 \Rightarrow f(x) \geq \frac{\log x}{x}$;

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro
 From (1),(2) we get: $f(x)=\frac{\log x}{x}$

Solution 4 by proposer

$$
\begin{gather*}
x=y=1 \Rightarrow f(1) \leq 2 f(1) \leq 0 \Rightarrow f(1) \leq 0 \text { but } f(1) \geq 0 \Rightarrow f(1)=0 \\
y=1 \Rightarrow f(x) \leq x f(x) \leq \log x \Rightarrow f(x) \leq \frac{\log x}{x} ;(1) \\
y=\frac{1}{x} \Rightarrow f(1) \leq x f(x)+\frac{1}{x} f\left(\frac{1}{x}\right) \leq \log 1 \Rightarrow 0 \leq x f(x)+\frac{1}{x} f\left(\frac{1}{x}\right) \leq 0 \Rightarrow \\
x f(x)+\frac{1}{x} f\left(\frac{1}{x}\right)=0 \Rightarrow f\left(\frac{1}{x}\right)=-x^{2} f(x) ; \tag{2}\\
\ln (1) x \rightarrow \frac{1}{x} \Rightarrow f\left(\frac{1}{x}\right) \leq \frac{\log \left(\frac{1}{x}\right)}{\frac{1}{x}} \Rightarrow f\left(\frac{1}{x}\right) \leq-x \log x ; \tag{3}
\end{gather*}
$$

From (1), (2) $\Rightarrow-x^{2} f(x) \leq-x \log x \Rightarrow x^{2} f(x) \geq x \log x \Rightarrow f(x) \geq \frac{\log x}{x}$;

$$
\text { From }(3),(4) \Rightarrow f(x)=\frac{\log x}{x}
$$

SP.325. If $A, B \in M_{2}(\mathbb{C})$ are such that:

$$
\begin{gathered}
\operatorname{det}\left[\left(\mathbf{I}_{2}-\mathbf{B}\right) \mathbf{A}+\left(\mathbf{A}-\mathbf{I}_{2}\right) \mathbf{B}\right]=\operatorname{det}(\mathbf{A}-\mathbf{B}), \text { then find: } \\
\Omega=(\mathbf{A B}-\mathbf{B A})^{\mathbf{n}}, \mathbf{n} \in \mathbb{N}^{*} .
\end{gathered}
$$

Proposed by Florică Anastase-Romania
Solution 1 by George Florin Şerban-Romania

$$
\begin{gathered}
\operatorname{det}(C+x D)=\operatorname{det} C+(\operatorname{Tr} C \cdot \operatorname{Tr} D+\operatorname{Tr}(C D)) x+(\operatorname{det} D) x^{2} \\
\text { For } x=1: \operatorname{det}(C+D)=\operatorname{det} C+(\operatorname{Tr} C \cdot \operatorname{Tr} D+\operatorname{Tr}(C D))+(\operatorname{det} D) \\
\operatorname{det}\left(\left(I_{2}-B\right) A+\left(A-I_{2}\right) B\right)=\operatorname{det}[(A-B)+(A B-B A)]= \\
=\operatorname{det}(A-B)+\operatorname{Tr}(A-B) \cdot \operatorname{Tr}(A B-B A)-\operatorname{Tr}(A-B)(A B-B A)+\operatorname{det}(A B-B A) \\
=\operatorname{det}(A-B) \Rightarrow \operatorname{det}(A B-B A)=\operatorname{Tr}(A-B)(A B-B A)
\end{gathered}
$$

$$
\text { How } \operatorname{Tr}(A B-B A)=0, \operatorname{Tr}(A B)=\operatorname{Tr}(B A) \Rightarrow \operatorname{Tr}(A B-B A)=\operatorname{Tr}(A B)-\operatorname{Tr}(B A)=0
$$

$$
\text { Let } t=\operatorname{Tr}[(A-B)(A B-B A)]=\operatorname{Tr}\left(A^{2} B\right)-\operatorname{Tr}(A B A)-\operatorname{Tr}(B A B)+\operatorname{Tr}\left(B^{2} A\right)=
$$

$$
=\operatorname{Tr}\left(B A^{2}\right)-\operatorname{Tr}(A B A)-\operatorname{Tr}(B A B)+\operatorname{Tr}\left(A B^{2}\right)
$$

$$
t=\operatorname{Tr}[(A-B)(A B-B A)]=\operatorname{Tr}[(A B-B A)(A-B)]=
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
$=\operatorname{Tr}(A B A)+\operatorname{Tr}(B A B)-\operatorname{Tr}\left(B A^{2}\right)-\operatorname{Tr}\left(A B^{2}\right)=-t \Rightarrow t=0$
Applying Hamilton Cayley Theorem, we get:

$$
\begin{gathered}
X^{2}-(\operatorname{Tr} X) X+\operatorname{det}(X) I_{2}=O_{2}, \forall X \in M_{2}(\mathbb{C}) \\
(A B-B A)^{2}-\operatorname{tr}(A B-B A)(A B-B A)+\operatorname{det}(A B-B A) I_{2}=O_{2} \\
\operatorname{det}(A B-B A)=t=0 \Rightarrow(A B-B A)^{2}=O_{2}
\end{gathered}
$$

From mathematical induction, we prove that:

$$
P(n):(A B-B A)^{n}=O_{2}, \forall n \geq 2
$$

$$
(I) \cdot P(2):(A B-B A)^{2}=O_{2}(\text { true })
$$

(II) Suppose: $P(k):(A B-B A)^{k}=O_{2}$ then

$$
(A B-B A)^{k+1}=(A B-B A)^{k} \cdot(A B-B A)=O_{2} \cdot(A B-B A)=O_{2}
$$

Solution 2 by proposer

$$
\left(I_{2}-B\right) A+\left(A-I_{2}\right) B=A-B A+A B-B=A-B+A B-B A
$$

From $\operatorname{tr}[(A-B)(A B-B A)]=\operatorname{tr}\left(A^{2} B-A B A-B A B+B^{2} A\right)=\operatorname{tr}\left(A^{2} B\right)-\operatorname{tr}(A B A)-$
$\operatorname{tr}(B A B)+\operatorname{tr}\left(B^{2} A\right)=0$ and how $\operatorname{tr}(A B-B A)=0$ we get:

$$
\operatorname{tr}[(A-B)(A B-B A)]=\operatorname{tr}(A-B) \operatorname{tr}(A B-B A)
$$

$$
\operatorname{det}(A-B+A B-B A)=\operatorname{det}(A-B)+\operatorname{det}(A B-B A), \text { then } \operatorname{det}(A B-B A)=0
$$

From Hamilton Cayley theorem we have:

$$
\begin{gathered}
X^{2}-(\operatorname{Tr} X) X+\operatorname{det}(X) I_{2}=O_{2}, \forall X \in M_{2}(\mathbb{C}) \\
(A B-B A)^{2}-\operatorname{tr}(A B-B A)(A B-B A)+\operatorname{det}(A B-B A) I_{2}=O_{2}
\end{gathered}
$$

From mathematical induction, we prove that:
$P(n):(A B-B A)^{n}=O_{2}, \forall n \geq 2$
(I). $P(2):(A B-B A)^{2}=O_{2}($ true $)$
(II) Suppose: $P(k):(A B-B A)^{k}=O_{2}$ then

$$
\begin{gathered}
(A B-B A)^{k+1}=(A B-B A)^{k} \cdot(A B-B A)=O_{2} \cdot(A B-B A)=O_{2} \\
\text { So, } \Omega=(\mathbf{A B}-\mathbf{B A})^{\mathbf{n}}=\mathbf{O}_{2}, \mathbf{n} \in \mathbb{N}^{*} . \\
\operatorname{tr}(\mathbf{X}) \operatorname{tr}(\mathbf{Y})=\operatorname{tr}(\mathbf{X Y}) \Leftrightarrow \operatorname{det}(\mathbf{X}+\mathbf{Y})=\operatorname{det}(\mathbf{X})+\operatorname{det}(\mathbf{Y}) .
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
SP.326. Let $x, y, z>0$ such that $x y z=1$. Find the minimum value of :

$$
P=\frac{x y+y z+z x}{3}+\sum_{c y c} \frac{x^{3}}{\left(2 y^{2}-y z+2 z^{2}\right)^{2}}
$$

Proposed by Hoang Le Nhat Tung-Vietnam
Solution 1 by Tran Hong-Dong Thap-Vietnam

$$
\begin{gathered}
\Omega=\sum_{c y c} \frac{x^{3}}{\left(2 y^{2}-y z+2 z^{2}\right)^{2}}=\sum_{c y c} \frac{\frac{x^{4}}{\left(2 y^{2}-y z+2 z^{2}\right)^{2}}}{x}=\sum_{c y c} \frac{\left(\frac{x^{2}}{2 y^{2}-y z+2 z^{2}}\right)^{2}}{x} \geq \\
\underset{\text { Bergstrom }}{\geq} \frac{\left(\sum_{c y c} \frac{x^{2}}{2 y^{2}-y z+2 z^{2}}\right)^{2}}{x+y+z} \\
\sum_{c y c} \frac{x^{2}}{2 y^{2}-y z+2 z^{2}}=\sum_{c y c} \frac{\left(x^{2}\right)^{2}}{2 x^{2} y^{2}-x^{2} y z+2 x^{2} z^{2}} \stackrel{\text { Bergstrom }}{\geq} \frac{\left(\sum x^{2}\right)^{2}}{4 \sum x^{2} y^{2}-x y z(x+y+z)} \stackrel{(1)}{\geq} 1 \\
(1) \Leftrightarrow\left(\sum x^{2}\right)^{2} \geq 4 \sum x^{2} y^{2}-x y z(x+y+z) \Leftrightarrow \\
\sum x^{4}+2 \sum x^{2} y^{2} \geq 4 \sum x^{2} y^{2}-x y z(x+y+z) \Leftrightarrow \\
\sum x^{4}+x y z(x+y+z) \geq 2 \sum x^{2} y^{2}
\end{gathered}
$$

Which is clearly true. In fact, by Schur's inequality:

$$
\sum x^{4}+x y z(x+y+z) \geq \sum x y\left(x^{2}+y^{2}\right) \stackrel{A M-G M}{\geq} \sum x y(2 x y)=2 \sum x^{2} y^{2}
$$

So, we have:

$$
\Omega \geq \frac{\left(\sum_{c y c} \frac{x^{2}}{2 y^{2}-y z+2 z^{2}}\right)^{2}}{x+y+z} \stackrel{(1)}{\geq} \frac{1}{x+y+z}
$$

Much more,

$$
\begin{gathered}
x y+y z+z x \stackrel{A M-G M}{\geq} 3 \sqrt[3]{(x y z)^{2}}=3 ;(x y z=1) \\
(x y+y z+z x)^{2} \geq 3 x y z(x+y+z)=3(x+y+z) ;(x y z=1) \\
\Rightarrow \frac{1}{x+y+z} \geq \frac{3}{(x y+y z+z x)^{2}} \Rightarrow
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{aligned}
P= & \Omega+\frac{x y+y z+z x}{3} \geq \frac{1}{x+y+z}+\frac{x y+y z+z x}{3} \geq \\
& \geq \frac{3}{(x y+y z+z x)^{2}}+\frac{x y+y z+z x}{3} \stackrel{t=x y+y z+z x \geq 3}{=} \\
= & \frac{3}{t^{2}}+\frac{t}{9}+\frac{t}{9}+\frac{t}{9} \stackrel{A M-G M}{\geq} 4 \sqrt[4]{\frac{3 t^{3}}{9^{3} t^{2}}}=4 \sqrt[4]{\frac{9}{9^{3}}}=\frac{4}{3} \Rightarrow P \geq \frac{4}{3} \\
& P_{\text {min }}=\frac{4}{3} \Leftrightarrow\left\{\begin{array}{c}
x=y=z>0 \\
x y z=1
\end{array} \Leftrightarrow x=y=z=1 .\right.
\end{aligned}
$$

Solution 2 by proposer

$$
\begin{equation*}
P=\frac{x y+y z+z x}{3}+\sum_{c y c} \frac{x^{3}}{\left(2 y^{2}-y z+2 z^{2}\right)^{2}} \tag{1}
\end{equation*}
$$

By Schur's inequality, we have:

$$
\begin{gather*}
\sum x^{4}+x y z(x+y+z) \geq \sum x y\left(x^{2}+y^{2}\right) ; \tag{2}\\
\sum x y\left(x^{2}+y^{2}\right) \stackrel{A M-G M}{\geq} \sum x y(2 x y)=2 \sum x^{2} y^{2} \tag{3}
\end{gather*}
$$

From (2),(3) we get:

$$
\begin{align*}
& \sum x^{4}+x y z(x+y+z) \geq 2 \sum x^{2} y^{2} \Leftrightarrow\left(\sum x^{2}\right)^{2} \geq 4 \sum x^{2} y^{2}-x y z(x+y+z) \Leftrightarrow \\
& \frac{\left(\sum x^{2}\right)^{2}}{4 \sum x^{2} y^{2}-x y z(x+y+z)} \geq 1 ; ~(4) \tag{4}
\end{align*}
$$

$$
\sum_{c y c} \frac{x^{3}}{\left(2 y^{2}-y z+2 z^{2}\right)^{2}}=\sum_{c y c} \frac{\frac{x^{4}}{\left(2 y^{2}-y z+2 z^{2}\right)^{2}}}{x}=\sum_{c y c} \frac{\left(\frac{x^{2}}{2 y^{2}-y z+2 z^{2}}\right)^{2}}{x} \geq
$$

$$
\begin{equation*}
\stackrel{x^{2}}{\text { Bergstrom }} \frac{\left(\sum_{c y c} \frac{x^{2}}{2 y^{2}-y z+2 z^{2}}\right)^{2}}{x+y+z} \tag{5}
\end{equation*}
$$

$$
\sum_{c y c} \frac{x^{2}}{2 y^{2}-y z+2 z^{2}}=\sum_{c y c} \frac{\left(x^{2}\right)^{2}}{2 x^{2} y^{2}-x^{2} y z+2 x^{2} z^{2}} \stackrel{\text { Bergstrom }}{\geq}
$$

$$
\begin{equation*}
\geq \frac{\left(\sum x^{2}\right)^{2}}{4 \sum x^{2} y^{2}-x y z(x+y+z)} \tag{6}
\end{equation*}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
From (4),(6) we get:

$$
\begin{align*}
& \sum_{c y c} \frac{x^{2}}{2 y^{2}-y z+2 z^{2}} \geq 1 ; \tag{7}\\
& \text { From (5),(7) we get: } \\
& \sum_{c y c} \frac{x^{3}}{\left(2 y^{2}-y z+2 z^{2}\right)^{2}} \geq \frac{1}{x+y+z} \Rightarrow \\
& P=\frac{x y+y z+z x}{3}+\sum_{c y c} \frac{x^{3}}{\left(2 y^{2}-y z+2 z^{2}\right)^{2}} \geq \frac{x y+y z+z x}{3}+\frac{1}{x+y+z} \text {; } \\
& P \geq\left(\frac{1}{x+y+z}+\frac{x y+y z+z x}{9}+\frac{x y+y z+z x}{9}\right)+\frac{x y+y z+z x}{9} \stackrel{A M-G M}{\geq} \\
& \geq 3 \sqrt[3]{\frac{1}{x+y+z} \cdot \frac{x y+y z+z x}{9} \cdot \frac{x y+y z+z x}{9}}+\frac{3 \sqrt[3]{x y \cdot y z \cdot z x}}{9}= \\
& =3 \sqrt[3]{\frac{(x y+y z+z x)^{2}}{81(x+y+z)}}+\frac{\sqrt[3]{(x y z)^{2}}}{3} \geq 3 \sqrt[3]{\frac{3 x y z(x+y+z)}{81(x+y+z)}}+\frac{1}{3} ;(x y z=1) ; \text {; } \\
& \frac{x y+y z+z x}{3}+\frac{1}{x+y+z} \geq 3 \sqrt[3]{\frac{3 \cdot 1}{81}}+\frac{1}{3}=1+\frac{1}{3}=\frac{4}{3} \\
& \text { So, from (8),(9) we have: } P \geq \frac{4}{3} \Rightarrow P_{\text {min }}=\frac{4}{3} \\
& \text { Equality occurs if }\left\{\begin{array}{c}
x=y=z>0 \\
x y z=1
\end{array} \Leftrightarrow x=y=z=1\right. \text {. }
\end{align*}
$$

Hence, the minimum value of expression P is $\frac{4}{3}$ when $x=y=z=1$.

SP.327.If $a, b, c \geq 0, a b+b c+c a=3$ then find:

$$
\min \Omega(a, b, c) ; \Omega(a, b, c)=\frac{1}{(a+b)^{5}}+\frac{1}{(b+c)^{5}}+\frac{1}{(c+a)^{5}}
$$

Proposed by Hoang Le Nhat- Hanoi- Vietnam

Solution by Marin Chirciu and Octavian Stroe-Romania

Lemma:

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
If $a, b, c \geq 0, a b+b c+c a=3$ then find $\operatorname{minf}(a, b, c)$,

$$
f(a, b, c)=\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}
$$

Proof:
We have:

$$
\begin{gather*}
f(a, b, c)=\sum \frac{1}{b+c}=\frac{\sum(a+b)(a+c)}{\prod(b+c)}= \\
=\frac{(a+b+c)^{2}+a b+b c+c a}{(a+b+c)(a b+b c+c a)-a b c}= \\
=\frac{(a+b+c)^{2}+3}{3(a+b+c)-a b c} \stackrel{x=a+b+c}{\cong} \frac{x^{2}+3}{3 x-a b c} \stackrel{a b c \geq 0}{\cong} \frac{x^{2}+3}{3 x}=\frac{x}{3}+\frac{1}{x} ; \tag{1}
\end{gather*}
$$

Another hand, we have:

$$
\sum \frac{a}{b+c}=\sum a \sum \frac{1}{b+c}-3
$$

We get:

$$
\begin{align*}
& f(a, b, c)= \frac{1}{a+b+c}\left(3+\sum \frac{a}{b+c}\right) \stackrel{\text { Bergström }}{\geq} \frac{1}{a+b+c}\left(3+\frac{(a+b+c)^{2}}{2 \sum b c}\right) \\
&=\frac{1}{x}\left(3+\frac{x^{2}}{2 \cdot 3}\right)=\frac{x}{6}+\frac{3}{x} ;(2) \tag{2}
\end{align*}
$$

From (1) $+3 \cdot(2) \Rightarrow 4 f(a, b, c) \geq \frac{5 x}{6}+\frac{10}{x} \Leftrightarrow f(a, b, c) \geq \frac{5 x}{24}+\frac{5}{2 x}$.
We get: $f(a, b, c) \geq \frac{5 x}{24}+\frac{5}{2 x}=\frac{5}{2}\left(\frac{x}{12}+\frac{1}{x}\right)^{A G M} \geq \frac{5}{2} \cdot \sqrt{\frac{x}{12} \cdot \frac{1}{x}}=\frac{5}{2 \sqrt{3}}$,

$$
\text { Equality for } \frac{x}{12}=\frac{1}{x} \Leftrightarrow x^{2}=12 \Leftrightarrow x=2 \sqrt{3} .
$$

We deduce that: $\operatorname{minf}(a, b, c)=\frac{5}{2 \sqrt{3}}$ for $a+b+c=2 \sqrt{3}($ ex: $a=b=\sqrt{3}, c=0)$
Let solve the proposed problem.
Using Lemma and Hőlder, we get:

$$
\begin{gathered}
\Omega(a, b, c)=\frac{1}{(a+b)^{5}}+\frac{1}{(b+c)^{5}}+\frac{1}{(c+a)^{5}} \geq \\
\quad \geq \frac{\left(\sum \frac{1}{b+c}\right)^{5}}{3^{4}} \geq \frac{\left(\frac{5}{2 \sqrt{3}}\right)^{5}}{3^{4}}=3\left(\frac{5}{6 \sqrt{3}}\right)^{5}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro
 We deduce that: $\min \Omega(a, b, c)=3\left(\frac{5}{6 \sqrt{3}}\right)^{5}$ for $a+b+c=2 \sqrt{3}$
 $$
(e x . a=b=\sqrt{3}, c=0)
$$

Remark: The problem can be dezvolted:

1) If $a, b, c \geq 0, a b+b c+c a=3$ then find:

$$
\min \Omega(a, b, c) ; \Omega(a, b, c)=\frac{1}{(a+b)^{n}}+\frac{1}{(b+c)^{n}}+\frac{1}{(c+a)^{n}}, n \in \mathbb{N}^{*}
$$

Proposed by Marin Chirciu and Octavian Stroe-Romania

Solution by proposers

Using Lema and Hőlder inequality, we get:

$$
\begin{gathered}
\Omega(a, b, c)=\frac{1}{(a+b)^{n}}+\frac{1}{(b+c)^{n}}+\frac{1}{(c+a)^{n}} \geq \\
\geq \frac{\left(\sum \frac{1}{b+c}\right)^{n}}{3^{n-1}} \geq \frac{\left(\frac{5}{2 \sqrt{3}}\right)^{n}}{3^{n-1}}=3\left(\frac{5}{6 \sqrt{3}}\right)^{n}
\end{gathered}
$$

We deduce that: $\min \Omega(a, b, c)=3\left(\frac{5}{6 \sqrt{3}}\right)^{n}$ for $a+b+c=2 \sqrt{3}$

$$
(e x . a=b=\sqrt{3}, c=0)
$$

Note: For $\boldsymbol{n}=5$ we get the Problem JP. 297 from RMM number 20, Spring 2021, proposed by Hoang Le Nhat, Hanoi, Vietnam.

$$
\text { For } n=1 \text { we get lemma. }
$$

SP.328. Let $a, b, c \in[1,3]$ such that $a+b+c=6$. Find the maximum value of the expression:

$$
P=a^{6}+b^{6}+c^{6}
$$

Proposed by Hoang Le Nhat Tung-Vietnam

Solution 1 by Adrian Popa-Romania

$$
P=\max . \Rightarrow\left\{\begin{array}{l}
a=\max . \\
b=\max . \\
c=\max .
\end{array} \Rightarrow a=3\right.
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro
 If $\boldsymbol{b}>2 \Rightarrow c<1$ false. So, $\boldsymbol{b}_{\max }=\mathbf{2} \Rightarrow \boldsymbol{c}=\mathbf{1}$.

$$
P_{\max }=3^{6}+2^{6}+1^{6}=794
$$

Solution 2 by Florentin Vişescu-Romania

$$
a, b, c \in[1,3], a+b+c=6, \Omega=\max \left\{a^{6}+b^{6}+c^{6}\right\}
$$

From $\boldsymbol{a}+\boldsymbol{b}+\boldsymbol{c}=\mathbf{6} \Rightarrow \boldsymbol{c}=\mathbf{6}-\boldsymbol{a}-\boldsymbol{b}, \boldsymbol{c} \in[1,3] \Rightarrow \mathbf{1}<6-a-b<3 \Rightarrow$

$$
\boldsymbol{b}-\mathbf{5}<-a<b-3 \Rightarrow 3-b \leq a \leq 5-b
$$

How $b \in[1,3]$ we distinguish the cases:
(1) If $b \in[1,2] \Rightarrow-2 \leq-b \leq-1 \Rightarrow\left\{\begin{array}{l}1 \leq 3-b \leq 2 \\ 3 \leq 5-b \leq 4\end{array} \Rightarrow a \in[3-b, 3]\right.$
(2) If $b \in[2,3] \Rightarrow-3 \leq-b \leq-2 \Rightarrow\left\{\begin{array}{l}0 \leq 3-b \leq 1 \\ 2 \leq 5-b \leq 3\end{array} \Rightarrow a \in[1,5-b]\right.$

Let be the function $f(a)=a^{6}+b^{6}+c^{6}=a^{6}+b^{6}+\left(6-a^{6}-b^{6}\right)^{6}$
$f^{\prime}(a)=6 a^{5}-6\left(6-a^{6}-b^{6}\right)^{5}=$
$=6(a-6+a+b)\left[a^{4}+a^{3}(6-a-b)+a^{2}(6-a-b)^{2}++a(6-a-b)^{3}+(6-a-b)^{4}\right]$
$f^{\prime}(a)=0 \Leftrightarrow 2 a-6+b=0 \Leftrightarrow a=\frac{6-b}{2}$
We distingush the cases:
(i) If $\frac{6-b}{2} \in[3-b, 3] \Leftrightarrow 6-2 b \leq 6-b \leq 6 \Leftrightarrow 2 b \geq b \geq 0$ (true)
(ii) If $\frac{6-b}{2} \in[1,5-b] \Leftrightarrow 2 \leq 6-b \leq 10-2 b \Leftrightarrow 0 \leq 4-b \leq 8-2 b \Leftrightarrow b \leq 4($ true $)$
(1) If $b \in[1,2]$

a	$3-b$	$\frac{6-b}{2}$
$f^{\prime}(a)$	$-------0++++++++$	
$f(a)$	$\searrow \searrow \searrow f\left(\frac{6-b}{2}\right) \nearrow \nearrow \nearrow$	
	$f(3-b)=(3-b)^{6}+b^{6}+3^{6}$	
$f(3)=3^{6}+b^{6}+(3-b)^{6}$		
	$f\left(\frac{6-b}{2}\right)=2\left(\frac{6-b}{2}\right)^{6}+b^{6}$	

So, for $b \in[1,2] \Rightarrow 2\left(\frac{6-b}{2}\right)^{6}+b^{6} \leq a^{6}+b^{6}+c^{6} \leq(3-b)^{6}+b^{6}+3^{6}$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
(2) If $b \in[2,3]$

a	1	$\frac{6-b}{2}$	$5-b$
$f^{\prime}(a)$	$-------0++++++++$		
$f(a)$	$\searrow \searrow \searrow f\left(\frac{6-b}{2}\right) \nearrow \nearrow \nearrow$		
	$f(1)=1+b^{6}+(5-b)^{6}$		
	$f(5-b)=(5-b)^{6}+b^{6}+1$		
	$f\left(\frac{6-b}{2}\right)=2\left(\frac{6-b}{2}\right)^{6}+b^{6}$		

So, for $b \in[2,3] \Rightarrow 2\left(\frac{6-b}{2}\right)^{6}+b^{6} \leq a^{6}+b^{6}+c^{6} \leq 1+b^{6}+(5-b)^{6}$
Let be the function $g(b)=2\left(\frac{6-b}{2}\right)^{6}+b^{6}$
(1) If $b \in[1,2]$

b	1			2
$g^{\prime}(b)$	--------------			
$\boldsymbol{g}(\mathrm{b})$	\downarrow	\checkmark	\downarrow	

(2) If $b \in[2,3]$

b	2	3	
$g^{\prime}(b)$	-------------		
$g(b)$	\searrow	\searrow	
$g(3)=11 \cdot \frac{3^{7}}{2^{5}}$			

$$
\text { So, } 3 \cdot 2^{6} \leq a^{6}+b^{6}+c^{6} \leq 11 \cdot \frac{3^{7}}{2^{5}}
$$

Let be the function $h(b)=(3-b)^{6}+b^{6}+3^{6}, h:[1,2] \rightarrow \mathbb{R}$

$$
h^{\prime}(b)=6 b^{5}-6(3-b)^{5}=
$$

$$
=6(b-3+b)\left[b^{4}+b^{3}(3-b)+b^{2}(3-b)^{2}+b(3-b)^{3}+(3-b)^{4}\right]
$$

$$
h^{\prime}(b)=0 \Leftrightarrow b=\frac{3}{2}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

b	1	$\frac{3}{2}$
$h^{\prime}(b)$	$-------0++++++++$	
$h(b)$	$\searrow \searrow \downarrow\left(\frac{3}{2}\right) \nearrow \nearrow \nearrow$	
	$h(1)=2^{6}+1^{6}+3^{6}$	
	$h(2)=1^{6}+2^{6}+3^{6}$	

Let be the function $k(b)=(5-b)^{6}+b^{6}+1, k:[2,3] \rightarrow \mathbb{R}$

$$
\begin{gathered}
k^{\prime}(b)=6 b^{5}-6(5-b)^{5}= \\
=6(b-5+b)\left[b^{4}+b^{3}(5-b)+b^{2}(5-b)^{2}+b(5-b)^{3}+(5-b)^{4}\right. \\
k^{\prime}(b)=0 \Leftrightarrow b=\frac{5}{2}
\end{gathered}
$$

b	2	$\frac{5}{2}$
$k^{\prime}(b)$	$-------0++++++++$	
$k(b)$	$\searrow \downarrow \downarrow \quad h\left(\frac{5}{2}\right) \nearrow \nearrow \nearrow$	
	$k(2)=3^{6}+2^{6}+1$	
$k(3)=2^{6}+3^{6}+1$		

$$
\text { So, } 3 \cdot 2^{6} \leq a^{6}+b^{6}+c^{6} \leq 1+2^{6}+3^{6}
$$

Solution 3 by Marian Dincă-Romania

$$
\begin{gathered}
c=6-a-b \Rightarrow 1 \leq 6-a-b \leq 3 \Rightarrow 3 \leq a+b \leq 5 \\
P=a^{6}+b^{6}+(6-a-b)^{6}=f(a, b) \\
\frac{\partial f}{\partial a}=6 a^{5}-6(6-a-b)^{5}, \frac{\partial^{2} f}{\partial a^{2}}=30 a^{4}+30(6-a-b)^{4}>0 \\
\frac{\partial f}{\partial b}=6 b^{5}-6(6-a-b)^{5}, \frac{\partial^{2} f}{\partial b^{2}}=30 b^{4}+30(6-a-b)^{4}>0
\end{gathered}
$$

The expression is a separately convex function with:

$$
(a, b) \in\{(1,1),(1,3)(3,3)\}
$$

We evaluate the values: $f(1,3)=1+3^{6}+2^{6}$ is the only solution, because for $(1,1)$ the

$$
\text { sum: } a+b=2<3 \text { and }(3,3) \text { the sum: } a+b=6>5
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
f:[1,3] \times[1,3] \cap\{a, b / 3 \leq a+b \leq 5\} \rightarrow \mathbb{R}
$$

$$
[1,3] \times[1,3] \cap\{a, b / 3 \leq a+b \leq 5\}=E B G H D F \text { where }
$$

$$
E(2,1), B(3,1), G(3,2), H(2,3), D(1,3), F(1,2)
$$

$f: M \rightarrow \mathbb{R}, f$-convex and $M=E B G H D F$-convex hexagon...
So, $\max f(a, b) \leq\{f(E), f(B), f(G), f(H), f(D), f(F)\}=1+3^{6}+2^{6}$ because is simetric.

SP.329. Find:

$$
\Omega=\lim _{n \rightarrow \infty} \frac{e^{\sum_{k=1}^{n} \frac{(-1)^{k}\binom{n}{k}}{k}}}{\sqrt[n]{n!}}
$$

Proposed by Marian Ursărescu-Romania
Solution 1 by Sergio Esteban-Argentina
i) $\sum_{k=1}^{n} \frac{(-1)^{k}\binom{n}{k}}{k}=-\sum_{k=1}^{n} \frac{(-1)^{k-1}\binom{n}{k}}{k} ;$ Let: $S_{n}=\sum_{k=1}^{n} \frac{(-1)^{k-1}\binom{n}{k}}{k}$

We have:

$$
S_{n+1}=\sum_{k=1}^{n+1} \frac{(-1)^{k-1}\binom{n+1}{k}}{k}=\sum_{k=1}^{n+1} \frac{(-1)^{k-1}}{k}\left(\binom{n}{k}+\binom{n}{k-1}\right)=
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{aligned}
=\sum_{k=1}^{n+1} \frac{(-1)^{k-1}}{k}\binom{n}{k}+ & \sum_{k=1}^{n+1} \frac{(-1)^{k-1}}{k}\binom{n}{k-1}=S_{n}+\sum_{k=1}^{n+1} \frac{(-1)^{k-1}}{k}\binom{n}{k-1}= \\
& =S_{n}-\frac{1}{n+1} \sum_{k=1}^{n+1}(-1)^{k}\binom{n+1}{k}
\end{aligned}
$$

Hence for all $m \geq 1, S_{m+1}-S_{m}=-\frac{1}{m+1} \sum_{k=1}^{m+1}(-1)^{k}\binom{m+1}{k}=$

$$
=\frac{1}{m+1}-\frac{1}{m+1} \sum_{k=0}^{m+1}(-1)^{k}\binom{m+1}{k}=\frac{1}{m+1}
$$

Summing from $m=1, \ldots,(n-1)$ yields $S_{n}-S_{1}=\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$

$$
\sum_{k=1}^{n} \frac{(-1)^{k}\binom{n}{k}}{k}=-H_{n}
$$

Then by (i) we get:

$$
\Omega=\lim _{n \rightarrow \infty} \frac{e^{\sum_{k=1}^{n} \frac{(-1)^{k}\binom{n}{k}}{k}}}{\sqrt[n]{n!}}=\lim _{n \rightarrow \infty} \frac{e^{-H_{n}}}{\sqrt[n]{n!}}=\lim _{n \rightarrow \infty} \frac{e^{-(\gamma+\operatorname{logn})}}{\sqrt[n]{n!}}=\lim _{n \rightarrow \infty} \frac{e^{-\gamma}}{n \sqrt[n]{n!}}=0
$$

Solution 2 by Florică Anastase-Romania

$$
\begin{gathered}
\text { Let: } P(n): E(n)=\binom{n}{1}-\frac{1}{2}\binom{n}{2}+\frac{1}{3}\binom{n}{3}+\cdots+\frac{(-1)^{n}}{n}\binom{n}{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n} \\
P(1): E(1)=1, P(2): E(2)=2-\frac{1}{2}=1+\frac{1}{2} \\
P(n) \rightarrow P(n+1) \\
\text { We prove that: } E(n+1)-E(n)=\frac{1}{n+1} \\
E(n+1)-E(n)=\sum_{i=1}^{n} \frac{(-1)^{i-1}}{i}\left[\binom{n+1}{i}-\binom{n}{i}\right]+\frac{(-1)^{n+1}}{n+1} \stackrel{\binom{n+1}{i}=\binom{n}{i}+\binom{n}{i-1}}{\cong} \\
=\sum_{i=1}^{n} \frac{(-1)^{i-1}}{i}\binom{n}{i-1}+\frac{(-1)^{n+1}}{n+1}=\sum_{i=1}^{n} \frac{(-1)^{i-1} \cdot n!}{i!(n-i+1)!}+\frac{(-1)^{n+1}}{n+1}= \\
=\frac{1}{n+1} \sum_{i=1}^{n} \frac{(-1)^{i-1} \cdot(n+1)!}{i!(n-i+1)!}+\frac{(-1)^{n+1}}{n+1}=\frac{1}{n+1} \sum_{i=1}^{n}(-1)^{i-1}\binom{n+1}{i}+\frac{(-1)^{n+1}}{n+1}=
\end{gathered}
$$

$$
\begin{gathered}
\text { ROMANIAN MATHEMATICAL MAGAZINE } \\
=-\frac{1}{n+1}\left[\begin{array}{c}
\text { www.ssmrmh.ro } \\
\left.-\binom{n+1}{1}+\binom{n+1}{2}+\cdots+(-\mathbf{1})^{n}\binom{n+1}{n}\right]+\frac{(-\mathbf{1})^{n+1}}{n+1}= \\
=-\frac{1}{n+1}\left[\sum_{i=0}^{n+1}(-\mathbf{1})^{i}\binom{n+1}{i}-(-\mathbf{1})^{n+1}\right]+\frac{(-1)^{n+1}}{n+1}= \\
=-\frac{1}{n+1}\left[(\mathbf{1}-\mathbf{1})^{n+1}-\mathbf{1}-(-1)^{n+1}\right]+\frac{(-1)^{n+1}}{n+1}=\frac{1}{n+1}+\frac{(-1)^{n}}{n+1}+\frac{(-1)^{n-1}}{n+1}=\frac{1}{n+1} \\
\Rightarrow \sum_{k=1}^{n} \frac{(-\mathbf{1})^{k}\binom{n}{k}}{k}=-H_{n} \\
\Omega=\lim _{n \rightarrow \infty} \frac{e^{\sum_{k=1}^{n} \frac{(-1)^{k}\binom{n}{k}}{k}}}{\sqrt[n]{n!}}=\lim _{n \rightarrow \infty} \frac{e^{-H_{n}}}{\sqrt[n]{n!}}=\lim _{n \rightarrow \infty} \frac{e^{-(\gamma+\operatorname{logn})}}{\sqrt[n]{n!}}=\lim _{n \rightarrow \infty} \frac{e^{-\gamma}}{n \sqrt[n]{n!}}=\mathbf{0}
\end{array} .\right.
\end{gathered}
$$

SP.330. Let $A B C$ be a triangle with inradius r and circumradius R.Pove that:

$$
\frac{48 r}{R} \leq \frac{\left(\sec \frac{A}{2}+\sec \frac{B}{2}+\sec \frac{C}{2}\right)^{3}}{\tan \frac{A}{2}+\tan \frac{B}{2}+\tan \frac{C}{2}} \leq \frac{12 R}{r}
$$

Proposed by George Apostolopoulos-Greece

Solution by Marin Chirciu-Romania

Using the identity in any triangle: $\sum \tan \frac{A}{2}=\frac{4 R+r}{s}$ the inequality becomes:

$$
\begin{gathered}
\frac{48 r}{R} \cdot \frac{4 R+r}{s} \leq\left(\sec \frac{A}{2}+\sec \frac{B}{2}+\sec \frac{C}{2}\right)^{3} \leq \frac{12 R}{r} \cdot \frac{4 r+r}{s} \\
\left(\sec \frac{A}{2}+\sec \frac{B}{2}+\sec \frac{C}{2}\right)^{3} \geq \frac{48 r}{R} \cdot \frac{4 R+r}{s}
\end{gathered}
$$

Using AGM we get:

$$
\begin{gathered}
L H S=\left(\sec \frac{A}{2}+\sec \frac{B}{2}+\sec \frac{C}{2}\right)^{3} \geq 27 \sec \frac{A}{2} \sec \frac{B}{2} \sec \frac{C}{2}=\frac{27}{\cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}}=\frac{27}{\frac{S}{4 R}} \\
=\frac{108 R}{r} \stackrel{(1)}{\geq} \frac{48 r}{R} \cdot \frac{4 R+r}{S}=L H D,
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
Where (1) $\Leftrightarrow 9 R^{2} \geq 4 r(4 R+r) \Leftrightarrow 9 R^{2}-16 R r-4 r^{2} \geq 0 \Leftrightarrow(R-2 r)(9 R+2 r) \geq 0$

$$
\text { true by } R \geq 2 r(\text { Euler })
$$

Equality holds if and only if the triangle is equilateral.

$$
\left(\sec \frac{A}{2}+\sec \frac{B}{2}+\sec \frac{C}{2}\right)^{3} \leq \frac{12 R}{r} \cdot \frac{4 r+r}{s}
$$

Lemma: In any $\triangle A B C: \sec \frac{A}{2}+\sec \frac{B}{2}+\sec \frac{C}{2} \leq \frac{9 R}{s}$
Proof: Using the identity: $\frac{1}{x}+\frac{1}{y}+\frac{1}{z} \leq \frac{(x+y+z)^{2}}{3 x y z}$, for $x=\cos \frac{A}{2} ; y=\cos \frac{B}{2}$;

$$
\mathrm{z}=\cos \frac{C}{2} \text { we get: }
$$

$$
\begin{gathered}
\frac{1}{\cos \frac{A}{2}}+\frac{1}{\cos \frac{B}{2}}+\frac{1}{\cos \frac{C}{2}} \leq \frac{\left(\cos \frac{A}{2}+\cos \frac{B}{2}+\cos \frac{C}{2}\right)^{2} \operatorname{Jensen}}{3 \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}} \leq \frac{\left(\frac{3 \sqrt{3}}{2}\right)^{2}}{3 \cdot \frac{S}{4 R}}=\frac{\frac{27}{4}}{\frac{3 s}{4 R}}=\frac{9 R}{s} \\
\text { Equality if and only if the triangle is equilateral. }
\end{gathered}
$$

$$
L H S=\left(\sec \frac{A}{2}+\sec \frac{B}{2}+\sec \frac{C}{2}\right)^{3} \leq\left(\frac{9 R}{s}\right)^{3} \stackrel{(2)}{\leq} \frac{12 R}{r} \cdot \frac{4 R+r}{s}=R H S
$$

Where (2) $\Leftrightarrow\left(\frac{9 R}{s}\right)^{3} \leq \frac{12 R}{r} \cdot \frac{4 R+r}{s} \Leftrightarrow 243 R^{2} r \leq 4 s^{2}(4 R+r)$ true from:

$$
s^{2} \geq 16 R r-5 r^{2}(\text { Gerretsen }) . \text { We must show that: }
$$

$$
243 R^{2} r \leq 4\left(16 R r-5 r^{2}\right)(4 R+r) \Leftrightarrow 13 R^{2}-16 R r-20 r^{2} \geq 0 \Leftrightarrow
$$

$$
(R-2 r)(13 R+10 r) \geq 0 \text { true by } R \geq 2 r(\text { Euler })
$$

Equality if and only if the triangle is equilateral.
UP.316. If $\left(H_{n}\right)_{n \geq 1}, H_{n}=\sum_{k=1}^{n} \frac{1}{k}$ is the armonic sequence, find:

$$
\lim _{n \rightarrow \infty} e^{-2 H_{n}} \cdot \sum_{k=2}^{n} \sqrt[k]{(2 k-1)!!}
$$

Proposed by D.M.Bătineţu-Giurgiu, Neculai Stanciu-Romania
Solution 1 by Marian Ursărescu-Romania

$$
\begin{equation*}
L=\lim _{n \rightarrow \infty} e^{-2 H_{n}} \cdot \sum_{k=2}^{n} \sqrt[k]{(2 k-1)!!}=\lim _{n \rightarrow \infty} \frac{n^{2}}{e^{2 H_{n}}} \cdot \frac{\sum_{k=2}^{n} \sqrt[k]{(2 k-1)!!}}{n^{2}} \tag{1}
\end{equation*}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
$\lim _{n \rightarrow \infty} \frac{n^{2}}{e^{2 H_{n}}}=\left(\lim _{n \rightarrow \infty} \frac{n}{e^{H_{n}}}\right)^{2} \stackrel{L . C-S}{=}\left(\lim _{n \rightarrow \infty} \frac{n+1-n}{e^{H_{n+1}}-e^{H_{n}}}\right)^{2}=\left(\lim _{n \rightarrow \infty} \frac{1}{e^{H_{n}}\left(e^{\frac{1}{n+1}}-1\right)}\right)^{2}=$
$=\left(\lim _{n \rightarrow \infty} \frac{1}{e^{H_{n}}\left(\frac{e^{\frac{1}{n+1}}-1}{\frac{1}{n+1} \cdot(n+1)}\right)}\right)^{2}=\left(\lim _{n \rightarrow \infty} \frac{1}{\frac{e^{H_{n}}}{n+1}}\right)^{2}=\left(\lim _{n \rightarrow \infty} \frac{1}{\frac{e^{H_{n}}}{n} \cdot \frac{n}{n+1}}\right)^{2}=$
$=\left(\lim _{n \rightarrow \infty} \frac{1}{\frac{e^{H_{n}}}{e^{\log n}}}\right)^{2}=\left(\lim _{n \rightarrow \infty} \frac{1}{e^{H_{n}-\log n}}\right)^{2}=\left(\lim _{n \rightarrow \infty} \frac{1}{e^{1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}-\log n}}\right)^{2}=\left(e^{-\gamma}\right)^{2}=e^{-2 \gamma} ;$

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \frac{\sum_{k=2}^{n} \sqrt[k]{(2 k-1)!!}}{n^{2}} \stackrel{L . c-S}{=} \lim _{n \rightarrow \infty} \frac{\sqrt[n+1]{(2 n+1)!!}}{(n+1)^{2}-n^{2}}=\lim _{n \rightarrow \infty} \frac{\sqrt[n+1]{(2 n+1)!!}}{2 n+1}= \\
= & \lim _{n \rightarrow \infty} \frac{\sqrt[n]{(2 n-1)!!}}{2 n-1}=\lim _{n \rightarrow \infty} \frac{n}{2 n-1} \cdot \frac{\sqrt[n]{(2 n-1)!!}}{n}=\frac{1}{2} \cdot \lim _{n \rightarrow \infty} \sqrt[n]{\frac{(2 n-1)!!}{n^{n}}} \stackrel{c-D^{\prime}}{=} A^{n} \\
= & \frac{1}{2} \cdot \lim _{n \rightarrow \infty} \frac{(2 n+1)!!}{(n+1)^{n+1}} \cdot \frac{n^{n}}{(2 n-1)!!}=\frac{1}{2} \cdot \lim _{n \rightarrow \infty} \frac{2 n+!}{n+1} \cdot\left(\frac{n}{n+1}\right)^{n}=\frac{1}{2} \cdot 2 \cdot \frac{1}{e}=\frac{1}{e} \tag{3}
\end{align*}
$$

From (1), (2), (3) we get:

$$
\lim _{n \rightarrow \infty} e^{-2 H_{n}} \cdot \sum_{k=2}^{n} \sqrt[k]{(2 k-1)!!}=e^{-2 \gamma} \cdot \frac{1}{e}=e^{-2 \gamma-1}
$$

Solution 2 by Samir HajAli-Damascus-Syria

$$
\begin{aligned}
& \Omega=\lim _{n \rightarrow \infty} e^{-2 H_{n}} \cdot \sum_{k=2}^{n} \sqrt[k]{(2 k-1)!!}=\lim _{n \rightarrow \infty} \frac{\sum_{k=2}^{n} \sqrt[k]{(2 k-1)!!}}{e^{2 H_{n}}} \stackrel{L . C-S}{=} \lim _{n \rightarrow \infty} \frac{\sqrt[n]{(2 n-1)!!}}{e^{2 H_{n}}-e^{2 H_{n-1}}}= \\
&=\lim _{n \rightarrow \infty} \frac{\sqrt[n]{(2 n-1)!!}}{e^{2 H_{n-1}+\frac{2}{n}}-e^{2 H_{n-1}}}=\lim _{n \rightarrow \infty} \frac{\sqrt[n]{(2 n-1)!!}}{e^{2 H_{n-1}}\left(e^{\frac{2}{n}}-1\right)}=\lim _{n \rightarrow \infty} \frac{\frac{2}{n}}{e^{\frac{2}{n}}-1} \times \lim _{n \rightarrow \infty} \frac{n \cdot \sqrt[n]{(2 n-1)!!}}{2 \cdot e^{2 H_{n-1}}}= \\
&=1 \cdot \lim _{n \rightarrow \infty} \sqrt[n]{\frac{n^{n} \cdot(2 n-1)!!}{2^{n} \cdot e^{2 n H_{n-1}}}} \stackrel{c-D^{\prime} A}{=} \lim _{n \rightarrow \infty} \frac{(n+1)^{n+1} \cdot(2 n+1)!!}{2^{n+1} \cdot e^{2(n+1) H_{n}}} \cdot \frac{2^{n} \cdot e^{2 n H_{n-1}}}{n^{n} \cdot(2 n-1)!!}=
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
$\begin{aligned} & =\lim _{n \rightarrow \infty}\left[\frac{2^{n}}{2^{n+1}} \cdot \frac{(n+1)^{n+1}}{n^{n}} \cdot \frac{(2 n+1)!!}{(2 n-1)!!} \cdot \frac{e^{2 n H_{n-1}}}{e^{2(n+1) H_{n}}}\right]= \\ = & \lim _{n \rightarrow \infty}\left[\frac{1}{2} \cdot\left(\frac{n+1}{n}\right)^{n} \cdot(n+1)(2 n+1) \cdot \frac{e^{2 n H_{n-1}}}{e^{2 n H_{n}} \cdot e^{2 H_{n}}}\right]=\end{aligned}$ $=\frac{e}{2} \cdot \lim _{n \rightarrow \infty}\left[(n+1)(2 n+1) \cdot \frac{e^{2 n H_{n-1}}}{e^{2 H_{n-1}} \cdot e^{2} \cdot e^{2 H_{n}}}\right]=$ $\left(\therefore e^{2 n H_{n}}=e^{2 n\left(H_{n-1}+\frac{1}{n}\right)}=e^{2 H_{n-1}+2}\right)$
$=\frac{e}{2} \cdot \lim _{n \rightarrow \infty}\left[(n+1)(2 n+1) \cdot \frac{1}{e^{2} \cdot e^{2 H_{n}}}\right]=\frac{e^{-1}}{2} \cdot \lim _{n \rightarrow \infty}\left[(n+1)(2 n+1) \cdot \frac{1}{e^{2\left(\log n+\gamma+\delta_{n}\right)}}\right]=$

$$
\begin{gathered}
\left(\therefore H_{n}=\operatorname{logn}+\gamma+\delta_{n} \text { and } \delta_{n} \xrightarrow[n \rightarrow 0]{\longrightarrow} 0 ; \gamma-\text { Euler - Mascheroni ct. }\right) \\
=\frac{e^{-1}}{2} \cdot \lim _{n \rightarrow \infty}\left[\frac{(n+1)(2 n+1)}{e^{2 \gamma} \cdot e^{2 \delta_{n}} \cdot e^{\log \left(n^{2}\right)}}\right]=\frac{e^{-1}}{2 e^{2 \gamma}} \cdot \lim _{n \rightarrow \infty} \frac{1}{e^{2 \delta_{n}}} \cdot \lim _{n \rightarrow \infty} \frac{(n+1)(2 n+1)}{n^{2}}= \\
=\frac{e^{-1}}{2 e^{2 \gamma}} \cdot 1 \cdot 2=\frac{e^{-1}}{e^{2 \gamma}}=\frac{1}{e^{2 \gamma+1}}
\end{gathered}
$$

Solution 3 by Hemn Hsain-Cairo-Egypt

$$
\begin{gathered}
\left(\therefore H_{n}=\operatorname{logn}+\gamma \text { and } \sqrt[k]{(2 k-1)!!} \cong\left(\frac{(2 k)^{2 k}}{e^{2 k} \cdot 2^{k} \cdot k!}\right)^{\frac{1}{k}}=\frac{2 k}{e}\right. \\
\lim _{n \rightarrow \infty} e^{-2 H_{n}} \cdot \sum_{k=2}^{n} \sqrt[k]{(2 k-1)!!}=\lim _{n \rightarrow \infty} e^{-2 \log n-2 \gamma} \cdot \sum_{k=2}^{n} \frac{2 k}{e}=\lim _{n \rightarrow \infty} \frac{e^{-2 \gamma}}{n^{2}} \cdot \frac{2}{e} \cdot \sum_{k=2}^{n} k= \\
=\lim _{n \rightarrow \infty} \frac{2 e^{-2 \gamma-1}\left(n^{2}+n\right)}{2 n^{2}}=\lim _{n \rightarrow \infty} \frac{e^{-2 \gamma-1}\left(n^{2}+n\right)}{n^{2}}=e^{-2 \gamma-1}
\end{gathered}
$$

UP.317. If $a, b \in \mathbb{R}$, find:

$$
\lim _{n \rightarrow \infty}\left(\sqrt[n+1]{(n+1)^{a} \cdot((2 n+1)!!)^{b}}-\sqrt[n]{n^{a} \cdot((2 n-1)!!)^{b}}\right)
$$

ROMANIAN MATHEMATICAL MAGAZINE

 www.ssmrmh.ro
Solution by Adrian Popa-Romania

$$
\begin{gathered}
a_{n}=\sqrt[n]{n^{a} \cdot((2 n-1)!!)^{b}} \\
\text { 1) } \lim _{n \rightarrow \infty} \frac{a_{n}}{n}=\lim _{n \rightarrow \infty} \sqrt[n]{\frac{n^{a} \cdot((2 n-1)!!)^{b}}{n^{n}}} \stackrel{c-D^{\prime} A}{=} \lim _{n \rightarrow \infty} \frac{(n+1)^{a}}{(n+1)^{n+1}} \cdot \frac{n^{n}}{n^{a}} \cdot \frac{((2 n+1)!!)^{b}}{((2 n-1)!!)^{b}}= \\
=\lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)^{n} \cdot \frac{(2 n+1)^{b}}{n+1}=\lim _{n \rightarrow \infty}\left[\left(1-\frac{1}{n+1}\right)^{-(n+1)}\right]^{\frac{-n}{n+1}} \cdot \frac{(2 n+1)^{b}}{n+1}= \\
=\frac{1}{e} \lim _{n \rightarrow \infty} \frac{(2 n+1)^{b}}{n+1}=\left\{\begin{array}{c}
\frac{2}{e}, \text { if } b=1 \\
+\infty, \text { if } b>1 \\
0, \text { if } b<1
\end{array}\right. \\
\text { We take } b=1
\end{gathered}
$$

$$
\begin{aligned}
& \text { 2) } \lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{\sqrt[n+1]{(n+1)^{a} \cdot((2 n+1)!!)^{b}}}{\sqrt[n]{n^{a \cdot((2 n-1)!!)^{b}}}}= \\
& =\lim _{n \rightarrow \infty} \sqrt[n+1]{\frac{(n+1)^{a} \cdot((2 n+1)!!)^{b}}{(n+1)^{n+1}}} \cdot \sqrt[n]{\frac{n^{n}}{n^{a} \cdot((2 n-1)!!)^{b}}} \cdot \frac{n+1}{n}=\frac{e}{2} \cdot \frac{2}{e} \cdot 1=1 \\
& \text { 3) } \lim _{n \rightarrow \infty}\left(\frac{a_{n+1}}{a_{n}}\right)^{n}=\lim _{n \rightarrow \infty}\left(\frac{\sqrt[n+1]{(n+1)^{a} \cdot((2 n+1)!!)^{b}}}{\sqrt[n]{n^{a} \cdot((2 n-1)!!)^{b}}}\right)^{n}= \\
& =\lim _{n \rightarrow \infty} \frac{\left((n+1)^{a}(2 n+1)!!\right)^{\frac{n}{n+1}}}{n^{a}(2 n-1)!!}= \\
& =\lim _{n \rightarrow \infty}\left(\frac{n+1}{n}\right)^{a} \cdot(n+1)^{-\frac{a}{n+1}} \cdot \frac{(2 n+1)!!}{(2 n-1)!!} \cdot \frac{1}{\sqrt[n+1]{(2 n+1)!!}}= \\
& =\lim _{n \rightarrow \infty}(\sqrt[n+1]{n+1})^{-a} \cdot(2 n+1) \cdot \sqrt[n+1]{\frac{(n+1)^{n+1}}{(2 n+1)!!}} \cdot \frac{1}{n+1}=2 \cdot 2 e=4 e \\
& \therefore \lim _{n \rightarrow \infty} \sqrt[n]{\frac{n^{n}}{(2 n-1)!!}} \stackrel{c-D^{\prime}}{=} A \lim _{n \rightarrow \infty} \frac{(n+1)^{n+1}}{(2 n+1)!!} \cdot \frac{(2 n-1)!!}{n^{n}}=\lim _{n \rightarrow \infty}\left(\frac{n+1}{n}\right)^{n} \cdot \frac{n+1}{2 n+1}=2 e
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\lim _{n \rightarrow \infty}\left(\sqrt[n+1]{(n+1)^{a} \cdot((2 n+1)!!)^{b}}-\sqrt[n]{n^{a} \cdot((2 n-1)!!)^{b}}\right)=\left\{\begin{array}{c}
\frac{2}{e(\log 2+1), \text { if } b=1} \\
+\infty, \text { if } b>1 \\
0, \text { if } b<1
\end{array}\right.
$$

UP.318.Find:

$$
\Omega=\lim _{n \rightarrow \infty} \sqrt{n}\left(\frac{n+1}{\sqrt[2(n+1)]{(n+1)!}}-\frac{n}{\sqrt[2 n]{n!}}\right)
$$

Proposed by D.Bătineţu Giurgiu-Romania

Solution 1 by Sergio Esteban-Argentina

By Stirling's approximation:

$$
\begin{aligned}
& \Omega=\lim _{n \rightarrow \infty} \sqrt{n}\left(\frac{n+1}{\sqrt[2(n+1)]{(n+1)!}}-\frac{n}{\sqrt[2 n]{n!}}\right)=\lim _{n \rightarrow \infty} \sqrt{n}\left(\frac{n+1}{\sqrt{\frac{n+1}{e}}}-\frac{n}{\sqrt{\frac{n}{e}}}\right)= \\
& =\sqrt{e} \cdot \lim _{n \rightarrow \infty}\left(\frac{(n+1) \sqrt{n}}{\sqrt{n+1}}-\frac{n \sqrt{n}}{\sqrt{n}}\right)=\sqrt{e} \cdot \lim _{n \rightarrow \infty}\left(\sqrt{\frac{n(n+1)^{2}}{n+1}}-\sqrt{n^{2}}\right)= \\
& =\sqrt{e} \cdot \lim _{n \rightarrow \infty}\left(\sqrt{n^{2}+n}-\sqrt{n^{2}}\right)= \\
& =\sqrt{e} \cdot \lim _{n \rightarrow \infty} \frac{\left(\sqrt{n^{2}+n}-\sqrt{n^{2}}\right)\left(\sqrt{n^{2}+n}+\sqrt{n^{2}}\right)}{\left(\sqrt{n^{2}+n}-\sqrt{n^{2}}\right)}=\sqrt{e} \cdot \lim _{n \rightarrow \infty} \frac{n}{2 n}=\frac{\sqrt{e}}{2}
\end{aligned}
$$

Solution 2 by Marian Ursărescu-Romania

$$
\begin{gather*}
\Omega=\lim _{n \rightarrow \infty} \frac{n \sqrt{n}}{\sqrt[2 n]{n!}}\left(\frac{n+1}{n} \cdot \frac{\sqrt[2 n]{n!}}{\sqrt[2 n+2]{(n+1)!}}-1\right) ; \tag{1}\\
\lim _{n \rightarrow \infty} \frac{\sqrt{n}}{\sqrt[2 n]{n!}}=\lim _{n \rightarrow \infty} \sqrt{\frac{n}{\sqrt[n]{n!}}}=\sqrt{\lim _{n \rightarrow \infty} \frac{n}{\sqrt[n]{n!}}}=\sqrt{\lim _{n \rightarrow \infty} \sqrt[n]{\frac{n^{n}}{n!}}} \stackrel{c-D^{\prime} A}{=} \sqrt{\lim _{n \rightarrow \infty} \frac{(n+1)^{n+1}}{(n+1)!} \cdot \frac{n!}{n^{n}}}= \\
=\sqrt{\lim _{n \rightarrow \infty}\left(\frac{n+1}{n}\right)^{n}}=\sqrt{e} ;(2)
\end{gather*}
$$

ROMANIAN MATHEMATICAL MAGAZINE

 www.ssmrmh.ro$$
\begin{aligned}
& \lim _{n \rightarrow \infty} n\left(\frac{n+1}{n} \cdot \frac{\sqrt[2 n]{n!}}{\sqrt[2 n+2]{(n+1)!}}-1\right)=\lim _{n \rightarrow \infty} n\left(e^{\log \left(\frac{n+1}{n} \cdot \frac{\sqrt[2 n]{n!}}{2 n+2} \sqrt[{\sqrt{(n+1)!}}]{ }\right)}-1\right)= \\
& =\lim _{n \rightarrow \infty} n\left(\frac{e^{\log \left(\frac{n+1}{n} \cdot \frac{\sqrt[2 n]{n!}}{2 n+2} \sqrt[{\sqrt{(n+1)!}}]{ }\right)}-1}{\log \left(\frac{n+1}{n} \cdot \frac{\sqrt[2 n]{n!}}{\sqrt[2 n+2]{(n+1)!}}\right)}\right) \cdot \log \left(\frac{n+1}{n} \cdot \frac{\sqrt[2 n]{n!}}{\sqrt[2 n+2]{(n+1)!}}\right)= \\
& =\lim _{n \rightarrow \infty} n \cdot \log \left(\frac{n+1}{n} \cdot \frac{\sqrt[2 n]{n!}}{\sqrt[2 n+2]{(n+1)!}}\right)=\lim _{n \rightarrow \infty} \log \left[\left(\frac{n+1}{n}\right)^{n} \cdot\left(\frac{\sqrt[2 n]{n!}}{\sqrt[2 n+2]{(n+1)!}}\right)^{n}\right]= \\
& =\lim _{n \rightarrow \infty} \log \left[e \cdot \sqrt{\left(\frac{\sqrt[n]{n!}}{\sqrt[n+1]{(n+1)!}}\right)^{n}}\right]=\lim _{n \rightarrow \infty} \log \left[e \cdot \sqrt{\frac{n!}{(\sqrt[n+1]{(n+1)!})^{n}}}\right]= \\
& =\lim _{n \rightarrow \infty} \log \left[e \cdot \sqrt{\frac{n!\cdot \sqrt[n+1]{(n+1)!}}{(n+1)!}}\right]=\lim _{n \rightarrow \infty} \log \left[e \cdot \sqrt{\frac{\sqrt[n+1]{(n+1)!}}{n+1}}\right]= \\
& =\lim _{n \rightarrow \infty} \log \left[e \cdot \sqrt{\frac{\sqrt[n]{n!}}{n}}\right] \stackrel{(2)}{=} \log \left(e \cdot \sqrt{\frac{1}{e}}\right)=\frac{1}{2} ; \\
& \text { From (1), (2), (3) we get } \\
& \Omega=\lim _{n \rightarrow \infty} \sqrt{n}\left(\frac{n+1}{\sqrt[2(n+1)]{(n+1)!}}-\frac{n}{\sqrt[2 n]{n!}}\right)=\frac{\sqrt{e}}{2}
\end{aligned}
$$

Solution 3 by Mokhtar Khassani-Mostaganem-Algerie

$$
\begin{aligned}
\Omega= & \lim _{n \rightarrow \infty} \sqrt{n}\left(\frac{n+1}{\sqrt[2(n+1)]{(n+1)!}}-\frac{n}{\sqrt[2 n]{n!}}\right)
\end{aligned}=\lim _{n \rightarrow \infty} \frac{n \sqrt{n}}{\sqrt[2 n]{n!}}\left(\frac{\frac{n+1}{\sqrt[2 n+2]{(n+1)!}}}{\frac{n}{\sqrt[2 n]{n!}}}-1\right)=
$$

ROMANIAN MATHEMATICAL MAGAZINE

 www.ssmrmh.ro$$
\begin{gathered}
=\sqrt{e} \lim _{n \rightarrow \infty} \log \left(\left(\frac{n+1}{n}\right)^{n} \cdot \sqrt{\frac{n!}{(\sqrt[n+1]{(n+1)!})^{n}}}\right)= \\
=\sqrt{e} \lim _{n \rightarrow \infty} \log \left(\left(\frac{n+1}{n}\right)^{n} \cdot \sqrt{\frac{n!\cdot \sqrt[n]{n!}}{(n+1)!}}\right)=\sqrt{e} \lim _{n \rightarrow \infty} \log \left(\left(\frac{n+1}{n}\right)^{n} \cdot \sqrt{\frac{\sqrt[n]{n!}}{n+1}}\right)=\frac{\sqrt{e}}{2} \\
\left(\therefore \lim _{n \rightarrow \infty} \frac{n}{\sqrt[n]{n!}}=e\right) \\
\Omega=\lim _{n \rightarrow \infty} \sqrt{n}\left(\frac{n+1}{\sqrt[2(n+1)]{(n+1)!}}-\frac{n}{\sqrt[2 n]{n!}}\right)=\frac{\sqrt{e}}{2}
\end{gathered}
$$

UP.319. If $\left(H_{n}\right)_{n \geq 1}, H_{n}=\sum_{k=1}^{n} \frac{1}{k},\left(a_{n}\right)_{n \geq 1}$ is sequence of real numbers strictly positive such that: $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{n^{2} \cdot a_{n}}=a \in \mathbb{R}_{+}^{*}=(0, \infty)$ then find:

$$
\lim _{n \rightarrow \infty} e^{-3 H_{n}} \cdot \sum_{k=2}^{n} \sqrt[k]{a_{k}}
$$

Proposed by D.M.Bătineţu-Giurgiu-Romania

Solution 1 by Marian Ursărescu-Romania

$$
\begin{gather*}
L=\lim _{n \rightarrow \infty} e^{-3 H_{n}} \cdot \sum_{k=2}^{n} \sqrt[k]{a_{k}}=\lim _{n \rightarrow \infty} \frac{n^{3}}{e^{3 H_{n}}} \cdot \frac{\sum_{k=2}^{n} \sqrt[k]{a_{k}}}{n^{3}} ; ~(1) \tag{1}\\
\lim _{n \rightarrow \infty} \frac{n^{3}}{e^{3 H_{n}}}=\left(\lim _{n \rightarrow \infty} \frac{n}{e^{H_{n}}}\right)^{3} \stackrel{L . C-S}{=}\left(\lim _{n \rightarrow \infty} \frac{n+1-n}{e^{H_{n+1}}-e^{H_{n}}}\right)^{3}=\left(\lim _{n \rightarrow \infty} \frac{1}{\left.e^{H_{n}\left(e^{H_{n+1}-H_{n}}-1\right)}\right)^{3}=}\right. \\
=\left(\lim _{n \rightarrow \infty} \frac{1}{e^{H_{n}}\left(\frac{e^{\frac{1}{n+1}}-1}{\frac{1}{n+1} \cdot(n+1)}\right)}\right)^{3}=\left(\lim _{n \rightarrow \infty} \frac{1}{e^{H_{n}}}\right)^{n+1}=\left(\lim _{n \rightarrow \infty} \frac{1}{\frac{n}{n+1} \cdot \frac{e^{H_{n}}}{n}}\right)^{3}= \\
=\left(\lim _{n \rightarrow \infty} \frac{1}{e^{H_{n}-\operatorname{logn}}}\right)^{3}=e^{-3 \gamma} ;(2) \tag{2}
\end{gather*}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{array}{r}
\lim _{n \rightarrow \infty} \frac{\sum_{k=2}^{n} \sqrt[k]{a_{k}}}{n^{3}} \stackrel{L . C-S}{=} \lim _{n \rightarrow \infty} \frac{\sqrt[n+1]{a_{n+1}}}{(n+1)^{3}-n^{3}}=\lim _{n \rightarrow \infty} \frac{\sqrt[n+1]{a_{n+1}}}{3 n^{2}+3 n+1}= \\
=\lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{3 n^{2}+3 n+1} \cdot \frac{\sqrt[n+1]{a_{n+1}}}{(n+1)^{2}}=\frac{1}{3} \lim _{n \rightarrow \infty} \frac{\sqrt[n]{a_{n}}}{n^{2}}=\frac{1}{3} \lim _{n \rightarrow \infty} \sqrt[n]{\frac{a_{n}}{n^{2 n}}} \stackrel{c-D^{\prime} A}{=} \\
=\frac{1}{3} \lim _{n \rightarrow \infty} \frac{a_{n+1}}{(n+1)^{2 n+2}} \cdot \frac{n^{2 n}}{a_{n}}=\frac{1}{3} \lim _{n \rightarrow \infty} \frac{a_{n+1}}{(n+1)^{2} a_{n}} \cdot\left(\frac{n}{n+1}\right)^{2 n}=\frac{1}{3} \cdot a \cdot e^{-2} ; \tag{3}
\end{array}
$$

$$
\text { From (1), (2), (3) } \Rightarrow L=\frac{1}{3} \cdot e^{-3 \gamma} \cdot a \cdot e^{-2}=\frac{a}{3} \cdot e^{-3 \gamma-2}
$$

Solution 2 by Samir HajAli-Damascus-Syria

$$
\begin{gathered}
a_{n}>0, \forall n \geq 1 ; \sum_{k=2}^{n} \sqrt[k]{a_{k}}-\text { is diverge, because } \lim _{k \rightarrow \infty} \sqrt[k]{a_{k}}=\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}} \geq \lim _{k \rightarrow \infty} \frac{a_{k+1}}{k^{2} \cdot a_{k}}=a \neq 0 \\
\Omega=\lim _{n \rightarrow \infty} \frac{\sum_{k=2}^{n} \sqrt[k]{a_{k}}}{e^{3 H_{n}}} \stackrel{L . C-S}{=} \lim _{n \rightarrow \infty} \frac{\sqrt[n]{a_{n}}}{e^{3 H_{n}-3 H_{n-1}}}=\lim _{n \rightarrow \infty} \frac{\sqrt[n]{a_{n}}}{e^{3 H_{n-1}\left(e^{\frac{3}{n}}-1\right)}}= \\
=\lim _{n \rightarrow \infty} \frac{\frac{3}{n}}{e^{\frac{3}{n}}-1} \cdot \frac{n^{n} \sqrt{a_{n}}}{3 e^{3 H_{n-1}}}=\lim _{n \rightarrow \infty} \sqrt[n]{\frac{n^{n} \cdot a_{n}}{3^{n} \cdot e^{3 n H_{n-1}}} \stackrel{c-D^{\prime} A}{=}} \lim _{n \rightarrow \infty} \frac{(n+1)^{n+1} \cdot a_{n+1}}{3^{n+1} \cdot e^{3(n+1) H_{n}} \cdot \frac{3^{n} \cdot e^{3 n H_{n-1}}}{n^{n} \cdot a_{n}}=} \\
=\frac{1}{3} \lim _{n \rightarrow \infty} \frac{a_{n+1}}{n^{2} \cdot a_{n}} \cdot \frac{(n+1)^{n-2} \cdot(n+1)^{3}}{n^{n-2}} \cdot \frac{e^{3 n H_{n-1}}}{e^{3(n+1) H_{n}}}= \\
=\frac{1}{3} \cdot a \cdot e \cdot \lim _{n \rightarrow \infty}(n+1)^{3} \cdot \frac{e^{3 n H_{n-1}}}{e^{3 H_{n}} \cdot e^{3 n H_{n}}}= \\
=\frac{a}{3} \cdot e \cdot \lim _{n \rightarrow \infty} \frac{(n+1)^{3}}{e^{3 \cdot} \cdot e^{3 H_{n}}}=\frac{a}{3} \cdot \frac{1}{e^{2}} \cdot \frac{1}{e^{3 \gamma}} \cdot \lim _{n \rightarrow \infty} \frac{(n+1)^{3}}{e^{\operatorname{logn^{3}} \cdot e^{3 \delta_{n}}}}= \\
=\frac{a}{3 e^{2} e^{-3 \gamma}} \cdot \lim _{n \rightarrow \infty} \frac{(n+1)^{3}}{n^{3}}=\frac{a}{3} \cdot e^{-3 \gamma-2}
\end{gathered}
$$

Solution 3 by Mokhtar Khassani-Mostaganem-Algerie

$$
\begin{gathered}
\Omega=\lim _{n \rightarrow \infty} e^{-3 H_{n}} \cdot \sum_{k=2}^{n} \sqrt[k]{a_{k}}=\lim _{n \rightarrow \infty} \frac{\sum_{k=2}^{n} \sqrt[k]{a_{k}}}{e^{3 H_{n}}} \stackrel{L . C-S}{=} e^{-3 \gamma} \cdot \lim _{n \rightarrow \infty} \frac{\sqrt[n+1]{a_{n+1}}}{3 n^{2}+3 n+1}= \\
=e^{-3 \gamma} \cdot \lim _{n \rightarrow \infty} \frac{\sqrt[n]{a_{n}}}{3 n^{2}-3 n+2} \stackrel{C-D^{\prime} A}{=} e^{-3 \gamma} \cdot \lim _{n \rightarrow \infty} \frac{a_{n+1}}{n^{2} \cdot a_{n}} \cdot \frac{n^{2}}{3 n^{2}+3 n+5} \cdot \frac{n^{2}-3 n+2}{3 n^{2}+3 n+5}=
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
=\frac{a \cdot e^{-3 \gamma}}{3} \cdot \lim _{n \rightarrow \infty}\left(1-2 \cdot \frac{1+\frac{1}{6 n}}{n+1+\frac{5}{3 n}}\right)^{n}=\frac{a \cdot e^{-3 \gamma-2}}{3}
$$

UP.320. If $a, b, c \in \mathbb{R}, x_{n}=n!, y_{n}=(2 n-1)!!, \forall n \in \mathbb{N}^{*}$, then find:

$$
\lim _{n \rightarrow \infty}\left(\sqrt[n+1]{(n+1)^{a} \cdot x_{n+1}^{b} \cdot y_{n+1}^{c}}-\sqrt[n]{n^{a} \cdot x_{n}^{b} \cdot y_{n}^{c}}\right)
$$

Proposed by D.M. Bătineţu-Giurgiu-Romania

Solution by proposer

$\lim _{n \rightarrow \infty} \frac{\sqrt[n]{x_{n}}}{n}=\lim _{n \rightarrow \infty} \sqrt[n]{\frac{x_{n}}{n^{n}}} \stackrel{C-D^{\prime} A}{=} \lim _{n \rightarrow \infty} \frac{(n+1)!}{(n+1)^{n+1}} \cdot \frac{n^{n}}{n!}=\lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)^{n}=\frac{1}{e}$ and analogous $\lim _{n \rightarrow \infty} \frac{\sqrt[n]{y_{n}}}{n}=\frac{1}{e}$
Let: $u_{n}=\frac{\sqrt[n+1]{(n+1)^{a} \cdot x_{n+1}^{b} \cdot y_{n+1}^{c}}}{\sqrt[n]{n^{a} \cdot x_{n}^{b} \cdot y_{n}^{c}}}, \forall n \geq 2$ then $\lim _{n \rightarrow \infty} u_{n}=1, \lim _{n \rightarrow \infty} \frac{u_{n}-1}{\log u_{n}}=1$ and

$$
\begin{gathered}
\lim _{n \rightarrow \infty} u_{n}^{n}=\lim _{n \rightarrow \infty} \frac{(n+1)^{a} \cdot x_{n+1}^{b} \cdot y_{n+1}^{c}}{n^{a} \cdot x_{n}^{b} \cdot y_{n}^{c}} \cdot \frac{1}{\sqrt[n+1]{(n+1)^{a} \cdot x_{n+1}^{b} \cdot y_{n+1}^{c}}} \\
=\lim _{n \rightarrow \infty}\left(\frac{n+1}{n}\right)^{a} \cdot(n+1)^{b} \cdot(2 n+1)^{c} \cdot \frac{1}{(\sqrt[n+1]{n+1})^{a}} \cdot \frac{1}{\left(\sqrt[n+1]{x_{n+1}}\right)^{b}} \cdot \frac{1}{\left(\sqrt[n+1]{\left.y_{n+1}\right)^{c}}\right.} \\
=\lim _{n \rightarrow \infty}\left(\frac{2 n+1}{n+1}\right)^{c} \cdot\left(\frac{n+1}{\sqrt[n+1]{x_{n+1}}}\right)^{b} \cdot\left(\frac{n+1}{\sqrt[n+1]{y_{n+1}}}\right)^{c}=\frac{2^{a} \cdot e^{b} \cdot e^{c}}{2^{c}}=e^{b+c} \\
B_{n}=\sqrt[n+1]{(n+1)^{a} \cdot x_{n+1}^{b} \cdot y_{n+1}^{c}}-\sqrt[n]{n^{a} \cdot x_{n}^{b} \cdot y_{n}^{c}}=\sqrt[n]{n^{a} \cdot x_{n}^{b} \cdot y_{n}^{c}} \cdot\left(u_{n}-1\right) \\
=\sqrt[n]{n^{a} \cdot x_{n}^{b} \cdot y_{n}^{c}} \cdot \frac{u_{n}-1}{\log u_{n}} \cdot \log u_{n}=\frac{\sqrt[n]{n^{a} \cdot x_{n}^{b} \cdot y_{n}^{c}}}{n} \cdot \frac{u_{n}-1}{\log u_{n}} \cdot \log u_{n}^{n} \\
=(\sqrt[n]{n})^{a} \cdot\left(\frac{n}{\sqrt[n]{x_{n}}}\right)^{b} \cdot\left(\frac{n}{\sqrt[n]{y_{n}}}\right)^{c} \cdot n^{b+c-1} \cdot \frac{u_{n}-1}{\log u_{n}} \cdot \log u_{n}^{n}, \forall n \geq 2
\end{gathered}
$$

Then: $\lim _{n \rightarrow \infty} B_{n}=1 \cdot \frac{1}{e^{b}} \cdot\left(\frac{2}{e}\right)^{c} \cdot 1 \cdot \log e^{b+c} \cdot \lim _{n \rightarrow \infty} n^{b+c-1}=\frac{(b+c) \cdot 2^{c}}{e^{b+c}} \cdot \lim _{n \rightarrow \infty} n^{b+c-1}$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
 $$
=\left\{\begin{array}{l} 0, \text { if } b+c<1 \\ 2^{c} \\ \frac{\boldsymbol{e}}{}, \text { if } \boldsymbol{b}+\boldsymbol{c}=\mathbf{1} \\ \infty, \text { if } b+c>1 \end{array}\right.
$$

UP. 321 Let $A_{0} A_{1} \ldots A_{n}$ be an Euclidean n-simplex. We'll use the following notations:
$-O, V, R, r$ the centre if it's circumscribed hypersphere, it's volume, it's circumradius and it's inradius,respectively.
$-O_{i}, R_{i}$ the centre and the radius of the hypersphere tangent to the circumscribed sphere of $A_{0} A_{1} \ldots A_{n}$ in the vertex A_{i} and to the hyperplane $A_{0} A_{1} \ldots A_{i-1} A_{i+1} \ldots A_{n}$ simultaneously.

With the above notations, the following identity holds:

$$
\sum_{i=0}^{n} \frac{1}{R_{i}}=\frac{n}{R}+\frac{1}{r}
$$

Proposed by Vasile Jiglău-Romania

Solution by proposer

Let $A_{0} A_{1} A_{2}$ be an arbitrary triangle and denote by R_{i} the radius of the cercle which is tangent to the circumcircle of $A_{0} A_{1} A_{2}$ and to the side $A_{j} A_{k}$ of the given triangle, simultaneously $(\{i, j, k\}=\{1,2,3\})$. In [1] the authors proved that:

$$
\frac{1}{R_{0}}+\frac{1}{R_{1}}+\frac{1}{R_{2}}=\frac{2}{R}+\frac{1}{r}
$$

Where R and r are the circumradius and the inradius of $A_{0} A_{1} A_{2}$, respectively. In the following we'll prove an extension of this identity to the Euclidean \mathbf{n}-simplex. Taking in the proposition enunciated below and in it's proof $\boldsymbol{n}=3$ one obtains the corresponding identity for tetrahedron.

Let $A_{0} A_{1} \ldots A_{n}$ be an Euclidean n-simplex. We'll use the following notations:

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
$-O, V, R, r$ the centre if it's circumscribed hypersphere, it's volume, it's circumradius and it's inradius,respectively.
$-O_{i}^{\prime}, R_{i}^{\prime}$ the centre and the radius of the hypersphere tangent to the circumscribed sphere of $A_{0} A_{1} \ldots A_{n}$ in the vertex A_{i} and to the hyperplane $A_{0} A_{1} \ldots A_{i-1} A_{i+1} \ldots A_{n}$ simultaneously.
$-V_{i}$ the volume of the n-simplex $O A_{0} A_{1} \ldots A_{i-1} A_{i+1} \ldots A_{n}$
$-V^{\prime}{ }_{j}$ the volume of the n-simplex $O^{\prime}{ }_{j} A_{0} A_{1} \ldots A_{j-1} A_{j+1} \ldots A_{n}$
$-V^{\prime \prime}{ }_{i}$ the volume of the ($\mathrm{n}-1$)-simplex $A_{0} A_{1} \ldots A_{i-1} A_{i+1} \ldots A_{n}$
Proposition: With the above notations, the following identity holds:

$$
\sum_{i=0}^{n} \frac{1}{R_{i}}=\frac{n}{R}+\frac{1}{r}
$$

Proof: Since the hypersphere having $-\boldsymbol{O}_{i}{ }_{i}$ as centre defined above is tangent to the circumscribed hypersphere of the given n-simplex, it results that A_{i}, O_{i}^{\prime}, O are collinear. We recall that the volume of $A_{0} A_{1} \ldots A_{n}$ is given by the formula $V=\frac{1}{n} h_{i} V^{\prime \prime}{ }_{i}$, where h_{i} is the distance from the vertex A_{i} to the hyperplane $A_{0} A_{1} \ldots A_{i-1} A_{i+1} \ldots A_{n}$. Projecting O, O_{i}^{\prime} on the hyperplane $A_{0} A_{1} \ldots A_{j-1} A_{j+1} \ldots A_{n},(i \neq j)$ applying the Thales' theorem, then the precedent formula, we ramark that $\frac{V_{j}}{V_{j}}=\frac{R_{i}}{R}$. We have:

$$
V=\sum_{\substack{j=0 \\ j \neq i}}^{n} V^{\prime}{ }_{j}+V^{\prime}{ }_{i}=\sum_{\substack{j=0 \\ j \neq i}}^{n} \frac{R_{i}}{R} V_{j}+\frac{R_{i} V^{\prime \prime}{ }_{i}}{n}=R_{i}\left(\frac{1}{R} \sum_{\substack{j=0 \\ j \neq i}}^{n} V_{j}+\frac{V^{\prime \prime}{ }_{i}}{n}\right) \Rightarrow \frac{V}{R_{i}}=\frac{1}{R} \sum_{\substack{j=0 \\ j \neq i}}^{n} V_{j}+\frac{V^{\prime \prime}{ }_{i}}{n}
$$

Since the sum $\sum_{i=0}^{n} \sum_{\substack{j=0 \\ j \neq i}}^{n} V_{j}$ any V_{j} appears n times, we have $\frac{1}{R} \sum_{i=0}^{n} \sum_{\substack{j=0 \\ j \neq i}}^{n} V_{j}=\frac{1}{R} n V$
On the other hand $n V=r \sum_{i=1}^{n} V^{\prime \prime}$, therefore
$\sum_{i=1}^{n} \frac{V}{R_{i}}=\frac{n V}{R}+\frac{V}{r} \Rightarrow \sum_{i=0}^{n} \frac{1}{R_{i}}=\frac{n}{R}+\frac{1}{r^{\prime}}$, q.e.d.

Reference:

[1] I.Isaev, Y.Maltsev, A.Monastyreva-On some geometric relations of a triangle, Journal of Classical Geometry, volume 4.

ROMANIAN MATHEMATICAL MAGAZINE

 www.ssmrmh.roUP.322. Find:

$$
\Omega=\lim _{n \rightarrow \infty} \sqrt[n]{\sum_{k=1}^{n} k\left[\binom{k}{k}+\binom{k+1}{k}+\cdots+\binom{n}{k}\right]\binom{n}{k}}
$$

Proposed by Marian Ursărescu-Romania

Solution by Sergio Esteban-Argentina

We will use the following identities:

$$
\begin{aligned}
& \text { i) }\binom{x}{x}+\binom{x+1}{x}+\cdots+\binom{x+y}{x}=\binom{x+y+1}{x+1} \text {, put } x=k \text { and } y=n-k \\
& \text { ii) } k\binom{n}{k}=n\binom{n-1}{k-1} \\
& \text { iii) } \sum_{k=0}^{r}\binom{m}{k}\binom{t}{r-k}=\binom{m+t}{r}, \text { put } m=n-1, t=n+1, r=n-1 \Rightarrow \\
& \lim _{n \rightarrow \infty} \sqrt[n]{\sum_{k=1}^{n} k\left[\binom{k}{k}+\binom{k+1}{k}+\cdots+\binom{n}{k}\right]\binom{n}{k}}=\lim _{n \rightarrow \infty} \sqrt[n]{\sum_{k=1}^{n} k\binom{n+1}{k+1}\binom{n}{k}}= \\
& =\lim _{n \rightarrow \infty} \sqrt[n]{n \sum_{k=1}^{n}\binom{n+1}{k+1}\binom{n-1}{k-1}}=\lim _{n \rightarrow \infty} \sqrt[n]{n \sum_{k=0}^{n}\binom{n-1}{k}\binom{n+1}{k+2}}= \\
& =\lim _{n \rightarrow \infty} \sqrt[n]{n\binom{2 n}{n-1}}=\lim _{n \rightarrow \infty} \sqrt[n]{\frac{n(2 n)!}{(n-1)!(n+1)!}} \stackrel{\text { by Stirling's }}{\cong} \\
& =\lim _{n \rightarrow \infty} \frac{\left(\frac{2 n}{e}\right)^{2}}{\left(\frac{n-1}{e}\right)^{\frac{n-1}{e}} \cdot\left(\frac{n+1}{e}\right)^{\frac{n+1}{e}}}=4 \\
& \Omega=\lim _{n \rightarrow \infty} \sqrt[n]{\sum_{k=1}^{n} k\left[\binom{k}{k}+\binom{k+1}{k}+\cdots+\binom{n}{k}\right]\binom{n}{k}}=4
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

UP. 323 If $S_{n}=\sum_{k=1}^{n} \log \left(\cos \frac{\pi}{2^{k+2}}\right)$ then find:

$$
\Omega=\lim _{n \rightarrow \infty}\left(\sqrt[n]{n \cdot S_{n}}\right)^{\sum_{k=3}^{n} \tan \frac{\pi}{k}}
$$

Proposed by Florică Anastase-Romania

Solution by proposer

Let $S_{n}(x)=\sum_{k=1}^{n} \log \left(\cos \frac{x}{2^{k}}\right)$, with $\cos \frac{x}{2}>0$ and from $\sin 2 a=2 \sin a \cos a$ we get:

$$
\log (\cos a)=\log (\sin 2 a)-\log (\sin a)-\log 2
$$

For $a=\frac{x}{2}, \frac{x}{2^{2}}, \ldots, \frac{x}{2^{n}}$ we get: $S_{n}(x)=\log (\sin x)-n \log 2-\log \left(\sin \frac{x}{2^{n}}\right)=\log \left(\frac{\sin x}{2^{n} \sin \frac{x}{2^{n}}}\right)$
Then: $S_{n}=S_{n}\left(\frac{\pi}{4}\right)=\log \left(\frac{\frac{1}{\sqrt{2}}}{2^{n} \sin \frac{\pi}{2^{n+2}}}\right)=\log \left(\frac{1}{\sqrt{2 \cdot} \cdot 2^{n} \sin \frac{\pi}{2^{n+2}}}\right) \underset{n \rightarrow \infty}{\longrightarrow} \log \left(\frac{2 \sqrt{2}}{\pi}\right)$

$$
=0
$$

$$
\lim _{n \rightarrow \infty} \frac{\log \left(n \cdot S_{n}\right)}{\sqrt{n}}=\lim _{n \rightarrow \infty} \frac{\log n+\log S_{n}}{\sqrt{n}}=\lim _{n \rightarrow \infty} \frac{\log n}{\sqrt{n}} \stackrel{s-\text { Cesaro }}{=} \lim _{n \rightarrow \infty} \frac{\log (n+1)-\log n}{\sqrt{n+1}-\sqrt{n}}=
$$

From (1), (2), (3) we get: $\Omega=e^{0}=1$.

$$
\begin{equation*}
=\lim _{n \rightarrow \infty} \frac{\log \left(1+\frac{1}{n}\right)^{n}}{n(\sqrt{n+1}-\sqrt{n})}=0 \tag{3}
\end{equation*}
$$

UP.324. For $n \in \mathbb{N}^{*}, n \geq 2, P_{n}=\prod_{k=1}^{n-1} \sin \left(\frac{k \pi}{n}\right)$, find:

$$
\Omega=\lim _{n \rightarrow \infty} \frac{n}{2} \cdot P_{n} \cdot \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{\cos 3 x}{\sin ^{n} x} d x
$$

Proposed by Florică Anastase-Romania

$$
\begin{aligned}
& \Omega=\lim _{n \rightarrow \infty}\left(\sqrt[n]{n \cdot S_{n}}\right)^{\sum_{k=3}^{n} \tan \frac{\pi}{k}}=e^{\lim _{n \rightarrow \infty}\left(\sum_{k=3}^{n} \tan \frac{\pi}{k}\right) \log \sqrt[n]{n \cdot S_{n}}} \\
& =\boldsymbol{e}^{\lim _{n \rightarrow \infty}\left(\sum_{k=3}^{n} \tan \frac{\pi}{k}\right) \cdot \frac{\log \left(n \cdot S_{n}\right)}{n}}=\boldsymbol{e}^{\lim _{n \rightarrow \infty} \frac{\left(\sum_{k=3}^{n} \tan \frac{\pi}{\bar{k}}\right)}{\sqrt{n}} \cdot \frac{\log \left(n \cdot S_{n}\right)}{\sqrt{n}}}, \\
& \lim _{n \rightarrow \infty} \frac{\left(\sum_{k=3}^{n} \tan \frac{\pi}{k}\right)}{\sqrt{n}} \stackrel{s-\text { Cesaro }}{=} \lim _{n \rightarrow \infty} \frac{\tan \frac{\pi}{n+1}}{\sqrt{n+1}-\sqrt{n}}=\lim _{n \rightarrow \infty} \frac{\tan \frac{\pi}{n+1}}{\frac{\pi}{n+1}} \cdot \frac{\pi}{(n+1)(\sqrt{n+1}-\sqrt{n})}
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Solution 1 by Sergio Esteban-Argentina

$$
\begin{gathered}
\frac{x^{2 n}-1}{x-1}=\prod_{k=1}^{n-1}\left(x^{2}-2 \cos \left(\frac{k \pi}{n}\right)+1\right) \Rightarrow \\
\lim _{x \rightarrow-1} \frac{x^{2 n}-1}{x-1}=\lim _{x \rightarrow-1} \prod_{k=1}^{n-1}\left(x^{2}-2 \cos \left(\frac{k \pi}{n}\right)+1\right) \Rightarrow \\
n=\prod_{k=1}^{n-1} 2\left(1+\cos \left(\frac{k \pi}{n}\right)\right)=\prod_{k=1}^{n-1} 2^{2} \cos ^{2}\left(\frac{k \pi}{2 n}\right) \Rightarrow \prod_{k=1}^{n-1} \cos \left(\frac{k \pi}{2 n}\right)=\frac{\sqrt{n}}{2^{n-1}} \\
\text { Analogously if } \lim _{x \rightarrow-1} \Rightarrow \prod_{k=1}^{n-1} \sin \left(\frac{k \pi}{2 n}\right)=\frac{\sqrt{n}}{2^{n-1}}
\end{gathered}
$$

$$
\text { By }(\mathrm{i}) \Rightarrow \prod_{k=1}^{n-1} \sin \left(\frac{k \pi}{n}\right)=\prod_{k=1}^{n-1} 2 \sin \left(\frac{k \pi}{2 n}\right) \cos \left(\frac{k \pi}{2 n}\right)=\frac{n}{2^{n-1}}, \forall n \in \mathbb{N}^{*}, n \geq 2 \Rightarrow
$$

$$
P_{n}=\prod_{k=1}^{n-1} \sin \left(\frac{k \pi}{n}\right)=\frac{n}{2^{n-1}}
$$

Now,

$$
\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{\cos 3 x}{\sin ^{n} x} d x=\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{\cos ^{3} x-3 \cos x \sin ^{2} x}{\sin ^{n} x} d x=
$$

$$
=\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \cos x\left(\frac{1}{\sin ^{n} x}-4 \sin ^{2-n} x\right) d x \quad \begin{aligned}
& u=\sin x \Rightarrow d x=\frac{d u}{\cos x} \\
& \cong
\end{aligned}
$$

$$
=\left[\frac{\csc ^{n-1} x}{1-n}-\frac{4 \csc ^{n-3} x}{3-n}\right]_{\frac{\pi}{6}}^{\frac{\pi}{2}}=-2^{3} \cdot \frac{2^{n}-3 n+1}{8(n-3)(n-1)}
$$

$$
\text { Finally, } \Omega=-\lim _{n \rightarrow \infty}\left(\frac{n}{2} \cdot \frac{n}{2^{n-1}} \cdot \frac{2^{n}-3 n+1}{(n-3)(n-1)}\right)=-1
$$

Solution 2 by Naren Bhandari-Bajura-Nepal

We have that $2 i \sin x=e^{i x}-e^{-i x}$ with $i=\sqrt{-1}$ which follow that

$$
P_{n}=\frac{1}{2^{n-1}}\left(\prod_{k=1}^{n-1} e^{\frac{k i \pi}{n}}\right)\left(\prod_{k=1}^{n-1}\left(1-e^{\frac{k i \pi}{n}}\right)\right)=\frac{L_{n}}{(2 i)^{n-1}} \exp \left(\sum_{k=1}^{n-1} \frac{k \pi}{n}\right)=\frac{L_{n}}{2^{n-1}}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
where $L_{\boldsymbol{n}}$ is the latter product to be evaluated by noticing the polynomial

$$
F(X)=\prod_{k=1}^{n}\left(X-e^{-\frac{2 k i \pi}{n}}\right)
$$

whose zeros are non-trivial solution n-th roots or unity i.e.

$$
\begin{gathered}
f(X)=\sum_{k=1}^{n} x^{k} \text { and } F(1)=\sum_{k=1}^{n-1} 1^{k}=n \Rightarrow \\
P_{n}=\frac{n}{2^{n-1}} \Rightarrow \Omega=\lim _{n \rightarrow \infty} \frac{n \cdot P_{n}}{2} \cdot \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{\cos 3 x}{\sin ^{n} x} d x=\lim _{n \rightarrow \infty} \frac{n^{2}}{2^{n}} \cdot \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{4 \cos ^{3} x-\cos x}{\sin ^{n} x} d x= \\
\stackrel{\sin x=u}{=} \lim _{n \rightarrow \infty} \frac{n^{2}}{2^{n}} \cdot \int_{\frac{1}{2}}^{1} \frac{1-u^{2}}{u^{n}} d u==-\lim _{n \rightarrow \infty}\left(\frac{n^{2}}{2^{n}} \cdot \frac{2^{n}-3 n+1}{n^{2}-4 n+3}\right)=-1
\end{gathered}
$$

UP. 325 Let be $\left(a_{n}\right)_{n \geq 1},\left(f_{n}(x)\right)_{n \geq 1} ; n \in \mathbb{N}, n \geq 7, x>1$

$$
a_{n}=\left(\prod_{k=1}^{n}\binom{n}{k}\right)^{2}, f_{n}(x)=\int_{x}^{x^{2}} \frac{1}{\log \sqrt[n]{t}} d t
$$

Then find:

$$
\Omega_{1}=\lim _{x \rightarrow \infty} f_{n}(x) \text { and } \Omega_{2}=\lim _{n \rightarrow \infty}\left(\frac{1}{a_{n}} \lim _{x \rightarrow 1} f_{n}(x)\right)
$$

Proposed by Florică Anastase-Romania

Solution by proposer

$$
\begin{gathered}
\text { Let } g:(1, \infty) \rightarrow \mathbb{R}, g(t)=\frac{1}{\log t} \text { and } G:(1, \infty) \rightarrow \mathbb{R}, G^{\prime}(t)=g(t) \\
\text { How } f_{n}(x)=G\left(x^{2}\right)-G(x) \text { then } f_{n}-\text { differentiable } \\
{f_{n}^{\prime}}_{n}(x)=2 x \cdot g(x)-g(x)=\frac{2 x}{\log x^{2}}-\frac{1}{\log x}=\frac{x-1}{\log x}>0 \Rightarrow f_{n}(x) \uparrow x \in(1, \infty) \\
\text { How } \frac{1}{\log t}>\frac{1}{\log x^{2}}, \forall t \in\left(x, x^{2}\right), x>1 \text { we have }
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
f_{n}(x)=\int_{x}^{x^{2}} \frac{1}{\log \sqrt[n]{t}} d t=n \int_{x}^{x^{2}} \frac{1}{\log t} d t \geq n \int_{x}^{x^{2}} \frac{1}{\log x^{2}} d t=\frac{n\left(x^{2}-x\right)}{2 \log x}, \forall x>1 \\
\Rightarrow \Omega_{1}=\lim _{x \rightarrow \infty} f_{n}(x)=\lim _{x \rightarrow \infty} \frac{n\left(x^{2}-x\right)}{2 \log x} \stackrel{L^{\prime} H}{=} n \lim _{x \rightarrow \infty} \frac{2 x-1}{2 \cdot \frac{1}{x}}=n \lim _{x \rightarrow \infty} \frac{2 x^{2}-x}{2}=+\infty \\
\frac{1}{t l o g t} \leq \frac{1}{\log t} \leq \frac{1}{t-1}+\frac{1}{3-t}, \forall t \in(1,3) \quad(*) \\
\frac{1}{t \log t} \leq \frac{1}{\log t}, \forall t \in(1,3) \Leftrightarrow \frac{1}{\log t}\left(1-\frac{1}{t}\right) \geq 0, \forall t \in(1,3) \Leftrightarrow \\
\frac{t-1}{t \log t} \geq 0, \forall t \in(1,3)(\operatorname{true})
\end{gathered}
$$

Now,

$$
\begin{gathered}
\frac{1}{\log t} \leq \frac{1}{t-1}+\frac{1}{3-t}, \forall t \in(1,3) \Leftrightarrow \frac{1}{\log t} \leq \frac{2}{-t^{2}+4 t-3}, \forall t \in(1,3) \Leftrightarrow \\
\log t+\frac{t^{2}-4 t+3}{2} \geq 0, \forall t \in(1,3)
\end{gathered}
$$

Let $h(t)=\log t+\frac{t^{2}-4 t+3}{2}, t \in(1,3) ; h^{\prime}(t)=\frac{(t-1)^{2}}{2} \geq 0, \forall t \in(1,3) \Rightarrow h(t) \uparrow t \in(1,3)$
From (*) we have:

$$
\begin{aligned}
& \int_{x}^{x^{2}} \frac{1}{t \log t} d t \leq \int_{x}^{x^{2}} \frac{1}{\log t} d t \leq \int_{x}^{x^{2}}\left(\frac{1}{t-1}+\frac{1}{3-t}\right) d t \\
& n \int_{x}^{x^{2}} \frac{1}{t \log t} d t \leq f_{n}(x) \leq n \int_{x}^{x^{2}}\left(\frac{1}{t-1}+\frac{1}{3-t}\right) d t
\end{aligned}
$$

$$
\int_{x}^{x^{2}} \frac{1}{t \log t} d t=\left.\log (\log t)\right|_{x} ^{x^{2}}=\log 2, \forall x \in(1, \sqrt{3}) \Rightarrow \lim _{x \rightarrow 1} \int_{x}^{x^{2}} \frac{1}{t \log t} d t=\log 2
$$

$$
\int_{x}^{x^{2}}\left(\frac{1}{t-1}+\frac{1}{3-t}\right) d t=\left.\log \left|\frac{t-1}{3-t}\right|\right|_{x} ^{x^{2}}=\log \left(\frac{(x+1)(3-x)}{3-x^{2}}\right), \forall x \in(1, \sqrt{3})
$$

$$
\lim _{x \rightarrow 1} \int_{x}^{x^{2}}\left(\frac{1}{t-1}+\frac{1}{3-t}\right) d t=\log 2
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
So, we have:

$$
\lim _{x \rightarrow 1} f_{n}(x)=n \log 2
$$

Let be:

$$
\begin{gathered}
b_{n}=\prod_{k=0}^{n}\binom{n}{k}=\prod_{k=1}^{n-1}\binom{n}{k}=\prod_{k=1}^{n-1} \frac{n!}{k!(n-k)!}=\frac{(n!)^{n-1}}{[1!\cdot 2!\cdot \ldots \cdot(n-1)!]^{2}} \\
\left.2<e_{n} \cong \frac{n+1}{\cong+1} \sqrt[n+1)!\right]{(n+1)}<3 ; n \geq 6(*) \\
\frac{b_{n+1}}{b_{n}}=\frac{(n+1)^{n}}{n!}=\frac{(n+1)^{n+1}}{(n+1)!} \stackrel{(*)}{>} 2^{n+1} \Rightarrow b_{n+1}>2^{n+1} \cdot b_{n} \\
\frac{b_{n+1}}{b_{n}}=\frac{(n+1)^{n}}{n!}=\frac{(n+1)^{n+1} \stackrel{(*)}{<}}{(n+1)!} 3^{n+1} \Rightarrow b_{n+1}<2^{n+1} \cdot b_{n}
\end{gathered}
$$

Suppose: $\left\{\begin{array}{c}b_{n}>2^{\frac{n^{2}}{2}} \\ b_{n+1}>2^{n+1} \cdot b_{n}\end{array} \Rightarrow b_{n+1}>2^{n+1} \cdot 2^{\frac{n^{2}}{2}}=2^{\frac{n^{2}+2 n+2}{2}}>2^{\frac{(n+1)^{2}}{2}}\right.$

Suppose: $\left\{\begin{array}{c}b_{n}<3^{n^{2}} \\ b_{n+1}<3^{n+1} \cdot b_{n}\end{array} \Rightarrow b_{n+1}<3^{n+1} \cdot 3^{n^{2}}=3^{n^{2}+n+1}<3^{(n+1)^{2}}\right.$
Therefore,

$$
\begin{gathered}
2^{n^{2}}<\left(\prod_{k=1}^{n}\binom{n}{k}\right)^{2}<3^{n^{2}}, \forall n \geq 7 \\
\frac{n \log 2}{3^{n^{2}}}<\frac{n \log 2}{a_{n}}<\frac{n \log 2}{2^{n^{2}}} \\
0 \leq \frac{n}{2^{n^{2}}}=\frac{n}{2^{n} \cdot 2^{n} \cdot \ldots \cdot 2^{n}}<\frac{n}{2^{n}}=\frac{n}{(1+1)^{n}}= \\
1+\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{n}
\end{gathered}=\frac{n}{1+n+\frac{n(n-1)}{2}+\cdots}<\frac{n}{\frac{n(n-1)}{2}}=0 .
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

UP. 326 Find:

$$
\Omega=\lim _{n \rightarrow \infty}\left(\frac{n}{\log n}\right)^{e} \cdot e^{\int_{0}^{e} \log \left(\frac{\log (x+e)}{x^{2}+n e}\right) d x}
$$

Proposed by Florică Anastase-Romania

Solution by proposer

$$
\frac{\beta-\alpha}{\int_{\alpha}^{\beta} \frac{1}{f(x)} d x} \leq e^{\frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} \log (f(x)) d x} \leq \frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} f(x) d x, \alpha
$$

$$
<\beta(*) \text { means Integral Inequality }
$$

$$
\begin{gathered}
\text { For } x \in[0, e] \Rightarrow n e \leq x^{2}+n e \leq e^{2}+n e \Rightarrow \frac{\log n}{e^{2}+n e} \leq \frac{\log (x+e)}{x^{2}+n e} \leq \frac{\log (e+n)}{n e} \\
\text { Let } f:[0, e] \rightarrow \mathbb{R}, f(x)=\frac{\log (x+e)}{x^{2}+n e} \text { we have: }
\end{gathered}
$$

$$
\begin{equation*}
\frac{e}{\int_{0}^{e} \frac{1}{f(x)} d x}=\frac{e}{\int_{0}^{e} \frac{x^{2}+n e}{\log (x+e)} d x} \geq \frac{e}{\int_{0}^{e} \frac{e^{2}+n e}{\log n} d x}=\frac{1}{e} \cdot \frac{\log n}{e+n} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\frac{1}{e} \int_{0}^{e} f(x) d x=\frac{1}{e} \int_{0}^{e} \frac{\log (x+e)}{x^{2}+n e} d x \leq \frac{1}{e} \int_{0}^{e} \frac{\log (e+n)}{n e} d x=\frac{1}{e} \cdot \frac{\log (e+n)}{n} \tag{2}
\end{equation*}
$$

From (1), (2) we get:

$$
\begin{gathered}
\frac{1}{e} \cdot \frac{\log n}{e+n} \leq e^{\frac{1}{e} \int_{0}^{e} \log \left(\frac{\log (x+e)}{x^{2}+n e}\right) d x} \leq \frac{1}{e} \cdot \frac{\log (e+n)}{n} \\
\frac{1}{e} \cdot \frac{n}{e+n} \leq \frac{n}{\log n} \cdot e^{\frac{1}{e} \int_{0}^{e} \log \left(\frac{\log (x+e)}{x^{2}+n e}\right) d x} \leq \frac{1}{e} \cdot \frac{\log (e+n)}{\log n} \\
\frac{1}{e^{e}} \cdot\left(\frac{n}{e+n}\right)^{e} \leq\left(\frac{n}{\log n}\right)^{e} \cdot e^{\int_{0}^{e} \log \left(\frac{(\log (x+e)}{x^{2}+n e}\right) d x} \leq \frac{1}{e^{e}} \cdot\left(\frac{\log (e+n)}{\log n}\right)^{e} \\
\lim _{n \rightarrow \infty} \frac{n}{e+n}=\lim _{n \rightarrow \infty} \frac{\log (e+n)}{\log n}=1
\end{gathered}
$$

So,

$$
\Omega=\lim _{n \rightarrow \infty}\left(\frac{n}{\log n}\right)^{e} \cdot e^{\int_{0}^{e} \log \left(\frac{\log (x+e)}{x^{2}+n e}\right) d x}=\frac{1}{e^{e}}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
UP.327. If $\left(x_{n}\right)_{n \geq 1}, x_{n} \in \mathbb{R}_{+}^{*}, \forall n \in \mathbb{N}^{*}$ satisfy $\lim _{n \rightarrow \infty}\left(x_{n+1}-x_{n}\right)=x \in \mathbb{R}_{+}^{*}$,
then find:

$$
\lim _{n \rightarrow \infty}\left(x_{n+1} \sqrt[n+1]{n+1}-x_{n} \sqrt[n]{n}\right)
$$

Proposed by D.M.Bătineţu-Giurgiu, Neculai Stanciu-Romania

Solution by Marian Ursărescu-Romania

$$
\begin{gather*}
L=\lim _{n \rightarrow \infty}\left(x_{n+1} \sqrt[n+1]{n+1}-x_{n} \sqrt[n]{n}\right)= \\
=\lim _{n \rightarrow \infty}\left(x_{n+1} \sqrt[n+1]{n+1}-x_{n+1} \sqrt[n]{n}+x_{n+1} \sqrt[n]{n}-x_{n} \sqrt[n]{n}\right)= \\
=\lim _{n \rightarrow \infty} x_{n+1}(\sqrt[n+1]{n+1}-\sqrt[n]{n})+\lim _{n \rightarrow \infty} \sqrt[n]{n}\left(x_{n+1}-x_{n}\right) ;(1) \\
\lim _{n \rightarrow \infty} \sqrt[n]{n}\left(x_{n+1}-x_{n}\right)=1 \cdot x=x ;(2) \\
\lim _{n \rightarrow \infty} x_{n+1}(\sqrt[n+1]{n+1}-\sqrt[n]{n})=\lim _{n \rightarrow \infty} \frac{x_{n+1}}{n+1} \cdot(n+1) \cdot(\sqrt[n+1]{n+1}-\sqrt[n]{n}) \\
\lim _{n \rightarrow \infty} \frac{x_{n+1}}{n+1}=\lim _{n \rightarrow \infty} \frac{x_{n}}{n} \stackrel{L C-S}{=} \lim _{n \rightarrow \infty} \frac{x_{n+1}-x_{n}}{n+1-n}=x ; \tag{3}
\end{gather*}
$$

Let be the function $f:[n, n+1] \rightarrow \mathbb{R}, f(x)=x^{\frac{1}{x}}$, from MVT we have:

$$
\begin{gathered}
\exists c \in(n, n+1) \text { such that } \frac{f(n+1)-f(n)}{n+1-n}=f^{\prime}(c) \Leftrightarrow \\
\sqrt[n+1]{n+1}-\sqrt[n]{n}=\frac{c^{\frac{1}{c}}(1-\log c)}{c^{2}} \Rightarrow \\
\lim _{n \rightarrow \infty}(n+1) \cdot(\sqrt[n+1]{n+1}-\sqrt[n]{n})=\lim _{n \rightarrow \infty}(n+1) \cdot \frac{c^{\frac{1}{c}}(1-\log c)}{c^{2}}=0 ; \quad \text { (4) because }
\end{gathered}
$$

$$
\text { From } c \in(n, n+1) \Rightarrow \lim _{x \rightarrow \infty} \frac{x+1}{x} \cdot \frac{1-\log x}{x}=1 \cdot 0=0
$$

$$
\text { From (1),(2),(3),(4) we get } L=x
$$

UP.328. Let $\left(\gamma_{n}\right)_{n \geq 1}, \gamma_{n}=-\log n+\sum_{k=1}^{n} \frac{1}{k}$, with $\lim _{n \rightarrow \infty} \gamma_{n}=\gamma(\gamma$ is EulerMascheroni constant), then find:

$$
\lim _{n \rightarrow \infty}\left(\sin \gamma_{n}-\sin \gamma\right) \sqrt[n]{n!}
$$

Proposed by D.M.Bătineţu-Giurgiu, Neculai Stanciu-Romania

ROMANIAN MATHEMATICAL MAGAZINE

 www.ssmrmh.roSolution 1 by Mokhtar Khassani-Mostaganem-Algerie

$$
\begin{gathered}
\Omega=\lim _{n \rightarrow \infty}\left(\sin \gamma_{n}-\sin \gamma\right) \sqrt[n]{n!}=\lim _{n \rightarrow \infty} \sqrt[n]{\frac{n!}{n^{n}}} \cdot \frac{\sin \left(H_{n}-\log n\right)-\sin \gamma}{\frac{1}{n}}= \\
=\frac{1}{2 e} \cdot \lim _{n \rightarrow \infty} \frac{\sin \left(\gamma+\frac{1}{2 n}+o\left(\frac{1}{n^{2}}\right)\right)-\sin \gamma}{\gamma+\frac{1}{2 n}-\gamma}=\frac{\cos \gamma}{2 e}
\end{gathered}
$$

Solution 2 by Marian Ursărescu-Romania

$$
\begin{align*}
& L=\lim _{n \rightarrow \infty}\left(\sin \gamma_{n}-\sin \gamma\right) \sqrt[n]{n!}=\lim _{n \rightarrow \infty} 2 \sin \left(\frac{\gamma_{n}-\gamma}{2}\right) \cos \left(\frac{\gamma_{n}+\gamma}{2}\right) \sqrt[n]{n!}= \\
& =2 \lim _{n \rightarrow \infty} \frac{\sin \left(\frac{\gamma_{n}-\gamma}{2}\right)}{\frac{\gamma_{n}-\gamma}{2}} \cdot\left(\gamma_{n}-\gamma\right) \cdot n \cdot \frac{\sqrt[n]{n!}}{n} \cdot \cos \left(\frac{\gamma_{n}+\gamma}{2}\right) ; \\
& \lim _{n \rightarrow \infty} \frac{\sin \left(\frac{\gamma_{n}-\gamma}{2}\right)}{\frac{\gamma_{n}-\gamma}{2}}=1 ; \\
& \lim _{n \rightarrow \infty} \frac{\sqrt[n]{n!}}{n}=\lim _{n \rightarrow \infty} \sqrt[n]{\sqrt{n!}} \stackrel{c-D^{\prime} A}{=} \lim _{n \rightarrow \infty} \frac{(n+1)!}{(n+1)^{n+1}} \cdot \frac{n^{n}}{n!}=\lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)^{n}=\frac{1}{e} ; \tag{3}\\
& \text { Now, we use Cesaro-Stolz for } \frac{0}{0} \text { case: } \\
& \lim _{n \rightarrow \infty}\left(\gamma_{n}-\gamma\right) \cdot n=\lim _{n \rightarrow \infty} \frac{\gamma_{n}-\gamma}{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{\gamma_{n+1}-\gamma_{n}}{\frac{1}{n+1}-\frac{1}{n}}= \\
& =\lim _{n \rightarrow \infty} \frac{\frac{1}{n+1}-\log (n+1)+\log n}{-\frac{1}{n(n+1)}}=\lim _{n \rightarrow \infty} \frac{1-(n+1) \log \left(1+\frac{1}{n}\right)}{-\frac{1}{n}} \\
& =\lim _{x \rightarrow 0} \frac{1-\left(\frac{1}{x}+1\right) \log (1+x)}{-x}=\lim _{x \rightarrow 0} \frac{(1+x) \log (1+x)-x}{x^{2}} \stackrel{L^{\prime} H}{=} \\
& =\lim _{x \rightarrow 0} \frac{\log (1+x)+1-1}{2 x}=\frac{1}{2} \text {; } \tag{4}\\
& \text { From (1),(2),(3),(4) we get } \\
& L=\frac{\cos \gamma}{2 e}
\end{align*}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
UP.329. If $\left(a_{n}\right)_{n \geq 1}$ is a sequence of real positive numbers such that:

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{n^{2} a_{n}}=a \in \mathbb{R}_{+}^{*} \text {, then find: } \\
\lim _{n \rightarrow \infty}\left(\sqrt[n+1]{\frac{a_{n+1} F_{n+1}}{(2 n+1)!!}}-\sqrt[n]{\frac{a_{n} F_{n}}{(2 n-1)!!}}\right)
\end{gathered}
$$

Proposed by D.M.Bătineţu-Giurgiu, Neculai Stanciu-Romania

Solution by Mokhtar Khassani-Mostaganem-Algerie

$$
\begin{gathered}
\Omega=\lim _{n \rightarrow \infty}\left(\sqrt[n+1]{\frac{a_{n+1} F_{n+1}}{(2 n+1)!!}}-\sqrt[n]{\frac{a_{n} F_{n}}{(2 n-1)!!}}\right) \stackrel{L C-S}{=} \lim _{n \rightarrow \infty} \sqrt[n]{\frac{a_{n} F_{n}}{n^{n}(2 n-1)!!}} \stackrel{c-D^{\prime} A}{=} A \\
\stackrel{C-D^{\prime} A}{=} \lim _{n \rightarrow \infty} \frac{\frac{a_{n+1} F_{n+1}}{(n+1)^{n+1}(2 n+1)!!}}{\frac{a_{n} F_{n}}{n^{n}(2 n-1)!!}}=\frac{1}{e} \cdot \lim _{n \rightarrow \infty} \frac{n^{2}}{(n+1)(2 n+1)} \cdot \frac{a_{n+1}}{n^{2} a_{n}} \cdot \frac{F_{n+1}}{F_{n}}=\frac{\varphi}{2 e} \\
\therefore(2 n-1)!!=\frac{(2 n)!}{2^{n} \cdot n!} \\
\therefore \lim _{n \rightarrow \infty} \frac{F_{n+1}}{F_{n}}=\varphi, \varphi-\text { Golden ratio. }
\end{gathered}
$$

UP. 330 For $\boldsymbol{n} \in \mathbb{N}, \boldsymbol{n} \geq \mathbf{1}, \boldsymbol{F}_{\boldsymbol{n}}$-Fibonacci numbers, prove that:

$$
\frac{F_{1}}{3\left(F_{1}^{2}+F_{2}^{2}\right)^{2}}+\frac{F_{2}}{4\left(F_{1}^{2}+F_{2}^{2}+F_{3}^{2}\right)^{2}}+\cdots+\frac{F_{n}}{(n+2)\left(F_{1}^{2}+F_{2}^{2}+\cdots+F_{n+1}^{2}\right)^{2}} \geq \frac{\left(F_{n+2}-F_{1}\right)^{2}}{F_{n+2}^{2}\left(n F_{n+2}+F_{n}\right)}
$$

Proposed by Florică Anastase-Romania

Solution by proposer

$$
\text { (i) } \sum_{k=1}^{n}(k+2) F_{k}=n F_{n+2}+F_{n}
$$

Proof:

$$
\begin{gather*}
\boldsymbol{F}_{k+2}-\boldsymbol{F}_{k+1}=F_{k}, \forall k>0 ; \\
(\boldsymbol{k}+2) \boldsymbol{F}_{k}=2 \boldsymbol{F}_{\boldsymbol{k}}+\boldsymbol{k} F_{k} \stackrel{(1)}{\Rightarrow} k F_{k}=k\left(F_{k+2}-F_{k+1}\right)= \\
=(k+2) F_{k+2}-(k+1) F_{k+1}-2\left(F_{k+2}-F_{k+1}\right)-F_{k+1} ; \tag{3}
\end{gather*}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
\stackrel{(1)}{\Rightarrow} F_{k+1}=F_{k+3}-F_{k+2} \stackrel{(3)}{\Rightarrow} \\
\sum_{k=1}^{n} k F_{k}=\sum_{k=1}^{n}\left[(k+2) F_{k+2}-(k+1) F_{k+1}\right]-2 \sum_{k=1}^{n}\left(F_{k+2}-F_{k+1}\right)-\sum_{k=1}^{n}\left(F_{k+3}-F_{k+2}\right)= \\
=(n+2) F_{n+2}-2 F_{2}-2\left(F_{n+2}-F_{2}\right)-\left(F_{n+3}-F_{3}\right)= \\
=n F_{n+2}-F_{n+3}+F_{3} \\
\sum_{k=1}^{n} F_{k}=\sum_{k=1}^{n}\left(F_{k+2}-F_{k+1}\right)=F_{n+2}-F_{2} \\
\stackrel{(2)}{\Rightarrow} \sum_{k=1}^{n}(k+2) F_{k}=\sum_{k=1}^{n} k F_{k}+2 \sum_{k=1}^{n} F_{k}=2\left(F_{n+2}-F_{2}\right)+\left(n F_{n+2}-F_{n+3}+F_{3}\right) \\
=(n+2) F_{n+2}-\left(F_{n+3}-F_{3}-F_{2}\right)-3 F_{2}= \\
=(n+2) F_{n+2}-F_{n+3}=(n+1) F_{n+2}-F_{n+1}=n F_{n+2}+F_{n} \\
\text { (ii) } \sum_{k=1}^{n} \frac{F_{k}}{F_{1}^{2}+F_{2}^{2}+\cdots+F_{k+1}^{2}}=1-\frac{1}{F_{n+2}}
\end{gathered}
$$

Proof:

$$
\begin{equation*}
F_{i+2}-F_{i}=F_{i+1}, \forall k>0 \Rightarrow F_{i+1} \cdot F_{i+2}-F_{i} \cdot F_{i+1}=F_{i+2}^{2} \tag{*}
\end{equation*}
$$

Adding up relations (*) for all $i \in 1,2, \ldots, k$, we get:

$$
\begin{gathered}
F_{k+1} \cdot F_{k+2}-F_{1} \cdot F_{2}=F_{2}^{2}+F_{3}^{2}+\cdots+F_{k+1}^{2} \Rightarrow \\
F_{1}^{2}+F_{2}^{2}+\cdots+F_{k+1}^{2}=F_{k+1} \cdot F_{k+2} \Rightarrow \\
\frac{F_{k}}{F_{1}^{2}+F_{2}^{2}+\cdots+F_{k+1}^{2}}=\frac{F_{k+2}-F_{k+1}}{F_{k+1} \cdot F_{k+2}}=\frac{1}{F_{k+1}}-\frac{1}{F_{k+2}} \Rightarrow \\
\sum_{k=1}^{n} \frac{F_{k}}{F_{1}^{2}+F_{2}^{2}+\cdots+F_{k+1}^{2}}=1-\frac{1}{F_{n+2}} \\
\frac{F_{1}}{3\left(F_{1}^{2}+F_{2}^{2}\right)^{2}}+\frac{F_{2}}{4\left(F_{1}^{2}+F_{2}^{2}+F_{3}^{2}\right)^{2}}+\cdots+\frac{F_{n}}{(n+2)\left(F_{1}^{2}+F_{2}^{2}+\cdots+F_{n+1}^{2}\right)^{2}}= \\
=\frac{\left(\frac{F_{1}}{F_{1}^{2}+F_{2}^{2}}\right)^{2}}{3 F_{1}}+\frac{F_{2}}{\left(\frac{F_{1}^{2}+F_{2}^{2}+F_{3}^{2}}{4}\right)^{2}}+\cdots+\frac{\left(\frac{F_{n}}{F_{1}^{2}+F_{2}^{2}+\cdots+F_{n+1}^{2}}\right)^{2}}{(n+2) F_{n}}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\begin{gathered}
\geq \frac{\left(\sum_{k=1}^{n} \frac{F_{k}}{F_{1}^{2}+F_{2}^{2}+\cdots+F_{k+1}^{2}}\right)^{2}}{\sum_{k=1}^{n}(k+2) F_{k}}=\frac{\left(1-\frac{1}{F_{n+2}}\right)^{2}}{n F_{n+2}+F_{n}}= \\
=\frac{\left(F_{n+2}-F_{1}\right)^{2}}{F_{n+2}^{2}\left(n F_{n+2}+F_{n}\right)}=\frac{\left(F_{n+2}-F_{1}\right)^{2}}{F_{n+2}^{2}\left(n F_{n+2}+F_{n}\right)}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

It's nice to be important but more important it's to be nice. At this paper works a TEAM.

This is RMM TEAM.
To be continued!
Daniel Sitaru

